cedalion.geometry package
Subpackages
- cedalion.geometry.photogrammetry package
- Submodules
- cedalion.geometry.photogrammetry.processors module
ColoredStickerProcessor
ColoredStickerProcessorDetails
ColoredStickerProcessorDetails.cfg_colors
ColoredStickerProcessorDetails.cluster_circles
ColoredStickerProcessorDetails.cluster_colors
ColoredStickerProcessorDetails.cluster_coords
ColoredStickerProcessorDetails.plot_cluster_circles()
ColoredStickerProcessorDetails.plot_vertex_colors()
ColoredStickerProcessorDetails.plot_vertex_colors1()
ColoredStickerProcessorDetails.vertex_colors
ColoredStickerProcessorDetails.vertex_hue
ColoredStickerProcessorDetails.vertex_sat
ColoredStickerProcessorDetails.vertex_value
ScanProcessor
geo3d_from_scan()
minEnclosingCircle()
pca()
- Module contents
Submodules
cedalion.geometry.landmarks module
- class cedalion.geometry.landmarks.LandmarksBuilder1010(scalp_surface, landmarks)
Bases:
object
Construct the 10-10-system on scalp surface based on Oostenveld and Praamstra [OP01].
- Parameters:
scalp_surface (
Surface
) – a triangle-mesh representing the scalplandmarks (
DataArray
) – positions of “Nz”, “Iz”, “LPA”, “RPA”
- build()
- plot()
- cedalion.geometry.landmarks.order_ref_points_6(landmarks, twoPoints)
Reorder a set of six landmarks based on spatial relationships and give labels.
- Parameters:
landmarks (
DataArray
) – coordinates for six landmark pointstwoPoints (
str
) – two reference points (‘Nz’ or ‘Iz’) for orientation.
- Return type:
DataArray
- Returns:
the landmarks ordered as “Nz”, “Iz”, “RPA”, “LPA”, “Cz”
cedalion.geometry.registration module
Registrating optodes to scalp surfaces.
- cedalion.geometry.registration.find_spread_points(points_xr)
Selects three points that are spread apart from each other in the dataset.
- Parameters:
points_xr (
DataArray
) – An xarray DataArray containing the points from which to select.- Return type:
ndarray
- Returns:
Indices of the initial, farthest, and median-distanced points from the initial point as determined by their positions in the original dataset.
- cedalion.geometry.registration.gen_xform_from_pts(p1, p2)
Calculate the affine transformation matrix T that transforms p1 to p2.
- Parameters:
p1 (
ndarray
) – Source points (p x m) where p is the number of points and m is the number of dimensions.p2 (
ndarray
) – Target points (p x m) where p is the number of points and m is the number of dimensions.
- Return type:
ndarray
- Returns:
Affine transformation matrix T.
- cedalion.geometry.registration.icp_with_full_transform(opt_centers, montage_points, max_iterations=50, tolerance=500.0)
Perform Iterative Closest Point algorithm with full transformation capabilities.
- Args::
opt_centers: Source point cloud for alignment. montage_points: Target reference point cloud. max_iterations: Maximum number of iterations for convergence. tolerance: Tolerance for convergence check.
- Returns:
- Transformed source points as a numpy array with their coordinates
updated to reflect the best alignment.
- np.ndarray: Transformation parameters array consisting of
[tx, ty, tz, rx, ry, rz, sx, sy, sz], where ‘t’ stands for translation components, ‘r’ for rotation components (in radians), and ‘s’ for scaling components.
- np.ndarray: Indices of the target points that correspond to each source point as
per the nearest neighbor search.
- Return type:
np.ndarray
- cedalion.geometry.registration.register_icp(surface, landmarks, geo3d, niterations=1000, random_sample_fraction=0.5)
- cedalion.geometry.registration.register_trans_rot(coords_target, coords_trafo)
- cedalion.geometry.registration.register_trans_rot_isoscale(coords_target, coords_trafo)
cedalion.geometry.segmentation module
Funtionality to work with segmented MRI scans.
- cedalion.geometry.segmentation.cell_coordinates(volume, flat=False)
cedalion.geometry.utils module
- cedalion.geometry.utils.m_rot(angles)
Calculate the affine transformation matrix for a 3D rotation.
R = Rz(alpha)Ry(beta)Rx(gamma)
https://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
- Return type:
ndarray
- cedalion.geometry.utils.m_scale1(s)
Calculate the affine transformation matrix for scaling s.
Apply one scaling factor for all dimensions.
- Return type:
ndarray
- cedalion.geometry.utils.m_scale3(s)
Calculate the affine transformation matrix for scaling s.
Apply different scaling factors for each dimension.
- Return type:
ndarray
- cedalion.geometry.utils.m_trans(t)
Calculate the affine transformation matrix for a tranlation t.
- Return type:
ndarray
Module contents
Tools for geometric calculations.