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Abstract

We propose two methods that reduce the post-nonlinear blind source separation problem (PNL-
BSS) to a linear BSS problem. The first method is based on the concept of maximal correlation:
we apply the alternating conditional expectation (ACE) algorithm—a powerful technique from non-
parametric statistics—to approximately invert the componentwise nonlinear functions. The second
method is a Gaussianizing transformation, which is motivated by the fact that linearly mixed signals
before nonlinear transformation are approximately Gaussian distributed. This heuristic, but simple
and efficient procedure works as good as the ACE method. Using the framework provided by
ACE, convergence can be proven. The optimal transformations obtained by ACE coincide with the
sought-after inverse functions of the nonlinearities. After equalizing the nonlinearities, temporal
decorrelation separation (TDSEP) allows us to recover the source signals. Numerical simulations
testing “ACE-TD” and “Gauss-TD” on realistic examples are performed with excellent results.

Keywords: Blind Source Separation, Post-nonlinear Mixture, Gaussianization, Maximal Correla-
tion, Temporal Decorrelation

1. Introduction

Blind methods for source separation had major success in many areas of science. This is mainly due
to the simple, yet versatile model (Jutten and Hérault, 1991, Comon, 1994, Cardoso and Souloumiac,
1993, Deco and Obradovic, 1995, Amari et al., 1996, Bell and Sejnowski, 1995, Hyvärinen and Oja,
1997, Ziehe and Müller, 1998, Pajunen and Karhunen, 2000, Hyvärinen et al., 2001). For linear BSS
we assume that at time t each component xi[t] of the observed n-dimensional data vector x[t] is a
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linear combination of m≤ n statistically independent signals, mathematically speaking

xi[t] =
m

∑
j=1

Ai js j[t].

Since the source signals s j[t] and the coefficients Ai j of the mixing matrix A are unknown, they have
to be estimated from the observed signals x[t]. The goal is to find a separating matrix B and signals
u[t] = Bx[t] which are estimates for s[t].

A challenging research topic is to extend this model to nonlinear transformations. In general,
the nonlinear mixing model is of the form

x[t] = f (s[t]) (1)

where f is an arbitrary nonlinear transformation which must be at least approximately invertible.
An important special case is the so-called post-nonlinear (PNL) mixture,

x[t] = f (As[t]),

where f is an invertible nonlinear function that operates componentwise and A is a linear mixing
matrix, more detailed:

xi[t] = fi

(

m

∑
j=1

Ai js j[t]

)

, i = 1, . . . ,n. (2)

The PNL model was introduced by Taleb and Jutten (1997). It represents an important subclass of
the general nonlinear model and has therefore attracted the interest of several researchers (e.g. Lee
et al., 1997, Yang et al., 1998, Taleb and Jutten, 1999, Ziehe et al., 2001, Achard et al., 2001,
Taleb, 2002, Jutten and Karhunen, 2003). Applications are found, for example, in the fields of
telecommunications, where power efficient wireless communication devices with nonlinear class C
amplifiers are used (Larson, 1998) or in the field of biomedical data recording, where sensors can
have nonlinear characteristics (Ziehe et al., 2000).

Figure 1: Building blocks of the PNL mixing model and the separating system.

Many algorithmic approaches to the nonlinear BSS problem have been proposed so far, includ-
ing diverse methods such as self-organizing maps (Pajunen et al., 1996, Lin et al., 1997), extensions
of generative topographic mapping (GTM, Pajunen and Karhunen, 1997), neural networks (Yang
et al., 1998, Marques and Almeida, 1999), parametric sigmoidal functions (Lee et al., 1997) or
Bayesian ensemble learning (Valpola et al., 2000, 2003). Recently, a very efficient temporal decor-
relation method in approximated kernel feature spaces (see e.g. Schölkopf et al., 1998, Müller et al.,
2001, Schölkopf and Smola, 2002, Vapnik, 1998) has been presented by Harmeling et al. (2002,
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2003). However, these methods—except the method of Harmeling et al. (2003)—are often compu-
tationally very demanding and may face convergence problems in higher dimensions. In contrast,
algorithms tailored to the PNL problem (Taleb and Jutten, 1999, Ziehe et al., 2001, Achard et al.,
2001) are usually much simpler than those for the general problem, see Equation (1), since they
only need to invert one-dimensional nonlinear functions, see Equation (2).

In this contribution, we propose a decoupled two-stage process to solve the PNL-BSS problem:
first, we estimate the inverse functions gi of the component-wise non-linearities fi using the ACE
algorithm (as described in Ziehe et al., 2001) or alternatively by applying a Gaussianizing transfor-
mation (as in Ziehe et al., 2003a). After having equalized the nonlinearities, we can apply in the
second step standard linear BSS techniques to recover the underlying source signals ( Figure 1).

Since the two stages—equalizing and unmixing—are independent from each other, the method
can be easily generalized to handle also convolutive mixtures with PNL distortions, that is, mixed
signals that are modeled as

x[t] = f

(

∑
τ

A[τ]s[t− τ]
)

,

where A[τ] is an n×m filter matrix for each τ. The sources s[t] can be simply recovered by replacing
the BSS algorithm for instantaneous mixture with a method for convolutive unmixing (e.g. Parra and
Spence, 2000, Murata et al., 2001).

The paper is organized as follows: in Subsection 2.1, we briefly introduce the ACE framework
and prove that the algorithm converges to the correct inverse nonlinearities—provided that they
exist. After that we propose an alternative linearization procedure employing Gaussianizing trans-
formations in Subsection 2.2. In Section 3 we discuss some implementation issues and describe
numerical simulations that illustrate our method. Finally, we give a conclusion in Section 4.

2. Methods

For the sake of simplicity, we introduce our method for the 2×2 case. The extension to the general
case is briefly explained in the appendix. Let us consider the two-dimensional post-nonlinear mixing
model:

x1 = f1(A11s1 +A12s2)
x2 = f2(A21s1 +A22s2)

where s1 and s2 are independent source signals with time-structure, x1 and x2 are the observed sig-
nals, A = (Ai j) is the mixing matrix and f1 and f2 are the componentwise nonlinear transformations
which are invertible.1

2.1 Maximizing Correlations with the ACE Algorithm

In order to invert the nonlinear functions f1 and f2, we propose to maximize the correlation

corr(g1(x1),g2(x2)) (3)

with respect to some nonlinear functions g1 and g2. That means, we want to find transformations g1

and g2 of the observed signals such that the relationship between the transformed variables becomes
linear. Intuitively speaking, the nonlinear transformation bends the data in a scatter plot away from a

1. Note that a one-dimensional function is invertible if and only if it is monotonic.
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straight line. Thus we have to find a transformation that nonlinearly squeezes and stretches the data
in the scatter plot until the transformed signals have maximal correlation in order to undo the effect
of the distortion (see Figure 4 for an illustration of this process). Under certain conditions that
we will state in detail later, this problem is solved by the ACE method that finds so-called optimal
transformations g∗1 and g∗2 which maximize Equation (3). Breiman and Friedman (1985) showed
existence and uniqueness of those optimal transformations and proved that the ACE algorithm,
which is described in the following, converges to these solutions (see Figure 4).

The ACE algorithm is an iterative procedure for finding the optimal nonlinear functions g∗1 and
g∗2. Starting from the observation that for fixed g1 the optimal g2 is given by

g2(x2) = E{g1(x1)|x2},

and conversely, for fixed g2 the optimal g1 is

g1(x1) = E{g2(x2)|x1},

we are ready to understand the key idea of the ACE algorithm that is to compute these conditional
expectations alternately until convergence has been reached. To avoid trivial solutions g1(x1) is

normalized in each step by using the function norm || · || :=
(

E{·}2
)1/2

. The algorithm for two
variables is summarized below. It is also possible to extend the procedure to the multivariate case,
which is explained in Appendix A (for further details see Hastie and Tibshirani, 1990, Breiman and
Friedman, 1985).

Algorithm 1 The ACE algorithm for two variables
{initialize}

g(0)
1 (x1)← x1/||x1||

repeat
g(k+1)

2 (x2) ← E{g(k)
1 (x1) | x2}

g̃(k+1)
1 (x1) ← E{g(k+1)

2 (x2) | x1}

g(k+1)
1 (x1) ← g̃(k+1)

1 (x1)/||g̃
(k+1)
1 (x1)||

until E{g1(x1)−g2(x2)}
2 fails to decrease

The ACE algorithm was originally introduced to solve a special kind of regression problem,
where one wants to find nonlinear transformations g1(·) and g2(·) such that g2(x2) explains g1(x1)
optimally. The optimality is defined by the least squares criterion, that is,

min
g1,g2

E{g1(x1)−g2(x2)}
2

Eg2
1(x1)

,

where the denominator prevents scale indeterminacy. Interestingly, the optimal transformation in
the least squares sense is equivalent to the transformation with maximal correlation,

max
g1,g2

corr(g1(x1), g2(x2)),

up to scale factors. This equivalence, which was proved by Breiman and Friedman (1985), also
reveals how to extend the ACE algorithm to the multivariate case (Appendix A).
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An important point in the implementation of the ACE algorithm is the estimation of the condi-
tional expectations from the data. Usually, conditional expectations are computed by data smoothing
for which numerous techniques exist (Breiman and Friedman, 1985, Härdle, 1990). Our implemen-
tation uses a nearest neighbor smoothing that applies a simple moving average filter to appropriately
sorted data. Here the size of the moving average filter is a parameter to balance the trade-off between
over- and under-smoothing.

In the following we want to verify that applying g∗1 and g∗2 to the mixed signals x1 and x2, re-
moves the effect of the nonlinear functions f1 and f2. To this end we show for z1 = A11s1 +A12s2

and z2 = A21s1 +A22s2 that g∗1 and g∗2 obtained from the ACE procedure are the desired inverse func-
tions given that z1 and z2 are jointly normally distributed, with other words we prove the following
relationship:

h∗1(z1) := g∗1( f1(z1)) ∝ z1

h∗2(z2) := g∗2( f2(z2)) ∝ z2.
(4)

The proof proceeds exactly along the lines of Breiman and Friedman (1985). Noticing that the
correlation of two signals does not change, if we scale one or both signals and following Proposition
5.4. and Theorem 5.3. of Breiman and Friedman (1985), we know that:

g∗1(x1) ∝ E{g∗2(x2)|x1}
g∗2(x2) ∝ E{g∗1(x1)|x2}.

Here the conditional expectation E{g∗2(x2)|x1} is a function of x1 and the expectation is taken with
respect to x2, analogously for the second expression.

Since g∗1(x1) = h∗1(z1) and g∗2(x2) = h∗2(z2), furthermore x1 = f1(z1) and x2 = f2(z2) we get:

h∗1(z1) ∝ E{h∗2(z2)| f1(z1)}
h∗2(z2) ∝ E{h∗1(z1)| f2(z2)}.

Because f1 and f2 are invertible functions they can be omitted in the condition of the conditional
expectation, leading us to:

h∗1(z1) ∝ E{h∗2(z2)|z1}
h∗2(z2) ∝ E{h∗1(z1)|z2}.

(5)

Assuming that the vector (z1,z2)
> is normally distributed and the correlation coefficient corr(z1,z2)

is non-zero, a straightforward calculation shows

E{z2|z1} ∝ z1

E{z1|z2} ∝ z2.

This means that z1 and z2 satisfy Equation (5), which then immediately implies our claim Equa-
tion (4).

It is favorable to our intended application that the above assumptions are usually fulfilled be-
cause mixtures of independent signals have a distribution that is closer to a Gaussian according to
the central limit theorem and that they are more correlated than unmixed signals. In practice, we
see that the ACE algorithm is able to equalize the nonlinearities rather well, even if the assump-
tions are not perfectly met, though there might be difficulties in the presence of strong noise or low
correlations.

In summary, the essential idea of applying the ACE framework to the PNL problem uses the
fact that we can approximate the inverses of the post-nonlinearities by searching for those nonlin-
ear transformations which maximize the linear correlations between the non-linearly transformed
observed variables.
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2.2 Transformations to Gaussian Random Variables

In the previous section we have argued that linearly mixed signals are most likely subject to Gaussian
distributions due to the central limit theorem. This fact gives rise to a simple alternative for the ACE
procedure in the first stage of our PNL-BSS method by making use of this Gaussianity assumption
directly.

We propose to estimate the inverse functions of the true nonlinearities by finding transformations
which convert each component into a Gaussian random variable (Gaussianization). Our Gaussian-
ization technique is inspired by algorithms commonly used in random number surrogate generators
and adaptive bin size methods (Pompe, 1993, Kantz and Schreiber, 1997). The goal is to find func-
tions gi(·) such that

gi(xi)∼ N(0,σ2
i ).

where σ2
i is set to a constant (e.g. σ2

i = 1) which can be done without loss of generality because
scaling factors do not matter. The method, which is based on the ranks of samples and percentiles
of the Gaussian distribution, proceeds as follows: suppose that the observed samples x[1], . . . ,x[T ]
fulfill an ergodicity assumption and T is sufficiently large. Let r[t] be the rank of the t-th sample
x[t] and Φ(·) be the cumulative distribution function of the standard Gaussian N(0,1). The ranks r
are assumed to be ordered from the smallest value to the largest, e.g. r[t] = 1 for t = argmint x[t] and
r[t] = T for t = argmaxt x[t]. Then, the transformed samples

v[t] = Φ−1
(

r[t]
T +1

)

, t = 1, . . . ,T

that is, the real values v[t] such that Φ(v[t]) = r[t]
T+1 can be regarded as realizations from the standard

Gaussian distribution (c.f. Billingsley, 1995). Note that, adding 1 to the denominator is needed to
avoid v =±∞. Furthermore, to limit the influence of outliers, we recommend to compute modified
versions of v[t] according to

v[t] = Φ−1
{

c
r[t]

T +1
+(1− c)

1
2

}

, with 0 < c < 1.

The choice of c depends on the application, but is not critical. We used c = 0.97 in our numerical
experiments.

2.3 Source Separation

For a separation of the signals we could in principle apply any BSS technique that can solve linear
problems. However, experiments show that second-order methods which use temporal information
are more robust than higher-order based methods and allow to recover the sources more reliably in
most natural applications.

Therefore we propose to use second-order BSS techniques that are based on the different time
structure of the source signals. These methods (see Molgedey and Schuster, 1994, Belouchrani et al.,
1997, Kawamoto et al., 1997, Pham and Garrat, 1997, Ziehe and Müller, 1998, Yeredor, 2000) rely
on the special structure of time-shifted covariance matrices of the mapped signals v[t] = g(x[t]). The
key insight is that the pairwise cross-correlation functions of the components of the original signal
s are zero for certain time lags τ, that is,

E
{

si[t] s j[t + τ]
}

= 0, i 6= j.
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Let u[t] = Bv[t] be an estimator of the original signal s[t] and

R(τ;B) :=
1

2(T − τ)

T−τ

∑
t=1

{

u[t] u>[t + τ]+u[t + τ] u>[t]
}

,

be the symmetrized lagged covariance matrix of the estimator u, provided that u is already centered
at 0. When we derive an estimator u close to the signal s, every lagged covariance matrix R(τ;B)
becomes approximately diagonal. Therefore, the task is to identify the demixing matrix B such
that the covariance matrices R(0;B) and R(τk;B), k = 1, . . . ,K are diagonal. This can be done by
a joint diagonalization method, that is, to minimize the following criterion w.r.t. B under certain
restrictions

L(B) = ∑
i6= j

R2
i j(0;B)+

K

∑
k=1

∑
i6= j

R2
i j(τk;B),

where Ri j’s are the (i, j)-th components of the matrix R.
In the literature several methods to solve this constrained optimization problem exist (Cardoso

and Souloumiac, 1996, Yeredor, 2000, Pham, 2001, Ziehe et al., 2003b). Here we use TDSEP, an im-
plementation based on the efficient extended Jacobi method by Cardoso and Souloumiac (1996) for
the simultaneous diagonalization of several time-delayed correlation matrices (Belouchrani et al.,
1997, Ziehe and Müller, 1998, Müller et al., 1999).

3. Numerical Simulations

¿From now on we call the procedure based on ACE “ACE-TD” and analogously, the procedure
based on Gaussianization “Gauss-TD”. To demonstrate the performance of the proposed approaches
we apply these two methods to several post-nonlinear mixtures, both instantaneous and convolutive.

3.1 Toy Data: AR Processes

The first data set consists of Gaussian AR-processes of the form:

si[t] =
M

∑
m=1

αmsi[t−m]+ξi[t], i = 1, . . . ,n

where ξi[t] is white Gaussian noise with mean zero and variance σ2. For the experiment we choose
σ2 = 1, M = 3, n = 2 and generate 2000 data points. To the linearly mixed signals z we apply strong
nonlinear distortions as in Taleb and Jutten (1999):

x1[t] = f1(z1[t]) = z3
1[t], (6)

x2[t] = f2(z2[t]) = tanh(10z2[t]).

The distribution of these mixed signals has a highly nonlinear structure which is clearly visible in
the scatter plot in Figure 2.

The application of the linearization procedures– the ACE method or the Gaussianizing transfor-
mation– yields the estimated nonlinear functions g1 and g2 shown in Figure 3 (b) and (c). We see
that the true inverses of the nonlinearities f1 and f2 are approximated well by the ACE algorithm
and almost perfectly estimated by Gaussianization. In the ACE algorithm a local nearest neighbor
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Figure 2: (a) Scatter plot of the mixed AR-processes (x1[t] vs x2[t]) and (b) waveforms of the original sources
(first row), the linearly unmixed signals (second), recovered sources by ACE-TD (third) and those by Gauss-
TD (fourth). The smoother for ACE has length 101. For TDSEP we used time lags τ = 0 . . .20.
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Figure 3: (a) Nonlinear functions f1 and f2. (b) True (thin line) and estimated (bold line) inverse functions
g1 and g2 by the ACE method. (c) The same plots by the Gaussianizing transformation.

smoother (window length 101) has been used to compute the conditional expectation. We note that
the remaining mismatch observed in Figure 3 (b) could be improved further by better smoothers.

After successful linearization, it becomes possible to separate the signals. We use the TDSEP
algorithm (see Ziehe and Müller, 1998), where 20 time-delayed correlation matrices are simultane-
ously diagonalized (time lags τ = 0 . . .20).
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Figure 4: Monitoring of the iterative ACE procedure. The rows correspond to snapshots of the iteration at
initialization and after two resp. thirty steps. The columns show a scatter plot of transformed data v (first
column), histograms of v1 (second) and v2 (third), estimated inverse functions g1 (fourth) and g2 (fifth).
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Figure 5: Left panel: scatter plot of the output distribution of a linear (’+’) and the proposed nonlinear
ACE-TD algorithm (’.’). Right panel: similar plot with the nonlinear Gauss-TD algorithm (’.’).

Figure 2 (b) shows that the waveforms of the recovered sources by ACE-TD (the third row)
and by Gauss-TD (the fourth row) closely resemble the original ones, while the result of the linear
unmixing of the PNL mixture (the second row) can not recover the sources as is expected. This
is also confirmed by comparing the output distributions that are shown in Figure 5. The left panel
shows the scatter plots of the distributions obtained by TDSEP and ACE-TD, respectively. In the
right panel we show the corresponding scatter plots for TDSEP and Gauss-TD, which indeed looks
much more Gaussian.

3.2 Instantaneously Mixed Speech Data

Our method scales well both with increasing number of sources and with increasing number of data
points. To demonstrate this, we apply the algorithm to mixtures of natural audio sources, where the
input data set consists of 4 sound signals with 20,000 data points each.
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The source signals are linearly mixed by a 4× 4 random matrix A, i.e. z[t] = As[t]. After the
linear mixing the following nonlinearities were applied:

f1(z1) = 0.1z1 +0.1z3
1

f2(z2) = 0.3z2 + tanh(3z2)
f3(z3) = tanh(2z3)
f4(z4) = z3

4.

In order to apply the ACE-TD method to this dataset, we have to employ the multivariate version
of the ACE algorithm which is explained in Appendix A. As in the two-variables case, the extended
version of ACE guarantees the identifiability of the inverses g1(·), . . . ,gn(·) under the Gaussianity
assumption, although there is an asymmetry in the treatment of these functions (for details see Ap-
pendix A). On the other hand, the extension of Gauss-TD to the multivariate case is straightforward.

Figure 6 shows the results of the separation using ACE-TD (with smoothing window length 101
and time delays τ = 0 . . .30) and Gauss-TD (with time delays τ = 0 . . .30) in the panels (c) and (d).

We observe again very good separation performances that are quantified by calculating the cor-
relation coefficients between the source signals and the extracted components (see Table 1). This is
also confirmed by listening to the separated audio signals, where we perceive almost no crosstalk,
although the noise level is slightly increased (c.f. the silent parts of signal 2 in Figure 6 (a), (c) and
(d)).

TDSEP
u1 u2 u3 u4

s1 0.89 0.03 -0.02 -0.06
s2 0.12 -0.05 0.11 0.45
s3 0.04 0.03 0.77 0.09
s4 0.18 -0.05 0.06 0.69

ACE-TD
u1 u2 u3 u4

s1 0.99 0.00 -0.02 -0.03
s2 -0.01 0.95 -0.02 0.03
s3 0.01 0.03 0.99 0.02
s4 0.05 0.01 0.00 0.95

Gauss-TD
u1 u2 u3 u4

s1 0.99 -0.00 -0.02 -0.02
s2 0.00 0.96 -0.03 0.02
s3 0.00 0.03 0.99 0.02
s4 0.04 0.01 0.00 0.95

Table 1: Correlation coefficients for the signals shown in Figure 6 .

In order to compare these methods and to collect statistics about the behavior of the proposed
algorithms, we replicated the experiment with 100 different mixing matrices leaving all other pa-
rameters unchanged. The results are summarized in Table 2, where we can see that ACE-TD found
signals very similar to the true sources in more than 70% of the trials, while Gauss-TD found them
in most cases. Thus, Gauss-TD is also preferable on this data set. Changing the window length of
the smoother in ACE-TD to a smaller value (=17) yields worse results, because the estimators of
the nonlinear functions are then under-smoothed. This shows that the choice of smoother is impor-
tant for the ACE algorithm and it might be possible to further improve ACE-TD by optimizing the
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Figure 6: Four channel audio dataset: (a) waveforms of the original sources, (b) linearly unmixed sig-
nals with TDSEP, (c) recovered sources using ACE-TD and (d) recovered sources using Gauss-TD. A
smoother with window length 101 was used in ACE and time lags τ = 0 . . .30 were employed for the
separation. The audio files corresponding to these experiments are also available on the web page
http://www.first.fhg.de/˜ziehe/research.html.
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algorithms statistics s1 s2 s3 s4

TDSEP median 0.7285 0.6341 0.6710 0.6448
#{corr > 0.9} 3 1 1 1

ACE-TD median 0.9585 0.9480 0.9527 0.9533
(window length 101) #{corr > 0.9} 77 66 73 75
ACE-TD median 0.9084 0.8918 0.8946 0.9125
(window length 17) #{corr > 0.9} 56 45 45 57
Gauss-TD median 0.9831 0.9800 0.9790 0.9748

#{corr > 0.9} 94 93 89 86

Table 2: Maximum correlation between sources and recovered signals. ’median’ denotes the median of the
100 trials and ’#{corr > 0.9}’ is the number of trials which gave correlations larger than 0.9. In ACE, besides
the smoother with window length 101, we also used a shorter window length (= 17), which however resulted
in under-smoothed nonlinearity estimators. In the separation with TDSEP time lags τ = 0 . . .30 have been
used.

window length (Härdle, 1990); however, the detailed analysis of this issue exceeds the scope of this
contribution.

3.3 Speech Data: Convolutive Mixtures

The third experiment gives an example of applying our method to convolutive mixtures with a PNL
distortion. With nonlinear transfer functions as in our first example (c.f. Equation (6)), we delib-
erately distorted real-room recordings2 of speech and background music (from Lee et al., 1998).
For the separation we apply a convolutive BSS algorithm of Parra and Spence (2000) that requires
only second-order statistics and exploits the non-stationarity of the signals. While an unmixing of
the distorted recordings obviously fails, we could achieve a good separation after the unsupervised
linearization by the ACE procedure or the Gaussianization (c.f. Figure 7).

3.4 Comparison to Taleb and Jutten (1999)

The standard method for PNL-BSS (due to Taleb and Jutten, 1999), abbr. TJ, estimates simultane-
ously the linear and the nonlinear part of the mixing model. This is done by minimizing a contrast
function based on mutual information. For this the densities have to be estimated which is a difficult
problem on its own. In contrast, Gauss-TD decouples the linear and the nonlinear stages and solves
each one separately by simple methods (Gaussianization and TDSEP).

To keep the computational efforts for TJ within a reasonable range, we use a dataset with two
channels and 500 samples for the simulation. The sources are random uniform noise and a sinusoidal
signal as shown in the upper panel of Figure 9. The sources were mixed with a 2×2 mixing matrix
and componentwise distorted using the nonlinear transfer functions:

x1[t] = f1(z1[t]) = z3
1[t],

x2[t] = f2(z2[t]) = tanh(2z2[t]).

2. Available on the internet: http://www.cnl.salk.edu/˜tewon/Blind/blind audio.html.
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Figure 7: Two channel audio dataset: (a) waveforms of the recorded (undistorted) microphone signals, (b)
observed PNL distorted signals, (c) result of ACE (smoothing window length 101), (d) recovered sources
using ACE and a convolutive BSS algorithm and (e) for comparison convolutive BSS separation result for
undistorted signals from (a). The right panels: (f) result of Gaussianizing transformation and (g) recovered
sources using Gaussianization and a convolutive BSS algorithm. For listening to these audio data we refer to
http://www.first.fhg.de/˜ziehe/research.html.
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This data is shown in the second row of Figure 9. A linear separation of these signals obviously
fails as can be seen in the third row of Figure 9. Only after the non-linear distortions have been
equalized by the estimated inverse functions (shown in Figure 8), blind separation is successful
and yields signals that closely resemble the underlying sources. The last row of Figure 9 shows
the results of Taleb and Jutten’s method. We observe a good separation except for a few points at
the edges of the scatter plot. These problems are possibly due to the fixed bin size in the kernel
density estimators used by this method. This emphasizes again the need for better smoothers and
adaptive bin size methods. However, since Gauss-TD results are comparable (c.f. 4th and 5th row
of Figure 9), Gauss-TD is often due to its simplicity the method of choice.
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Figure 8: (a) True (thin line) and estimated (bold line) inverse functions g1 and g2 obtained by the Gaussian-
ization method. (b) The same plots for the Taleb-Jutten (TJ) algorithm.

4. Discussion and Conclusion

In this work we proposed a simple technique for blind separation of linear mixtures with post-
nonlinear distortions based on ACE resp. Gaussianization with a subsequent application of BSS:
ACE-TD and Gauss-TD. The algorithms proceed in two steps: first, ACE-TD searches nonlinear
transformations that maximize the linear correlations between the transformed variables. Hereby
it approximates the inverses of the nonlinearities. This search can be done efficiently by applying
the ACE technique (Breiman and Friedman, 1985) from non-parametric statistics that performs an
alternating estimation of conditional expectations by the smoothing of scatter plots. The bottom
line is that the nonlinear re-transformation reduces the PNL mixing problem to a linear one. This
allows us to apply a linear BSS algorithm as a second step. While in principle any ICA/BSS method
could be used, second-order techniques (e.g. Belouchrani et al., 1997, Ziehe and Müller, 1998) are
more consistent with the Gaussianity assumptions, because in higher-order ICA methods the source
signals are required to be non-Gaussian. Second-order methods are less influenced by remaining,
small non-linear distortions.

Clearly, ACE is not limited to the 2×2 case, since it scales naturally to the n×n case for which
an algorithmic description can be found in the appendix (or more detailed in Breiman and Friedman,
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Figure 9: Scatter plots and waveforms for the sources, mixed and unmixed signals (c.f. Figure 1). From
top to bottom row we see true source signals, observed post-nonlinear mixtures, linearly unmixed signals,
separation results of Gauss-TD, separation results of Taleb and Jutten’s algorithm.

1985, Härdle, 1990). Furthermore, Gauss-TD is a computationally simpler alternative of ACE-TD,
since the former estimates the inverses of the nonlinearities directly by Gaussianizing the individual
components. Gaussianization was also employed as an initialization of a more sophisticated PNL
algorithm and turned out to improve computational speed substantially (Solé et al., 2003). Both al-
gorithms have theoretical guarantees to yield the correct results, if the linearly mixed signals before
the PNL distortion are Gaussian distributed and provided that there is none or only low additive
noise present after the post-nonlinearity. Because of the central limit theorem, the Gaussianity as-
sumption usually holds approximately in practice, especially if the number of sources are large and
the mixing matrix is not sparse. While the Gaussianization gives satisfactory results under these as-
sumptions, the ACE method may run into difficulties if the correlations of the linearly mixed signals
are low (see also the discussion in Breiman and Friedman, 1985).

Throughout the paper we have assumed that the linearly mixed sources are subject to a Gaussian
distribution, which is well justified due to the central limit theorem. Note however that one can – in
a straight forward manner – also incorporate other assumptions on the marginal distribution of the
mixed signals. So, in other words we could very well, for example, ’Laplacianize’ once we have
such prior knowledge available.
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In contrast to methods that simultaneously estimate the mixing matrix, the nonlinear equaliza-
tion functions and the distributions of sources (like e.g. Taleb and Jutten, 1999, Achard et al., 2001,
S. Achard and Jutten, 2003), our two-stage procedures are computational more attractive. They
work well with large data sets and scale linearly with respect to the number of sources. Interest-
ingly, our methods can be easily applied to convolutive mixtures, which is important for solving the
real-room “cocktail-party” problem with BSS (see also Koutras, 2002). Here occasionally nonlinear
transfer functions of the sensors (microphones) or the use of class C amplifiers can hinder a proper
separation.

Concluding, the proposed framework gives simple algorithms of high efficiency with a solid
theoretical background for signal separation in applications with a PNL distortion that are of im-
portance, for example, in real-world sensor technology. In our simulations the simpler Gauss-TD
algorithm compares favorably to ACE-TD and to mutual information based methods as proposed by
Taleb and Jutten (1999). However, it is conceivable that further improvements of the smoothing pro-
cedure will lead to increased performance of the ACE and other methods relying on non-parametric
density estimation. Future research will therefore be concerned with incorporating domain knowl-
edge for a better tuning of the smoothers to improve and robustify the separation performance.
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Appendix A. The Multi-dimensional ACE Algorithm

Whenever there are more than two sensors, we apply the multivariate ACE algorithm (Breiman and
Friedman, 1985, Hastie and Tibshirani, 1990, Härdle, 1990):

Algorithm 2 The ACE algorithm for multi-dimensional cases
{initialize}

g(0)
1 (x1)← x1/||x1|| and g(0)

2 (x2), . . . ,g
(0)
n (x2) = 0

repeat
for i = 2 to n do:

g(k+1)
i (xi) ← E{g(k)

1 (x1)−∑ j<i g(k+1)
j (x j)−∑ j>i g(k)

j (x j) | xi}
end for loop
g(k+1)

1 (x1) ← E{∑n
j=2 g(k+1)

j (x j) | x1}/‖E{∑n
j=2 g(k+1)

j (x j) | x1}‖

until E{g1(x1)−∑n
j=2 g j(x j)}

2 fails to decrease

This general ACE algorithm yields transformations g1(·), . . . ,gn(·) which minimize the least
squares error

min
g1,...,gn

E{g1(x1)−∑n
j=2 g j(x j)}

2

Eg2
1(x1)

.
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As in the case of two variables, it has been proven in Breiman and Friedman (1985) that the opti-
mal transformations in the least squares sense are equivalent to the transformations with maximal
correlation,

max
g1,...,gn

corr(g1(x1),
n

∑
j=2

g j(x j)),

up to scaling factors.
Hence, if the linearly mixed signals z are jointly Gaussian distributed, we can recover the inverse

functions g1(·), . . . ,gn(·) of the true nonlinearities with the multi-dimensional ACE algorithm. For
details we refer to the proof presented in Breiman and Friedman (1985).

As a final remark, we note that in the original ACE algorithm one component—e.g. x1—is
treated somewhat special as the “response” variable, while the BSS problem is intrinsically sym-
metric with respect to the components x1, . . . ,xn. Therefore, the development of a symmetric version
of this algorithm is left as a topic for further research.
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