IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

Input Space vs. Feature Space
in Kernel-Based Methods

Bernhard Scholkopf, Sebastian Mika, Chris J. C. Burges,
Philipp Knirsch, Klaus-Robert Miiller, Gunnar Ratsch, Alex J. Smola

Abstract— This paper collects some ideas targeted at ad-
vancing our understanding of the feature spaces associated
with Support Vector (SV) kernel functions. We first dis-
cuss the geometry of feature space. In particular, we review
what is known about the shape of the image of input space
under the feature space map, and how this influences the
capacity of SV methods. Following this, we describe how
the metric governing the intrinsic geometry of the mapped
surface can be computed in terms of the kernel, using the
example of the class of inhomogeneous polynomial kernels,
which are often used in SV pattern recognition.

We then discuss the connection between feature space and
input space by dealing with the question of how one can,
given some vector in feature space, find a pre-image (exact
or approximate) in input space. We describe algorithms to
tackle this issue, and show their utility in two applications of
kernel methods. First, we use it to reduce the computational
complexity of SV decision functions; second, we combine
it with the Kernel PCA algorithm, thereby constructing a
nonlinear statistical denoising technique which is shown to
perform well on real-world data.

Keywords— Kernel methods, support vector machines,
PCA, sparse representation, denoising, reduced set method

I. INTRODUCTION

EPRODUCING KERNELS are functions k : X2 — R
which for all pattern sets

{x1,...,x¢} C X (1)
give rise to positive matrices K;; := k(x;,x;) [1]. Here,
X is some compact set in which the data lives, typically
(but not necessarily) a subset of RV. In the SV commu-
nity, reproducing kernels are often referred to as Mercer
kernels (section II-B will show why). They provide an ele-
gant way of dealing with nonlinear algorithms by reducing

B. Scholkopf is with GMD FIRST, Rudower Chausee 5, 12489
Berlin, Germany, and Microsoft Research, 1 Guildhall Street, Cam-
bridge CB2 3NH, UK. E-mail: bs@first.gmd.de.

S. Mika is with GMD FIRST, Rudower Chausee 5, 12489 Berlin,
Germany. E-mail: mika@first.gmd.de.

C. Burges is with Bell Laboratories, 101 Crawfords Corner Rd.,
Holmdel NJ, USA. E-mail: burges@lucent.com

P. Knirsch is with the Max-Planck-Institut fiir biologische Ky-
bernetik, Spemannstr. 38, 72076 Tiibingen, Germany. E-mail:
phil@kyb.tuebingen.mpg.de

K. Miiller is with GMD FIRST, Rudower Chausee 5, 12489 Berlin,
Germany. E-mail: klaus@first.gmd.de.

G. Rétsch is with GMD FIRST, Rudower Chausee 5, 12489 Berlin,
Germany. E-mail: raetsch@first.gmd.de.

A. Smola is with GMD FIRST, Rudower Chausee 5, 12489 Berlin,
Germany. E-mail: smola@first.gmd.de.

Part of this work was done while PK was with Bell Labs and BS
and AS were in the Department of Engineering, Australian National
University, Canberra. The work was supported by the ARC and the
DFG (# Ja 379/52,71,91). Thanks to André Elisseeff for discussions.

them to linear ones in some feature space F' nonlinearly
related to input space: Using k instead of a dot product in
RN corresponds to mapping the data into a possibly high-
dimensional dot product space F' by a (usually nonlinear)
map ® : RN — F, and taking the dot product there, i.e.

[2]
k(x,y) = (2(x) - @(y))- (2)

By virtue of this property, we shall call ® a feature map
associated with k. Any linear algorithm which can be car-
ried out in terms of dot products can be made nonlinear by
substituting an a priori chosen kernel. Examples of such
algorithms include the potential function method, SV Ma-
chines, and kernel PCA [3], [4], [5]. The price that one
has to pay for this elegance, however, is that the solutions
are only obtained as expansions in terms of input patterns
mapped into feature space. For instance, the normal vec-
tor of an SV hyperplane is expanded in terms of Support
Vectors, just as the kernel PCA feature extractors are ex-
pressed in terms of training examples,

£
= Zaié(xi). (3)

When evaluating an SV decision function or a kernel PCA

feature extractor, this is normally not a problem: due
to (2), multiplying ¥ with some mapped test point ®(x)
transforms (3) into a kernel expansion which can be eval-
uated even if ¥ lives in an infinite-dimensional space. In
some cases, however, there are reasons mandating a more
comprehensive understanding of what exactly is the con-
nection between patterns in input space and elements of
feature space, given as expansions such as (3). This field
being far from understood, the current paper attempts to
gather some ideas elucidating the problem, and simulta-
neously proposes some algorithms for situations where the
above connection is important. These are the problem of
denoising by kernel PCA, and the problem of speeding up
Support Vector decision functions.

The remainder of this article is organized as follows. Sec-
tion IT discusses different ways of understanding the map-
ping from input space into feature space. Following that,
we briefly review two feature space algorithms, SV ma-
chines and kernel PCA (section III). The focus of interest
of the paper, the way back from feature space to input
space, is described in section IV, and, in the more general
form of constructing sparse approximations of feature space
expansions, in section V. The algorithms proposed in these
two sections are experimentally evaluated in section VI and
discussed in section VII.

II. FroM INPUT SPACE TO FEATURE SPACE

In this section we show how the feature spaces in ques-
tion are defined by choice of a suitable kernel function. In-
sight into the structure of feature space can then be gained
by considering their relation to reproducing kernel Hilbert
spaces, by how they can be approximated by an empirical
map, by their extrinsic geometry, which leads to useful new
capacity results, and by their intrinsic geometry, which can
be computed solely in terms of the kernel.!

A. The Mercer Kernel Map

We start by stating the version of Mercer’s theorem given
in [6]. We assume (X, 1) to be a finite measure space.” By
“almost all” we mean except for sets of measure zero.

Theorem 1 (Mercer) Suppose k € Loo(X?) is a sym-
metric real-valued kernel such that the integral operator
Tk : LQ(X) — LQ(X),

TLHO) = [Kx,3)FG) duty) ()
is positive, i.e. for all f € we have
Jx k(x,¥) f(x) f(y) du(x)du(y) > 0.

Let ¢; € Ly(X) be the normalized eigenfunctions of Ty,
associated with the eigenvalues A\; > 0, sorted in nonin-
creasing order. Then
1. (Xj); € by,

2. ; € Leo(X) and sup; [|¢l 1., < oo,

3. k(x,y) = ENF A (x)Y;(y) holds for almost all
(x,y). Either NF € N, or Nrp = oo, in the latter case,
the series converges absolutely and uniformly for almost
all (x,y).

Ly(X),

From statement 3 it follows that k(x,y) corresponds to a

dot product in 17 i.e. k(x,y) = (®(x) - ®(y)) with
X — IYF 5)
(V)‘J,(p](x))]’ j:17"';NFa

for almost all x € X.

In fact, the uniform convergence of the series implies that
given € > 0, there exists an n € N such that even if the
range of ® is infinite-dimensional, & can be approximated
within accuracy € as a dot product in R™, between images

of
Tix (\/x@h(x), ,\/Elbn(x))

IThose readers who are chiefly interested in applications and algo-
rithms might want to consider skipping over the present section.

2A finite measure space is a set X with a o-algebra defined on it,
and a measure defined on the latter, satisfying u(X) < oo (i.e. up to
a scaling factor, u is a probability measure). A o-algebra ¥ on X is a
family of subsets of X', which is closed under elementary set-theoretic
operations (countable unions, intersections, and complements), and
which contains X as a member. A measure is a function y : ¥ —
R4 U {co} which assigns 0 to the empty set, and moreover is o-
additive, i.e. the measure of a set which is the disjoint unions of some
other sets equals the sum of the latter’s measures.

3i.e. a function of two variables which gives rise to an integral op-
erator

IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

B. The Reproducing Kernel Map

We can also think of the feature space as a reproducing
kernel Hilbert space (RKHS). To see this [7], [1], [8], [9],
[10], recall that a RKHS is a Hilbert space of functions f
on some set X such that all evaluation functionals, i.e. the
maps f — f(y) (y € X), are continuous. In that case,
by the Riesz representation theorem, for each y € X there
exists a unique function of x, call it k(x,y), such that

f(y) = <f7k(7Y)> (6)

(here, k(.,y) is the function on X obtained by fixing the
second argument of k to y, and (.,.) is the dot product of
the RKHS. In contrast, we use (.-.) to denote the canonical
(Euclidean) dot product). In view of this property, k is
called a reproducing kernel.

Note that by (6), (f,k(.,y)) = 0 for all y implies that
f is identically zero. Hence the set of functions {k(.,y) :
y € X'} spans the whole RKHS. The dot product on the
RKHS thus only needs to be defined on {k(.,y) : y € X'}
and can then be extended to the whole RKHS by linearity
and continuity. From (6), it follows that in particular

(k(-, %), k(.,¥)) = k(y,%) (7)

for all x,y € X (this implies that k is symmetric). Note
that this means that any reproducing kernel k corresponds
to a dot product in another space.

Let us now consider a Mercer kernel, i.e. one which sat-
isfies the condition of Theorem 1, and construct a dot
product such that k becomes a reproducing kernel for the
Hilbert space H containing the functions

= i aik(x, x;) Z Q; Z A (x);(xi). (8)
i=1
By linearity, we have
<f: Y Zaz Z)‘ij X, ¢J>¢n> n"pn() (9)
i=1 jn=1
Since k is a Mercer kernel, the ¢; (i = 1,..., Ng) can be

chosen to be orthogonal with respect to the dot product

in L2(X). Hence it is straightforward to construct a dot
product (.,.) such that
<¢ja Yn) = 6J'n/’\j (10)

(using the Kronecker symbol d;,), in which case (9) re-
duces to the reproducing kernel property (6) (using (8)).
Therefore, (7) provides us with a feature map @ associ-
ated with k:

Proposition 2 For any Mercer kernel k, there exists a
RKHS H such that for

®:RY 5 H, xw k(,x), (11)

we have

(B(x), 8(y)) = k(x,¥). (12)

SCHOLKOPF ET AL.: INPUT SPACE VS. FEATURE SPACE IN KERNEL-BASED METHODS 3

C. The Empirical Kernel Map

While giving an interesting alternative theoretical view-
point, the map @ does not appear all that useful at first
sight. In practice, it would seem pointless to first map the
inputs into functions, i.e. into infinite-dimensional objects.
However, for a given dataset, it is possible to approximate
& from (11) by only evaluating it on these points (cf. [11],
[12], [13], [14):

Definition 3 For a given set {z1,...,2n}, we call
3, :RY = R™

X = k('7x)|{z17~~"z7H}
= (k(Z17X),...,k(Zm7X))

the empirical kernel map w.r.t. {z1,...,2Zm}.

(13)

As an example, consider first the case where k is a Mer-
cer kernel, and {z1,...,2,} = {X1,...,X¢}, i.e. we evalu-
ate k(., x) on the training patterns. If we carry out a linear
algorithm in feature space, then everything will take place
in the linear span of the mapped training patterns. There-
fore, we can represent the k(.,x) of (11) as ®,(x) without
losing information. However, the dot product to use in that
representation is not simply the canonical dot product in
R¢, since the ®(x;) will usually not form an orthonormal
system. To turn ®, into a feature map associated with k,
we need to endow R¢ with a dot product (.,.) such that

k(x,y) = (®e(x), Pe(y))-

To this end, we use the ansatz (.,.) = (., A.), with A being
a positive matrix.? Enforcing (14) on the training patterns,
this yields the self-consistency condition (cf. [15], [16])

(14)

K = KAK. (15)
Here, we have used K to denote the £ x ¢ kernel Gram
matrixc

Kij = k(xi,x;). (16)

The condition (15) can be satisfied for instance by the
pseudo-inverse A = K1,

Equivalently, we could have incorporated this rescaling
operation, which corresponds to a kernel PCA whitening
[5], [15], [14], directly into the map, by modifying (13) to

®Y :x — K Y2(k(xq,%), ..., k(x¢,%)). (17)
This simply amounts to dividing the eigenvector basis vec-
tors of K by 1/A;, where the); are the eigenvalues of K.5 Tt
parallels the rescaling of the eigenfunctions of the integral
operator belonging to the kernel, given by (10).

For data sets where the number of examples is smaller
than their dimensionality, it can actually be computation-
ally attractive to carry out @} explicitly rather than using

4Note that every dot product can be written in this form. Moreover,
we do not require definiteness of A, as the null space can be projected
out, leading to a lower-dimensional feature space.

5Tt is understood that if K is singular, we use the pseudo-inverse of
K1/2,

kernels in whatever subsequent algorithm (SVMs, or ker-
nel PCA, say) one wants to use. As an aside, note that in
the case of kernel PCA (to be described in section III), one
does not even need to worry about the whitening step: Us-
ing the canonical dot product in R¢ (rather than (.,.)) will
simply lead to diagonalizing K? instead of K, which yields
the same eigenvectors with squared eigenvalues. This was
pointed out by [12] and [13].

We end this section with two notes which illustrate why
the use of (13) need not be restricted to the special case we
just discussed.

o More general kernels. When using non-symmetric ker-
nels k in (13), together with the canonical dot product,
one will effectively work with a matrix K " K, with gen-
eral K. Note that each positive semidefinite matrix can be
written as K ' K.

If we wanted to carry out the whitening step, it would have
to be using (K T K)~'/* (cf. footnote 5 concerning potential
singularities).

o Different evaluation sets. [13] has performed experiments
to speed up kernel PCA by choosing {zi,...,2,} as a
proper subset of {x1,...,%/}.

Now that we have described the kernel map in some de-
tail, including variations on it, we shall next look at its
properties. Specifically, we study its effect on the capacity
of kernel methods (section I1I-D) and the induced geometry
in feature space (section II-E).

D. The Capacity of the Kernel Map

[4], [17] gives a bound on the capacity, measured by the
VC-dimension h, of optimal margin classifiers. It takes the
form

h < R?A% +1, (18)

where A is an upper bound constraining the length of the
weight vector of the hyperplane in canonical form, and R
is the radius of the smallest sphere containing the data
in the space where the hyperplane is constructed. The
smaller this sphere is, the smaller is also the capacity, with
beneficial effects on the generalization error bounds.

If the data is distributed in a reasonably isotropic way,
which is often the case in input space, then (18) can be
fairly precise.® If, however, the distribution of the data is
such that it does not fill the sphere, then (18) is wasteful.
The argument in the remainder of the section, which is
summarized from [19], shows that using a kernel typically
entails that the data in fact lies in some box with rapidly
decaying sidelengths, which can be much smaller than the
above sphere.

From statement 2 of Theorem 1, there exists some con-
stant Cy > 0 depending on the kernel k such that

|¢j(x)| < Cy for all j € N and almost all x € X. (19)
Therefore, ®(X) is essentially contained in an axis parallel
parallelepiped in I, with side lengths 2Cj+/A; (cf. (5)).

6In terms of entropy numbers, this is due to the tightness of the
rate given by a famous theorem of Maurey (e.g. [18]).

Do~

Feature Space Weight vector

Fig. 1.
with A—1.

IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

O

Feature Space Weight vector

Since everything is done in terms of dot products, scaling up the data by A can be compensated by scaling the weight vectors
By choosing A such that the data is still contained in a ball of the same radius R, we effectively reduce our function class

(parameterized by the weight vector), which leads to better generalization bounds which depend on the kernel inducing the map .

To see how this effectively restricts the class of functions
we are using, we first note that everything in F' is done
in terms of dot products. Therefore, we can compensate
any invertible linear transformation of the data in F' by
the corresponding inverse adjoint transformation on the set
of admissible weight vectors in F', i.e. for any invertible
operator A on I, we have

(A*w, A71®(x)) = (w,®(x)) forallx € X. (20)

Hence, we may construct a diagonal scaling operator A~!
which inflates the sides of the above parallelepiped as much
as possible, while ensuring that it still lives in a sphere of
the original radius R in l» (figure 1). This will not change
the R? factor on the right hand side of (18), but it buys
us something regarding the second factor: one can show
that the function class essentially behaves as if it was finite-
dimensional, with a cut-off determined by the rate of decay
of T}’s eigenvalues.

The reasoning that leads to the improved bounds is
somewhat intricate and cannot presently be explained in
full detail. In a nutshell, the idea is to compute the capacity
(measured in terms of covering numbers of the SV function
class, evaluated on an f-sample) via the entropy numbers
of a suitable linear operator.” Using X := (x,...,Xy),
consider first the operator

SeX) il = 15
w oo ((w,20)), -, (W, 8(x)) - (21)

For our purpose, the entropy numbers of S@(X) applied to
a sphere of radius A are crucial. These can be computed
as the entropy numbers of the operator AAS ,_, (X)- Us-
ing factorization properties of entropy numbers, these can

7Consider two normed spaces E and F. For n € N, the nth
entropy number of a set M C E is defined as €,(M) := inf{e >
0: there exists an e-cover for M in E containing n or fewer points}.
(Recall that the covering number N'(e, M), being essentially its
functional inverse, measures how many balls of radius € one needs to
cover M.) The entropy numbers €, (T) of an operator T : E — F are
defined as the entropy numbers of the image of the unit ball under
T. Note that €1(T") = ||T||; intuitively, the higher entropy number
allow a finer characterization of the complexity of the image of T
(e.g. [18], [6]). Note that entropy numbers have some nice properties
that covering numbers are lacking. For instance, scaling a subset
of a normed vector space by some factor simply scales its entropy
numbers by the same factor.

be upper bounded taking into account the above scaling
operator A in a rather precise way. The faster the eigen-
values of the integral operator T} associated with a given
kernel decay, the smaller the entropy numbers (and hence
the capacity) of the corresponding feature space algorithm
function class, and the stronger the generalization error
bounds that one can prove.

As an example, we now consider how the entropy num-
bers €, (A: Iz — l3) depend asymptotically on the eigenval-
ues of Tj.

Proposition 4 ([6]) Suppose k is a Mercer kernel with
In()\;) ~ —j? for some p > 0. Then lne, (A:ly = 1) =
O(In#+1 n)

An example of such a kernel (for p = 2) is the Gaussian
k(z,y) = e~le—vl®,

This proposition allows the formulation of a priori gen-
eralization error bounds depending on the eigenvalues of
the kernel. Using similar entropy number methods, it is
also possible to give rather precise data-dependent bounds
in terms of the eigenvalues of the kernel Gram matrix [20].

Entropy numbers are a promising tool for studying the
capacity of feature space methods. This is due to the fact
that in the linear case, which is what we are interested
in for feature space algorithms, they can be studied using
powerful methods of functional analysis (e.g. [18]).

E. The Metric of the Kernel Map

Another way to gain insight into the structure of fea-
ture space is to consider the intrinsic shape of the manifold
to which one’s data is mapped. It is important here to
distinguish between the feature space F' and the surface
in that space to which points in input space RN actually
map, which we will call S. In general S will be an N di-
mensional submanifold embedded in F. For simplicity, we
assume here that § is sufficiently smooth that structures
such as a Riemannian metric can be defined on it. Here
we will follow the analysis of [21], to which the reader is
referred for more details, although the application to the
class of inhomogeneous polynomial kernels is new.

We first note that all intrinsic geometrical properties of
S can be derived once we know the Riemannian metric
induced by the embedding of S in F. The Riemannian
metric can be defined by a symmetric metric tensor g, .

SCHOLKOPF ET AL.: INPUT SPACE VS. FEATURE SPACE IN KERNEL-BASED METHODS 5

Interestingly, we do not need to know the explicit mapping
® to construct g, ; it can be written solely in terms of the

kernel. To see this consider the line element:
ds? = gopd®° (x)d®®(x) = gvdz*dz”, (22)

where indices a,b correspond to the vector space F' and
u, v to input space RY. Now letting dx represent a small
but finite displacement in RY, we have

ds’ = ||®(x + dx) — ®(x)||?
k(x + dx,x + dx) — 2k(x,x + dx) + k(x,x)
((1/2)8s,, 04, k(x,x) — 0y, 8y, k(x, y))y:x dxtdz”

Juvdatdz”

Q

Thus we can read off the components of the metric tensor:

guv = (1/2)02,05, k(x,%) = {9y, 0y, k(x%,¥) }y=x (23)

For the class of kernels which are functions only of dot
products between points in RY, both covariant and con-
travariant components of the metric take a simple form:

g = Sk (IXI1%) + zuz K" ([Ix[|%) (24)
5 kll/kl
pvo o BV 2
g Ko T xR (25)

where the prime denotes derivative with respect to the ar-
gument ||x||2. To illustrate, let us compute the intrinsic
geometrical properties of the surface S corresponding to
the class of inhomogeneous polynomial Mercer kernels:

k(x,y) = (x-y +¢), (26)

where ¢ is a constant. Properties relating to the intrin-
sic curvature of a surface are completely captured by the
Riemann curvature tensor

R,o4" = 0T, — 9T%, +T%, T4 —T% T

va, Br™ ap

(27)

where the Christoffel symbols of the second kind are defined
by:

o « 1 (o7
s, =9 Ty = 59 “(089yu — Ougpy + Ovgus) (28)
Thus we find that for this class of kernels, the Riemann
curvature, for arbitrary input space dimension N and poly-
nomial order p, is given by

—2(p—-1)
RVOLBM = W(xafﬂyduﬁ - Z'B.’L'V(Sua)
-1
* T Ot ™ O]
(r-1) _
(1%l + ¢)2(|[x]> + ¢/p)
(2gzy0pa — TayOpys + TaTu0pq — Toydyg)
_ 2
n (p—1) c/p (ratinBan — Tavian)

(Ix[[* +¢)* [lx[* +¢/p

It is interesting to compare this result with that for the
homogeneous case (¢ = 0) [21]:

G(C = 0) = M(épu(sau - 5pu60'1/)

I

Ry
_(-1
[Ix[*

This analysis shows that adding the constant ¢ to the ker-
nel results in striking differences in the geometries. Both
curvatures vanish for p = 1, as expected. However for
N =2, R,,,%(c = 0) vanishes for all powers p, whereas
R,,,” (c #0) does not vanish for any p > 1. Furthermore,
all surfaces for homogeneous kernels with non-vanishing
curvature (i.e. those with N > 2 and p > 1) have a sin-
gularity at ||x||> = 0, whereas none of the corresponding
surfaces for inhomogeneous kernels do, provided ¢ > 0.8

Thus beyond providing insight into the geometrical
structure of the surfaces in F' generated by choice of ker-
nel, the geometrical analysis also gives more concrete re-
sults. For example, one can expect that the density on the
surface S will become ill behaved for data x whose norm
is small, for homogeneous polynomial kernels, but not for
the inhomogeneous case. Similar problems may arise in the
pattern recognition case if one’s data lies near the singu-
larity. These considerations can be extended to compute
the intrinsic volume element on S, which may be used to
compute the density p(x) on S, and to give some simple
necessary tests that must be satisfied by any kernel if it
is to be a Mercer kernel: the reader is referred to [21] for
details.

(02 p0p0 — TpZploy + ToZpdpy — TaTulpy) (29)

III. FEATURE SPACE ALGORITHMS

We next describe the two algorithms used in this paper:
SV machines, and kernel PCA. The SV algorithm shall not
be described in detail, let us only briefly fix the notation.

Support Vector (SV) classifiers [4] construct a maximum
margin hyperplane in F'. In input space, this corresponds
to a nonlinear decision boundary of the form

¢
f(x) = sgn (Z aik(x,x;) + b) ,

i=1

(30)

where the x; are the training examples. Those with a; 7 0
are called Support Vectors; in many applications, most of
the a;, which are found by solving a quadratic program,
turn out to be 0. Excellent classification accuracies in both
OCR and object recognition have been obtained using SV
machines [9], [22]. A generalization to the case of regression
estimation, leading to similar function expansion, exists [4],
[23].

Kernel Principal Component Analysis [5] carries out a
linear PCA in the feature space F'. The extracted features
take the nonlinear form

/4
fk(x) :Zafk(xiJXL (31)

8Note that if ¢ < 0 the kernel is not a Mercer kernel and the above
analysis does not apply.

where, up to a normalization, the af are the components
of the k-th eigenvector of the matrix (k(x;,X;))i;-

This can be understood as follows. We wish to find eigen-
vectors V and eigenvalues X of the covariance matrix C' in
the feature space,? where

4
Ci= 53 B(x)(x)". (32)

| =

In the case when F' is very high dimensional this will be im-
possible to compute directly. To be still able to solve this
problem, one uses Mercer kernels. To this end, we need
to derive a formulation which only uses ® in dot products.
We then replace any occurrence of (®(x)-®(y)) by k(x,y).
This way we avoid dealing with the mapped data explicitly,
which may be intractable in terms of memory and compu-
tational cost.

To find a formulation for PCA which uses only dot prod-
ucts, we first substitute the covariance matrix (32) into the
eigenequation C'V = AV. Note that all solutions to this
equation with A\ # 0 must lie in the span of ®-images of
the training data. Thus, we may consider the equivalent
system

A®(x) - V) =(®(xx)-CV) forall k=1,...,¢, (33)
and expand the solution V as
‘
V=> a;®(x:). (34)
i=1

Substituting (32) and (34) into (33), and defining a £ x £
matrix K by K;; = k(x;,%;) we arrive at a problem which
is cast in terms of dot products: solve

a=Ka, (35)

where & = (a1,...,0a¢)" (for details on the last step see
[5]). Normalizing the solution Vj in F translates into
Ar(af - aFf) = 1. To extract features, we compute the
projection of the ®-image of a test point x onto the k-th
eigenvector in the feature space by

¢
Bri=(VF - 2(x)) = 3 alk(xi,x). (36)
i=1

Usually, this will be much cheaper than taking the dot
product in the feature space explicitly.

To conclude the brief summary of kernel PCA, we state
a characterization which involves the same regularizer (the
length of the weight vector) as the one used in SV machines.

Proposition 5 For all k, the k-th kernel PCA feature ex-
tractor, scaled by 1/, is optimal among all feature extrac-
tors of the form

f(x) = Zaz’k(xz’,x)

9Here we assume that the mapped data is centered, too. In general
this will not be true, but all computations can easily be reformulated
to perform an explicit centering in F' [5].

IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

in the sense that it has the shortest weight vector
IVI? = aiajk(xi, x;)
i

subject to the conditions that

(1) it is orthogonal to the first k — 1 kernel PCA feature
extractors (in feature space)

(2) applied to the training set x1,...,Xq, it leads to a unit
variance set of outputs.

Both SV machines and kernel PCA utilize Mercer ker-
nels to generalize a linear algorithm to a nonlinear setting;
moreover, both use the same regularizer, albeit in different
domains of learning — supervised vs. unsupervised. Nev-
ertheless, feature extraction experiments on handwritten
digit images using kernel PCA have shown that a linear
hyperplane classifier trained on the extracted features per-
forms as well as a nonlinear SV machine trained directly
on the inputs [5].

IV. FrRoOM FEATURE SPACE TO INPUT SPACE

Unlike section II, which described how to get from input
space into feature space, we now study the way back. There
has been a fair amount of work on aspects of this problem
in the context of developing so-called reduced set methods
(e.g. [24], [25], [26], [27], [28])- For pedagogical reasons, we
shall postpone reduced set methods to section V, as they
focus on a problem that is already more complex than the
one we would like to start with.

A. The Pre-Image Problem

As stated in the introduction, feature space algorithms
express their solutions as expansions in terms of mapped
input points (3). However, since the map @ into the feature
space F' is nonlinear, we cannot generally assert that each
such expansion will have a pre-image under ®, i.e. a point
z € RY such that ®(z) = ¥ (figure 2). If the pre-image
existed, it would be easy to compute, as shown by the
following result [9]:

Proposition 6 Consider a feature space expansion ¥ =
E§:1 a;j®(x;). If there exists a z € RN such that

®(z) =7,
and if k is an invertible function fi, of (x-y), then we can
compute z as

N J4

zz.ka_1

ajk(xjaei) €4,
=1 j=1

where {ey,...,exn} is any orthonormal basis of input space.

Proof: We expand z as

SCHOLKOPF ET AL.:

k(X, y) =

(@(x) - 2(y)

Fig. 2.

Cm /q

INPUT SPACE VS. FEATURE SPACE IN KERNEL-BASED METHODS 7

~ F =span ¢(X)

~_

q»m\

The pre-image problem. Not each point in the span of the mapped input data is necessarily the image of some input pattern.

Therefore, not each point that can be written as an expansion in terms of mapped input patterns (e.g. a kernel PCA eigenvector, or a
SVM hyperplane normal vector), can necessarily be expressed as the image of a single input pattern.

(z,€))

= ka
N

= ka—l
=1

(37)

Zajk(xj,ei) €e;.
i=1

]
Several remarks on this proposition should be given.

First, examples of kernels which are invertible functions
of (x-y) are polynomial kernels

E(x,y)=(x-y+¢)% ¢>0, dodd, (38)
and sigmoid kernels
k(X7Y) ZU(H'(X'y)+®)7 K’7® eR (39)

A similar result holds for RBF kernels (using the polar-
ization identity) — all we need is a kernel which allows the
reconstruction of (x -y) from k, evaluated on some input
points which we are allowed to choose (for details, cf. [9]).

The crucial assumption, clearly, is the ezistence of the
pre-image. Unfortunately, there are many situations where
there are no pre-images. To illustrate this, we consider the
feature map ® (11). Clearly, only points in feature space
which can be written as k(.,x) do have a pre-image under
this map. To characterize this set of points in a specific
example, consider Gaussian kernels

B
202

k(xa y) =

In this case, & maps each input into a Gaussian sitting on
that point. However, it is known [29] that no Gaussian can
be written as a linear combination of Gaussians centered at
other points. Therefore, in the Gaussian case, none of the
expansions (3), excluding trivial cases with only one term,
has an exact pre-image.

The problem that we had initially set out to solve has
turned out to be insolvable in the general case. Let us try to
ask for less. Rather than trying to find exact pre-images,
we now consider approximate ones. We call z € RY an
approzimate pre-image for W if

p(z) = ||T - 3(2)|”

(40)

(41)

is small.10
Are there vectors ¥ for which good approximate pre-
images exist? As described in section III, kernel PCA is

nothing but PCA in F. Therefore, for n = 1,2,...,p, it
provides projections
n
Pad(x) = (2(x)- VF)V* (42)

k=1

with the following optimal approximation property (e.g.
[9]) Here, we assume that the V* are sorted according to
nonincreasing eigenvalues g, with A, being the smallest
nonzero eigenvalue.

Proposition 7 P, is the n-dimensional projection mini-
mizing

B(x;)||- (43)

J4
3 1P (x) -
i=1

Therefore, P,,®(x) can be expected to have a good approx-
imate pre-image: trivially, already x is a good approximate
pre-image. As we shall see in experiments, however, even
better pre-images can be found, which makes some inter-
esting applications possible [30], [31]:

Denoising. Given a noisy x, map it into ®(x), discard
higher components to obtain P,®(x), and then compute
a pre-image z. Here, the hope is that the main structure
in the data set is captured in the first n directions, and the
remaining components mainly pick up the noise — in this
sense, z can be thought of as a denoised version of x.
Compression. Given the eigenvectors a* and a small num-
ber of features By, (cf. (36)) of ®(x), but not x, compute a
pre-image as an approximate reconstruction of x. This is
useful if n is smaller than the dimensionality of the input
data.

Interpretation. Visualize a nonlinear feature extractor V¥
by computing a pre-image.

10Just how small it needs to be in order to form a satisfactory
approximation will depend on the problem at hand. Therefore, we
have refrained from giving a formal definition.

o(R")

Fig. 3. Given a vector ¥ € F', we try to approximate it by a multiple
of a vector ®(z) in the image of input space (RY) under the
nonlinear map ® by finding z such that the projection distance
of ® onto span(®(z)) is minimized.

In this paper, we focus on the first point. In the next
section, we shall develop a method for minimizing (41),
which we will later, in the experimental section, apply to
the case where ¥ = P, ®(x).

B. An Algorithm for Approximate Pre-Images

The present section [26] gives an analysis for the case of
the Gaussian kernel, which has proven to perform very well
in applications [32], and proposes an iteration procedure for
computing pre-images of kernel expansions.

We start by considering a problem slightly more general
than the Bre—image problem: we are seeking to approximate
U = 3.7 o;®(x;) by ¥ = B®(z). First observe that
rather than minimizing

N, N,
[e='|1* = D aviosh(xi, x;)+°k(z,2)=2 Y _0iBk(xi,),
i,j=1 i=1

(44)
we can minimize the distance between ¥ and the orthog-
onal projection of ¥ onto span (®(z)) (figure 3),

(W-0@) oot (F0()
|aersmy @~ =19 - Gay ey @
To this end, we maximize

(lI’) (I)(z))z (46)

(®(z) - ®(2))’

which can be expressed in terms of the kernel. The maxi-
mization of (46) over z is preferable to the one of (44) over
z and 3, since it comprises a lower-dimensional problem,
and since z and § have different scaling behavior. Once the
maximum of (46) is found, it is extended to the minimum
of (44) by setting (cf. (45)) B = (¥ - ®(2))/(P(z) - B(2)).
The function (46) can either be minimized using standard
techniques (as [24]), or, for particular choices of kernels,
using fixed-point iteration methods, as shown presently.

For kernels which satisfy k(z,z) = 1 for all z € RV (e.g.
Gaussian kernels), (46) reduces to

(T - ®(2))*. (47)

IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

For the extremum, we have 0 = V,(¥ - ®(z))?> = 2(¥ -
®(z))V,(¥ - ®(z)). To evaluate the gradient in terms
of k, we substitute (53) to get the sufficient condition
0= Efv:”l a;Vk(x;,2). For k(x;,z) = k(||x; — z||?) (e.g.
Gaussians, or (||x; —z||> +1)¢ for ¢ = —1,—1/2), we obtain
0= 3N aik'([lx; — z||?)(x; — 2), leading to

Ne 11 12V~
7 = Zz?{l alk (”xl Z”)Xl . (48)
2in k! ([Ixi — 2]|*)

For the Gaussian kernel k(x;,z) = exp(—||x; — z||?/(20?))
we thus arrive at

, = i oiexp(=lxi —2l?/QoM)xi o
S el o/ 2e)

and devise an iteration

S g exp(—||x; — 2a]2/(20%))x;
Yo g exp(—||x; — 2.2/ (202))

The denominator equals (¥ - ®(z,)) and thus is nonzero
in a neighborhood of the extremum of (47), unless the ex-
tremum itself is zero. The latter only occurs if the projec-
tion of ¥ on the linear span of ®(RY) is zero, in which case
it is pointless to try to approximate ¥. Numerical instabili-
ties related to (¥-®(z)) being small can thus be approached
by restarting the iteration with different starting values.

Interestingly, (50) can be interpreted in the context of
clustering (e.g. [33]). It determines the center of a single
Gaussian cluster, trying to capture as many of the x; with
positive a; as possible, and simultaneously avoids those x;
with negative «;. For SV classifiers, the sign of the a;
equals the label of the pattern x;. It is this sign which dis-
tinguishes (50) from plain clustering or parametric density
estimation. The occurrence of negative signs is related to
the fact that we are not trying to estimate a parametric
density but the difference between two densities (modulo
normalization constants).

To see this, we define the sets pos = {i : a; >
0} and neg = {i a; < 0}, and the shorthands
Ppos(2) = 20,0, aiexp(—llx; — z[|?/(20%)) and ppey(z) =
D neg leil exp(—(lx; — z||?/(20?)). The target (47) then
reads (Ppos(Z) — Pneg(2))?, i-e. we are trying to find a point
z where the difference between the (unnormalized) “prob-
abilities” for the two classes is maximal, and estimate the
approximation to (53) by a Gaussian centered at z. More-
over, note that we can rewrite (49) as

Zp+1 =

(50)

ppos(z) pneg(z)
2= Xpos + Xneg, (51)
ppos(z) _pneg(z) bos pneg(z) _ppos(z) nes
where
x _ EPos/neg Q; eXp(—”xi - Z||2/(202))Xz' (52)
Poa e S e/meq 01 €XD(—IXi — 2P/ (207))

SCHOLKOPF ET AL.: INPUT SPACE VS. FEATURE SPACE IN KERNEL-BASED METHODS 9

V. REDUCED SET (RS) METHODS
A. The Problem

We now move on to a slightly more general problem,
first studied by [24], where we are no longer only looking
for single pre-images, but expansions. It will turn out that
one can also use the method developed in the last section
to design an algorithm for the more general case.

Assume we are given a vector ¥ € F', expanded in images
of input patterns x; € RV,

¥ = iaié(xi), (53)

with a; € R,x; € RY. Rather than looking for a single
pre-image, we now try to approximate it by a reduced set
expansion [24]

N
= Z Bi®(zi), (54)

with N, < N,, B; € R,z; € RV. To this end, one can
minimize [24]

N, N,
||‘I’ — lIl'||2 — Z az-ajk(xz-,xj) + Z ﬂ,ﬂjk(zz,zj)

i,j=1 =1
N, N.

- 2ZZaiﬂjk(xi,zj). (55)
i=1 j=1

The crucial point is that even if ® is not given explicitly,
(55) can be computed (and minimized) in terms of the
kernel.

In the NIST benchmark of 60000 handwritten digits, SV
machines are more accurate than any other single classifier
[9]; however, they are inferior to neural nets in run-time
classification speed [25]. In applications where the latter is
an issue, it is thus desirable to come up with methods to
speed up things by making the SV expansion more sparse,
i.e. replacing (53) by (54).

B. Finding the Coefficients

Evidently, the RS problem consists of two parts. One has
to determine the RS vectors z;, and one has to compute
the expansion coefficients ;. We start with the latter;
partly, as it is easier, partly, as it is common to different
RS methods.

Proposition 8 ([26]) The optimal coefficients B =
(B1,---,Bm) for approzimating ¥ = Zle a;®(x;) by
Yoty Bi®(z;) (for linearly independent ®(z1),...,®(zm))

in the 2-norm are given by
B =(K*)"'K*a. (56)
Here, K[; := (®(z;) - ®(z;)) and K := (®(z:) - ®(x;))-

Note that if the ®(z;) are linearly independent, as they
should be if we want to use them for approximation, then

K? has full rank. Otherwise, one can use the pseudo-
inverse, or select the solution which has the largest number
of zero components.

Proof: We evaluate the derivative of the distance in
F,

%II‘I’—ZB@(ZDIIQ = 28(z) (U- Y Bid(a), (57)
=1 i=1

and set it to 0. Substituting ¥ = Ele ;P (x;), we obtain
(using @ = (o, ..., ay))

Ko = K*3, (58)

hence
8= (KZ)*lK”a. (59)
[|

No RS algorithm using the 2-norm optimality criterion
can circumvent this result. For instance, suppose we are
given an algorithm that computes the 8; and z; simultane-
ously and comes up with a solution. Then we can always
use the proposition to recompute the optimal coefficients
to get a solution which is at least as good as the original
one. Different algorithms can, however, differ in the way
they determine the vectors z; in the first place. The one
dealt with in the next section simply selects subsets of the
x;, while the one in section V-D uses vectors different from
the original x;.

C. Reduced Set Selection
C.1 Selection via Kernel PCA

The idea for the first algorithm arises from the obser-
vation that the null space of the Gram matrix K;; =
(®(x;) - ®(x;)) precisely tells us how many vectors can
be removed from an expansion while committing zero ap-
proximation error (assuming we correctly adjust the coeffi-
cients), i.e. how sparse we can make an SV expansion, say,
without changing it the least [9], [27]. (Here, the Gram
matrix can either be computed only from those examples
which have a nonzero a;, or from a larger set which we
want to use for the expansion.) Interestingly, it will turn
out that this problem is closely related to kernel PCA.

Let us start with the simplest case. Assume there exists
an eigenvector a # 0 of K with eigenvalue 0, i.e. Ka = 0.
Using (2), this reads

£
(®(x;) - ®(x;))a; =0 foralli=1,...,¢, (60)
j=1
hence
¢
> a;®(x;) =0. (61)
j=1

This means that the ®(x;) are linearly dependent, and
therefore any of the ®(x;) which comes with a nonzero «;
can be expressed in terms of the others. Hence, we may
use the eigenvectors with eigenvalue 0 to eliminate certain
terms from any expansion in the ®(x;).

10

What happens if we do not have nonzero eigenvalues,
such as in the case of Gaussian kernels [29]7 Intuitively, we
would still believe that even though the above is no longer
precisely true, it should give a good approximation. How-
ever, the crucial difference is that in order to get the best
possible approximation, we now need to take into account
the coefficients of the expansion ¥ = E§:1 a;®(x;): if we
commit an error by removing ®(x;,), say, then this error
will depend on «a,, too. How do we then select the optimal
n?

Clearly, we would like to find coefficients (B; mini-
mizing the error we commit by replacing «,®(x,) with

> jzn Bi®(%5),

p(B,n) = |lan®(x,) — Zﬂjq)(xj)
j#n

(62)

To establish a connection to kernel PCA, we make a change

of variables. First, define n; = 1 for j = n, n; = —f;/an
for j # n. Hence (62) equals |ay,|?|| Z§:1 n;®(x;)[|?. Nor-
malizing) to obtain v := n/||n||, hence v, = 1/||n||, this
leads to the problem of minimizing

(v Kv), (63)

(677
,TL = | —
p(y,n) ‘ -

over ||v]| = 1 (note that p is invariant when rescaling).!!

A straightforward calculation shows that we can recover

the approximation coefficients for a,®(x,), i.e. the values

to add to the a; (j # n) for leaving out a,®(x,), as 3; =
4y

.) #n.

Rather than minimizing the nonlinear function (63), we
now devise a computationally attractive approximate solu-
tion. It is motivated by the observation that (- K+) alone
is minimized for the eigenvector with minimal eigenvalue,
consistent with the special case discussed above (cf. (61)).
In that case, (v - Kv) = Apin. More generally, if 4¢ is any
normalized eigenvector of K, with eigenvalue A;, then

o 2
— i (64)

p(i,n) =

This can be minimized in O(£>) operations by performing

kernel PCA and scanning through the matrix (p(i,n))in.
The complexity can be reduced to O({£€) by only con-
sidering the smallest m eigenvalues, with m < £ chosen a
priori. Hence, we can eliminate ®(x,), with n chosen in a
principled yet efficient way.

Setting all computational considerations aside, the opti-
mal greedy solution to the above selection problem, equiv-
alent to (63), can also be obtained by using Proposition 8:
compute the optimal solution for all possible patterns that
one could leave out (i.e. use subsets of {x1,...,x,}, of size
£—1,as {z1,...,2,}, and evaluate (57) in each case.

1 The idea of approximating the support vector expansion by op-
timally removing individual support vectors, and then adjusting the
coefficients of those that remain to minimize the resulting error, was
arrived at independently by Olivier Chapelle, who also derived the
expression to be minimized, (63) (Private Communication).

IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

The same applies to subsets of any size. If we have the
resources to exhaustively scan through all subsets of size m
(1 < m <€ —-1), then Proposition 8 provides the optimal
way of selecting the best expansion of a given size. Better
expansions can only be obtained if we drop the restriction
that the approximation is written in terms of the original
patterns, as done in section V-D.

No matter how we end up choosing n, we approximate
¥ by

v = Z a;®(x;) + an®(x,)
J#n
~ a; — An q)(X]'). (65)
(== %2)

The whole scheme can be iterated until the expansion
of ¥ is sufficiently sparse. If one wants to avoid having to
find the smallest eigenvalue of K at each step anew, then
approximate schemes using heuristics can be conceived.

In our experiments to be reported below, we did com-
pute all eigenvectors at each step, using the Gram matrix
computed from the SVs and then selected n according to
(64).

C.2 Selection via L; Penalization

We next consider a method for enforcing sparseness
which is inspired by L, shrinkage penalizers (cf. [10]).

Given some expansion), a; ®(x;), we approximate it by
>, Bi®(x;) by minimizing

2 ¢
S alsl (66)
=1

¢ ¢
Z a; ®(x;) — Z Bi®(x;)

over all 8;. Here, A > 0 is a constant determining the
trade-off between sparseness and quality of approximation.
The constants ¢; can be set to 1 or a/|a;| (where o is the
mean of all |a;|), say. In the latter case, we are hoping
for a sparser decomposition, since more emphasis is put
on shrinking terms which are already small. This reflects
the intuition that it is less promising to try to shrink very
large terms. Ideally, we would like to count the number
of nonzero coefficients, rather than sum their moduli; how-
ever, the former does not lead to an efficiently solvable
optimization problem.
To dispose of the modulus, we rewrite 3; as

/Bzzﬂj__ i_a

where ﬂz.i > 0. In terms of the new variables, we end up
with the quadratic programming problem

(67)

a2 (BF = B7)(BF — B K + (68)
Z (,3;_()\0] -2 Z Kijai) + ,8; ()\Cj +2 Z KﬁOt,'))

J % %
subject to ,BJ?L,B]-_ > 0. (69)

SCHOLKOPF ET AL.: INPUT SPACE VS. FEATURE SPACE IN KERNEL-BASED METHODS 11

This problem can be solved with standard quadratic pro-
gramming tools. The solution (67) could be used directly
as expansion coefficients. For optimal precision, however,
we merely use it to select which patterns to use for the ex-
pansion (those with nonzero coefficients), and re-compute
the optimal coefficients using Proposition 8.

C.3 The Multi-Class Case

In many applications, we face the problem of simultane-
ously approximating a set of k feature space expansions.
For instance, in digit classification, a common approach is
to train £ = 10 binary recognizers, one for each digit. To
this end, the quadratic programming formulation of sec-
tion V-C.2 can be modified to

o>

(2

2
+AD ek (70)

D_ai®(xi) = Ble(x)

subject to |87 < &, & > 0. (71)

The indices 4, j are understood to range over all SVs (i.e.
expansion vectors which have a nonzero coefficient for at
least one of the recognizers), and over the k classes, respec-
tively. For c;, we use either 1 or, with the same rationale
as above, a/ max; |o]| (here, « is the mean of all max; |a] |
over 1).

The term). ¢;§; together with the constraint (71) en-
sures that we only penalize the largest of the coefficients
pertaining to each individual SV. Therefore, as soon as one
coefficient is being used by one the expansions, it does not
cost anything to also use it for another one. This is pre-
cisely what we want for speed-up purposes: if we have to
compute a certain dot product anyway, we might just as
well re-use it for the other expansions.

Using 87 = B — g7, with g7 > 0, we arrive at the
following problem:

min Y (877 - ;) (87 - B,) Kig + (72)
B~ jia
2 (B =B Y Ko + A i
Jyi q i
subject to A7 + 877 < &, B >0. (73)

Here, ¢ ranges over all SVs.

C.4 A Note on the Utility of Reduced Set Selection

Why should we expect these procedures to be useful?
First, for SV machines, where a; € [-C, C] for some posi-
tive value of the regularization constant C, there is reason
to believe that the SV expansion can be made sparser by
removing the constraint on «; (note that (65) does not
care about the constraint).!? Second, the number of eigen-
values which are zero (and thus the number of patterns

12Imagine a case where a certain pattern appears twice in the train-
ing set, and the SV expansion has to utilize both of the copies only
because the upper bound constraint limits the coefficient of each of
them to C.

that can be removed without loss), or at least small, de-
pends on the problem at hand and the kernel used. For
instance, Gaussian kernel Gram matrices do not have zero
eigenvalues unless some of the patterns are duplicates [29)].
Nevertheless, good approximations are possible, since the
eigenvalues of Gaussian kernels decay rapidly (e.g. [6]).

D. Reduced Set Construction

So far, we have dealt with the problem of how to select a
reduced set of expansion vectors from the original one. We
now return to the originally posed problem, which includes
the construction of new vectors to reach high reduction
rates. To this end, suppose we want to approximate a
vector

¢
Ty =) a;%(x;) (74)

by an expansion of the type (54) with N, > 1. To this

end, we iterate the procedure of section IV-B by ¥, 1 :=
Y, — Bm®(zy). Here, z, denotes the z found for ¥,,,
obtained by iterating (50). To apply (50), ¥,, needs to
be utilized in its representation in terms of mapped input
images,

4 m—1
U =Y ai®(xi) — > Bib(zs), (75)
i=1 =1
i.e. we need to set N, = ¢+ m — 1, and
(ala"'aaNm) = (a17"'7af7_ﬂ17"'7_ﬂ7R—1)7(76)
(Xla"'axNz) = (Xla-"axbzla"'azm—l)' (77)

The coefficient 3, could be computed as (¥ - ®(z))/(®(z) -
®(z)). However, if the vectors ®(z1), . .., ®(zy,) are not or-
thogonal in F', then the best approximation of ¥y in their
span is not obtained by computing orthogonal projections
onto each direction. Instead, we need to compute the opti-
mal coefficients 8 = (81, -..,8m) anew in each step, using
Proposition 8 (if the discrepancy ¥,,41 has not yet reached
zero, then K# will be invertible).

The iteration is stopped after N, steps, either spec-
ified in advance, or by monitoring when ||¥,, 1|l (i-e.
[T, Bi®(z;)|]) falls below a specified threshold. The
solution vector takes the form (54).

We conclude this section by noting that in many cases,
such as multiclass SV machines, or multiple kernel PCA
feature extractors, we may actually want to approximate
several vectors simultaneously. This leads to more complex
equations, given in [26].

VI. EXPERIMENTS

To see how the proposed methods work in practice we
ran several toy and real-world experiments. In section VI-
A, we give denoising results for the approach of finding
approximate pre-images presented in section IV-A. In sec-
tion VI-B, we present some experiments for the reduced set
methods described in section V-C and section V-D.

12

Fig. 4. Kernel PCA toy example (see text): lines of constant fea-
ture value for the first 8 nonlinear principal components extracted
with k(x,y) = exp (=[x — y||?/0.1). The first 2 principal com-
ponents (top middle/right) separate the three clusters. Compo-
nents 3-5 split the clusters. Components 6-8 split them again,
orthogonal to the above splits.

A. Kernel PCA Denoising
A.1 Toy Examples

All experiments reported were carried out with Gaus-
sian kernels (40), minimizing (41) with the iteration scheme
given by (50). However, similar results were obtained with
polynomial kernels. Matlab code for computing kernel
PCA is available on the web from http://svm.first.gmd.de.

We generated an artificial data set from three point
sources at (-0.5,-0.1), (0,0.7), (0.5,0.1) (100 points each)
with Gaussian noise (¢ = 0.1), and performed kernel PCA
on it (figure 4). Using the resulting eigenvectors, we ex-
tracted nonlinear principal components from a set of test
points generated from the same model, and reconstructed
the points from varying numbers of principal components.
Figure 5 shows that discarding higher-order components
leads to removal of the noise — the points move towards
their respective sources.

In a second experiment (table I), we generated a data set
from eleven Gaussians in R!? with zero mean and variance
0? in each component, by selecting from each source 100
points as a training set and 33 points for a test set (centers
of the Gaussians randomly chosen in [—1,1]'°). Then we
applied kernel PCA to the training set and computed the
projections S of the points in the test set. With these, we
carried out denoising, yielding an approximate pre-image
in R0 for each test point. This procedure was repeated for
different numbers of components in reconstruction, and for
different values of o (also used in the kernel). We compared
the results provided by our algorithm to those of linear
PCA via the mean squared distance of all denoised test
points to their corresponding center. Table I shows the
ratio of these values; here and below, ratios larger than
one indicate that kernel PCA performed better than linear
PCA. For almost every choice of n and o, kernel PCA did

IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

e

v
=

ya

oo N v, T
= A < A 7/
Fig. 5. Kernel PCA denoising by reconstruction from projections

onto the eigenvectors of figure 4. We generated 20 new points
from each Gaussian, represented them in feature space by their
first n = 1,2,...,8 nonlinear principal components, and com-
puted approximate pre-images, shown in the upper 9 pictures
(top left: original data, top middle: n = 1, top right: n = 2,
etc.). Note that by discarding higher order principal components
(i.e. using a small n), we remove the noise inherent in the nonzero
variance o2 of the Gaussians. The lower 9 pictures show how the
original points “move” in the denoising. Unlike the correspond-
ing case in linear PCA, where where we obtain lines (see figure 6),
in kernel PCA clusters shrink to points.

B \

Fig. 6. Reconstructions and point movements (cf. figure 5) for linear
PCA, based on the first principal component.

better. Note that using all 10 components, linear PCA is
just a basis transformation and hence cannot denoise. The
extreme superiority of kernel PCA for small ¢ is due to the
fact that all test points are in this case located close to the
eleven spots in input space, and linear PCA has to cover

SCHOLKOPF ET AL.: INPUT SPACE VS. FEATURE SPACE IN KERNEL-BASED METHODS 13

TABLE I
DENOISING GAUSSIANS IN R0 (SEE TEXT). PERFORMANCE RATIOS LARGER THAN ONE INDICATE HOW MUCH BETTER KERNEL PCA DID,
COMPARED TO LINEAR PCA, FOR DIFFERENT CHOICES OF THE GAUSSIANS’ STANDARD DEVIATION ¢, AND DIFFERENT NUMBERS OF

COMPONENTS USED IN RECONSTRUCTION.

[0 | n=1 2 3 4 5 6 7 8 9 |
0.05 | 2058.42 | 1238.36 | 846.14 | 565.41 | 309.64 | 170.36 | 125.97 | 104.40 | 92.23
0.1 10.22 | 31.32 | 21.51 | 20.24 | 27.66 | 2353 | 29.64 | 40.07 | 63.41
0.2 0.99 T12| 118| 150| 211| 2.73| 3.72| 509 6.32
0.4 107 | 126| 144 164 | 191 | 208 | 222| 234 247
0.8 1.23 139 | 154| 170| 180| 1.96| 2.10| 2.25]| 2.39

them with less than ten directions. Kernel PCA moves
each point to the correct source even when using only a
small number of components.

To get some intuitive understanding in a low-dimensional
case, figure 7 depicts the results of denoising a half circle
and a square in the plane, using kernel PCA, a nonlinear
autoencoder, principal curves, and linear PCA. The princi-
pal curves algorithm [34] iteratively estimates a curve cap-
turing the structure of the data. The data are projected
to the closest point on a curve which the algorithm tries
to construct such that each point is the average of all data
points projecting onto it. It can be shown that the only
straight lines satisfying the latter are principal components,
so principal curves are a generalization of the latter. The
algorithm uses a smoothing parameter which is annealed
during the iteration. In the nonlinear autoencoder algo-
rithm, a ‘bottleneck’ 5-layer network is trained to repro-
duce the input values as outputs (i.e. it is used in autoas-
sociative mode). The hidden unit activations in the third
layer form a lower-dimensional representation of the data,
closely related to PCA (see for instance [35]). Training
is done by conjugate gradient descent. In all algorithms,
parameter values were selected such that the best possi-
ble denoising result was obtained. The figure shows that
on the closed square problem, kernel PCA does (subjec-
tively) best, followed by principal curves and the nonlinear
autoencoder; linear PCA fails completely. However, note
that all algorithms except for kernel PCA actually pro-
vide an explicit one-dimensional parameterization of the
data, whereas kernel PCA only provides us with a means
of mapping points to their denoised versions (in this case,
we used four kernel PCA features, and hence obtain a four-
dimensional parameterization).

A.2 Handwritten Digit Denoising

To test our approach on real-world data, we also applied
the algorithm to the USPS database of handwritten digits
(e.g. [36], [9]) of 7291 training patterns and 2007 test pat-
terns (size 16 x 16). For each of the ten digits, we randomly
chose 300 examples from the training set and 50 examples
from the test set. We used the method of section IV-B,
with k(x,y) = exp(—||x — y||?/(0.5 - 162)). The width 0.5
equals twice the average of the data’s variance in each di-
mension. In figure 8, we give two possible depictions of
the eigenvectors found by kernel PCA, compared to those

found by linear PCA for the USPS set. The second row
shows the approximate pre-images of the eigenvectors V*,
k= 20,...,28% found by our iterative algorithm. In the
third row each image is computed as follows: Pixel ¢ is the
projection of the ®-image of the i-th canonical basis vector
in input space onto the corresponding eigenvector in fea-
tures space (upper left ®(e1)- VX, lower right ®(ezs6)- V).
In the linear case, both methods would simply yield the
eigenvectors of linear PCA depicted in the first row; in
this sense, they may be considered as generalized eigen-
vectors in input space. We see that the first eigenvectors
are almost identical (except for arbitrary signs). However,
we also see that eigenvectors in linear PCA start to focus
on high-frequency structures already at smaller eigenvalue
size. To understand this, note that in linear PCA we only
have a maximum number of 256 eigenvectors, contrary to
kernel PCA which gives us the number of training examples
(here 3000) possible eigenvectors.

This also explains some of the results we found when

working with the USPS set (figures 9 and 10). In these
experiments, linear and kernel PCA were trained with the
original data. To the test set, we added
(1) additive Gaussian noise with zero mean and standard
deviation ¢ = 0.5, or
(i) ‘speckle’ noise, where each pixel is flipped to black or
white with probability p = 0.2.
For the noisy test sets, we computed the projections onto
the first n linear and nonlinear components, and carried out
reconstruction for each case. The results were compared
by taking the mean squared distance of each reconstructed
digit of the noisy test set to its original counterpart.

For the optimal number of components in linear and ker-
nel PCA, our approach did better by a factor of 1.6 for the
Gaussian noise, and 1.2 for the ‘speckle’ noise (the opti-

DUFVFAGEERE
OLVRERBES
NUvVERES = &

Fig. 8. Visualization of eigenvectors (see text). Depicted are the
20....,28-th eigenvector (from left to right). First row: linear
PCA, second and third row: different visualizations for kernel
PCA.

14

IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

kernel PCA

7

nonlinear autoencoder

Principal Curves linear PCA

Fig. 7. Denoising in 2-d (see text). Depicted are the data set (small points) and its denoised version (big points, joining up to solid lines).
For linear PCA, we used one component for reconstruction, as using two components, reconstruction is perfect and thus does not denoise.
Note that all algorithms except for our approach have problems in capturing the circular structure in the bottom example (taken from

31])-

?

‘speckle’ noise

orig.

noisy

16

64

256

Fig. 9.

-

PRV BT VENY

e L S L o

-

e

|
i
i
[
3
i
I
|
|
1

000LOHUOCOTO

De-noising of USPS data (see text). The left half shows: top: the first occurrence of each digit in the test set, second row: the

upper digit with additive Gaussian noise (o = 0.5), following five rows: the reconstruction for linear PCA using n = 1,4, 16,64, 256
components, and, last five rows: the results of our approach using the same number of components. In the right half we show the same

but for ‘speckle’ noise with probability p = 0.2.

mal number of components were 32 in linear PCA, and
512 and 256 in kernel PCA, respectively). Taking identical
numbers of components in both algorithms, kernel PCA
becomes up to 8 times better than linear PCA. However,
note that kernel PCA comes with a higher computational
complexity.

B. Speeding up Support Vector Decision Rules

As in section VI-A, we used the USPS handwritten digit
database. We approximated the SV expansions (30) of
ten binary classifiers, each trained to separate one digit
from the rest. We used the Gaussian kernel k(x,y) =

exp(—||x — y||?/(0.5 - 162)), and the approximation tech-
niques described in sections V-C and V-D.

The original SV system had on average 254 SVs per
classifier. Tables IT and IIT show the classification error
results for approximation using the reduced set selection
techniques described in section V-C, while table IV gives
results for using the reduced set construction method de-
scribed in V-D, for varying numbers of RS vectors. Shown
in each line is the number of misclassified digits for each
single classifier and the error of the combined 10-class ma-
chine. In all RS systems, the optimal SV threshold was
re-computed on the training set.

SCHOLKOPF ET AL.: INPUT SPACE VS. FEATURE SPACE IN KERNEL-BASED METHODS

15

TABLE II
NUMBERS OF TEST ERRORS FOR EACH BINARY RECOGNIZER, AND TEST ERROR RATES FOR 10-CLASS CLASSIFICATION USING THE RS METHOD OF
SECTION V-C.1. TOP: NUMBERS OF SVS FOR THE ORIGINAL SV RBF-SYSTEM. BOTTOM, FIRST ROW: ORIGINAL SV SYSTEM, WITH 254 SV
ON AVERAGE; FOLLOWING ROWS: SYSTEMS WITH VARYING AVERAGE NUMBERS OF RS VECTORS. IN THE SYSTEM RSS-n, EQUAL FRACTIONS OF

SVSs WERE REMOVED FROM EACH RECOGNIZER SUCH THAT ON AVERAGE, n RS VECTORS WERE LEFT.

digit 0 1 2 3 4 5 6 7 8 9 ave.
#SVs 219 | 91 | 316 | 309 | 288 | 340 | 213 | 206 | 304 | 250 254

| [0] 1] 2] 3] 4] 5] 6] 7] 8] 9] l0das|
SV-254 16 13 30 17 32 22 11 12 26 17 4.4%
RSS-10 154 | 262 | 205 | 162 | 163 | 161 | 169 | 96 | 146 | 177 59.5%
RSS-15 171 | 107 | 200 | 130 | 153 | 158 | 173 | 93 | 143 | 177 47.7%
RSS20 149 | 82| 171 | 111 | 153 | 160 | 147 | 116 | 161 | 177 44.0%
RSS-25 120 82 | 143 | 141 | 188 | 161 | 143 96 | 152 | 177 45.0%
RSS-50 47 18 70 52 | 192 95 54 | 38 97 | 157 17.6%
RSS-75 23 15| 36 30| 65| 47| 21 29 56 | 41 7.0%
RSS-100 19 15| 42 22 40 | 29 14 18 37| 27 5.5%
RSS-125 15 13 29 26 | 32 20 15 14| 32 19 4.5%
RSS-150 18 12 28 21 35 32 9 15 23 14 4.5%
RSS-175 17 13 28 22 31 25 12 15 23 18 4.5%
RSS-200 14 13 27 | 25 27 | 26 11 13 26 | 21 4.5%
RSS-225 15 13 26 23 30 27 11 14 25 20 4.2%
RSS-250 15 13 27 24 32 28 11 14 25 18 4.3%

TABLE IIT

NUMBERS OF TEST ERRORS FOR EACH BINARY RECOGNIZER, AND TEST ERROR RATES FOR 10-CLASS CLASSIFICATION USING THE RS METHOD OF
SECTION V-C.2 (¢; = a/|a;|). FIRST ROW: ORIGINAL SV SYSTEM, WITH 254 SVS ON AVERAGE; FOLLOWING ROWS: SYSTEMS WITH VARYING
AVERAGE NUMBERS OF RS VECTORS. IN THE SYSTEM RSS2-m, A WAS ADJUSTED SUCH THAT THE AVERAGE NUMBER OF RS VECTORS LEFT WAS

n (THE CONSTANT A, GIVEN IN PARENTHESES, WAS CHOSEN SUCH THAT THE NUMBERS 1 WERE COMPARABLE TO TABLE II). THE RESULTS CAN
BE FURTHER IMPROVED USING THE METHOD OF SECTION V-C.3 (¢; = a/max; |a!|). FOR INSTANCE, USING ABOUT 570 EXPANSION VECTORS

(WHICH IS THE SAME NUMBER THAT WE GET WHEN TAKING THE UNION OF ALL SVS IN THE RSS2 — 74 SYSTEM), THIS LED TO AN IMPROVED
ERROR RATE OF 5.5%.

digit 0 1 2 3 4 5 6 7 8 9 || 10-class
SV-254 16 | 13| 30| 17| 32| 22| 11| 12| 26| 17 4.4%
RSS,-30 (4.00) || 319 | 25 | 198 | 169 | 161 | 152 | 116 | 147 | 95 | 118 51.5%
RSS,—50 (3.34) || 225 | 24 | 171 | 146 | 149 | 124 | 94 | 147 | 100 | 101 28.5%
RSS,—74 (2.55) || 113 | 25 | 100 | 100 | 120 | 95 | 40 | 147 | 83 | 50 10.8%
RSS,-101 (1.73) 38 21| 46| 64| 81| 54| 23| 143 | 49| 37 5.9%
RSS,-126 (1.06) 21|19 | 35| 34| 47| 27| 15| 72| 41| 23 5.3%
RSS,-151 (0.62) 19120 30| 24| 31| 30| 10| 27| 33| 18 4.5%
RSS,;-174 (0.33) 16 | 15| 24| 26| 31| 26| 10| 19| 30| 19 4.3%
RSS».—200 (0.13) 17|15 25| 27| 34| 27| 11| 14| 26| 22 4.3%
RSS,—224 (0.04) 16 15| 26| 24| 32| 27| 11| 14| 28| 19 4.3%
RSS,-234 (0.02) 16 (14| 26| 24| 32| 28| 11| 14| 26| 19 4.3%

For the method of section V-C, RSS-n means, that for
each binary classifier, we removed support vectors until on
average n were left; for the method of section V-D, that
we approximated each decision function using n vectors
(i.e. n steps using the described iteration procedure). For
large numbers n, i.e. small reductions of the decision func-
tions complexity, the accuracy of the original system can
be approached closely with both techniques. In Tables II
and ITI, we see that removal of about 40% of the support
vectors leaves the error practically unchanged. Reducing

the numbers of support vectors further can
performance losses.

lead to large

The reduced set construction method, which is compu-
tationally and conceptually more complex, performs better
in this situation as it is able to utilize vectors different from
the original support patterns in the expansion. To get a
speedup by a factor of 10, we have to use a system with
25 RS vectors (RSC-25). For the method in table IV, the
classification accuracy only drops moderately from 4.4% to
5.1%, which is still competitive with convolutional neural

16

IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

TABLE IV
NUMBER OF TEST ERRORS FOR EACH BINARY RECOGNIZER, AND TEST ERROR RATES FOR 10-CLASS CLASSIFICATION USING THE RS
CONSTRUCTION METHOD OF SECTION V-D. FIRST ROW: ORIGINAL SV SYSTEM, WITH 254 SVS ON AVERAGE (SEE ALSO TABLES II AND III);
FOLLOWING ROWS: SYSTEMS WITH VARYING NUMBERS OF RS VECTORS (RSC-n STANDS FOR 7n VECTORS CONSTRUCTED) PER BINARY

RECOGNIZER, COMPUTED BY ITERATING ONE-TERM APPROXIMATIONS, SEPARATELY FOR EACH RECOGNIZER. LAST TWO ROWS: WITH A
SUBSEQUENT GLOBAL GRADIENT DESCENT, THE RESULTS CAN BE FURTHER IMPROVED (SEE TEXT).

| digit | 0] 1] 2] 3] 4] 5] 6] 7] 8] 9] 10-class]

Sv254] 16 13 30 [17 32 22 11] 12] 26 [17] 4.4%
RSC-10 | 26 | 13| 45| 49| 35| 54| 22| 24| 39| 24 71%
RSC-15| 17| 16 | 43| 50 | 49| 37| 14| 18| 45| 35| 6.4%
RSC-20 | 27| 11| 38| 30| 35| 43| 12| 16| 30| 25| 5.6%
RSC-25 | 21| 12| 38| 32| 31| 22| 12| 18| 33| 28| 5.1%
RSC-50 | 18 | 10| 33| 28| 32| 23| 12| 15| 35| 27| 5.0%
RSC-100 | 14| 13| 26| 22| 30| 26| 11| 14| 28| 23| 4.8%
RSC-150 | 13| 14| 28| 32| 27| 24| 12| 14| 29| 26 | 4.7%
RSC-200 | 14| 13| 28| 28| 29| 24| 10| 15| 26| 26 | 4.9%
RSC-250 | 12| 13| 26| 26| 32| 25| 11| 14| 26| 24 | 4.6%
RSCo-25 | 14| 14| 31| 22| 30| 23 11| 14| 26| 17| 4.7%
RSCgld-25 | 16 | 13| 32| 19| 31| 26| 11| 15| 25| 18 | 5.0%

HENEEANREENNNEEERNAE
GLUELCTLT Ll [/ TR LT 8] ¢ [s]eaf] &
=2 ol 2 [PLl6 O Flo lalz 2] 0 4]
S 2SEARBE Ll Asal A2k
L [[Ale] d=l L 1l g [B
MEANENEHEMEMANEEAEE SN
MEOEAMZANAMIRNAN P ERGES
A 17 el 1218 A7 1] P
E18l7 o [VIE1A 1 Rl 2] B IR [E][] 2 &)
1l 27172 s lal g T L el

Fig. 11.
recognizer of digit 0,. ..,
problem.

networks on that data base [36]. Moreover, we can further
improve this result by adding the second phase of the tra-
ditional RS algorithm, where a global gradient descent is
performed in the space of all (z;, ;) [24], [25] (computa-
tionally more expensive than the first phase by about two
orders of magnitude): this led to an error rate of 4.7%. For
the considered kernel, this is almost identical to the tra-
ditional RS method, which yielded 5.0% (for polynomial
kernels, the latter method led to 4.3% at the same speedup

Complete display of reduced set vectors constructed by the iterative approach of section V-D for n = 20, with coefficients (Top:
bottom: digit 9). Note that positive coefficients (roughly) correspond to positive examples in the classification

[24]). Note that the traditional RS method restarts the
second phase many times to make sure that the global min-
imum of the cost function is actually found, which makes
it plausible that the final results are similar.

Finally, figure 11 shows the RS-20 vectors of the 10 bi-
nary classifiers. As an aside, note that unlike the approach
of [24], our algorithm produces images which do look mean-
ingful (i.e. digit-like).

SCHOLKOPF ET AL.: INPUT SPACE VS. FEATURE SPACE IN KERNEL-BASED METHODS 17

e
—t

Kernel PCA /
Linear PCA /

0.2~

0.15-

0.1

|
1 2 4 8 16 32 64 128 256 512 1024

Fig. 10. Mean squared error of denoised images vs. # of features
used, for kernel PCA and linear PCA. Kernel PCA exploits non-
linearities and has the potential to utilize more features to code
structure rather than noise. Therefore, it outperforms linear
PCA denoising if a sufficiently large number of features is used.

VII. DISCUSSION

Algorithms utilizing Mercer kernels construct their solu-
tions as expansions ¥ = Zle a;®(x;) in terms of mapped
input patterns. However, the map @ is often unknown, or
too complex to provide any intuition about the solution ¥.
This has motivated our efforts to reduce the complexity of
the expansion, summarized in this paper.

As an extreme case, we have first studied how to approx-
imate ¥ by a single ®(z) (i.e. how to find an approximate
pre-image of ¥), and proposed a fixed-point iteration algo-
rithm to perform the task.

In situations where no good approximate [pre—image ex-
ists, one can still reduce the complexity of > ;_; a; ®(x;) by
expressing it as a sparser expansion Y ;- 5;®(z;) (m < £).
We have proposed methods for computing the optimal co-
efficients §; and for coming up with suitable patterns z;
either by selecting among the x; or by iterating the above
pre-image algorithm.

Both types of approximations are of theoretical interest
for feature space methods; however, they also lead to prac-
tical applications. In this paper, we have considered two
such applications, namely, the problem of statistical de-
noising via kernel PCA reconstruction, and the problem of
speeding up SV decision rules. We address them in turn.

Kernel PCA de-noising. In de-noising experiments on
real-world data, we obtained results significantly better
than using linear PCA. Our interpretation of this finding
is as follows. Linear PCA can extract at most N compo-
nents, where N is the dimensionality of the data. Being a
basis transform, all N components together fully describe
the data. If the data are noisy, this implies that a certain
fraction of the components will be devoted to the extrac-
tion of noise. Kernel PCA, on the other hand, allows the
extraction of up to £ features, where £ is the number of
training examples. Accordingly, kernel PCA can provide a

larger number of features carrying information about the
structure in the data (in our experiments, we had £ > N).
In addition, if the structure to be extracted is nonlinear,
then linear PCA must necessarily fail, as we have illus-
trated with toy examples.

Open questions and problems include the choice of a suit-
able kernel for a given noise reduction problem, possibly in
conjunction with the regularization properties of the kernel
(e.g. [6]), the application of the approach to compression,
and the comparison (and connection) to alternative non-
linear denoising methods (cf. [37]).

Speeding up SV machines. We have shown experimen-
tally that our approximation algorithms can be used to
speed up SV machines significantly. Note that in the Gaus-
sian RBF case, the approximation can never be as good as
the original, since the kernel matrix K;; = (k(x;,%;)) has
full rank [29].

As in [25], good RS construction results were obtained
even though the objective function did not decrease to zero
(in our RS construction experiments, it was reduced by
a factor of 2 to 20 in the first phase, depending on how
many RS vectors were computed; the global gradient de-
scent yielded another factor 2 — 3). We conjecture that
this is due to the following: in classification, we are not in-
terested in ||¥ — ¥'[|, but in [|sgn(2£i’“‘1 a;k(x,x;) +b) —
sgn(Z;V:z1 Bik(x,2;) + b)|dP(x), where P is the underly-
ing probability distribution of the patterns (cf. [38]). This
is consistent with the fact that the performance of a RS
SV classifier can be improved by re-computing an optimal
threshold b.

The previous RS construction method [24], [25] can
be used for any SV kernel; the new one is limited to
k(x,y) = k(||x — y||?). However, it is fast, and it led to
interpretable RS images and an interesting connection be-
tween clustering and approximation in feature spaces. It
appears intriguing to pursue the question whether this con-
nection could be exploited to form more general types of
approximations of SV and kernel PCA expansions by mak-
ing use of Gaussians of variable widths.

The RS selection methods, on the other hand, are appli-
cable for any SV kernel. In our experiments, they led to
worse reduction rates than RS construction; however, they
are simpler and computationally faster. Among the first
two RS selection methods, the one described in section V-
C.1 was slightly superior at higher reductions; however, the
one given in section V-C.2 is computationally cheaper since
unlike the former, it does not remove the SVs one at a time
and therefore it need not be iterated. Moreover, we found
that it can be improved by simultaneously approximating
several vectors, corresponding to the 10 binary recognizers
in a digit recognition task.

The proposed methods are applicable to any feature
space algorithm based on Mercer kernels. For instance,
we could also speed up SV regression machines or kernel
PCA feature extractors. Moreover, we expect further pos-
sibilities to open up in the future, as Mercer kernel methods
are being applied in an increasing number of learning and
signal processing problems.

18

(1]

(20]

(21]

REFERENCES

S. Saitoh, Theory of Reproducing Kernels and its Applications,
Longman Scientific & Technical, Harlow, England, 1988.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training al-
gorithm for optimal margin classifiers,” in Proceedings of the
5th Annual ACM Workshop on Computational Learning The-
ory, D. Haussler, Ed., Pittsburgh, PA, July 1992, pp. 144-152,
ACM Press.

M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical
foundations of the potential function method in pattern recog-
nition learning.,” Automation and Remote Control, vol. 25, pp.
821 — 837, 1964.

V. Vapnik, The Nature of Statistical Learning Theory, Springer
Verlag, New York, 1995.

B. Schoélkopf, A. Smola, and K.-R. Miiller, “Nonlinear compo-
nent analysis as a kernel eigenvalue problem,” Neural Compu-
tation, vol. 10, pp. 1299 — 1319, 1998.

R. C. Williamson, A. J. Smola, and B. Scholkopf, “Generaliza-
tion performance of regularization networks and support vector
machines via entropy numbers of compact operators,” Tech.
Rep. 19, NeuroCOLT, http://www.neurocolt.com, 1998.

N. Aronszajn, “Theory of reproducing kernels,” Transactions
of the American Mathematical Society, vol. 68, pp. 337 — 404,
1950.

G. Wahba, Spline Models for Observational Data, vol. 59 of
CBMS-NSF' Regional Conference Series in Applied Mathemat-
ics, STAM, Philadelphia, 1990.

B. Scholkopf, Support Vector Learning, R. Oldenbourg Verlag,
Miinchen, 1997, Doktorarbeit, TU Berlin.

F. Girosi, “An equivalence between sparse approximation and
support vector machines,” Neural Computation, vol. 10, no. 6,
pp. 1455-1480, 1998.

T. J. Hastie and R. J. Tibshirani, Generalized Additive Mod-
els, vol. 43 of Monographs on Statistics and Applied Probability,
Chapman & Hall, London, 1990.

D. Mattera, “personal communication,” 1998.

S. Mika, “Nichtlineare Signalverarbeitung in Feature-Raumen,”
Diplomarbeit, Technische Universitidt Berlin, 1998.

K. Tsuda, “Support vector classifier with asymmetric kernel
function,” in Proceedings ESANN, M. Verleysen, Ed., Brussels,
1999, pp. 183 — 188, D Facto.

B. Scholkopf, P. Simard, A. Smola, and V. Vapnik, “Prior knowl-
edge in support vector kernels,” in Advances in Neural Informa-
tion Processing Systems 10, M. Jordan, M. Kearns, and S. Solla,
Eds., Cambridge, MA, 1998, pp. 640 — 646, MIT Press.

A. Smola and B. Scholkopf, “From regularization operators to
support vector kernels,” in Adwvances in Neural Information
Processing Systems 10, M. Jordan, M. Kearns, and S. Solla,
Eds., Cambridge, MA, 1998, pp. 343 — 349, MIT Press.

V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
B. Carl and I. Stephani, Entropy, compactness, and the approz-
imation of operators, Cambridge University Press, Cambridge,
UK, 1990.

R. Williamson, A. Smola, and B. Schélkopf, “Entropy numbers,
operators and support vector kernels,” in Advances in Kernel
Methods — Support Vector Learning, B. Scholkopf, C. Burges,
and A. Smola, Eds., pp. 127 — 144. MIT Press, Cambridge, MA,
1999.

B. Scholkopf, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Kernel-dependent support vector error bounds,”
in Proceedings ICANN, 1999, to appear.

C. J. C. Burges, “Geometry and invariance in kernel based meth-
ods,” in Advances in Kernel Methods — Support Vector Learn-
ing, B. Schoélkopf, C. Burges, and A. Smola, Eds., Cambridge,
MA, 1999, pp. 89 — 116, MIT Press.

C. J. C. Burges, “A tutorial on support vector machines for
pattern recognition,” Data Mining and Knowledge Discovery,
vol. 2, no. 2, pp. 1-47, 1998.

A. Smola and B. Schélkopf, “A tutorial on support vector re-
gression,” http://svm.first.gmd.de, 1998.

C. J. C. Burges, “Simplified support vector decision rules,” in
Proceedings, 13th Intl. Conf. on Machine Learning, L. Saitta,
Ed., San Mateo, CA, 1996, pp. 71-77, Morgan Kaufmann.

C. J. C. Burges and B. Scholkopf, “Improving the accuracy
and speed of support vector learning machines,” in Advances in
Neural Information Processing Systems 9, M. Mozer, M. Jordan,
and T. Petsche, Eds., Cambridge, MA, 1997, pp. 375-381, MIT
Press.

IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999 (IN PRESS)

[26] B. Schélkopf, P. Knirsch, A. Smola, and C. Burges, “Fast ap-
proximation of support vector kernel expansions, and an in-
terpretation of clustering as approximation in feature spaces,”
in Mustererkennung 1998 — 20. DAGM-Symposium, P. Levi,
M. Schanz, R.-J. Ahlers, and F. May, Eds., Berlin, 1998, Infor-
matik aktuell, pp. 124 — 132, Springer.

[27] T. FrieB and R. F. Harrison, “Linear programming support vec-
tor machines for pattern classification and regression estimation;
and the SR algorithm: improving speed and tightness of VC
bounds in SV algorithms,” Research Report 706, University of
Sheffield, Dept. Automatic Control and Systems Engineering,
1998.

[28] E. Osuna and F. Girosi, “Reducing run-time complexity in sup-
port vector machines,” in Advances in Kernel Methods — Sup-
port Vector Learning, B. Scholkopf, C. Burges, and A. Smola,
Eds., pp. 271 — 283. MIT Press, Cambridge, MA, 1999.

[29] C. A.Micchelli, “Interpolation of scattered data: distance matri-
ces and conditionally positive definite functions,” Constructive
Approzimation, vol. 2, pp. 11-22, 1986.

[30] B. Scholkopf, S. Mika, A. Smola, G. Rétsch, and K.-R.
Miiller, “Kernel PCA pattern reconstruction wvia approximate
pre-images,” in Proceedings of the 8th International Confer-
ence on Artificial Neural Networks, L. Niklasson, M. Bodén,
and T. Ziemke, Eds., Berlin, 1998, Perspectives in Neural Com-
puting, pp. 147 — 152, Springer Verlag.

[31] S. Mika, B. Schdélkopf, A. Smola, K.-R. Miiller, M. Scholz, and
G. Réatsch, “Kernel PCA and de-noising in feature spaces,” in
Advances in Neural Information Processing Systems 11, 1999.

[32] B. Scholkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio,
and V. Vapnik, “Comparing support vector machines with Gaus-
sian kernels to radial basis function classifiers,” IEFEE Trans.
Sign. Processing, vol. 45, pp. 2758 — 2765, 1997.

[33] J. M. Buhmann, “Data clustering and learning,” in The Hand-
book of Brain Theory and Neural Networks, M. A. Arbib, Ed.,
pp.- 278-281. MIT Press, 1995.

[34] T. Hastie and W. Stuetzle, “Principal curves,” JASA, vol. 84,
pp. 502 - 516, 1989.

[35] K.I. Diamantaras and S. Y. Kung, Principal Component Neural
Networks, Wiley, New York, 1996.

[36] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. J. Jackel, “Backpropagation applied to
handwritten zip code recognition,” Neural Computation, vol. 1,
pp- 541 — 551, 1989.

[37] S. Mallat and Z. Zhang, “Matching Pursuit in a time-frequency
dictionary,” IEEFE Transactions on Signal Processing, vol. 41,
pp. 3397-3415, 1993.

[38] K. L. Blackmore, R. C. Williamson, and I. M. Y. Mareels, “Deci-
sion region approximation by polynomials or neural networks,”
IEEE Transactions in Information Theory, vol. 43, pp. 903 —
907, 1997.

Bernhard Schoélkopf received an M.Sc. in
mathematics and the Lionel Cooper Memo-
rial Prize from the University of London in
1992, followed in 1994 by the Diplom in
physics from the Eberhard-Karls-Universitit,
Tibingen (Germany), with a thesis written at
the Max-Planck-Institute for biological cyber-
netics. Three years later, he obtained a Ph.D.
in computer science from the Technical Uni-
versity Berlin. His thesis on Support Vector
Learning won the prize of the German Associ-
ation for Computer Science (GI) 1997. He has worked at AT&T Bell
Labs (with V. Vapnik) and at the Australian National University.
At present, he is a tenured researcher at GMD FIRST, Berlin. His
scientific interests include machine learning and perception.

SCHOLKOPF ET AL.:

Sebastian Mika is a doctoral student at
GMD FIRST, Berlin. He received the Diplom
in computer science from the Technical Uni-
versity of Berlin in 1998. His scientific inter-
ests are in the fields of Machine Learning and
Kernel methods.

Chris Burges is a Distinguished Member
of Technical Staff at Bell Laboratories, Lu-
cent Technologies. Educated as a physicist,
he joined AT&T in 1986 and worked on net-
work performance and routing alrogithms. He
moved to applied neural network research in
1990 and has worked on handwriting and ma-
chine print recognition and speaker identifica-
tion. For the last several years he has concen-
trated on the theory and application of SVMs.

Philipp Knirsch is a computer science stu-
dent at the University of Tiibingen, Germany.
He has worked for various companies in the IT
area during the last 10 years, including but not
limited to AT&T Bell Labs, Hewlett-Packard,
21TORR medienDesign GmbH, Festo AG and
the Max-Planck-Institute. He has worked in
several areas of computer science, such as com-
puter graphics, support vector learning ma-
chines, network programming, system admin-

- istration, code optimization, databases, com-
pression technology, wavelet analysis and others. His current work
and interest are in the fields of high performance clustered network
servers, real time presentation of visual stimuli on low end Linux
workstations, and optimizations and improvements of reduced set
vector methods for support vector machines.

Klaus-Robert Miiller received the Diplom
degree in mathematical physics 1989 and the
Ph.D. in theoretical computer science in 1992,
both from University of Karlsruhe, Germany.
From 1992 to 1994 he was a Postdoc at the
Research Institute for Computer Architecture
and Software Technology of the German Na-
tional Research Center for Information Tech-
nology (GMD FIRST) in Berlin. From 1994 to
/& “s 1995 he was a European Community STP Re-

g acl search Fellow at University of Tokyo in Prof.

Amari’s Lab. Since 1995 he has a tenure position and is department
head of the intelligent data analysis (IDA) group at GMD FIRST
in Berlin. The IDA group has twice won the price for the best sci-
entific and technical project within GMD (1996 and 1998). He is
currently lecturing at Humboldt University and Technical University
Berlin. He has worked on statistical physics and statistical learning
theory of neural networks and time-series analysis. His present in-
terests are expanded to support vector learning machines, boosting,
non-stationary blind separation techniques and recently also medical
data analysis (MEG, EEG).

INPUT SPACE VS. FEATURE SPACE IN KERNEL-BASED METHODS 19

Gunnar Ré&tsch is a doctoral student at
GMD FIRST, Berlin. He received the Diplom
in computer science from the University of
Potsdam in 1998, along with the prize for the
best student of the faculty of Natural Sciences.
His scientific interests are in the fields of Boost-
ing and Kernel methods.

Alexander Smola is a Postdoc at GMD
FIRST, Berlin. He received the Diplom in
physics from the Technical University of Mu-
nich in 1996. Two years later, he earned a
Ph.D. in computer science from the Technical
University of Berlin, with a thesis on Learning
with Kernels. During his studies, which were
. supported by the Stiftung Maximilaneum, he
spent a year at AT&T Bell Labs and at the
Collegio Ghislieri in Pavia (Italy). In addition,
he has spent two spells at the Australian Na-
tional University. His scientific goal is to make generalization error
bounds of statistical learning theory applicable in practice.

