
Kernel Fisher Discriminants

i

Kernel Fisher Discriminants

vorgelegt von
Dipl. Inform. Sebastian Mika
aus Berlin

Von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften – Dr. rer. nat. –
genehmigte Dissertation

Promotionsaussschuß:

• Vorsitzender: Prof. Dr. Dieter Filbert

• Berichter: Prof. Dr. Stefan Jähnichen

• Berichter: Prof. Dr. Klaus–Robert Müller

• Berichter: Prof. Dr. Bernhard Schölkopf

Tag der wissenschaftlichen Aussprache: 19. Dezember 2002

Berlin
D83

iii

Abstract

In this thesis we consider statistical learning problems and machines. A statistical
learning machine tries to infer rules from a given set of examples such that it is
able to make correct predictions on unseen examples. These predictions can for
example be a classification or a regression. We consider the class of kernel based
learning techniques. The main contributions of this work can be summarized as
follows.

Building upon the theory of reproducing kernels we propose a number of new
learning algorithms based on the maximization of a Rayleigh coefficient in a kernel
feature space. We exemplify this for oriented (kernel) PCA, and especially for
Fisher’s discriminant, yielding kernel Fisher discriminants (KFD).

Furthermore, we show that KFD is intimately related to quadratic and linear opti-
mization. Building upon this connection we propose several ways to deal with the
optimization problems arising in kernel based methods and especially for KFD.

This mathematical programming formulation is the starting point to derive several
important and interesting variants of KFD, namely robust KFD, sparse KFD and
linear KFD. Several algorithms to solve the resulting optimization problems are
discussed. As a last consequence of the mathematical programming formulation
we are able to relate KFD to other techniques like support vector machines, rel-
evance vector machines and Arc-GV. Through a structural comparison of the
underlying optimization problems we illustrate that many modern learning tech-
niques, including KFD, are highly similar.

In a separate chapter we present first results dealing with learning guarantees for
eigenvalues and eigenvectors estimated from covariance matrices. We show that
under some mild assumptions empirical eigenvalues are with high probability close
to the expected eigenvalues when training on a specific, finite sample size. For
eigenvectors we show that also with high probability an empirical eigenvector will
be close to an eigenvector of the underlying distribution.

In a large collection of experiments we demonstrate that KFD and its variants
proposed here are capable of producing state of the art results. We compare KFD
to techniques like AdaBoost and support vector machines, carefully discussing its
advantages and also its difficulties.

Keywords: Learning, Classification, Kernel Methods, Fisher’s Discriminant, Reg-
ularization, Eigenproblems, Rayleigh coefficients, Mathematical Programming

v

Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit statistischer Lerntheorie und statistischen
Lernmaschinen. Eine statistische Lernmaschine versucht aus gegebenen Beispie-
len eine Regel zu inferieren mit der man in der Lage ist auf ungesehenen Beispie-
len korrekte Vorhersagen zu machen. Diese Vorhersagen sind reellwertig (Re-
gression) oder diskret (Klassifikation). Wir betrachten insbesondere so genannte
kernbasierte Lernverfahren. Die Hauptbeiträge dieser Arbeit lassen sich wie folgt
zusammenfassen:

Aufbauend auf der Theorie der reproduzierenden Kerne schlagen wir neue Lern-
maschinen vor, die auf der Maximierung eines Rayleigh Koeffizienten in einem
Kernmerkmalsraum basieren. Wir machen dies beispielhaft für orientierte (Kern)
Hauptkomponentenanalyse und insbesondere für Fishers Diskriminanten, was in
Kern Fisher Diskriminanten (KFD) resultiert.

Dann wird gezeigt, daß KFD eng mit quadratischer und linearer Optimierung ver-
bunden ist. Darauf aufbauend werden verschiedene Möglichkeiten diskutiert mit
den Optimierungsproblemen umzugehen die bei kernbasierten Methoden und ins-
besondere KFD entstehen.

Die Formulierung als mathematisches Optimierungsproblem ist der Ausgangspunkt
um verschiedene wichtige und interessante Varianten von KFD herzuleiten: Ro-
buste KFD, sparse KFD und lineare KFD. Die mathematische Optimierung ermög-
licht es darüber hinaus KFD mit anderen Techniken wie Support Vektor Maschinen,
der Relevanzvektormethode und Boosting in Verbindung zu setzen. Durch einen
strukturellen Vergleich der zugrundeliegenden Optimierungsprobleme wird illustri-
ert, daß viele moderne Lernmethoden, auch KFD, sich sehr ähneln.

Außerdem präsentieren wir erste Ergebnisse über Lerngarantien für Eigenwerte
und Eigenvektoren die aus Kovarianzmatrizen geschätzt werden. Wir zeigen, daß
unter schwachen Annahmen, die empirischen Eigenwerte mit hoher Wahrschein-
lichkeit nahe an den zu erwartenden Eigenwerten liegen. Für Eigenvektoren zeigen
wir, daß mit hoher Wahrscheinlichkeit ein empirischer Eigenvektor nahe zu einem
Eigenvektor der zugrundeliegenden Verteilung sein wird.

In einer großen Sammlung von Experimenten wird demonstriert, daß KFD und
seine Varianten sehr gut in der Lage sind mit dem technischen Standard zu konkur-
rieren. Wir vergleichen KFD mit Boosting und Support Vektor Maschinen und
diskutieren sorgfältig die Vor- und Nachteile der vorgeschlagenen Methoden.

Keywords: Lernen, Klassifikation, Kerne, Fishers Diskriminanten, Regularisierung,
Eigenprobleme, Rayleigh Koeffizienten, Mathematische Programmierung

vii

Acknowledgments

Writing this thesis would not have been possible with invaluable help and sup-
port from others, let it be financial, intellectual or personal. First of all I would
like to thank my supervisors Prof. Dr. Klaus–Robert Müller, Prof. Dr. Bernhard
Schölkopf, and Prof. Dr. Stefan Jähnichen. All gave their best in providing me
with a stimulating and relaxed environment. Many ideas in this thesis are based
on discussions I had with Klaus and Bernhard. However, their support was much
more than just scientific! Similarly, I would like to thank Dr. Gunnar Rätsch with
whom I shared the office for almost four years. Much of his energy, motivation
and of the long discussions we had can be found in this work. I guess without him
my thesis would not be half of what it is now.

Most of the work in this thesis has been done at Klaus-Robert’s group at the
Fraunhofer FIRST institute in Berlin. I deeply appreciate the support of all current
and former members of this group for creating a pleasant atmosphere, including
Benjamin Blankertz, Guido Dornhege, Stefan Harmeling, Motoaki Kawanabe, Jens
Kohlmorgen, Roman Krepki, Julian Laub, Pavel Laskov, Frank Meinecke, Alex
Smola, David Tax, Koji Tsuda, Ricardo Vigario, Thorsten Zander, and Andreas
Ziehe. Thanks to you all for bearing me all the time! Special thanks also to
Steven Lemm and Christin Schäfer for sharing the office, their thoughts and their
chocolate with me and to Soeren Sonnenburg: keep it going!

Moreover I would like to thank Fraunhofer FIRST for supporting my studies by
providing numerous hours of computing time and a like. Thanks also to Gabi
Ambach at University of Technology for fixing up the legal stuff and her patience
with me and the forms.

Other parts of this thesis were done during research visits at AT&T (Red Bank,
New Jersey), Microsoft Research (Cambridge, UK), and the Australian National
University (Canberra, Australia). Thanks for making these stays possible to Bern-
hard Schölkopf (Microsoft) and Alex Smola and Bob Williamson (ANU). To ev-
erybody I met there thanks for fruitful and encouraging discussions, thanks for
sharing your knowledge and ideas with me.

There are some other people in the research community which helped to make it a
pleasure being a part of it. Thanks to all the french guys: Oilvier Bousquet, Olivier
Chapelle (hope you get well soon) and Andre Elisseeff. Special thanks to Jason
Weston for showing me how much fun science can be and that it is important to
take not everything too serious.

I gratefully acknowledge financial support from DFG grants JA 379/71, JA 379/91
and JA 379/92, from the EC NeuroCOLT project, and from the DAAD.

viii

Last but not least there is number of people which have nothing to do with my
research. But even then, they provided an evenly important share in making it
possible. I would like to thank my parents for their love and care. My brother
Christian, his girl-friend Katy and my sweet little Lilith helped me in giving a
meaning to everything. Life would have been different without my flat mates
Ingmar and Matthias - probably cleaner but very boring! Love to those of which I
have the feeling you have been there all my life and will never be far (even though I
know that this is an illusion): Lisa, Rinetta, Martin & Laura, Linda, Philipp, Malte
& Nina, Steffi & Kristin, Justin, Christiane, and all the others I forgot - I did not
have much time in making this up :-)

Sebastian Mika, October 2002.

ix

Contents

1 Introduction – Machines that Learn 1
1.1 Learning from Examples - Intuitively 2
1.2 Notation . 5

2 Statistical Learning Theory 7
2.1 Learning from Examples . 7
2.2 Learning Theory in Practice: SVM 14
2.3 Kernel Functions . 21
2.4 Summary . 29

3 Kernel Fisher Discriminants 31
3.1 Linear Discriminants . 31
3.2 Fisher’s Discriminant . 32
3.3 Other Discriminant Techniques 37
3.4 Introducing Kernels . 38
3.5 Algorithms . 52
3.6 Comparison to other Techniques 62
3.7 Relation to Other Work . 67
3.8 Summary . 67

4 Bounds 69
4.1 Notation . 72
4.2 Stability of Eigenvalues . 73
4.3 Bounding the Change in Eigenvectors 79
4.4 Leave-One-Out Error Calculation for KFD 88
4.5 Summary . 90

5 Applications 93
5.1 The Output Distribution . 96
5.2 Evaluation of Different Algorithms 97
5.3 Benchmark Performance . 102
5.4 Summary . 106

6 Conclusion 109

x CONTENTS

A Mathematical Programming 113
A.1 Linear and Quadratic Optimization 113
A.2 Interior Point Optimization . 116

B Proofs 129
B.1 Proof of Lemma 4.2 . 129
B.2 Proof of Lemma 4.9 . 130
B.3 Proof of Lemma 4.10 . 131

References 133

1

Chapter 1

Introduction – Machines that
Learn

Schwur : Müde vom Durchwandern öder
Letternwüsten, voll leerer Hirngeburten,
in anmaßendsten Wortnebeln; überdrüs-
sig ästhetischer Süßler wie grammatis-
cher Wässrer; entschloß ich mich: Alles,
was je schrieb, in Liebe und Haß, als im-
merfort mitlebend zu behandeln! - - -
20.9.1958/Darmstadt i. d. Barberei

Arno Schmidt

In this introduction we will try to motivate the issues addressed in
this work. The aim of this first chapter is to give the reader not
familiar with the field a glimpse of the basic problems and ideas.
However, this introduction is neither complete nor does it even
approximately give a balanced overview of the complete field.

THIS thesis is about machine learning or, more generally, artificial intelligence.
Machine learning, as the name suggests, tries to devise algorithms that solve

complex tasks by learning a solution rather than by engineering it. Often the
latter is very difficult for practical problems. A very recent but typical example is
the analysis of the human genome. In principle, at least this is widely believed,
there exists a fixed model how the genome codes for information and how this
information is translated into something useful. It is known that only parts of the
DNA are used, the genes. But it is not fully known yet where the genes are and
how to (exactly) locate them. There exist some biological models but they are very
complex and only partially explain what is going on. Machine learning approaches
this type of problem differently. Instead of trying to find a model which explains
the underlying processes correctly and can then be used to deduce an answer, one
tries to find a rule which is able for each piece of DNA to answer the question:

2 1 INTRODUCTION – MACHINES THAT LEARN

Is this a gene or not? More generally, machine learning considers the problem to
model relationships between objects. The art of machine learning is, however, to
build machines that are able to do this without needing a lot of expert knowledge
built-in.

Machine learning provides a framework to solve a large number of different
problems, rather than trying to devise an algorithm that is able to solve one specific
problem. Hence, the complexity of the engineering problem is shifted from solving
a difficult, but specific problem, towards solving a still difficult but more general
problem: How to make a machine learn? The advantage is clear: Once we solved
the learning problem we can solve a host of other problems using the technology
we developed.

1.1 Learning from Examples - Intuitively

There are many different areas in artificial intelligence and machine learning is
one sub-area. The paradigm we follow here is called Learning from Examples.
The idea is that often a few examples of relations between objects can suffice to
figure out a general rule for relating them. The learning process is exactly this
inductive inference, from the incomplete information provided by the example to
the prediction rule describing certain aspects of the phenomenon. These rules
are often conveniently modeled by functions which map input objects to output
objects. Depending on the nature of especially the output objects we speak for
example about classification or regression. The classification task is to assign
each input object to one of finitely many classes. In regression we assign one or
more usually continuous valued outputs to each input object. In both cases, the
information provided for learning consists of finitely many example-label pairs.

Whilst it is somewhat disappointing that much in machine learning is largely
concerned with function estimation, this way of approaching the learning problem
bears some fundamental advantages. A rigorous mathematical formulation allows
to use statistics and other tools to investigate under which conditions learning is
possible. The field of statistical learning theory (e.g. Vapnik, 1998) investigates
what the most important properties of learning algorithms and functions are and
how they relate to the ability to successfully solve an estimation problem. This
makes it possible to derive learning techniques that optimize these quantities and
achieve improved results. Moreover, the theory is capable of giving guarantees
for the number of mistakes that a certain method will commit. An important
difference between modern machine learning research and the early AI research is
that these results hold true for practical cases and not only in some asymptotical
sense.

In reducing the learning problem to that of estimating functional dependencies,
we are left with a complex task. Besides theoretical limits, there are many practical
ramifications making learning difficult, where one is that we are only provided with
a limited amount of data to learn from (the training data). Hence the problem
becomes to estimate the true dependencies from this limited information. Often
it is not possible to generate more data, either because gathering each example is
very expensive (e.g. in DNA analysis) or because it is just impossible (monitoring
malfunctions of a machine - if it does not malfunction we can not get our hands

1.1 LEARNING FROM EXAMPLES - INTUITIVELY 3

on more examples). The converse can also be a problem. If the amount of
information is too large many techniques ran into intractability problems (e.g. web
search engines). Other problems include that the training examples or the data
describing the problem are not complete, i.e. not in all cases all information is
available, or the information provided might be inhomogeneous, i.e. it differs from
trial to trial. A central problem in function estimation is, of course, that we have to
expect that the information provided is inaccurate, e.g. corrupted be measurement
noise.

Today machine learning research is very much concerned with solving these
types of problems, i.e. how to make learning practical for small training sets, how
to deal with noise and outliers (errors), or how to handle missing values. Especially
in the past decade there have been big advances in solving these problems.

What we consider in this thesis are learning algorithms that are based upon
Rayleigh coefficients, especially Fisher’s discriminant, and that use kernel func-
tions. Fisher’s discriminant (Fisher, 1936) is a technique to find linear functions
that are able to discriminate between two or more classes. Being a technique that
is around for almost 70 years it is well known and widely used to build classifiers.
However, many modern learning problems are not appropriately solvable using lin-
ear techniques. Therefore, we propose non-linear variants of Fisher’s discriminant.
This non-linearization is made possible through the use of kernel functions, a “trick”
that is borrowed from support vector machines (Boser et al., 1992), in a way the
successor of Rosenblatt’s perceptron (Rosenblatt, 1956). Kernel functions repre-
sent a very principled and elegant way of formulating non–linear algorithms. The
methods we derive have clear and intuitive interpretations. Moreover, although
these techniques are able to describe highly non–linear relations we will be able to
devise algorithms that find globally optimal solutions in polynomial time. We show,
that the learning machines derived this way have state of the art performance.

1.1.1 How this thesis is organized

This thesis is divided into four major parts. We start in Chapter 1 by reviewing
some basic tools and notations from statistical learning theory. We discuss the
concept of consistency and introduce the structural risk minimization principle
(Vapnik and Chervonenkis, 1974). We also review some theory of reproducing
kernels and how they enable us to turn a linear algorithm into a non-linear one.
The reader already familiar with these concepts may skip this part.

In Chapter 3 we derive the kernel Fisher discriminant (KFD) algorithm and
several variations. We also discuss how KFD relates to mathematical optimization.
From this connection we are able to propose several strategies to solve the arising
optimization problems efficiently. We conclude this chapter by showing how KFD
relates to other techniques like support vector machines, relevance vector machines
(Tipping, 2000) and a variant of Boosting (Freund and Schapire, 1997).

Chapter 4 presents some first results on building a theory around KFD. There
is an intimate connection between KFD and the estimation of eigenvectors and
eigenvalues from covariance matrices. Building upon this connection, we give
guarantees for estimates of these quantities.

Finally, Chapter 5 presents a large collection of illustrative and real–world appli-
cations of KFD. We demonstrate certain aspects of the proposed techniques and

4 1 INTRODUCTION – MACHINES THAT LEARN

show that they are readily usable in applications, yielding state of the art results.

1.1.2 A little bit of history

Machine learning and artificial intelligence are active research areas since over fifty
years. However, most people only have a very vague idea what machine learning
precisely is about, what is already possible and where the challenges are. Contrarily
to what was proposed in the 60’s by many researchers, that building an intelligent
machine, will only be a question of a few years, there is no such thing yet. At least
not in the sense proposed back then. What AI research in the beginning targeted
at was to build a machine that were capable of general, human intelligent behavior.
For example, it was supposed to stand the famous Turing test (Turing, 1950). He
suggested to call a machine intelligent if a human that is communicating with the
machine and another human through tele–typing (i.e. ”chatting”) can not decide
which is which. Even today, over 50 years later this is far from being realistic. On
the other hand, there are techniques which were invented before the 60’s that are
still up to date. Rosenblatt’s perceptron (Rosenblatt, 1956) for example is almost
equivalent to one of the most advanced learning techniques available today, the
support vector machine (Boser et al., 1992). Another example is of course Fisher’s
discriminant (Fisher, 1936), laying the ground for this work. However, that old
ideas are still in a way up to date does not imply that AI research has not made
any progress over the past decades.

What has changed largely over the years is the way researchers approach the
problem of learning. There are only very few people left which target at building a
system that has a human like intelligence. One reason that most of these projects
failed was that the problem is too complex to be modeled explicitly (and it still is).
The big advances in AI research came up by resorting to simpler problems which
can be considered in a mathematical framework. This mathematical framework
does not try to simulate the world anymore but converts learning problems to
problems of inferring a complex statistical relationship between several quantities.

However, it seems that AI research has come to a point where it seems to
become realistic to ask the old question again: How can we build a machine that is
truly intelligent? However, we conjecture that answering this question will require
a joint effort between many different research areas, including but not limited
to biology, artificial intelligence, mathematics and computer science. Whilst this
thesis certainly does not answer this question we hope that it provides at least a
small part to solve the big puzzle.

1.2 NOTATION 5

1.2 Notation
Symbol Explanation
N, M Dimensionality of data and number of samples.
N, N∗ The set of natural and strictly positive natural numbers.

R, R+, R∗ The set of real numbers, positive
and strictly positive real numbers.

C Complex numbers.
1 A vector of ones.

a, . . . , z or ff, . . . Bold face letters denote vectors.
x, y Usually a training example and its label.
X , Y Generic sample (input) and label (output) spaces,

often RN and {1,−1} or R, respectively.
XR Shorthand for X × · · · × X , R times.
Z A training sample Z ⊆ (X × Y)M .
E A feature space, usually associated with a kernel k(x, x′).

F ,G Function spaces.
H A Hilbert space.

k(x, z) A kernel function, usually fulfilling Mercer’s condition.
`Np N-dimensional sequence space with p-norm
Lp Function space with p-norm
(xi)i A sequence (x1, x2, . . .)

N (m,Σ) A Gaussian distribution with mean m and
covariance Σ.

I,J Index sets e.g. I ⊆ {1, . . . ,M}.
RM , R̂M ,N (ε,F , ρ) Rademacher complexity, its empirical counterpart

and covering numbers.
diag(v) A diagonal matrix with the elements of

the vector v on the diagonal.
tr(A) The trace, i.e.

∑
Ai i of a matrix.

P(w) Some regularization operator.
P(·) Probability of an event.
EZ [·] Expectation over iid draw of the M–sample Z.
µ Some probability measure.

λi(A) The i-th eigenvalue of A.
Ai•, A•i the i-th row or column of a matrix A.

dist(A,B) The distance of two equal dimensional subspaces.
sep(A,B) The separation between the column span of A and B.
span(A) The span of the columns of A.
`(y , y ′) A loss function.
R,Remp The generalization error and the empirical error.
Rreg,Rloo A regularized error functional and the

leave-one-out error.

7

Chapter 2

Statistical Learning Theory

Our life is frittered away by detail. Sim-
plify! Simplify!

Henry D. Thoreau

In this chapter we introduce our basic notation. Furthermore we
review basic concepts and ideas from (statistical) learning theory,
starting with formulating the problem of learning from data as a
statistical estimation problem. This chapter is a brief review of
the existing literature in this field and focused around the ideas
necessary for the developments proposed in the later chapters.

THE general problem considered here is that of inferring statistical relation-
ships from a given, usually finite, set of examples. After the more informal

motivation in the previous chapter we will now formulate these problems in a
mathematical, statistical framework.

2.1 Learning from Examples

To start, we fix some notation. Denote the training data (the known observations
from the world) we are given by the set Z = {(xi , yi) ∈ X × Y|i = 1, . . . ,M}.
Depending on the structure of especially Y we want to solve a variety of problems.
For example, if Y = R we have to solve a regression problem, for Y = {1, 2, 3} a
classification problem with three classes. The difficulty is, that whatever relation-
ship between X and Y we want to model, the only knowledge we have about this
relationship is given by the M pairs of examples. Since the world is not unambigu-
ous many learning problems are not simple, deterministic one-to-one relationships.
Hence, one considers the problem in a probabilistic framework. More specifically,
in statistically learning theory one makes the assumption that there exists some
unknown but fixed probability distribution P (X, Y) over the space X × Y that
fully describes the process generating our data. Furthermore, we assume that our
training sample Z is drawn identically and independently from this distribution,

8 2 STATISTICAL LEARNING THEORY

i.e. Z is i.i.d. sampled from P . It is worthwhile to note, that these assumptions
of fixed, stationary distributions from which we can sample independently, albeit
seeming quite general are already rather strong. In many practical applications
these assumptions are violated or only true when viewing the problem in an ex-
tensively large framework (e.g. Garczarek, 2002). However, we are interested in
modeling the probability of observing a specific y ∈ Y given an observation x ∈ X ,
i.e. we want to estimate P (Y |X). By Bayes law this can be achieved through

P (Y |X) =
P (X|Y)P (Y)
P (X)

=
P (X, Y)

P (X)
. (2.1)

Assuming for a moment we could compute the quantity P (Y |X) it is rather natural
to decide each time we have to assign a y ∈ Y to a new x ∈ X for

f ∗(x) = argmaxy∈Y P (Y = y |X = x), (2.2)

i.e. we choose the y with the maximum a posteriori probability.1 This is known
as Bayes rule or the Bayes optimal decision. To see why or in which respect this
strategy is optimal, we introduce the concept of a loss function:

` : Y × Y → R. (2.3)

Such a loss function should be non-negative and measure by the quantity `(f (x), y)
how much we pay or lose if we predict f (x) ∈ Y and the true result were y ∈ Y. For
a classification problem a natural choice would be `(f (x), y) = 0 if the prediction
is correct and `(f (x), y) = 1 if it is wrong (see also Section 2.1.4). We define the
expected error or risk, i.e. the overall loss we incur using a specific prediction rule
f as

R(f) = EP [`(f (x), y)], (2.4)

where EP denotes the expectation with respect to the joint distribution P (X, Y)
of observations and outcomes. Then for the choice of f = f ∗ made above R would
be minimal among all possible choices for f (for a reasonably defined loss function
`). That is, if we knew (and could compute) the joint probability distribution
P (X, Y) we could solve any statistical dependence problem in an optimal way.

However, we do not know P (X, Y). Now, one possible solution would be to es-
timate P (X, Y) from the sample Z and many theoretical and practical approaches
try exactly this in one or the other way (cf. Parzen, 1962; Bishop, 1995). But
it is also well known that estimating a density without any assumptions is a hard
problem. The number of examples one needs to get a reliable estimate of a density
in N dimensions grows exponentially2 with N. But what we are interested in, is
learning when the amount of training data is small. That is, we need to find a
way to choose a specific f from a class of candidate functions F , such that the
expected loss R(f) for our pick is as close as possible to the best we could do,

1This notation is slightly sloppy since it suggests that f ∗ defined this way were a function
- but there could be more than just one optimal y . For convenience we assume that ties are
broken by uniformly at random picking one of the possible outcomes.

2Consider for example binning an N dimensional space with D hypercubes in each dimension.
One would need at least one observation for each of the DN cubes to get a sensible estimate of
the posterior probability.

2.1 LEARNING FROM EXAMPLES 9

Figure 2.1: Illustration of the over–fitting dilemma: Given only a small sample (left) either,
the solid or the dashed hypothesis might be true, the dashed one being more complex, but also
having a smaller training error. Only with a large sample we are able to see which decision reflects
the true distribution more closely. If the dashed hypothesis is correct the solid would under-fit
(middle); if the solid were correct the dashed hypothesis would over-fit (right).

i.e. R(f ∗)3. Especially we would like to have that if the number of training exam-
ples increases (i.e. M → ∞) our principle will select a f ∈ F with an expected
error that converges to the minimal possible expected error over all f ∈ F . Such
a principle is called an induction principle and the requirements we just described
make it consistent (cf. Section 2.1.1).

The most commonly used induction principle is the one of minimizing the em-
pirical counter part of the expected error (2.4), i.e. the empirical error or empirical
risk

Remp(f) =
1

M

M∑
i=1

`(f (xi), yi). (2.5)

Then learning consists in finding an algorithm that, given a training sample Z, finds
a function f ∈ F that minimizes (2.5). But is this principle consistent? Clearly
not, if the class of functions F we can choose from is too large. For example, if
F contains all possible functions from X to Y, then there is an infinite number
of functions for which the empirical error is zero (assuming a loss function with
`(y , y) = 0), i.e. f (xi) = yi on theM training examples. But these functions f can
take arbitrary values at all other points of X and hence make arbitrary predictions
on unseen examples.

2.1.1 Over–Fitting and Consistency

This phenomenon is called over–fitting. An overly complex function f might de-
scribe the training data well but does not generalize to unseen examples. The
converse could also happen. Assume the function class F we can choose from is
very small, e.g. it contains only a single, fixed function. Then our learning ma-
chine would trivially be consistent, since R(f) = const for all f ∈ F . But if this
single f ∈ F is not by accident the rule that generates our data the decisions we
make will have nothing to do with the concept generating our data. This phe-
nomenon is called under–fitting (cf. Figure 2.1). Apparently we need some way
of controlling how large the class of functions F is, such that we can avoid over–
fitting and under–fitting. The questions of consistency, over– and under–fitting
are closely related and will lead us to a concept known as regularization (e.g.

3We are slightly imprecise here. The truly optimal f ∗ given by (2.2) might not be an element
of our function class. Then we replace f ∗ by a f † ∈ F which has the smallest possible expected
error, i.e. R(f †) = inf f ∈F R(f) ≥ R(f ∗).

10 2 STATISTICAL LEARNING THEORY

Tikhonov and Arsenin, 1977; Morozov, 1984) and the structural risk minimization
principle (Vapnik and Chervonenkis, 1974).

Consistency Let us define more closely what consistency means and how it can
be characterized. By the law of large numbers we have that for any fixed f the
empirical risk (2.5) will converge to the expected risk (2.4). Now, let us denote
an empirical risk minimizer (i.e. a function f ∈ F that minimizes (2.5) for a given
training sample Z) by f M , i.e. f M is now dependent on the training sample. The
question of consistency is, whether Remp(f M) also converges to R(f M), i.e.

|R(f M)− Remp(f M)| → 0 as M →∞,

in probability. We already gave an example above showing that this is not true
in general, the reason being that f M now depends on the sample Z. We will not
go into detail here but one can show that a sufficient and necessary condition for
consistency is, that uniformly over all functions in F the difference between the
expected and the empirical error converges to zero if the number of samples goes
to infinity. This insight can be summarized in the following theorem:

Theorem 2.1 (Vapnik and Chervonenkis (1991)). One-sided uniform conver-
gence in probability, i.e.

lim
M→∞

P
[
sup
f ∈F
(R(f)− Remp(f)) > ε

]
= 0, (2.6)

for all ε > 0, is a necessary and sufficient condition for (nontrivial) consistency of
empirical risk minimization.

Since the condition in the theorem is not only sufficient but also necessary
it seems reasonable that any “good” learning machine implementing a specific
function class should fulfill (2.6).

2.1.2 Structural Risk Minimization

Having once accepted that consistency is desirable when doing empirical risk mini-
mization the question arises if there are any principles that allow us to choose only
such function classes for learning that fulfill Theorem 2.1? It will turn out that
this is possible and crucially depends on the question how complex the functions
in the class F are, a question we have already seen to be equally important when
talking about over- and under–fitting. But what does complexity mean and how
can one control the size of a function class? There are a number of different
complexity measures for functions classes. Intuitively speaking, the complexity
of a function class is determined by the number of different possible outcomes
when choosing functions from this class. Popular measures are covering numbers,
annealed entropy, VC entropy4 and the VC dimension, or the Rademacher and
Gaussian complexity. We will not go into much detail about these quantities here.
The Rademacher complexity will be considered in more detail in Chapter 4.

A specific way of controlling the complexity of a function class is given by
the VC theory and the structural risk minimization (SRM) principle (Vapnik and

4VC = Vapnik Chervonenkis.

2.1 LEARNING FROM EXAMPLES 11

Chervonenkis, 1974; Vapnik, 1995, 1998). Here the concept of complexity is
captured by the VC dimension h of the function class F the estimate f is chosen
from. Roughly speaking, the VC dimension measures how many (training) points
can be shattered (i.e. separated) for all possible labellings using functions of the
class. This quantity can be used to bound the probability that the expected error
will deviate much from the empirical error for any function from the class, i.e. VC-
style bounds usually take the form

P
[
sup
f ∈F
(R(f)− Remp(f ,Z)) > ε

]
≤ H(F ,M, ε), (2.7)

where H is some function that depends on properties of the function class F ,
e.g. the VC-dimension, the size of the training set (usually in such bounds H de-
creases exponentially when M increases) and the desired closeness ε. By equating
the right-hand side of (2.7) to δ > 0 and solving H = δ for ε one can turn these
bounds into expressions of the following form: With probability at least 1− δ over
the random draw of the training sample Z5

R(f) ≤ Remp(f ,Z) + H̃(F ,M, δ). (2.8)

Now H̃ is a penalty term that measures our degree of uncertainty. If the function
class is simple/small (e.g. it contains only a single element) H̃ is small. These
penalty terms usually increase if we require a higher precision (e.g. with log(1δ))
and decrease if we observe more examples (e.g. with 1

M or 1√
M

). The practical
implication of bounds like (2.8) is that our learning machine should be constructed
such that

1. it finds a function with a small empirical error, and

2. at the same time keeps the penalty term H̃ small.

Only if we achieve both we have a guarantee that the expected error of our estimate
will be small (cf. Figure 2.2).6

One of the most famous learning bounds is due to Vapnik and Chervonenkis
and lays the ground for the support vector algorithm that we will consider in more
detail in Section 2.2:

Theorem 2.2 (Vapnik and Chervonenkis (1974)). Let h denote the VC dimen-
sion of the function class F and let Remp be defined by (2.5) using the 0/1-loss
(cf. Section 2.1.4). For all δ > 0 and f ∈ F the inequality bounding the risk

R(f) ≤ Remp(f ,Z) +

√
h
(
ln 2Mh + 1

)
− ln(δ/4)

M
(2.9)

holds with probability of at least 1 − δ for M > h over the random draw of the
training sample Z.

5Which is implicitly used to measure Remp.
6Note that there are learning machines for which eH is infinity which still work well in practice

(e.g. k-nearest neighbors (Devroye et al., 1996)), i.e. these bounds are sufficient but not necessary
conditions for successful learning.

12 2 STATISTICAL LEARNING THEORY

PSfrag replacements

low

high

small large

in-confidence empirical risk

expected risk

complexity of function set

Figure 2.2: Schematic illustration of (2.8). The dotted line represents the training error (em-
pirical risk), the dash-dotted line the upper bound on the complexity term (confidence). With
higher complexity the empirical error decreases but the upper bound on the risk confidence be-
comes worse. For a certain complexity of the function class the best expected risk (solid line)
is obtained. Thus, in practice the goal is to find the best trade-off between empirical error and
complexity.

Vapnik and others (i.e. Cortes and Vapnik, 1995; Shawe-Taylor et al., 1996)
also suggested the use of the so called structural risk minimization principle which
now becomes a straight forward consequence of what we said before. Construct-
ing a nested family of function classes F1 ⊆ · · · ⊆ Fk with non-decreasing VC
dimension h1 ≤ · · · ≤ hk , the SRM principle proceeds as follows: Let f1, . . . , fk be
the solutions of the empirical risk minimization (2.5) in the function classes Fi .
SRM chooses the function class Fi (and the function fi) such that an upper bound
on the generalization error like (2.9) is minimized. This bound is only an example
and similar formulations are available for other loss functions (Vapnik, 1998) and
other complexity measures (e.g. the fat-shattering dimension (Alon et al., 1997)).

2.1.3 Regularization

We have seen in the last section that for successful learning it is reasonable to
find a minimum to a functional of the form (2.8)., i.e. we want to minimize the
empirical error plus some penalty term. From a different point of view we want to
minimize what is called a regularized risk, i.e. we define in analogy to (2.4) and
(2.5)

Rreg(f) = Remp(f ,Z) + λΩ(f). (2.10)

Here Ω : F → R+ is a regularization operator that measures in one or the other
way properties of the function f . For example we will could try to design an
operator such that Ω(f) is large when f belongs to a function class with large VC-
dimension.7 With the regularization constant λ ≥ 0 we can trade-off what is more
important: minimizing the empirical error or minimizing the regularizer. The hope

7When speaking about the VC-dimension of a function we actually mean the VC-dimension
of the smallest class a learning machine can implement that contains this function. The VC-
dimension of a single function is one.

2.1 LEARNING FROM EXAMPLES 13

is that for a suitably chosen λ and Ω the minimizer of Rreg will also be a minimizer
of some bound like (2.8). Provided that the size of the regularization operator
reflects the size of e.g. the VC-dimension of f (or some other complexity measure
in another bound) we can implement the structural risk minimization principle by
minimizing Rreg over a range of values for λ thereby getting the empirical risk
minimizers from different, nested subsets. We then choose the function f (and
the λ) which either minimizes some theoretical bound or e.g. the validation error.
Either way, this poses the problem of model selection, a topic we will not cover
here. In Section 2.2 we will see how support vector machines implement the
minimization of a regularized risk functional to approximate the minimization of
the bound in (2.9).

2.1.4 Loss Functions

While our discussion of the theoretical foundations of learning we have not yet
talked about loss functions except for saying that they should be non-negative
functions of the form (2.3). In the following we will discuss some of the most
common choices of loss functions for classification and regression.

Classification When our goal is classification we are looking for functions f :
X → {1, . . . , D}, D being the number of classes. The natural choice for a loss
function in this case would be the so called zero/one loss, i.e.

`(f (x), y) =

{
0 if f (x) = y ,

1 otherwise.
. (2.11)

Then the expected loss (2.4) would exactly be the average number of errors we
commit. However, there is one problem to a loss function like (2.11): minimizing
the empirical risk becomes an NP-hard problem for most function classes F . In-
stead, one often uses real valued (convex) loss functions and real valued functions
f , the latter having the additional advantage that the absolute value of f (x) can
often be interpreted as a confidence measure for the decision we make. For two–
class problems, i.e. the set of possible outcomes is Y = {−1,+1}, classification is
done by taking the sign, i.e. sgn(f (x)) as a final decision. In this case so called soft
margin (Bennett and Mangasarian, 1992) and logistic loss functions are common.
The soft margin loss is defined as

`(f (x), y) =

{
0 if yf (x) ≥ 1,
1− yf (x) otherwise.

(2.12)

The product yf (x) will be positive if the sign of f (x) and y agree. The logistic
loss is defined by

`(f (x), y) = log(1 + exp(−yf (x))), (2.13)

and bears strong connections to the interpretability as probabilities of the outputs
(cf. Section 3.2.2).

14 2 STATISTICAL LEARNING THEORY

Regression If we do regression, we look for functions of the form f : X → R
(or more generally RD). Here there are two loss functions commonly used, the
simple squared loss

`(f (x), y) = (f (x)− y)2, (2.14)

and the ε-insensitive loss

`(f (x), y) =

{
|f (x)− y | − ε if |f (x)− y | > ε

0 otherwise.
(2.15)

For ε = 0 the ε-insensitive loss equals the `1-norm, otherwise it linearly penalizes
deviations from the correct predictions by more than ε. Note, that the squared
loss (2.14) is sometimes also used in classification.

Noise Model and Loss Functions There is a close connection between the
loss function we choose and the noise model we assume over our predictions
(e.g. Smola, 1998). In a probabilistic framework one would explicitly model this
uncertainty assuming e.g. a Gaussian distribution over the (continuous) outputs.
This would in our framework correspond to the squared loss function (2.14). An
overview of different loss functions and their associated density models can be
found in Table 2.1 along with an illustration in Figure 2.3. For more details see
e.g. Schölkopf and Smola (2002).

Table 2.1: Loss functions for the slack variables ¸ = f (x)−y and their corresponding density/noise
models in a probabilistic framework (taken from Smola, 1998).

loss function density model

ε-insensitive |ξ|ε 1
2(1+ε) exp(−|ξ|ε)

Laplacian |ξ| 1
2 exp(−|ξ|)

Gaussian 1
2ξ
2 1√

2π
exp(− ξ

2

2)

Huber’s robust loss

{
1
2σ ξ

2

|ξ| − σ2

{
exp(− ξ

2

2σ) if |ξ| ≤ σ
exp(σ2 − |ξ|) otherwise

Polynomial 1
p |ξ|

p p
2Γ (1/p) exp(−|ξ|

p)

Piecewise poly.

{
1

pσp−1 ξ
p

|ξ| − σ p−1p

{
exp(− ξp

pσp−1) if |ξ| ≤ σ
exp(σ p−1p − |ξ|) otherwise

2.2 Learning Theory in Practice: SVM

Having collected theses prerequisites from statistical learning theory, we now give
an example of a special learning machine that exemplary builds upon these insights.
The Support Vector Machine algorithm (SVM) developed by Vapnik and others
is one of the most successful techniques over the last decades, especially after
being combined with the kernel trick which we shall discuss in Section 2.3 (e.g.
Vapnik and Chervonenkis, 1974; Boser et al., 1992; Cortes and Vapnik, 1995;
Shawe-Taylor et al., 1996; Cristianini and Shawe-Taylor, 2000; Müller et al., 2001;
Schölkopf and Smola, 2002, and numerous others).

2.2 LEARNING THEORY IN PRACTICE: SVM 15

Figure 2.3: From left to right and top to bottom, an illustration of Gaussian, Laplacian, Huber’s
robust and ε–insensitive loss functions (dotted) and their corresponding densities (solid).

2.2.1 Margins and VC-dimension

Even if the idea of structural risk minimization seems very reasonable we have not
yet discussed how one could possibly control the size of a function class nor have
we discussed how we could select the empirical risk minimizer in this class.

In the following, let us assume that we are dealing with a two class classification
problem (i.e. Y = {−1,+1}) in a real valued vector space, e.g. X = RN . Further,
we assume that the distribution of this two classes is such, that they are linearly
separable, i.e. one can find a linear function of the inputs x ∈ X such that f (x) < 0
whenever the label y = −1 and f (x) ≥ 0 otherwise. This can be conveniently
expressed by a hyperplane in the space X , i.e. we are looking for a function f of
the form

f (x) = (w · x) + b. (2.16)

Now assume that the function class F we choose our solution from is the one
containing all possible hyperplanes, i.e. F = {f : X → R|f (x) = (w · x) + b}.
To describe the complexity of this class we will use the (coarse) measure of its
VC-dimension h. Recall, that the VC-dimension of a function class was defined
as the maximal number M of examples xi that can be separated (shattered) for
an arbitrary labeling of the example using functions from F , i.e. the maximal M
such that there exists an f ∈ F with f (xi) = yi for arbitrary yi ∈ {−1,+1}. For
X = RN it is rather straight forward to show that the VC-dimension of this class
of functions will be h = N+1, i.e. in an N dimensional space the maximal number
of points that can be separated for an arbitrary labeling using a hyperplane is N+1.

16 2 STATISTICAL LEARNING THEORY

w

Figure 2.4: Linear classifier and margins: A linear classifier is defined by a hyperplane’s normal
vector w and an offset b, i.e. the decision boundary is {x|(w ·x)+b = 0} (solid line). Each of the
two half spaces defined by this hyperplane corresponds to one class, i.e. f (x) = sgn((w · x) + b).
The margin of a linear classifier is the minimal distance of any training point to the hyperplane.
In this case it is the distance between the dotted lines and the solid line.

Whilst it is satisfactory to see that the VC-dimension of the class of hyperplanes
is finite and hence an application of (2.9) would make sense, we can not apply the
structural risk minimization principle yet: there is no nested structure of function
classes. But we can introduce this structure by limiting/regularizing the functions
in F . To this end define the function classes

FΛ = {f : RN → R|f (x) = (w · x) + b, ‖w‖ ≤ Λ}. (2.17)

Clearly FΛ1 ⊆ FΛ2 whenever Λ1 ≤ Λ2. But what effect does constraining the
norm of the weight vector have on the corresponding VC-dimensions of FΛ? It
turns out, that under certain assumptions outlined below we also get h(FΛ1) ≤
h(FΛ2) for Λ1 ≤ Λ2, i.e. we get the desired nested family of function classes with
non-decreasing VC-dimension necessary for the application of the structural risk
minimization principle.

The crucial ingredient in making the function classes FΛ nested is to define
a unique representation for each hyperplane. To this end, we introduce the con-
cept of canonical hyperplanes and the notion of margins. Otherwise, if the data
are separable by (w, b) then they are also separable by any (positive) multiple
of (w, b) and hence there is an infinity number of representations for the same
separating hyperplane. In particular, all function classes FΛ would have the same
VC-dimension as they would contain the same functions, just in different repre-
sentations. A canonical hyperplane with respect to an M-sample Z is defined as a
function f (x) = (w·x)+b, where w is normalized, such thatmini=1,...,M |f (xi)| = 1,
Then none of the training examples produces an absolute output that is smaller
than one and the examples closest the hyperplane have exactly an output of one,
i.e. (w · x)+ b = ±1. Since we assumed the sample Z to be linearly separable, we
can turn any f that separates the data into a canonical hyperplane by suitably nor-
malizing the weight vector w and adjusting the threshold b correspondingly. The
concept of a margin is closely related. We define the margin to be the minimal
euclidean distance between any training example xi and the separating hyperplane.
Intuitively, the margin measures how good the separation between the two classes
by a hyperplane is. Then, if this hyperplane is in canonical form, the margin can
be measured by the length of the weight vector w. Consider two examples x1 and
x2 from different classes with (w · x1)+ b = 1 and (w · x2)+ b = −1, respectively.
The margin is given by the distance of these two points, measured perpendicular

2.2 LEARNING THEORY IN PRACTICE: SVM 17

to the hyperplane, i.e.
(
w
‖w‖ · (x1 − x2)

)
= 2
‖w‖ (e.g. Vapnik, 1995). Hence, the

smaller the norm of the weight vector w in the canonical representation, the larger
the margin. More general, it was shown, that the VC-dimension of the class FΛ
(restricted to canonical hyperplanes) can be bounded as

h ≤ min(Λ2R2 + 1, N + 1) and ‖w‖2 ≤ Λ (2.18)

where R is the radius of the smallest sphere around the data (e.g. Vapnik, 1995).
Thus, if we bound the margin of a function class from below, say by 2

Λ , we can
control its VC-dimension and hence apply the SRM principle.8 A particularly impor-

PSfrag replacements

�
���

�
���

Figure 2.5: Illustration of why a large margin reduces the complexity of a linear hyperplane
classifier. If we choose hyperplanes with a large margin, there is only a small number of possibilities
to separate the data, i.e. the VC-dimension of FΛ1 is small. (left panel). On the contrary, if
we allow smaller margins there are more separating hyperplanes, i.e. the VC-dimension of FΛ2 is
large (right panel). Illustration inspired by Rätsch (2001).

tant insight is that the complexity only indirectly depends on the dimensionality
of the data.9 This is very much in contrast to e.g. density estimation, where
the problems become more difficult as the dimensionality of the data increases
(cf. Section 2.1). For SVM, if we can achieve a large margin the problem remains
simple.

2.2.2 Support Vector Machines

Support Vector Machines are a practical implementation, merging the insights
from VC-theory and the connection between margins and the VC-dimension of
a linear function class into one algorithm. The central idea is to find a weight
vector w such that the margin is as large as possible. Still assuming for the
moment that the data are separable, we hence need to find the smallest possible

8There are some ramifications to this statement, that go beyond the scope of this presen-
tation. Strictly speaking, VC theory requires the structure to be defined a priori, which has
implications for the definition of the class of separating hyperplanes, cf. Shawe-Taylor et al.
(1996).

9Indirectly means, (i) that the VC-dimension is the dimensionality if we can not achieve a large
enough margin or small enough norm of w, respectively, and (ii) that the estimate for the sphere
containing the data will often depend on the dimensionality as well. Nonetheless, achieving a
large margin is often easier in high dimensions than in low dimensions.

18 2 STATISTICAL LEARNING THEORY

w without committing any error. This can be conveniently expressed by a quadratic
optimization problem:

min
w,b

1

2
‖w‖2 (2.19)

subject to yi ((w · x) + b) ≥ 1, ∀i = 1, . . . ,M.

The constraints in (2.19) assure that w and b will be chosen such that no example
has a distance to the hyperplane smaller than one. For the optimal solution we
will also achieve a canonical hyperplane. One can solve this problem directly using
a quadratic optimizer (cf. Appendix A for more detail on linear and quadratic
optimization). A particularly nice feature is that one can find a global minimum
of this problem, this in contrast to many neural networks (e.g. Bishop, 1995). In
fact, all minima of (2.19) are global minima, although they might not be unique
as e.g. in the case when M < N, where N is the dimensionality of the data.

Another possibility to optimize (2.19) is to form its dual and optimize this
instead. While this does not seem particularly useful at this point we shall see
in the next section that this paves the way to derive powerful non-linear gener-
alizations of SVM by using kernel functions. We will not go into much detail
here about mathematical programming and how one derives dual formulations.
A slightly more concise treatment can be found in Appendix A or in one of the
many textbooks on this topic (e.g. Bertsekas, 1995; Luenberger, 1984; Mangasar-
ian, 1997). The crucial point is, that for every quadratic (or linear) optimization
problem (QP/LP) there exists a dual problem which is also a quadratic or linear
problem, respectively. The original problem is called primal. Primal and dual are
connected by the following facts:

• Either the primal is infeasible,10 then the dual is unbounded (and vice versa),

• or both are feasible and then there exists an optimal (finite) solution.

• In this case, both, primal and dual reach the same objective function value
at the optimal solution, and

• any primal and dual feasible solution for which the primal and dual objective
functions coincide is already optimal.

The dual problem is usually stated as a maximization problem.
To derive the dual of (2.19), we introduce Lagrange multipliers αi ≥ 0,

i = 1, . . . ,M, one for each of the constraints in (2.19). We get the following
Lagrangian:

L(w, b,ff) =
1

2
‖w‖2 −

M∑
i=1

αi(yi((w · xi) + b)− 1). (2.20)

The task is to minimize (2.20) with respect to w, b and to maximize it with respect
to αi . At the optimal point, we have the following saddle point equations:

∂L

∂b
= 0 and

∂L

∂w
= 0,

10Infeasible means that there exist no solution to the problem which fulfills the constraints. A
feasible solution is any variable assignment that fulfills the constraints.

2.2 LEARNING THEORY IN PRACTICE: SVM 19

which translate into
M∑
i=1

αiyi = 0 and w =

M∑
i=1

αiyixi . (2.21)

From the right equation of (2.21), we find that w is contained in the subspace
spanned by the xi in the training set. By substituting (2.21) into (2.20), we get
the dual quadratic optimization problem:

max
ff

M∑
i=1

αi −
1

2

M∑
i ,j=1

αiαjyiyj (xi · xj) (2.22)

subject to αi ≥ 0, i = 1, . . . ,M, (2.23)
M∑
i=1

αiyi = 0. (2.24)

Thus, by solving the dual optimization problem, one obtains the coefficients αi ,
i = 1, . . . ,M, which one needs to express the solution w. This leads to the
decision function

f (x) = sgn ((w · xi) + b)

= sgn

(
M∑
i=1

yiαi (xi · x) + b

)
. (2.25)

Note once more, that this expression does not directly depend on the dimension-
ality N of the data but on the number of training examples M. As long as we are
able to evaluate the scalar product (xi · x) the dimensionality could be arbitrary,
even infinity. We will use this amazing fact in Section 2.3.

So far we have only considered the separable case which corresponds to an
empirical error of zero (cf. Theorem 2.2). However for most practical applica-
tions, e.g. with noisy data this assumption will be violated. If the data is not
linearly separable then problem (2.19) would not have any feasible solution. By
allowing for some errors we might get better results and avoid over–fitting effects
(cf. Figure 2.1).

Therefore a “good” trade-off between the empirical risk and the complexity
term in (2.9) needs to be found. Using a technique which was first proposed in
Bennett and Mangasarian (1992) and later used for SVMs in Cortes and Vapnik
(1995), one introduces slack-variables to relax the hard-margin constraints:

yi((w · xi) + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . ,M, (2.26)

additionally allowing for some classification errors. The SVM solution can then
be found by (a) keeping the upper bound on the VC dimension small and (b) by
minimizing an upper bound

∑M
i=1 ξi on the empirical risk,11 i.e. the number of

training errors. Thus, one minimizes

min
w,b,¸

1

2
‖w‖2 + C

M∑
i=1

ξi .

11Other bounds on the empirical error, like
PM
i=1 ξ

2
i are also frequently used (e.g. Cortes and

Vapnik, 1995; Mangasarian and Musicant, 2001).

20 2 STATISTICAL LEARNING THEORY

where the regularization constant C > 0 determines the trade-off between the
empirical error and the complexity term. This leads to the dual problem:

max
ff

M∑
i=1

αi −
1

2

M∑
i ,j=1

αiαjyiyj (xi · xj) (2.27)

subject to 0 ≤ αi ≤ C, i = 1, . . . ,M, (2.28)
M∑
i=1

αiyi = 0. (2.29)

From introducing the slack-variables ξi , one gets the box constraints that limit the
size of the Lagrange multipliers: αi ≤ C, i = 1, . . . ,M.

Sparsity

Most optimization methods are based on the second order optimality conditions,
so called Karush-Kuhn-Tucker conditions which state necessary and in some cases
sufficient conditions for a set of variables to be optimal for an optimization problem.
It comes in handy that these conditions are particularly simple for the dual SVM
problem (2.27) (Vapnik, 1982):

αi = 0 ⇒ yi f (xi) ≥ 1 and ξi = 0

0 < αi < C ⇒ yi f (xi) = 1 and ξi = 0

αi = C ⇒ yi f (xi) ≤ 1 and ξi ≥ 0
(2.30)

They reveal one of the most important properties of SVMs: the solution is sparse
in ff. For all examples that are outside the margin area the optimal αi ’s are
zero (cf. Figure 2.10). Specifically, the KKT conditions show that only such αi
connected to a training pattern xi , which is either on the edge of (i.e. 0 < αi < C
and yi f (xi) = 1) or inside the margin area (i.e. αi = C and yi f (xi) < 1) are
non-zero. This sparsity property makes SVM learning practical for large data sets.

Computing the Threshold

The threshold b can be computed by exploiting the fact that for all support vectors
xi with 0 < αi < C, the slack variable ξi is zero. This follows from the Karush-
Kuhn-Tucker (KKT) conditions (cf. (2.30)). Thus, for any support vector xi with
i ∈ I := {i : 0 < αi < C} holds:

yi

b + M∑
j=1

yjαj (xi · xj))

 = 1.
Averaging over these patterns yields a numerically stable solution:

b =
1

|I|
∑
i∈I

yi − M∑
j=1

yjαj (xi · xj)

 .
However, this way we only recover the threshold that was optimal according to
the optimization problem (2.19) or its soft–margin version. It has been observed

2.3 KERNEL FUNCTIONS 21

in practice that there are cases when estimating a separate threshold does im-
prove the generalization error (cf. Schölkopf, 1997). Furthermore, by increasing
or decreasing the threshold we can change the number of false negative and false
positive classified examples. This might be very important in e.g. medical applica-
tions when errors of one kind are much more severe than of the other kind (see
also Lin et al. (2002)).

A Geometrical Explanation

Here, we will present an illustration of the SVM solution to enhance intuitive
understandings. Let us normalize the weight vector to 1 (i.e. ‖w‖2 = 1) and fix
the threshold b = 0. Then, the set of all w which separate the training examples
is completely described as

V = {w|yi f (xi) > 0; i = 1, . . . ,M, ‖w‖2 = 1}

The set V is called “version space” (Opper and Haussler, 1991). It can be shown
that the SVM solution coincides with the Tchebycheff-center of the version space,
which is the center of the largest sphere contained in V (cf. Shawe-Taylor and
Williamson, 1997). However, the theoretical optimal point in version space yielding
a Bayes-optimal decision boundary is the Bayes point, which is known to be closely
approximated by the center of mass of the version space (Herbrich et al., 2001;
Watkin, 1993). The version space is illustrated as a region on the sphere as shown
in Figure 2.6. If the version space is shaped as in the left part of Figure 2.6, the
SVM solution is near to the optimal point. However, if it has an elongated shape
as in the right part of Figure 2.6, the SVM solution is far from the optimal one.
To cope with this problem, several researchers (Ruján, 1996; Herbrich et al., 2001;
Herbrich and Graepel, 2001) proposed a billiard sampling method for approximating
the Bayes point. This method can achieve improved results, as shown on several
benchmarks in comparison to SVMs.

2.3 Kernel Functions

In the last section we have seen that by restricting ourselves to linear functions we
are well able to control the complexity of our learning machine. However, this may
not come as a surprise: linear functions seem very simple anyway. For example,
not even the easy XOR problem can be solved using hyperplanes (cf. Figure 2.7).
We have avoided the problem of dealing with too complex functions at the price
that the range of problems we can solve at this point is very limited. But there is a
way to have both, linear models with controllable complexity and a very rich set of
nonlinear decision functions, by using the tools that will be discussed in this section.
Central to the success of support vector machines was the re-discovery of the so
called Reproducing Kernel Hilbert Spaces (RKHS) and Mercer’s Theorem (Boser
et al., 1992). There is a large body of literature dealing with kernel functions, their
theory and applicability (e.g. Kolmogorov (1941); Aronszajn (1950); Aizerman
et al. (1964); Saitoh (1988); Boser et al. (1992) or Schölkopf and Smola (2002)
for an overview). We only recall the basic definitions and properties necessary
for turning our linear, hyperplane based learning technique into a very powerful

22 2 STATISTICAL LEARNING THEORY

Figure 2.6: An example of the version space where the SVM works fine (left) and where the SVM
works poorly (right) in approximating the center of mass. In the left example the center of mass
(♦) is close to the SVM solution (×). In the right example the version space has an elongated
shape and the center of mass is far from the SVM solution. Figures taken from Herbrich et al.
(1999).

Figure 2.7: The XOR-problem: a classical example of a simple problem that can not be solved
using linear functions. This generalizes to arbitrary dimensions. In N dimensions the maximal
number of points that can be shattered (i.e. separated) by a linear function is N+1 (cf. Chapter 1),
i.e. the VC-dimension of linear functions is N+1. Contrary, there are very simple non-linear models
which can solve this type of problem.

algorithm well capable of finding non-linear decision functions with controllable
complexity.

The basic idea of the so called kernel-methods is to first preprocess the data
by some non-linear mapping Φ and then to apply the same linear algorithm as
before, but in the image space of Φ. The hope is that for a sufficiently nonlin-
ear and appropriate Φ a linear decision in the image space of Φ will be enough
(cf. Figure 2.8 for an illustration). More formally we apply the mapping Φ,

Φ : RN → E
x 7→ Φ(x)

to the data x1, . . . , xM ∈ X and now consider our algorithm in E instead of X ,
i.e. one works with the sample

{(Φ(x1), y1), . . . , (Φ(xM), yM)} ⊆ (E × Y)M .

2.3 KERNEL FUNCTIONS 23

input
space

feature
spaceinput

space

Φ

(a) (b) (c)

Figure 2.8: Three different views on the same dot versus cross separation problem. (a) In
this example, a linear separation of the input points is not possible without errors. Even the
misclassification of one data point permits only a small margin. The resulting linear classification
function looks inappropriate for the data. (b) A better separation is permitted by nonlinear
surfaces in input space. (c) These nonlinear surfaces correspond to linear surfaces in feature
space. Data points are mapped from input space to feature space by the function Φ that is
implied by the kernel function k.

In certain applications we might have sufficient knowledge about our problem
such that we can design an appropriate Φ from hand (e.g. Zien et al., 2000;
Blankertz et al., 2002). If this mapping is not too complex to compute and the
space E is not too high dimensional, we might just explicitly apply this mapping
to our data and are done. Something, similar is done for (one hidden layer) neural
networks (Bishop, 1995), radial basis networks (e.g Moody and Darken, 1989) or
Boosting algorithms (Freund and Schapire, 1997) where the input data is mapped
to some representation given by the hidden layer, the RBF bumps or the hypotheses
space respectively (Rätsch et al., 2002). The difference with kernel-methods is,
as we shall see shortly, that for a suitably chosen Φ we get an algorithm that
has powerful non-linearities but is still very intuitive and retains most of the nice
properties of its linear input space version.

What can we do in cases when we do not have particular prior knowledge on
how to linearize our problem or the mapping is intractable to compute, either
in terms of computational complexity or in terms of storage requirements? To
see that the latter might easily happen and as an example how one could solve
these problems consider the following example in Figure 2.9: in two dimensions a
rather complicated nonlinear decision surface is necessary to separate the classes,
whereas in a feature space of second order monomials (e.g. Schürmann, 1996)

Φ : R2 → R3

(x1, x2) 7→ (z1, z2, z3) := (x
2
1 ,
√
2 x1x2, x

2
2) (2.31)

all one needs for separation is a linear hyperplane. Clearly, in this example we could
just carry out the mapping Φ(x) = (x21 ,

√
2 x1x2, x

2
2)
> explicitly. But consider the

case where our input space X consists of images of 16 × 16 pixels as patterns
(i.e. 256 dimensional vectors) and we choose as nonlinearity all 5th order mono-
mials – then one would map to a space that contains all 5th order products of 256
pixels, i.e. to a (

5 + 256− 1
5

)
≈ 1010

dimensional space. Such a mapping would clearly be intractable to carry out
explicitly.

24 2 STATISTICAL LEARNING THEORY

❍

❍

❍

❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕✕

✕

✕

✕

✕

✕

✕

✕

✕

x1

x2

❍
❍

❍
❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

z1

z3

✕

z2

Figure 2.9: Two dimensional classification example. Using the second order monomials
x21 ,
√
2x1x2 and x22 as features a separation in feature space can be found using a linear hy-

perplane (right). In input space this construction corresponds to a non-linear ellipsoidal decision
boundary (left) (figure from Schölkopf and Smola (2002)).

However, what we can do is compute scalar products in this space. Let us
come back to the example from (2.31). Here, the computation of a scalar product
between two feature space vectors, can be readily reformulated in terms of a kernel
function k

(Φ(x) ·Φ(z)) = (x21 ,
√
2 x1x2, x

2
2)(z

2
1 ,
√
2 z1z2, z

2
2)
>

= ((x1, x2)(z1, z2)
>)2

= (x · z)2

=: k(x, z).

This finding generalizes:

• For x, z ∈ RN , and d ∈ N the kernel function

k(x, z) = (x · z)d

computes a scalar product in the space of all products of d vector entries
(monomials) of x and z (Vapnik, 1995; Schölkopf et al., 1998b).

The kernel trick (Aizerman et al., 1964; Saitoh, 1988; Boser et al., 1992;
Vapnik, 1995) is to take the original algorithm and formulate it such, that we
only use Φ(x) in scalar products. Then, if we can efficiently evaluate these scalar
products we do not need to carry out the mapping Φ explicitly and can still solve
the problem in the huge feature space E . Even better, it will turn out that we do
not need to know the mapping Φ but only the kernel function. Below we will see
under which conditions a mapping k : X ×X → R corresponds to a scalar product.

Now it becomes clear why we formed the dual optimization problem for SVM
(cf. (2.22) and (2.27)): the examples x only occur in scalar products and also in
the resulting decision function (2.25) x only occurs in scalar products. Thus, we
can replace any occurrence of x · z by k(x, z) and solve the SVM in E instead of
X .

Now we can ask two questions

2.3 KERNEL FUNCTIONS 25

• For which mappings Φ is there a simple way to evaluate the scalar product
and

• under which conditions does a function k : X × X → R correspond to a
scalar product?

The first question is difficult to answer in general. But for the second question
there exists an answer which we present in the following.

2.3.1 Feature Spaces

To see when a kernel function k : X × X → R (or C) is a dot-product let
us first introduce some more notation and definitions. Given a training sample
{x1, . . . , xM} ⊆ X , the M × M matrix K whose elements are given by Ki j =
k(xi , xj) is called the kernel matrix or Gram matrix. An M×M matrix K (and any
other symmetric matrix) is said to be positive definite if any quadratic form over
K is positive, i.e. for all ri ∈ R or ci ∈ C, i = 1, . . . ,M, we have

M∑
i ,j=1

ri rjKi j ≥ 0 or
M∑
i ,j=1

cicjKi j ≥ 0. (2.32)

Positive definite kernels are exactly those giving rise to a positive definite kernel
matrix K for all M and all sets {x1, . . . , xM} ⊆ X . Note, that for a kernel (and
a matrix) to be positive, it is necessary to be symmetric, i.e. Ki j = Kj i and
k(xi , xj) = k(xj , xi), respectively, and non-negative on the diagonal, i.e. Ki i ≥ 0
and k(x, x) ≥ 0, respectively.

For any positive definite kernel k we can construct a mapping Φ into a feature
space E , such that k acts as a dot-product over Φ. As a matter of fact, it is
possible to construct more than one of these spaces. We will omit many crucial
details and only present the central results. For more details see e.g. Schölkopf
and Smola (2002).

The Feature Map

Given a real-valued, positive definite kernel function k, defined over a non-empty
set X , we define the feature space E as the space of all functions mapping from
X to R, i.e. as E = RX = {f |f : X → R}. We then define the mapping Φ as

Φ : X → RX ,Φ(x) = k(·, x), (2.33)

i.e. Φ maps each x to the function k(·, x), i.e. the kernel k where the first argument
is free and the second is fixed to x. One can show that the set of all linear
combinations of the form

f (·) =
M∑
i=1

αi k(·, xi), (2.34)

for arbitrary M, αi ∈ R and x1, . . . , xM forms a vector space. Especially, for all
functions of the form (2.34) one gets

〈k(·, x), f 〉H = f (x),

26 2 STATISTICAL LEARNING THEORY

where 〈·, ·〉H denotes the scalar product in some Hilbert space that will be come
clearer below. In particular we have

〈k(·, x), k(·, z)〉H = 〈Φ(x),Φ(z)〉E
= k(x, z).

The last property is the reason why positive definite kernels are also called repro-
ducing kernels: they reproduce the evaluation of f on x. It also shows that k
indeed computes, as desired, the dot–product in E for Φ(x) defined as in (2.33).
Hence (2.33) is one possible realization of the mapping associated with a kernel
and is called the feature map (for its empirical counterpart see e.g. Mika, 1998;
Tsuda, 1998).

Before we move on to a second possible representation of the feature space E
associated with a kernel k let us briefly state the definition of a reproducing kernel
Hilbert space. The space E we defined before can be completed to be such a space
by adding the limit points of all series that are convergent in the norm induced by
the dot–product, i.e. ‖f ‖ =

√
〈f , f 〉 (cf. Schölkopf and Smola, 2002).

Definition 2.1 (Reproducing Kernel Hilbert Space (RKHS)). Let X be a
nonempty set (often called the index set) and H a Hilbert space of functions
f : X → R. Then H is called a reproducing kernel Hilbert space endowed with
the dot product 〈·, ·〉 if there exists a function k : X ×X → R with the properties
that

1. k has the reproducing property 〈f , k(·, x)〉 = f (x) for all f ∈ H, in particular
〈k(·, x), k(·, z)〉 = k(x, z), and

2. k spans H, i.e. H = span{k(·, x)|x ∈ X}, where A denotes the completion
of the set A.

One can show, that the kernel k for such a RKHS is uniquely determined.

Mercer Kernels

As a second way to identify a feature space associated with a kernel k one can use
a technique derived from Mercer’s Theorem. Historically, when kernel functions
were introduced in support vector machines, this was the reasoning used.

Mercer’s Theorem, which we will reproduce in the following, states that if the
function k (the kernel) gives rise to an positive integral operator, the evaluation of
k(x, z) can be expressed as a finite or infinite, absolute and uniformly convergent
series, almost everywhere. This series then gives rise to another way to define
a feature space and associated mapping connected to the kernel k. Especially, if
the set X , the kernel is defined on, is compact, a kernel will be a Mercer kernel if
and only if it is a positive definite kernel (cf. Smola et al., 1998b). The following
reasoning is taken once more from Schölkopf and Smola (2002).

Let X be a finite measure space, i.e. a space with a σ-algebra and a measure
µ satisfying µ(X) ≤ ∞.

Theorem 2.3 (Mercer’s Theorem (Mercer, 1909)). Suppose k ∈ L∞(X 2, µ) is
a symmetric real-valued function such that the integral operator

Tk : L2(X , µ)→ L2(X , µ), (Tkf)(x) :=
∫
X
k(x, z)f (z)dµ(z)

2.3 KERNEL FUNCTIONS 27

is positive definite, i.e. for all f ∈ L2(X , µ)∫
X 2
k(x, z)f (x)f (z)dµ(x)dµ(z) ≥ 0.

Let ϕj ∈ L2(X , µ) be the normalized orthogonal eigenfunctions of Tk associated
with the eigenvalues λj ≥ 0, sorted in non-increasing order. Then

1. (λj)j ∈ l1

2. k(x, z) =
∑NE
j=1 λjϕj(x)ϕj(z) holds for almost all x, z. Either NE ∈ N or

NE = ∞; in the latter case, the series converges absolutely and uniformly
for almost all x, z.

We call k a Mercer kernel.

Now, if we choose as feature space E = lNE2 and the mapping Φ as

Φ : X → lNE2 , Φ(x) = (
√
λjϕj(x))j=1,...,NE ,

we see from the second statement in Theorem 2.3 that the Mercer kernel k cor-
responds to the dot product in lNE2 , i.e. k(x, z) = 〈Φ(x),Φ(z)〉.

2.3.2 Properties of Kernels

Besides being useful tools for the computation of dot-products in high or infinite
dimensional spaces, kernels possess some additional properties that make them an
interesting choice in algorithms. It was shown (Poggio and Girosi, 1990; Girosi
et al., 1993) that using a particular positive definite kernel corresponds to an
implicit choice of a regularization operator. For translation invariant kernels, the
regularization properties can be expressed conveniently in Fourier space in terms
of the frequencies (Smola et al., 1998b; Girosi, 1998). For example Gaussian
kernels (cf. (2.35)) correspond to a general smoothness assumption in all k-th
order derivatives (Smola et al., 1998b). Vice versa, using this correspondence,
kernels matching a certain prior about the frequency content of the data can be
constructed as to reflect our prior problem knowledge.

Another particularly nice feature of using kernel functions is that we are not
restricted to kernels that operate on vectorial data, e.g. X = RN . In principle
it is possible to also define positive kernels for e.g. strings or graphs, i.e. making
it possible to embed discrete objects into a metric space and apply metric-based
algorithms (e.g. Haussler, 1999; Watkins, 2000; Zien et al., 2000).

Furthermore, many algorithms can be formulated using so called conditionally
positive definite kernels (cf. Smola et al., 1998b; Schölkopf, 2001) which are a
super class of the positive definite kernels considered so far. They can be inter-
preted as generalized nonlinear dissimilarity measures (opposed to just the scalar
product) and are applicable e.g. in SVM and kernel PCA.

2.3.3 Examples of Kernels and Illustration

Table 2.2 lists some of the most widely used kernel functions. More sophisticated
kernels (e.g. kernels generating splines or Fourier expansions) and kernels designed

28 2 STATISTICAL LEARNING THEORY

Table 2.2: Common kernel functions: Gaussian RBF (c ∈ R), polynomial (d ∈ N, θ ∈ R),
sigmoidal (κ, θ ∈ R) and inverse multi-quadric (c ∈ R+) kernel functions are among the most
common ones. While RBF and polynomial are known to fulfill Mercers condition, this is not
always the case for sigmoidal kernels (Smola et al., 1998b). Further valid kernels proposed in
the context of regularization networks are e.g. multiquadric or spline kernels (Poggio and Girosi,
1990; Girosi et al., 1993; Smola et al., 1998b).

Gaussian RBF k(x, z) = exp

(
−‖x− z‖2

c

)
(2.35)

Polynomial k(x, z) = ((x · z) + θ)d (2.36)

Sigmoidal k(x, z) = tanh(κ(x · z) + θ)

inverse multi-quadric k(x, z) =
1√

‖x− z‖2 + c2

for special applications like DNA analysis can be found in Vapnik (1998); Stitson
et al. (1997); Smola et al. (1998b); Haussler (1999); Jaakkola et al. (2000); Zien
et al. (2000); Tsuda et al. (2002) and numerous others. Finally, let us note, that
we can recover the original linear algorithms by simply using linear kernels, i.e. the
scalar product in the original input space: k(x, z) = (x · z). However, using linear
kernels to solve the original (linear) problem will usually be not very efficient. For
the kernel version, even if we use a linear kernel, we need to estimate as many
parameters as we observe training examples, i.e. M parameters. Using the kernel
formulation is only advisable, if the dimensionality N of the data is larger than the
number of examples M.

In Figure 2.10 a toy example of a non-linear SVM with a RBF kernel can
be found. We see that introducing non–linearity through the kernel function the
dataset becomes linearly separable in the feature space F . This results in a non-
linear decision function in the input space which is shown here.

Figure 2.10: Illustration of a linear (left panel) and a nonlinear SVM with RBF kernel (2.35)
(right panel) on a toy dataset. Training examples from the two classes are represented by red
’x’ and blue ’+’, respectively. The solid curve shows the decision surface, i.e. (w ·Φ(x))+ b = 0,
the dotted curves show the margin area, i.e. (w · Φ(x)) + b = ±1. Support vectors are marked
by small circles. It can be observed that only very few training patterns become support vectors,
namely those that are inside the margin area or misclassified.

2.4 SUMMARY 29

2.4 Summary

We have seen how the problem of learning from data can be cast formally into
the problem of estimating functions from given observations. We reviewed some
basic notations and concepts from statistics and especially from statistical learn-
ing theory. The latter provides us with two extremely important insights: (i)
not the dimensionality of the data but the complexity of the functions class we
choose our estimate from matters, (ii) for successful learning it is desirable to have
consistency. Closely related to these two questions is the issue of regularization.
Regularization allows us to control the complexity of our learning machine and
often suffices to achieve consistency.

As an application of statistical learning theory we reviewed maximum margin
hyperplanes. Whilst it is satisfactory to have a technique at hand that implements
(at least partially) what the theory justifies, the algorithm is only capable of finding
(linear) hyperplanes. To circumvent this restriction we introduced kernel functions
yielding support vector machines. Kernel functions allow us to reformulate many
algorithms in some kernel feature space that is nonlinearly related to the input
space and yield powerful, non-linear techniques. This non-linearization using the
kernel trick is possible whenever we are able to express an algorithm such that it
only uses the data in the form of scalar products. However, since the algorithms
are still linear in the feature space we can use the same theory and optimization
strategies as before.

Kernel algorithms have seen a powerful development over the past years, start-
ing with the support vector machine12. Among many theoretical (Shawe-Taylor
et al., 1996; Williamson et al., 1998; Graepel et al., 2000; Bartlett et al., 2002)
and algorithmic advances (Platt, 1999; Joachims, 1999; Keerthi et al., 1999) new
algorithms using the kernel-trick have been proposed (e.g. Kernel PCA (Schölkopf
et al., 1998b), one-class SVM (Schölkopf et al., 2000) or Bayes–Point machines
(Herbrich et al., 2001)).13 This development is still an ongoing and exciting field
of study as we will see in the next chapters.

12Techniques based on kernel functions have been known in statistics for a very long time
(e.g. Parzen, 1962; Hand, 1982). However, these techniques usually use kernels to estimate
probability densities - they make no use of the interpretation as scalar products.

13See http://www.kernel-machines.org/ for a collection of literature, data sets and imple-
mentations of kernel based learning techniques.

31

Chapter 3

Kernel Fisher Discriminants

Der gesunde Menschenverstand (bon
sens) ist die bestverteilte Sache der Welt,
denn jedermann meint, damit so gut
versehen zu sein, daß selbst diejenigen,
die in allen übrigen Dingen sehr schwer zu
befriedigen sind, doch gewöhnlich nicht
mehr Verstand haben wollen, als sie wirk-
lich haben.

René Descartes

This chapter introduces a particular learning technique called Ker-
nel Fisher Discriminants. Following the ideas outlined in the pre-
vious chapter Kernel Fisher Discriminants are a non–linear gener-
alization of Fisher’s Discriminant by using kernel functions. Also,
we will derive several interesting variants of kernel Fisher discrimi-
nants together with algorithms to solve the resulting optimization
problems. Finally we discuss connections to other techniques and
the relation to other work.

THE goal of discriminant analysis can be summarized as that of finding a func-
tion returning scalar values which allow a good discrimination between differ-

ent classes of the input data. These discriminants are subsequently used to train
e.g. a classifier or to visualize certain aspects of the data. In this sense discrimi-
nant analysis can be understood as supervised preprocessing or feature extraction,
supervised in the sense that we tell the learning algorithm which training examples
are connected to which property.

3.1 Linear Discriminants

More formally one is looking for a function f : X → RD, such that f (x) and
f (z) are similar whenever x and z are, and different otherwise. Similarity is usually

32 3 KERNEL FISHER DISCRIMINANTS

measured by class membership and Euclidean distance. In the special case of linear
discriminant analysis one is seeking a linear function, i.e. a set of projections

f (x) = W>x, W ∈ RN×D,

where the matrix W is chosen, such that a contrast criterion G is optimized, in
some cases with respect to a set of constraints S, i.e.

maxG(W) subject to W ∈ S. (3.1)

This setup is absolutely equivalent to e.g. principal component analysis where
the contrast criterion would be that of maximal variance (or least mean squared
error) and the constraint set would be that of orthogonality of the matrix W .
However, PCA is an unsupervised technique and does not use any labels. There is
no guarantee that the directions found by PCA will be particularly discriminative.

To simplify the presentation we will in the following only consider one-dimensional
discriminant functions, i.e. f is of the form f = (w · x). However, most results
can easily be generalized to the multidimensional case.

3.2 Fisher’s Discriminant

Probably the most well known example of a linear discriminant is Fisher’s discrim-
inant (Fisher, 1936). Fisher’s idea was to look for a direction w that separates
the class means well (when projected onto the found direction) while achieving
a small variance around these means. The hope is that it is easy to decide for
either of the two classes from this projection with a small error. The quantity
measuring the difference between the means is called between class variance and
the quantity measuring the variance around these class means is called within class
variance, respectively. Then the goal is to find a direction that maximizes the be-
tween class variance while minimizing the within class variance at the same time.
This is illustrated in Figure 3.1. To describe this mathematically let X denote
the space of observations (e.g. X ⊆ RN) and Y the set of possible labels (here
Y = {+1,−1}). Furthermore, let Z = {(x1, y1), . . . , (xM , yM)} ⊆ X × Y de-
note the training sample of size M and denote by Z1 = {(x, y) ∈ Z|y = 1} and
Z2 = {(x, y) ∈ Z|y = −1} the split into the two classes of size Mi = |Zi |. Define
m1 and m2 to be the empirical class means, i.e.1

mi =
1

Mi

∑
x∈Zi

x.

Similarly, we can compute the means of the data projected onto some direction
w by

µi =
1

Mi

∑
x∈Zi

w>x (3.2)

= w>mi ,

1With a slight abuse of notation we denote the x in (x, y) ∈ Z by x ∈ Z.

3.2 FISHER’S DISCRIMINANT 33

PSfrag replacements

���

���

� �

� �

Class 1
Class 2

�

Figure 3.1: Illustration of Fisher’s discriminant for two classes. We search for a direction w, such
that the difference between the class means projected onto this directions (µ1 and µ2) is large
and such that the variance around these means (σ1 and σ2) is small.

i.e. the means µi of the projections are the projected means mi . The variances2

σ1, σ2 of the projected data can be expressed as

σi =
∑
x∈Zi

(w>x− µi)2. (3.3)

Then maximizing the between class variance and minimizing the within class vari-
ance can be achieved by maximizing

G(w) =
(µ1 − µ2)2

σ1 + σ2
, (3.4)

which will yield a direction w such that the ratio of between-class variance (i.e. sep-
aration) and within-class variance (i.e. overlap) is maximal. Now, substituting the
expression (3.2) for the means and (3.3) for the variances into (3.4) yields

G(w) =
w>SBw

w>SWw
, (3.5)

where we define the between and within class scatter matrices SB and SW as

SB = (m2 −m1)(m2 −m1)> SW =
∑
i=1,2

∑
x∈Zi

(x−mi)2. (3.6)

It is straight forward to check that (3.4) is absolutely equivalent to (3.5). This
perfectly fits into the framework (3.1) with an empty constraint set S. The
quantity in Equation (3.5) is often referred to as a Rayleigh coefficient.

Finding w

One particularly nice property of Fisher’s discriminant is that (i) (3.5) has a global
solution (although not necessarily unique) and (ii) that a such a globally optimal

2Strictly speaking σi is the unnormalized variance which sometimes is also called scatter.

34 3 KERNEL FISHER DISCRIMINANTS

w maximizing (3.5) can be found by solving an eigenvalue problem. It is well
known, that the w maximizing (3.5) is the leading eigenvector of the generalized
eigenproblem

SBw = λSWw. (3.7)

This can be seen as follows: differentiating (3.5) with respect to w yields

(w>SBw)SWw − (w>SWw)SBw = 0

⇔ SBw =
w>SBw

w>SWw
SWw. (3.8)

From the last equation it follows immediately that w must be a generalized eigen-
vector of (3.7). That w must also be the leading eigenvector (i.e. the quantity
w>SBw
w>SWw

in (3.8) is the largest eigenvalue of (3.7)) can be seen as follows: Assume

there is an eigenvector w̃ of (3.7) with corresponding eigenvalue λ̃ such that for
the optimal solution w∗ to (3.5) G(w∗) < λ̃. Then evaluating (3.7) at w̃ and
multiplying with w̃> yields

SBw̃ = λ̃SW w̃ ⇒ w̃>SBw̃ = λ̃w̃
>SW w̃

⇒
w̃>SBw̃

w̃>SW w̃
= λ̃

= G(w̃)

> G(w∗),

where the last inequality follows from our assumption that G(w∗) < λ̃. This,
however, is a contradiction to the assumption that w∗ was the optimal solution
to (3.5).

Examining the eigenproblem (3.8) closer one finds an even simpler way of
obtaining the optimal w. First, note that the way SB is defined, SBw will always
point in the direction of m2 − m1. Secondly, from (3.5) we see that only the
direction of w matters, not its length. Hence if we multiply both sides of (3.7) by
S−1W and drop all scalar factors we get:

S−1W SBw = λw ≡ w = S−1W (m2 −m1),

i.e. we can find an optimal direction w by inverting the within class scatter matrix
SW .

3.2.1 Connection to Least Squares

The Fisher discriminant problem described above bears strong connections to least
squares approaches for classification3. Classically, one is looking for a linear dis-
criminant function, now including a bias term, i.e.

f (x) = w>x+ b, (3.9)

such that on the training sample the sum of squares error between the outputs
f (xi) and the known targets yi is small, i.e. in a (linear) least squares approach

3The result presented here is adopted from Duda and Hart (1973) and slightly generalized.

3.2 FISHER’S DISCRIMINANT 35

one minimizes the sum of squares error

E(w, b) =
∑
(x,y)∈Z

(f (x)− y)2 =
∑
(x,y)∈Z

(
w>x+ b − y

)2
. (3.10)

The least squares problem minw,b E(w, b) can be written in matrix notation as

min
w,b

∥∥∥∥[X>1 11
X>2 12

] [
w

b

]
−
[
−11
12

]∥∥∥∥2 (3.11)

where X = [X1, X2] is a matrix containing all training examples partitioned ac-
cording to the labels ±1, and 1i is a vector of ones of corresponding length. The
solution to a least squares problem of the form ‖Ax − b‖2 can be computed by
using the pseudo-inverse of A, i.e. x∗ = A†b = (A>A)−1A>b, assuming that A>A
is not singular. Then A†A = I and thus a necessary and sufficient condition for
the solution x∗ to the least squares problem is (A>A)x∗ = A>b. Applying this to
(3.11) yields: [

X1 X2
1>1 1>2

] [
X>1 11
X>2 12

] [
w

b

]
=

[
X1 X2
1>1 1>2

] [
−11
12

]
Multiplying this matrices and using the definition of the sample means and within–
class scatter for Fisher yields:[

SW +M1m1m
>
1 M1m1 +M2m2

(M1m1 +M2m2)
> M1 +M2

] [
w

b

]
=

[
M2m2 −M1m1
M2 −M1

]
(3.12)

Using the second equation in (3.12) to solve for b yields

b =
M2 −M1 − (M1m1 +M2m2)>w

M1 +M2
. (3.13)

Substituting this into the first equation of (3.12) and using a few algebraic ma-
nipulations, especially the relation a − a2

a+b =
ab
a+b one obtains(

SW +
M1M2
M1 +M2

SB

)
w +

M21 +M
2
2

M1 +M2
(m2 −m1) = 0 (3.14)

Now, since still SBw is in the direction of (m2 −m1), there exists a scalar α ∈ R
such that

M1M2
M1 +M2

SBw = −
(
M21 +M

2
2

M1 +M2
− α

)
(m2 −m1) , (3.15)

Then using (3.15) in (3.14) yields:

SWw = α(m2 −m1)⇔ w = αS−1W (m2 −m1). (3.16)

This shows that the solution to the least squares problem is in the same direction
as the solution of Fisher’s discriminant, although it will have a different length.
But as we already noticed, we are only interested in the direction of w, not its
length and hence the solutions are identical.

36 3 KERNEL FISHER DISCRIMINANTS

3.2.2 Bayes Optimality

Another well known fact about Fisher’s discriminants is, that they are the Bayes
optimal solution if the two classes are distributed according to a normal distri-
bution, both with equal covariance matrix Σ (see Bishop, 1995; Duda and Hart,
1973)4. If the class conditional densities are given by a normal distribution they
are of the form

p(x|y = 1) =
1

(2π)N/2|Σ|1/2
exp

(
−
1

2
(x−m1)>Σ−1(x−m1)

)
,(3.17)

p(x|y = −1) =
1

(2π)N/2|Σ|1/2
exp

(
−
1

2
(x−m2)>Σ−1(x−m2)

)
.(3.18)

Computing the posterior probability using Bayes’ theorem (cf. (2.1)), we get

P (y = 1|x) =
p(x|y = 1)P (y = 1)

p(x|y = 1)P (y = 1) + p(x|y = −1)P (y = −1) ,

what in turn can be written as

P (y = 1|x) =
1

1 + exp(−a) , (3.19)

with

a = log

(
p(x|y = 1)P (y = 1)
p(x|y = −1)P (y = −1)

)
.

Substituting (3.17) and (3.18) into (3.19) yields

a = w>x+ b,

with
w = Σ−1(m1 −m2),

and

b =
1

2
m>2Σ

−1m2 −
1

2
m>1Σ

−1m1 + log

(
P (y = 1)

P (y = −1)

)
.

This direction w is again, in an empirical version, equivalent up to a scaling factor
to the direction found by Fisher’s discriminant.

This also reveals one possibility how to make decisions when using Fisher’s
discriminant. Assuming that the class conditional distributions are indeed equal
normal distributions, once w is known the class posterior probabilities can be writ-
ten as

P (y = 1|x) = P (y = 1|q(x)) =
p(q(x)|y = 1)P (y = 1)

p(q(x)|y = 1)P (y = 1) + p(q(x)|y = −1)P (y = −1) ,

4If the covariance matrices for the classes are different but both class conditional distributions
are still normal, the optimal decision boundary is given by quadratic discriminants (see Fukunaga,
1990).

3.3 OTHER DISCRIMINANT TECHNIQUES 37

and likewise for P (y = −1|x) where q ≡ q(x) = w>x and

p(x|y = 1) = p(q(x)|y = 1) =
(
2πσ21

)−1/2
exp

(
−
(q(x)− µ1)2

2σ21

)
,

p(x|y = −1) = p(q(x)|y = −1) =
(
2πσ22

)−1/2
exp

(
−
(q(x)− µ2)2

2σ22

)
,

µi and σi being defined in (3.2) and (3.3), respectively. The class priors can
e.g. be estimated from the training sample Z. We decide for class 1 whenever
P (y = 1|x) ≥ 1

2 , and class −1 otherwise.

3.2.3 Why Fisher can be really bad

Whilst it is satisfactory that there is a special setting in which Fishers discriminants
are the best possible model and the way of fitting this model yields the theoretically
optimal solution, one can construct a distribution of the training sample Z for
which the directions found by Fisher can be arbitrarily bad (see Devroye et al.,
1996, Problem 4.9). In particular, one can show that for every ε > 0 there exist
a distribution with X = R2, such that the two classes are linearly separable but
even with the best possible threshold b on w>x+b the expected error of w solving
Fisher’s discriminants is larger than 1/2 − ε. Even worse, if one chooses b such
as to minimize the least squares error between the labels and the output, the
expected error will be larger than 1 − ε. However, these constructed examples
also exist for other techniques and are of little relevance in practical applications.
Especially, having found a direction such that the error is 1− ε we can turn it into
a solution with error only ε by using the negative weight vector w.

3.3 Other Discriminant Techniques

Besides the within–class vs. between-class criterion optimized by Fisher’s discrim-
inant there are others (linear) techniques that are similar but use slightly different
contrast criteria. Linear discriminants have strong connections to single-layer neu-
ral networks (see Duda and Hart, 1973; Bishop, 1995). Again considering only
two classes, one generalizes the concept of linear discriminant functions such as to
include a bias term, i.e. one is looking for functions of the form f (x) = w>x+b. As
we have already shown in Section 3.2.1, fitting the parameters of such a model us-
ing the least squares error criterion yields again Fisher’s discriminant. In a slightly
more general setting called logistic discrimination (McCulloch and Pitts, 1943;
Anderson, 1982), one adds a non-linear wrapper function to the outputs, i.e. uses
f (x) = g(w>x + b) for a suitably chosen g. As we have seen in Section 3.2.2,
g(a) = 1

1+exp(−a) is the theoretically optimal choice if one assumes normal distribu-
tions with identical covariance structure for the class-conditional densities and, not
surprising, also yields the direction found by Fisher’s discriminants for the optimal
w.

Finally, if we introduce a set of D predefined nonlinear functions φi(x) acting

38 3 KERNEL FISHER DISCRIMINANTS

directly on the examples, i.e. search for a discriminant function of the form

f (x) =

D∑
i=1

wiφi(x) + b,

we arrive at what is called generalized linear discriminants. The resulting model
will be a nonlinear function. However, since f is linear in the parameters w and
b, optimization can be carried out by e.g. least squares fitting. A typical example
would be radial-basis function (RBF) networks (e.g. Moody and Darken, 1989)
in which one chooses φi(x) = exp(−‖xi − x‖2/σ) for some σ ≥ 0. If we also
optimize over e.g. the parameter σ of the basis function φi , we get a model which
is nonlinear in its parameters and optimization has to be done using e.g. gradient
descent.

There is a large body of work extending the classical linear discriminant frame-
work by e.g. introducing special non-linearities, imposing certain types of regulariza-
tion, and using special learning algorithms to find the optimal direction (Friedman,
1989; McLachlan, 1992; Hastie and Tibshirani, 1996; Hastie et al., 1995; Grove
et al., 1997). But these techniques are often prone to local minima and lack an
intuitive interpretation. However, this goes beyond the scope of this work and the
reader is referred to the literature. Instead, we will consider relevant parts of the
existing theory during the derivation of the special non-linear variant of Fisher’s
discriminant proposed in this thesis.

3.4 Introducing Kernels

As we have seen before, linear discriminants are not always optimal. Worse, even
rather simple problems like the classical XOR-problem can not be solved using
linear functions (cf. Figure 2.7). Hence, the question arises if one can modify
linear discriminants such that one retains most of their appealing properties but
gets the flexibility to solve problems which need non-linear decision functions. The
most noticeable properties of e.g. Fishers discriminant are

1. The existence of a global solution and the absence of local minima.

2. This solution can be found in closed form.

3. A clear interpretation.

In the last paragraph we already mentioned non-linear variations of linear dis-
criminants, most noticeably generalized discriminants passing the input examples
through some non-linear functions. While for an appropriate choice of basis func-
tions it is in principle possible to approximate any (decision) functions to an arbi-
trary precision, it is only seldom possible to find an satisfactory interpretation of
the result. If the non-linearities include parameters which should be optimized as
well (as e.g. in multilayer neural networks) we get a difficult optimization problem
prone to local minima. Here, instead of hand-crafting a non-linear preprocessing
we propose to use kernel functions as introduced in Chapter 2. They will allow for
powerful, non-linear decision functions while still leaving us with a relatively simple

3.4 INTRODUCING KERNELS 39

optimization problem, a global solution and a straight forward interpretation of
what one is actually optimizing for.

As outlined in Chapter 1 the kernel trick amounts to performing the same
algorithm as before, but implicitly in the kernel Hilbert space E connected to the
kernel function used. Since for each kernel there exist a mapping Φ : X → E , such
that k(x, z) = (Φ(x) ·Φ(z)), one is looking for a discriminant of the form

f (x) = w>Φ(x),

but now w ∈ E is a vector in the feature space E . As the only way for us to work
in the feature space E is by using the kernel function, we need, as outlined for
other techniques in Chapter 2, a formulation of Fisher’s discriminants that only
uses Φ in such dot-products.

3.4.1 Rayleigh Coefficients in Feature Space

Before deriving an explicit expression for Fisher’s discriminant in a kernel feature
space let us take a short detour. To find the optimal linear discriminant we need to
maximize a Rayleigh coefficient (cf. Equation (3.5)). We arrived there by looking
for a suitable contrast criterion to use in the setting of (3.1). As we already
mentioned, also linear PCA can be interpreted in this framework, i.e. PCA can
be expressed as the optimization of a Rayleigh coefficient. The largest principal
component can be found by solving

G(w) =
w>Cw

w>w
.

Although PCA is an unsupervised technique whose assumption is that large vari-
ance in the data is an interesting feature, it is rather similar to Fisher’s discrimi-
nant in spirit. Fisher’s discriminants can also be interpreted as a feature extraction
technique, only that now “interesting” is defined by the separability criterion (3.5).
From this point of view, we can think of the Rayleigh coefficient as a general
tool to find features which (i) cover much of what is considered to be interesting
(e.g. variance in PCA) and at the same time avoid what is considered disturbing
(e.g. within class variance in Fisher’s discriminants). Of course there are more
criteria one could be interested in to impose on the extracted features. Often
one has prior information available that can be used to formulate improved fea-
ture quality criteria or, as in the case of Fisher, the features are extracted for a
certain purpose, e.g. for subsequently training some classifier. For instance, we
might know that the examples are corrupted by noise of a specific signature or
that there are invariance transformations under which a classification should not
change. These concepts, of known noise or transformation invariance, are closely
related, i.e. they can both be interpreted as causing a change in the feature, which
should be avoided: given two examples that are variations of the same observa-
tion, feature values extracted from these examples should be equal or at least very
similar. Clearly, invariance alone is never a sufficient condition for a good feature,
as we could simply take the constant feature. What one would like to obtain
is a feature, which is as invariant as possible while still covering as much of the
information necessary for describing the data’s properties of interest.

40 3 KERNEL FISHER DISCRIMINANTS

Having this in mind, Rayleigh coefficients become an even more natural choice.
Maximize

J(w) =
w>SIw

w>SNw
, (3.20)

where SI and SN are symmetric matrices designed such that they measure the
desired information and the undesired noise along the direction of w. The ratio in
(3.20) is maximized when one covers as much as possible of the desired informa-
tion while avoiding the undesired. We have already shown in Section 3.2 that this
problem can be solved via a generalized eigenproblem. By using the same tech-
nique, one can also compute second, third, etc., generalized eigenvectors from
the generalized eigenproblem, for example in PCA where we are usually looking
for more than just one feature. With the appropriate choices for SI and SN we
recover many well known techniques (see also Figure 3.2).

PSfrag replacements

��������� � ���	�

�������������

�����������!

PSfrag replacements

�"�����

#!$�% &('*),+

Figure 3.2: Illustrative comparison of principal component analysis (PCA), oriented PCA
(OPCA), and Fisher’s discriminant. Shown is the direction of the (first) feature extractor com-
puted by these techniques.

3.4.2 Choices for Covariance Matrices

We will now discuss, how different choices for the covariance or scatter matrices
SI and SN in (3.20) lead to different, well-known techniques. In the presentation
we already assume that we want to carry out these algorithms in a kernel feature
space E with associated mapping Φ.

PCA and oriented PCA We get the full covariance of a data set Z in the
feature space E by

C =
1

M

∑
x∈Z
(Φ(x)−m)(Φ(x)−m)>, (3.21)

with

m =
1

M

∑
x∈Z
Φ(x),

which can be used as SI in kernel PCA (Schölkopf et al., 1998b). For kernel PCA
SN would just be the identity matrix. A generalization of PCA, called oriented PCA

3.4 INTRODUCING KERNELS 41

(Diamantaras and Kung, 1996), tries to improve the directions of PCA by taking
into account known noise variance. The idea is to find directions with high (or
low) variance that are different from the known directions of high variance. This
is achieved by setting SN to an estimate of this unwanted variance. In practice
one can compute SN the same way as the covariance in (3.21) but over (mapped)
examples sampled from the assumed noise distribution. In summary, choosing the
matrices this way we obtain nonlinear versions of PCA and oriented PCA.

Fisher’s discriminant The standard formulation of the Fisher discriminant in
E , yielding the kernel Fisher discriminant (KFD) proposed in Mika et al. (1999a,
2000) (see also Roth and Steinhage (2000); Baudat and Anouar (2000)) is given
by

SN =
∑
i=1,2

∑
x∈Zi

(Φ(x)−mi)(Φ(x)−mi)>

and SI = (m2 −m1)(m2 −m1)>,
(3.22)

with the within-class scatter as SN , and the between class scatter as SI . Here mi
is the sample mean for examples from class i . This is in complete analogy to the
linear algorithm discussed earlier.

Transformation Invariance To incorporate a known invariance e.g. in oriented
kernel PCA, one can use a matrix similar to the tangent covariance matrix (Schölkopf,
1997; Simard et al., 1998),

T =
∑
x∈Z
(Φ(x)−Φ(Ltx))(Φ(x)−Φ(Ltx))>, (3.23)

for some small t > 0. Here Lt is a 1-parameter transformation. T can be seen as
a finite difference approximation of the covariance of the tangent of Lt at point
Φ(x) (details e.g. in Schölkopf (1997)). Using SI = C and SN = T in oriented
kernel PCA, we impose invariance under the local transformation Lt by penalizing∑
x∈Z (w · (Φ(x)−Φ(Lt(x))))

2. It is important to note that this matrix is not only
constructed from the training examples in Z, but also from the transformations
generated by Lt(x).5

Combination Of course, we are free to combine any of these matrices to get
both, say invariance and discrimination, by setting SN to a weighted sum of the
tangent covariance matrix and the within class scatter. Finally, we can also add
several tangent covariance matrices to impose invariances under more than just
one transformation or add different quality criteria to compute SI . In the general
case we obtain

J(w) =
w>
(∑

i SI i
)
w

w>
(∑

i SNi
)
w
, (3.24)

where for simplicity the appropriate weighting is subsumed in the matrices.

5The impact of this observation will become apparent in the next paragraph when the expan-
sion (3.25) for the solution w is derived.

42 3 KERNEL FISHER DISCRIMINANTS

3.4.3 Formulation using kernel functions

Following the reasoning in Chapter 2, to optimize (3.20) or (3.24) in some kernel
feature space E we need to find a formulation, which uses only dot products of
Φ-images. As numerator and denominator are both scalars, this can be done
independently. Furthermore, under some mild assumptions on SI and SN outlined
below (mild in the sense, that all choices above but (3.23) fulfill them), every
solution w ∈ E can be written as an expansion in terms of mapped training data,
i.e.

w =

M∑
x∈Z
αxΦ(x), αx ∈ R. (3.25)

This is an important issue in any kernel based learning technique: Since we can
only access the feature space E by means of the kernel function, either because it is
too high or infinite dimensional, or because we do not even know the actual feature
space connected to the kernel k, it would be impossible and quite useless to obtain
an explicit solution w ∈ E . Contrary, the use of expansion (3.25) makes things
tractable. To see that this expansion is valid, consider symmetric operators S on
the finite-dimensional subspace spanned by the Φ(xi) in a possibly infinite space
E , e.g. any matrix S, which is exclusively constructed from the Φ(xi) by means of
linear operations. Furthermore, let w = v1 + v2 be a decomposition of w into a
part v1 lying in the span of the training data, i.e. v1 ∈ span{Φ(xi) : i = 1, . . . ,M}
and a part v2 in its orthogonal complement, i.e. v2 ⊥ span{Φ(xi) : i = 1, . . . ,M}.
Then for any such S,

〈w, Sw〉 = 〈(v1 + v2), S(v1 + v2)〉
= 〈v1, Sv1〉,

using Sv2 = 0 and 〈v, Sv〉 = 〈Sv, v〉 for symmetric matrices. As v1 lies in the
span of the Φ(xi) and S, by construction, only operates on this subspace, Sv1 lies
in span{Φ(xi)} as well. Thus, for any such quadratic form w>Sw it is sufficient
to consider that part of w, which lies in the span of the examples: There already
exist an expansion of the form (3.25) for w, which maximizes (3.20) or (3.24) (in
E), respectively (see also Schölkopf et al. (2001)).

Multiplying either of the matrices proposed for SI and SN or a sum thereof
from the left and right with the expansion (3.25), we can find a formulation that
uses only dot products. In the following we exemplify this procedure by giving
the explicit derivation of (3.20) in the feature space E for Fisher’s discriminant
(yielding kernel Fisher discriminants (KFD)).

3.4.4 Derivation of Kernel Fisher Discriminants

Let Φ be the non–linear mapping to the feature space E . To find the linear
discriminant in E (which is then nonlinear in the input space) we need to maximize

J(w) =
wTSIw

wTSNw
,

where now w ∈ E and SI and SN are as in (3.22), where mi := 1
Mi

∑
x∈Zi Φ(x);

Mi denotes the number of training examples in class i . To solve this using only

3.4 INTRODUCING KERNELS 43

kernel functions

k(x, y) = (Φ(x) ·Φ(y)), (3.26)

we first need a formulation of (3.20) with the matrices (3.22) in terms of dot
products only, which we then replace by some kernel function. We define Kx as
the column corresponding to the element x in the kernel matrix (K)xz = k(x, z),
x, z ∈ Z. Using the expansion (3.25) and the definition of mi we write

w>mi =
1

Mi

∑
x∈Z

∑
z∈Zi

αx(Φ(x) ·Φ(z))

=
1

Mi

∑
x∈Z

∑
z∈Zi

αx k(x, z)

= ff>¯i (3.27)

where we define (¯i)j := 1
Mi

∑
x∈Zi Kx and replaced the dot products by the kernel

function (cf. (3.26)). Now consider the numerator of our Rayleigh coefficient. By
using the definition of SI and (3.27) it can be rewritten as

w>SIw = w>(m2 −m1)(m2 −m1)>w
= ff>(¯2 − ¯1)(¯2 − ¯1)>ff
= ff>Mff, (3.28)

with M := (¯2 − ¯1)(¯2 − ¯1)>. (3.29)

Considering the denominator, using (3.25), the definition of ¯i and a similar trans-
formation as in (3.28) we find:

w>SNw = w>

[∑
i=1,2

∑
x∈Zi

(Φ(x)−mi) (Φ(x)−mi)>
]
w

= ff>

[∑
i=1,2

∑
x∈Zi

(Kx − ¯i) (Kx − ¯i)>
]
ff

= ff>(K(I − v1v>1 − v2v>2)K>)ff
= ff>Nff (3.30)

with N := KDK>.

and D := I − v1v>1 − v2v>2,

where I is the identity matrix and vj is the vector with element (vj)i = 1/
√
Mj if

the example i belongs to class j and zero otherwise.
Combining (3.28) and (3.30) we can find Fisher’s discriminant in the feature

space E by maximizing

J(ff) =
ffTMff

ffTNff
. (3.31)

We still need to maximize a Rayleigh coefficient and everything we said before on
how to find the optimal solution still holds true. However, now it is a quotient in
terms of finitely many expansion coefficients ff, and not in terms of w ∈ E , which

44 3 KERNEL FISHER DISCRIMINANTS

would have been a potentially infinite-dimensional space. The projection of a new
example x onto w in E can be computed by

(w ·Φ(z)) =
M∑
x∈Z
αx k(x, z), (3.32)

without explicit reference to the mapping Φ. If we are looking for more than
one feature (e.g. in oriented kernel PCA) it is straightforward to check that their
expansions are given by the subsequent generalized eigenvectors of (3.31), again
in complete analogy to the input space algorithms.

But there is one problem: Even if the kernel matrix K has full rank (what is
a reasonably practical assumption and always true e.g. for the RBF kernel), the
matrix N does not, i.e. there exist a vector ff, such that ff>Nff = 0 and the
expression (3.31) is not well defined anymore. In fact, N has at most rank M− 2.
To see this, note that D = I − v1v>1 − v2v>2 has rank M − 2, where v1 and v2
span the null space of D. As the null space of N is at least as large as the one
of D, N has at most rank M − 2. In practice, one could resolve this problem by
minimizing 1/J(ff) instead of maximizing J(ff). Another possibility is to use the
fact, that the optimal solution to (3.31) is in the direction of N−1(¯1 − ¯2), and
use the pseudo-inverse instead of the inverse (and thus getting the vector ff with
the smallest `2–norm). This approach would also yield the correct solution for the
case of a linear kernel, i.e. the solution of linear Fisher discriminants. However, this
shows one problem with Fisher’s discriminants: If the number of dimensions is large
compared to the number of examples, the problem becomes ill-posed. Especially,
in the case of kernel algorithms we work effectively in the space spanned by all M
Φ(x) vectors which – as noted before – are in practice often linearly independent.
Thus, we are estimating covariances in anM–dimensional space fromM examples,
which is ill-posed as well. Along the lines of e.g. Friedman (1989) we will treat
this difficulty by using regularization in Section 3.4.6.

3.4.5 Other Rayleigh Coefficients

Algorithms using different matrices for SI or SN can easily be obtained along the
same lines. For example, if we wanted to do kernel PCA, we would choose SI as
the covariance matrix (3.21) and also end up with:

w>SIw = ff
>NPCAff,

but now NPCA simplifies to NPCA = K(I− vv>)K> with v being the 1/
√
M vector.

Since in the PCA case SN = I we trivially get

w>SNw = w>w

=

(∑
x∈Z
αxΦ(x)

>

)(∑
z∈Z
αzΦ(z)

)
=

∑
x,z∈Z

αxαz (Φ(x) ·Φ(z))

= ff>Kff,

3.4 INTRODUCING KERNELS 45

K being the kernel matrix.
If we do e.g. oriented kernel PCA or incorporate invariances into KFD using

the tangent covariance matrix (3.23) things are slightly more complicated. Since
this matrix is not only constructed from the training examples but also from the
transformed examples we can not readily use (3.25). This leaves us with two
options:

• One can show that the expansion for w is still correct but it would have to
range over all training patterns and the transformed examples. However,
this would result in matrices that are twice as large, i.e. 2M × 2M for one
transformation. Each additional transformation would increase the number
of coefficients that have to be estimated by M.

• The second option is to just ignore this fact and still use the shorter ex-
pansion (3.25) over the training examples only. If the training set is large
enough and the transformations are only small this should still give a reason-
ably good approximation. Then the size of the final problem stays M ×M,
regardless of the number of transformations we incorporate.

Here we adopt the second strategy and get, using the expansion (3.25) for w,
that

w>Tw = ff>NTff,

where NT = KK>+ K̄K̄>− KK̄>− K̄K>, where K̄ is the kernel matrix between
the original examples and the transformed examples Φ(Ltx).

3.4.6 Regularization

As we have already mentioned in Section 3.4.4 optimizing the Rayleigh coefficient
for Fisher’s discriminant in a feature space poses some problems. The matrix N
is not strictly positive and numerical problems can cause the matrix N not even
to be positive semi-definite. Furthermore, from Chapter 2 we know that for suc-
cessful learning it is absolutely mandatory to control the size and complexity of
the function class we choose our estimates from. This issue was not particularly
problematic for linear discriminants since they already present a rather simple hy-
pothesis class. Now, using the kernel-trick, we can represent an extremely rich
class of possible non-linear solutions. For example, using the Gaussian RBF ker-
nel (cf. (2.35)) we can always achieve a solution with zero within class variance
(i.e. ff>Nff = 0). Such a solution will, except for pathological cases, be over–
fitting.

To impose a certain regularity, the simplest possible solution is to add a multiple
of the identity matrix to N, i.e. replace N by Nµ where

Nµ := N + µI (µ ≥ 0). (3.33)

This can be viewed in different ways:

• If µ is sufficiently large this makes the problem feasible and numerically more
stable as Nµ becomes positive definite.

46 3 KERNEL FISHER DISCRIMINANTS

• Increasing µ decreases the variance inherent to the estimate N; for µ→∞
the estimate becomes less and less sensitive to the covariance structure. In
fact, for µ =∞ the solution will lie in the direction of ¯2−¯1. The estimate
of this “means” however, converges very fast and is very stable (cf. Bousquet
and Elisseeff, 2002).

• For a suitable choice of µ, this can be seen as decreasing the bias in sample
based estimation of eigenvalues (cf. Friedman, 1989). The point here is, that
the empirical eigenvalue of a covariance matrix is not an unbiased estimator
of the corresponding eigenvalue of the true covariance matrix, i.e. as we see
more and more examples, the largest eigenvalue does not converge to the
largest eigenvalue of the true covariance matrix. One can show that the
largest eigenvalues are over–estimated and that the smallest eigenvalues are
under–estimated (see also Chapter 4). However, the sum of all eigenvalues
(i.e. the trace) does converge since the estimation of the covariance matrix
itself (when done properly) is unbiased.

• It also imposes a regularization on ‖ff‖2, favoring solutions with small ex-
pansion coefficients. This can be seen in analogy to e.g. weight decay as
used with neural networks (Bishop, 1995; Ripley, 1996).

Another possible regularization strategy would be to add a multiple of the kernel
matrix K to N, i.e. replace N with

Nµ := N + µK (µ ≥ 0). (3.34)

This would, in analogy to SVM penalize ‖w‖2, since ‖w‖2 = ff>Kff. In practice
it does not seem to make a difference which way of regularization one chooses as
long as we do careful model selection. However, as we will see in the next section
the ‖w‖2 variant has some advantages.

3.4.7 KFD, Least Squares, and Quadratic Optimization

As we have already shown in Section 3.2.1 Fisher’s discriminants are equivalent to
a least squares regression to the labels (e.g. Duda and Hart, 1973). It is straight
forward to show that the same holds true in the feature space E . Thus, to solve the
two class kernel Fisher discriminant (KFD) problem one can solve the following,
quadratic optimization problem:

min
w,b,¸

1

2
‖¸‖2 + C P(w), (3.35)

subject to:
(w ·Φ(x)) + b = y − ξx, ∀(x, y) ∈ Z. (3.36)

Since we have already argued that some form of regularization will be necessary, we
have added the additional term C P(w) to the objective function. Here P denotes
some regularization operator and C ∈ R, C ≥ 0, is an user-defined constant that
controls the amount of regularization imposed. For C = 0 and a linear kernel
(i.e. k(x, z) = x · z) we recover Fisher’s linear discriminant.

3.4 INTRODUCING KERNELS 47

Lets us analyze this mathematical program a little closer to gain some insight
on the nature of this problem. The first option is to replace w with the expansion
(3.25). Let 1 be a vector of all ones of appropriate length and y the (±1) vector
of labels. Then we obtain the following problem:

min
ff,b,¸

1

2
‖¸‖2 + C P(ff), (3.37)

subject to:
Kff + 1b = y − ¸. (3.38)

Note that we changed the regularization operator to P(ff). This way, whatever
we choose for P the problem (3.37) has no explicit reference to the mapping Φ
anymore and can in principle be solved. However, only linear or quadratic forms
of P will lead to linear or quadratic optimization problems.

The second option to deal with (3.35) would be to assume some quadratic
form for P(w). If we choose P(w) = 1

2‖w‖
2 as in SVM we can form the dual

optimization problem as follows. First we introduce Lagrange multipliers αx, x ∈
Z, for each of the constraints (3.36). Since we are dealing with equality constraints
these αx are, in contrast to the inequality constraints (2.26) of SVM, unbounded
variables. The Lagrangian then reads:

L(w, b, ξ,ff) =
1

2
‖¸‖2 +

C

2
‖w‖2 −

∑
(x,y)∈Z

αx ((w ·Φ(x)) + b − y + ξx) . (3.39)

Since for optimality we must be at a saddle point of L we take the derivatives
with respect to the primal variables w, b and ξ to obtain the following optimality
conditions:

∂L

∂w
= Cw −

∑
x∈Z
αxΦ(x)

!
= 0, (3.40)

∂L

∂b
=
∑
x∈Z
αx

!
= 0, (3.41)

∂L

∂¸
= ¸− ff !

= 0. (3.42)

It follows once more from (3.40) that w can be expressed as a linear combination
of the (mapped) training examples, i.e.

w =
1

C

∑
x∈Z
αxΦ(x). (3.43)

Using the optimality conditions (3.40)-(3.42) we can form the following dual op-
timization problem by replacing in (3.39) w by (3.43) and using ¸ = ff:

max
ff

−
1

2
‖ff‖2 −

1

2C
ff>Kff + y>ff, (3.44)

subject to: ∑
x∈Z
αx = 0. (3.45)

48 3 KERNEL FISHER DISCRIMINANTS

The question arises whether the solution obtained by the dual problem (3.44)
is any different from the solution of the problem (3.37) when setting the regular-
ization operator to P(ff) = 1

2‖w‖
2 = 1

2ff
>Kff? The answer is: no. To see this,

we also form the dual of (3.37): Forming again the Lagrangian with multipliers
βx, x ∈ Z, we get

L(ff, b, ¸,fi) =
1

2
‖¸‖2 +

C

2
ff>Kff − fi>(Kff + 1b − y + ¸) .

The conditions for optimality now read

∂L

∂ff
= CKff −Kfi !

= 0,

∂L

∂b
= 1>fi

!
= 0,

∂L

∂¸
= ¸− fi !

= 0.

Using these conditions, especially that Kff = 1
CKfi, we get the following dual

problem:

max
fi

−
1

2
‖fi‖2 −

1

2C
fi>Kfi+ y>fi, (3.46)

subject to:
1>fi = 0, (3.47)

which is clearly equivalent to (3.44). It remains the question whether the solutions
for w will be identical. This is straight forward to see if K has full rank since then
for the second dual problem ff = 1

Cfi which coincides with the solution for w
obtained in the first dual. Otherwise, if K does not have full rank, the solutions
will at least agree on the space spanned by the training examples Φ(x) which is
all we are interested in.

Finally, let us also consider the dual optimization problem of (3.37) if we
choose, in analogy to (3.33), the regularizer P = I, i.e. penalize ‖ff‖2. The
Lagrangian becomes:

L(ff, b, ¸,fi) =
1

2
‖¸‖2 +

C

2
‖ff‖2 − fi>(Kff + 1b − y + ¸) ,

and the KKT conditions are

∂L

∂ff
= Cff −Kfi !

= 0,

∂L

∂b
= 1>fi

!
= 0,

∂L

∂¸
= ¸− fi !

= 0.

Using this time that ff = 1
CKfi, we get the following dual problem:

max
fi

−
1

2
‖fi‖2 −

1

2C
fi>K>Kfi+ y>fi, (3.48)

subject to:
1>fi = 0. (3.49)

3.4 INTRODUCING KERNELS 49

Casting the kernel Fisher discriminant problem into a quadratic program reveals
some interesting properties. This formulation might be taken as another motiva-
tion for adding a regularizer to linear or kernel Fisher discriminants. If there are
more examples than dimensions then the least squares approach induces a form
of regularization by the fact that the system of equalities we are trying to solve
is over-determined, i.e. there are more constraints than there are variables (in the
linear case). Otherwise, if the number of examples is equal or even smaller than
the dimension of the space one is working in (as in the kernel case), the system is
under-determined, e.g. there are one or more solutions, which are a perfect fit to
the labels, and as such almost certainly over–fitting.

From a classification point of view the quadratic program has an appealing
interpretation. The constraints ensures, that the average class distance, projected
onto the direction of discrimination, is two (for ±1 labels), while the intra class
variance is minimized, i.e. we maximize the average margin. Contrarily, the SVM
approach (Boser et al., 1992) optimizes for a large minimal margin (see also
Figure 5.7).

3.4.8 Sparse and Linear KFD

We will now use the quadratic optimization formulations of KFD presented in
the last section to derive some modified kernel Fisher variants with interesting
properties. First, since the expansion coefficients in KFD are free variables and
since there is no term in the QP objectives which would enforce zero expansion
coefficients the solutions ff will be non-sparse, i.e. all terms αx will be nonzero.
This is undesirable for two reasons: (i) for large M it will make the evaluation of
w ·Φ(x) slow and (ii) the optimization of e.g. (3.44) will be more difficult. Clever
tricks like chunking (Saunders et al., 1998b; Osuna et al., 1997) or sequential
minimal optimization (SMO) (Platt, 1999) will not be applicable or only at a
much higher computational cost. Second, penalizing the squared deviation from
the label via ‖¸‖2 is often considered to be non-robust in the sense, that a single
outlier can have an inappropriately strong influence on the solution (Huber, 1981).

The three KFD variants proposed in the following will circumvent the problems
just discussed.

Robust KFD

To prevent a too big influence of a single training example a common rule of
thumb suggests to penalize errors only linearly or to use the so called robust loss.
The first option would amount to replace the squared error term ‖¸‖2 in (3.37)
by the `1-norm of ¸, i.e. ‖¸‖1. In a mathematical programming formulation this
reads:

min
w,b,¸+,¸−

1>(¸+ + ¸−) +
C

2
‖w‖2, (3.50)

subject to:
(w ·Φ(x)) + b = y − (¸+ − ¸−)x, ∀(x, y) ∈ Z,

and
¸+, ¸− ≥ 0,

50 3 KERNEL FISHER DISCRIMINANTS

where we have used a standard trick from mathematical programming and replaced
the variable ¸ by its positive and negative part respectively, i.e. ¸ = ¸+− ¸−. This
way the `1-norm of ¸ can expressed as a linear function. For the dual optimization
problem this means that instead of penalizing the squared norm of ff we will limit
the size of ff. Still, formulating the dual shows that w is given by the expansion
(3.43) (and we could also have written 1

2Cff
>Kff in the objective of (3.50)):

max
ff

−
1

2C
ff>Kff + y>ff, (3.51)

subject to:

1>ff = 0,
1 ≤ ff ≤ 1.

Another way to achieve more robustness is to use what is known as Huber’s robust
loss function (cf. Section 2.1.4 and Table 2.1):

`(ξx) =

{
1
2σ ξ

2
x if |ξx| ≤ σ,

|ξx| − σ2 otherwise,
(3.52)

i.e. we penalize small errors by the squared norm but errors which are too large
(larger than σ) are only penalized linearly. This can also be formulated in a math-
ematical program by splitting the slack variables ¸ appropriately:

min
w,b,¸,¸+,¸−

1

2σ
‖¸‖2 + 1>(¸+ + ¸− − 1

σ

2
) +
C

2
‖w‖2,

subject to:

(w ·Φ(x)) + b = y − ξx − (¸+ − ¸−)x ∀(x, y) ∈ Z,
−1σ ≤ ¸ ≤ 1σ,

¸+, ¸− ≥ 0.

Since we will not consider this problem further we skip deriving its corresponding
dual.

Sparse KFD

Next we will investigate how to modify (3.37) or (3.44) to yield sparse expansion
coefficients. The cleanest way to achieve sparse expansions ff would be to add a
constraint on the `0-norm of ff counting the number of non-zero coefficients p,
i.e. ‖ff‖0 ≤ p for some a priori chosen maximal number of non-zero coefficients
p. However, such an approach leads to a non-convex optimization problem that
can only be solved exactly by searching the space of all possible solutions with p
non-zero αx. This is clearly prohibitive for more than a few training examples since
there are

(
M
p

)
possible solutions.

A more practical approach is the following: In mathematical programming
sparsity can often be achieved by constraining or penalizing the `1-norm of the
variables. In our case that would amount to put a ‖ff‖1 in the objective. Roughly
speaking, a reason for the induced sparseness is the fact that vectors far from
the coordinate axes are “larger” with respect to the `1–norm than with respect to

3.4 INTRODUCING KERNELS 51

`p-norms with p > 1. For example, consider the vectors (1, 0) and (1/
√
2, 1/

√
2).

For the two norm, ‖(1, 0)‖2 = ‖(1/
√
2, 1/

√
2)‖2 = 1, but for the `1–norm, 1 =

‖(1, 0)‖1 < ‖(1/
√
2, 1/

√
2)‖2 =

√
2. Note that using the `1–norm as regularizer

the optimal solution is always a vertex solution (or can be expressed as such) and
tends to be very sparse. The resulting optimization problem is still convex and can
be solved using standard quadratic or linear optimization routines.

The question is where to put the ‖ff‖1? While it seems tempting to change
the `2-norm in the standard KFD dual problem (3.44) to be a `1-norm, this does
not work out since we could only put ‖ff‖2 into the objective since we knew from
the KKT condition (3.42) that ff = ¸ at the optimal solution. Forming the dual
in this case would reveal that now the optimal solution is ff ≡ 0.

Since enforcing sparsity can also be seen as some form of regularization we
will proceed differently and put the `1-norm as regularizer in the primal problem
(3.37):

min
ff+,ff−,b,¸

1

2
‖¸‖2 + C1>(ff+ + ff−), (3.53)

subject to:
K(ff+ − ff−) + 1b = y − ¸,

and
ff+,ff− ≥ 0.

We call this particular variant sparse KFD (SKFD). It is interesting to see what
happens to the dual of the KFD problem when using the `1-norm regularizer instead
of ‖w‖2:

max
fi

−
1

2
‖fi‖2 + y>fi, (3.54)

subject to:

1>fi = 0 ,
−C1 ≤ Kfi ≤ C1.

Note that also for this problem the (primal) slack variables ¸ will be equal to the
dual variables (i.e. the Lagrange multipliers) fi (cf. (3.42)). But here the dual vari-
ables are not the ones anymore that we need to express the solution. However,
most quadratic and linear optimization packages also return the Lagrange multi-
pliers at the optimal solution. It turns out that the (dual) Lagrange multipliers for
the constraint |Kfi| ≤ C1 are exactly the ff’s we are looking for.

Linear Sparse KFD

The final algorithm we propose here is the straight forward combination of robust
KFD and sparse KFD, i.e. we use the linear loss for ¸ and the `1-norm regular-
izer. We call this setting linear sparse KFD (LSKFD). The optimization problem
becomes:

min
ff+,ff−,b,¸+,¸−

1>(¸+ + ¸−) + C1
>(ff+ + ff−), (3.55)

subject to:
K(ff+ − ff−) + 1b = y − (¸+ − ¸−),

52 3 KERNEL FISHER DISCRIMINANTS

and
ff+,ff−, ¸+, ¸− ≥ 0.

The dual of this problem is
max
fi

y>fi, (3.56)

subject to:

1>fi = 0,
−C1 ≤ Kfi ≤ C1,
−1 ≤ fi ≤ 1.

We see how the dual constraints of linear KFD and sparse KFD merge together
here to achieve both, a robust linear loss and sparse solutions. However, also
here it is not possible to obtain the expansion coefficients ff directly from the
dual variables fi. Instead we have ff = K−1fi. But as for sparse KFD, the primal
variables ff can be recovered from the Lagrange multipliers of the |Kfi| ≤ C1
constraints.

3.5 Algorithms

Having successfully formulated a Rayleigh coefficient in feature space there occurs
one major problem: While we could avoid working explicitly in the extremely high
or infinite dimensional space E we are now facing a problem in M variables, a num-
ber which in many practical applications would not allow to store or manipulate
M × M matrices on a computer anymore. Furthermore, solving e.g. an eigen-
problem of size M ×M is rather time consuming (O(M3)). In the following we
will first propose several ways to deal with this general problem when optimizing
the Rayleigh coefficient in feature space. Second, we will derive some numerical
methods explicitly adopted to the special structure of the kernel Fisher discriminant
problem.

3.5.1 Training on a subset

To maximize (3.31) in the case of KFD or the equivalent for other choices of
matrices (cf. Section 3.4.5), we need to solve an M × M eigenproblem, which
might be intractable for large M. As the solutions are not sparse, one can not
directly use efficient algorithms like chunking for support vector machines (cf.
Schölkopf et al., 1999a). One possible solution, which is applicable to any choice
of matrices SI and SN , is to restrict the feature extractor w to lie in a subspace,
i.e. instead of expanding w by (3.25) we write

w =

m∑
i=1

αiΦ(zi), (3.57)

with m � M (analogous to the reduced set method of SVM (cf. Schölkopf et al.,
1999b)). The examples zi , i = 1, . . . , m, could either be a subset of the training
sample Z or e.g. be estimated by some clustering algorithm. The derivation of

3.5 ALGORITHMS 53

(3.31) does not change, only K is now m×M and we end up with m×m matrices
for N and M. Another advantage of this approach is that it makes the matrix
N non-singular by increasing the rank of N (relative to its size). However, since
it is hard to determine the most important points zi to describe a good solution
such an approach can not be seen as much more than a computationally cheap
heuristic. However, if m is not too small and the data are reasonably well behaved
(i.e. not extremely noisy), experience shows that using this simple and straight
forward “trick”, we do not loose much in terms of generalization ability.

3.5.2 A Sparse, Greedy Approach

Another way to find a solution to (3.31) is given by the following idea: Instead
of trying to find a full solution w described by M non-zero α’s, one can try to
approximate w by a shorter expansion (i.e. by using a vector of α’s with many zero
entries). But instead of choosing the non-zero coefficients a priori as proposed in
the last paragraph one iteratively selects new examples to add to the expansion in
a greedy fashion, e.g. such that the actual objective function is minimized among
all possible choices (see also Golub and van Loan (1996)). But, contrary to the
approach which selects the expansion examples a priori, this algorithm will only be
feasible, if there is an efficient way of evaluating the optimality criterion in each
step, an assumption that is not true for all choices of matrices SI and SN and all
selection criteria. But for e.g. KFD this is possible and has been described in Mika
et al. (2001b). Such an approach is straight forward to implement and much faster
than solving a quadratic program or eigenproblem, provided that the number of
non–zero α’s necessary to get a good approximation to the full solution is small.
However, this approach will only be an approximation to the optimal solution, which
has the same number of non–zero coefficients. There is some theoretical evidence
that such an approach gets close to the optimal sparse solution (Natarajan, 1995).
But it is also possible to construct situations in which such a heuristic will fail
(Miller, 1990). In general, finding the optimal m out of M coefficients to adjust is
a NP–hard problem. The approach presented here is very similar in spirit to what
has been discussed in the context of SVM in Smola and Schölkopf (2000) and for
Gaussian Process Regression in Smola and Bartlett (2001).

To proceed, let us rewrite (3.37). Solving the equality constraint for ¸ and
substituting it into the objective we get

min
ff,b

1

2

[
ff

b

]>[
K>K + C P K>1

1>K M

] [
ff

b

]
−
[
K>y

M2 −M1

]>[
ff

b

]
+
M

2
, (3.58)

where the regularization is either done via P = I or P = K. Since now we do not
have any constraints left, we can compute the optimal solution by equating the
derivative to zero and get[

ff∗

b∗

]
=

[
K>K + C P K>1

1>K M

]−1 [
K>y

M2 −M1

]
. (3.59)

Of course, this problem is not easier to solve than the original one nor does it yield
a sparse solution: there is an (M + 1) × (M + 1) matrix involved and for large
data sets its inversion is not feasible, neither in terms of time nor memory cost.

54 3 KERNEL FISHER DISCRIMINANTS

Now, the idea is to use the following, greedy approximation scheme (cf. Smola
and Bartlett, 2001): Instead of trying to find a full set of M αi ’s for the solution
(3.25), we approximate the optimal solution by a shorter expansion containing
only m � M terms.

Starting with an empty expansion m = 0, one selects in each iteration a
new sample xi (or an index i) and resolves the problem for the expansion (3.25)
containing this new index and all previously picked indices; we stop as soon as a
suitable criterion is satisfied. This approach would still be infeasible in terms of
computational cost if we had to solve the system (3.59) anew in each iteration.
But with the derivation made before it is possible to find a close approximation
to the optimal solution in each iteration at a cost of O(κMm2) where κ is a user
defined value (see below).

Writing down the quadratic program (3.37) for KFD when the expansion for
the solution is restricted to an m element subset I ⊂ [M]

wI =
∑
i∈I
αiΦ(xi) (3.60)

of the training patterns amounts to replacing the M ×M matrix K by the M ×m
matrix Km, where (Km)i j = k(xi , xj), i = 1, . . . ,M and j ∈ I. Analogously, we
can derive the formulation (3.58) and (3.59) using the matrix Km. The problem
is of order m ×m now.

Rank One Update Of Inverse

Lets introduce the shorthand H for the matrix involved in (3.59) using the expan-
sion restricted to m functions, i.e.

H =

[
K>mKm + C P K>m1

1>Km M

]
. (3.61)

Assume we already know the optimal solution (and inverse of H) using m kernel-
functions. Then the inverse matrix H−1 for m + 1 samples can be obtained by a
rank one update of the previous H−1 using only m basis functions: The following
Lemma (e.g. Golub and van Loan, 1996) tells us how to obtain the new H−1.

Lemma 3.1 (Sherman–Woodbury–Formula). The inverse of a symmetric, pos-
itive matrix can be computed as:[

H B

B> C

]−1
=

[
H−1 + (H−1B)γ(H−1B)> −γ(H−1B)

−γ(H−1B)> γ

]
,

where γ = (C − B>H−1B)−1.

Note that for our case B is a vector and C a scalar. This is an operation of
cost O(m2) as we already know the inverse of the smaller system.

Selection Rules

The last major problem is to pick an index i in each iteration. Choosing one index at
a time can be considered as a coordinate wise descent method with the difference

3.5 ALGORITHMS 55

that we update all coordinates which were already chosen in each iteration. As we
are dealing with a convex, quadratic optimization problem any selection rule will
finally lead to the (optimal) solution of the full problem. And adding only kernel
functions to the expansion, it is easy to see that this convergence is monotonic
with respect to the primal objective. The interesting question is how one has
to choose the sequence of indices such that this greedy approach will get close
to the full solution as soon as possible. Here we propose to choose the i for
which we get the biggest decrease in the primal-objective (or equivalently as they
are identical for the optimal coefficients ff, the dual objective (3.46) or (3.48),
respectively). This corresponds to a steepest descent method in a restricted space
of the gradients.

A probabilistic speed-up

Testing the selection rule for all M − m indices which are unused so far is again
too expensive. This would require to compute all unused columns of the kernel
matrix and to update the inverse matrix M −m times. One possible solution lies
in a second approximation. Instead of choosing the best possible index it is usually
sufficient to find an index for which with high probability we achieve something
close to the optimum. It turns out (cf. Smola and Schölkopf, 2000) that it can
be enough to consider 59 randomly chosen indices from the remaining ones:

Lemma 3.2 (Maximum of Random Variables). Denote by ρ1, . . . , ρm identically
distributed independent random variables with a common cumulative distribution
function F . Then the cumulative distribution function of ρ = maxi∈[m] ρi is (F)m.

This means that e.g. for the uniform distribution on [0, 1] maxi∈[m] ρi is dis-
tributed according to (ρ)m. Thus, to obtain an estimate that is with probabil-
ity 0.95 among the best 0.05 of all estimates, a random sample of size κ :=
(ln 0.05/ ln 0.95) = 59 is enough.

Termination

Still open is the question when to stop. If one wanted to compute the full solution
this approach would not be very efficient as it would take O(κM3) which is worse
than the original problem. A principled stopping rule would be to measure the
distance of wI to the solution of the full problem and to stop when this falls below
a certain threshold. Unfortunately the full solution is, for obvious reasons, not
available. Instead one could try to bound the difference of the objective (3.37)
for the current solution to the optimal value obtained for the full problem as
done in Smola and Bartlett (2001). But in our case an efficient way to bound
this difference is, again, not available. Instead we have decided for a very simple
heuristic which turned out to work well in the experiments: stop when the average
improvement in the dual objective (3.46) over the last p iterations is less than
some threshold θ. The longer the averaging process, the more confident we are
that the current solution is not at a plateau. The smaller the threshold, the closer
we are to the original solution (indeed, setting the threshold to zero forces the
algorithm to take all training samples into account). The complete algorithm for
a sparse greedy solution to the KFD problem is sketched in Figure 3.3. It is easy

56 3 KERNEL FISHER DISCRIMINANTS

arguments: Sample X = {x1, . . . , xM}, y = {y1, . . . , yM}
Maximum number of coefficients
or parameters of other stopping criterion: OPTS
Regularization constant C, κ and kernel k

returns: Set of indices I and corresponding ff’s.
Threshold b.

function SGKFD(X, y, C, κ, k, OPTS)
m ← 0
I ← ∅
while termination criterion not satisfied do
S ← (κ elements from [M]\I)
objmax ←∞
for i ∈ S do
Compute column i of kernel matrix
Update inverse adding the i-th kernel
Compute optimal ff and b
Compute new objective
if objective < objmax do

iopt ← i
objmax ← objective

endif
endfor
Update inverse H and solution a with kernel iopt
I ← I∪{iopt}
Check termination criterion

endwhile

Figure 3.3: The Sparse Greedy Kernel Fisher Algorithm (for the selection criterion which mini-
mizes the objective).

to implement using a linear algebra package like BLAS and has the potential to be
easily parallelized (the matrix update) and distributed. Furthermore, in multi-class
problems (if one is using an one against the rest scheme) it is possible to consider
all two-class problems simultaneously. Testing the same subset of indices for each
classifier would result in a reasonable speedup, as the computation of the columns
of the kernel matrix for each picked index is among the most expensive parts of
this algorithm and must now only be done once.

3.5.3 Coordinate Descent & SMO

In this section we propose an optimization strategy for the (dual) quadratic op-
timization problem (3.44), i.e. KFD with a ‖w‖2 regularizer, that is especially
appealing. It can be seen as a coordinate wise descent method and is very similar
in spirit to the Sequential Minimal Optimization (SMO) proposed by Platt (1999)
for Support Vector Machines. A similar technique has been proposed for least
square support vector machines by Keerthi and Shevade (2002). Its most impres-
sive feature is that it does not require storage of the M×M matrix K at any time.

3.5 ALGORITHMS 57

It will, however, be computationally more demanding than a SMO algorithm for
SVM as the solution is not sparse. In SMO for SVM, we, in principle, only need
to iteratively optimize those αi that will be support vectors, i.e. αi 6= 0. Since we
have here αi 6= 0 for all i = 1, . . . ,M there is more work to be done.

The idea is to iteratively minimize the objective for the smallest number of
coefficients possible, keeping the other coefficients fixed. The hope is, that each
step will be computationally cheap. Assume that we are given an feasible, but not
yet optimal, intermediate solution fft . Since the QP (3.44) has the constraint
that the sum of all coefficients should be zero, i.e.

1>ff = 0,

the minimal number of coefficients one has to change in order to keep the con-
straint satisfied is two (increasing one by the same amount the other is decreased).
Assume that we have decided to optimize the coefficients αi and αj , i 6= j . Then
the new solution fft+1 in the next iteration can be written as

αt+1i = αti + r, and αt+1j = αtj − r,

for some r ∈ R. Substituting this expression into the dual objective (3.44) and
differentiating with respect to r yields that the optimal step is given by

r = −
1
C (Kff

t)i + α
t
i − yi −

1
C (Kff

t)j − αtj + yj
1
CKi i +

1
CKj j −

2
CKi j + 2

.

It can be seen from the last equation that in order to compute the step r we only
need access to the old Kfft product and the new kernel elements Ki i , Kj j and
Ki j . This implies, that in an iterative optimization scheme we only need to track
Kff. Since Kfft+1 = Kfft + rK•i − rK•j this can be done by computing the two
columns of the kernel matrix corresponding to the two indices chosen in each step.

Choosing Indices

The question is however which indices to choose at each iteration. Since the
solution will not be sparse anyway we could in principle choose all (M − 1)M
combinations in turn. But then we might pick indices for which the increase in
the objective is very small, i.e. convergence would be very slow. Since we have to
increase one variable and to decrease the other we propose to choose the pair of
indices with the largest and smallest gradient. The gradient can also be computed
without explicitly accessing the kernel matrix K. Only using the product Kfft it is
given by

∇ff =
1

C
Kfft + fft − y.

and hence finding these indices is a simple search through all elements in ∇ff .
In order to see that such an approach converges it is important to notice that

the gradient at the optimal solution will be a multiple of the unit vector. The
proof is trivial and follows from the fact that at an optimal point (ff, b) the primal

58 3 KERNEL FISHER DISCRIMINANTS

constraints can be written in terms of the gradient of the dual objective as follows:

1

C
Kff + 1b = y − ¸ at optimum⇒

1

C
Kff + 1b = y − ff

⇔
1

C
Kff + ff − y = −1b

⇔ ∇ff = −1b.

Vice versa one can show that we can not yet be at an optimal point if this equation
does not hold true. This also implies that the dual objective will increase in each
step.

Monitoring and Stopping

Since we are doing an iterative optimization it is important to know when the
current solution fft is sufficiently close to the true solution. This can be done by
monitoring the duality gap and the primal infeasibility. From the KKT conditions
of this problem (cf. (3.42)) we know, that at the optimal solution ¸ = ff. All
we need to find in order to compute the primal infeasibility and objective is the
threshold b. Keeping all other variables in the primal fixed but b, it is straight
forward to show that the currently optimal value is given by:

bt = −
1>
(
1
CKff

t + fft − y
)

M
.

All this as well as evaluating the primal objective can also be done just using Kfft

without the need to evaluate the complete kernel matrix.
From the theory of mathematical programming (cf. Appendix A) we know that

a necessary and sufficient condition for optimality of the current solution fft is given
by primal and dual feasibility and through the duality gap. Since by construction
we are always dual feasible we are left with primal infeasibility and the duality
gap, i.e. the difference between primal and dual objective. Primal infeasibility is
measured relatively to the right hand side of the equality, i.e. in our case by

‖ 1CKff
t + fft − y‖
‖y‖

From the differences of the objectives we can compute the number of significant
figures of the current objective value as (Vanderbei, 1997)

max

(
− log10

(
|oprimal − odual|
|oprimal|+ 1

)
, 0

)
. (3.62)

As soon as this number is bigger than some predefined threshold and the primal
infeasibility is small enough we know that the current solution is close to the true
solution and stop. Since we keep track of the current Kfft the cost for the moni-
toring process is only O(M). In Chapter 5 we will show that these thresholds can
be chosen relatively small (e.g. only one significant figure and a primal infeasibility
smaller than 0.1) to get good approximate solutions.

3.5 ALGORITHMS 59

Greedy SMO and Other Extensions

Of course we are free to combine the greedy approximation scheme with this se-
quential optimization scheme to get both, sparse solutions (greedy approximation)
and an algorithm with only linear memory needs (the SMO-type technique). We
could use the greedy scheme to iteratively select new indices to add to the solution.
But instead of maintaining the inverse of the ever growing matrix H (cf. (3.61)),
we could use the SMO scheme to resolve our problem. The old solution could be
used as a starting point and as long as the number of samples necessary to express
a sufficiently good solution is small the iteration should converge quickly.

Another extension in the SMO scheme would be to make use of the past
columns of the kernel matrix that have been computed already. First, one could
store them in a cache to speed up the computation. However, in practice it seems
that all indices are chosen with approximately equal probability, rendering a cache
not very efficient. What one could do, however, is to use the cached columns
of the kernel matrix to also update all αi corresponding to them. This would be
very similar to chunking techniques used in SVM and could be done by solving
a small QP in each iteration whose size depends on the number of columns in
the cache. In each iteration, we remove those columns from the cache with the
smallest absolute difference in their gradients and add those two columns that we
had chosen before anyway.

3.5.4 Solving a Linear System

The last method to solve the KFD problem with the ‖w‖2 regularizer, i.e. (3.35),
is through a linear system of equations. From the derivation of the dual (3.44) we
know that the slacks ¸ in the primal must be equal to the expansion coefficients
ff at the optimal solution. We already used that thus the optimal solution must
satisfy the primal equality constraint with ¸ replaced by ff, i.e.(

1

C
K + I

)
ff + 1b = y.

This system is still under determined. But we also know, again from the dual, that
the sum of all αi must be zero, i.e. 1>ff = 0. Combining the last two equalities
we get that at the optimal solution[

1
CK + I 1

1> 0

] [
ff

b

]
=

[
y

0

]
. (3.63)

This is a system of M +1 equalities in M +1 variables. Since the kernel matrix K
is at least positive semi-definite, for sufficiently large C this system will have full
rank and hence possess a unique solution. Also here it would be possible to use
the greedy approximation scheme discussed in Section 3.5.2 to approximate the
inverse of the system.

By a similar argumentation one can show that we can find the optimal solution
fi for the KFD problem with the ‖ff‖2 regularizer by solving for[

1
CK
>K + I 1

1> 0

] [
fi

b

]
=

[
y

0

]
, (3.64)

60 3 KERNEL FISHER DISCRIMINANTS

where, following the KKT conditions of (3.37) and (3.48) the solution ff is given
by

ff =
1

C
Kfi.

3.5.5 Interior Point and Incomplete Cholesky

The last possibility to solve any of the KFD problems we will discuss here is to
resort to standard mathematical programming techniques. For solving linear prob-
lems the most well known technique is the so called simplex method (Dantzig,
1962). Whilst it is provably not polynomial in the number of variables it usu-
ally converges quite well. Alternative techniques for linear optimization like the
ellipsoid method (Khachiyan, 1979) possess a polynomial convergence rate but
they are impossible to use in practice. Here we want to concentrate on another
technique called interior point optimization (Karmarkar, 1984; Mehrotra, 1992;
Doljansky and Teboulle, 1998), suitable for linear and quadratic optimization.6

The name interior point stems from the fact that these techniques try to find a
point that satisfies both, the primal and dual constraints and the KKT compli-
mentary conditions, i.e. is in the interior of the feasible set.

A more formal treatment of how interior point methods work and how to
derive an interior point code in the spirit of Vanderbei (1994) can be found in the
Appendix A. There we also outline how an interior point code can be adopted to
the special structure of the KFD problems.

It turns out, that deriving a specialized interior point code for KFD has some
advantages. The dominating cost in using an interior point optimizer is the solution
of a reduced KKT system twice in each iteration. The special adoption carried
out in the appendix allows to substantially reduce the size of this system using the
special problem structure. However, this reduced system will always, in one or the
other way, contain a copy of the dense matrix K. There are several ways in which
one could continue the work presented here to cope with this situation:

• It has been suggested by Achlioptas et al. (2002) that the kernel matrix K
can be approximated by a sparse matrix. This would greatly reduce the cost
of solving the reduced KKT; especially, it would be helpful when solving the
system by an iterative method.

• Low rank approximations of K might also be helpful since then the reduced
KKT might become substantially smaller.

• Finally, the incomplete Cholesky factorization proposed e.g. in Bach and
Jordan (2002) or the Nyström approximation (Smola and Schölkopf, 2000;
Williams and Seeger, 2001) could be used to making solving the reduced
KKT easier.

3.5.6 Linear Optimization

The last algorithm we want to mention is a very elegant way to solve the linear
sparse KFD problem (3.55) (LSKFD). It can be understood in analogy to linear

6Indeed, interior points methods can also applied to non–convex, non–linear problems (Van-
derbei and Shanno, 1997); here we restrict ourselves to what we actually need.

3.5 ALGORITHMS 61

programming machines as they emerged in the context of SVM (cf. Graepel et al.,
1999). Such a linear program will be very sparse in ff and can be optimized using
a technique called column generation (e.g. Bennett et al., 2000; Rätsch, 2001;
Rätsch et al., 2002, and references therein).

The idea behind column generation can be summarized as follows: Each primal
variable (i.e. each αi) yields a constraint in the dual problem. From the Karush-
Kuhn-Tucker complimentary condition we know that only those variables in the
primal will be non-zero for which the corresponding dual constraint is active, i.e. the
inequality is fulfilled with equality. For the LSKFD problem this translates into
the following: At the optimal solution, for each i we have αi 6= 0 if and only
if Ki•fi = C or Ki•fi = −C. Assume for a moment we would know before we
start the optimization which αi are non-zero. Then the problem would be much
easier to solve since we could eliminate many primal variables and most of the
dual constraints. Especially important is that this allows us to get rid of large
parts of the kernel matrix K. Now, column generation proceeds as follows (see

Figure 3.4: Illustration of column generation (without objective). Shown are three linear con-
straints and the feasible region (shaded). The current solution is depicted by the black dot. In
the beginning all three constraints are violated. The next solution is found by including the most
violated constraint. This also satisfies another constraint although it was not explicitly evaluated.
In the final step the last violated constraint is added to the problem and a feasible solution is
found.

also Figure 3.4): We start with a dual problem containing no constraints of the
form −C1 ≤ Kfi ≤ C1. Then in each iteration we try to find a constraint in the
dual (a row of the kernel matrix) which is violated. The name column generation
stems from the fact that this way we add a column, i.e. a variable, in the primal.
We then add this constraint to the problem and resolve. Luckily, solving a linear
program that only differs from another program we know the optimal solution
for in a few (here two) constraints is faster than solving the complete problem.
Even nicer, removing an inactive constraint from our dual problem can be done
at no cost at all, i.e. in each iteration we might as well remove constraints which
have been inactive for a number of past iterations. They correspond to primal
variables αi that would be zero for the current (intermediate) solution. If there
are no more violated constraints left to add to the dual we are at the optimal
(dual) solution. As mentioned before, since most linear optimizers also compute
the Lagrange multipliers for the problem they solve, we can directly recover the
primal solutions ff+ and ff− from the multipliers associated with the constraints

62 3 KERNEL FISHER DISCRIMINANTS

Kfi ≤ C1 and −C1 ≤ Kfi, respectively.
The major difficulty with such an approach is, however, to find those columns

of K which violate the dual constraints. Since we want to avoid storing or com-
puting the complete matrix K in each iteration we resort to the random sampling
technique proposed already in the context of the sparse, greedy approximation
scheme (cf. Section 3.5.2). This way it will be very unlikely that we miss a vi-
olated constraint and this is achieved at a reasonable cost. If we do not find
violated constraints anymore way we might either terminate or run the standard
checks for the duality-gap and primal feasibility. If they also indicate that we are
at an optimal solution it becomes even more unlikely that there are any (dual) vi-
olated constraints left. As a last resort we might scan before termination through
the complete matrix K: If we find violated constraints we add them and continue,
otherwise we know that we definitely have found the optimum.

The advantage of such an approach is that for a reasonable degree of sparsity
we never need to store the complete kernel matrix.

3.6 Comparison to other Techniques

Having formulated KFD and its variants as a mathematical program is it strik-
ing how similar it looks to e.g. an SVM. But it is also possible to show close
connections to other techniques, either directly or by interpreting the underlying
mathematical programs.

3.6.1 Least Squares Support Vector Machines

As we have already pointed out, the technique proposed in Suykens and Vander-
walle (1999) called least squares support vector machines (LQSVM) is exactly the
same as Kernel Fisher Discriminants. This can be shown via some complex mathe-
matics as in Gestel et al. (2001) or by using the QP formulation (3.35). However,
we believe that the motivation for KFD as a non–linear version of Fisher’s discrim-
inant is more appealing than as that of least square SVMs.

3.6.2 Relevance Vector Machines

The following connection is particularly interesting. We have already shown that
Fisher’s discriminants are the Bayes optimal classifier for two Gaussian distribu-
tions with equal covariance and hence KFD is Bayes optimal for two Gaussians in
feature space. We have also shown that Fisher’s discriminant (and KFD) can be
understood as a regression to the labels.

Here we will make yet another ansatz leading to a similar conclusion and show-
ing the strong connection between the Relevance Vector Machine for regression
(RVM) (Tipping, 2000) and KFD. The RVM is a Bayesian technique for regres-
sion and also classification. Its derivation is as follows: Consider for a moment we
were solving a regression problem in x and y . Then it is standard to assume that
the likelihood p(y |x) is given by a Gaussian distribution. Assume furthermore, that
for a given x the mean of this Gaussian is given by w>x+ b where w is defined as

3.6 COMPARISON TO OTHER TECHNIQUES 63

in (3.25), i.e.

w>x+ b =

M∑
i=1

αiΦ(xi) + b,

and that this Gaussian’s variance is given by σ2. Then the likelihood of the com-
plete dataset can be written as

p(y|ff, b, σ2) =
1

(2πσ2)M/2
exp

(
−
1

2σ2
‖Kff + 1b − y‖2

)
=

1

(2πσ2)M/2
exp

(
−
1

2σ2
‖¸‖2

)
,

where ¸ is defined as in (3.38). Now, in a Bayesian reasoning one does not simply
solve this problem for a pre–specified value of σ but introduces a prior on the
parameters ff, b and σ with additional hyper-parameters. This prior can also be
seen as imposing some regularization. Especially, choosing a Gaussian prior with
zero mean favors small “weights”. Specifically, for the RVM one chooses a prior of
the form

p(ff, b|C) = N (b|0, C0)
M∏
i=1

N (ffi |0, Ci),

where one assumes a single hyper-parameter for each αi and the offset b. Leaving
out the specification of a prior for σ2 for now, one can compute the posterior over
the parameters αi and b as

p(ff, b|y,C, σ2) = p(y|ff, b, σ2)p(ff, b|C).

In a fully Bayesian framework one would have to introduce another level of priors
over the hyper-parameters and also for σ2 until ultimately arriving at a parameter
free prior. However, in RVMs one stops here and computes the maximum likeli-
hood solution without explicit priors on Ci and σ2. Implicitly this corresponds to
assuming a uniform prior over these parameters.

An advantage of the RVM approach is that all hyper-parameters σ and C are
estimated automatically. The drawback, however, is that for RVM one has to
solve a hard, computationally expensive optimization problem. The following sim-
plifications show how KFD can be seen as an approximation to this probabilistic
approach. Assuming the noise variance σ is known (i.e. dropping all terms depend-
ing solely on σ) and taking the logarithm of the posterior p(y|ff, b, σ2)p(ff, b|C),
yields the following optimization problem

min
ff,b,¸
‖¸‖2 + log(p(ff, b|C)), (3.65)

subject to the constraint (3.38). If we now interpret the prior as a regularization
operator P, replace the vector of hyper-parameters C = (Ci) by a single parameter
C this yields the KFD problem (3.37).

The disadvantage of this is twofold: The parameters σ2 and C have now
to be chosen by model selection instead of being estimated automatically and
using a single C we loose the appealing high degree of sparsity present in RVM.
The advantage however is that we get a tractable optimization problem with a
global minimum. This probabilistic interpretation of KFD also has some appealing
properties, which we outline in the following.

64 3 KERNEL FISHER DISCRIMINANTS

Interpretation of Outputs

The above probabilistic framework reflects the fact, that the outputs produced
by KFD can be interpreted as probabilities, thus making it possible to assign a
confidence to the final classification. This is in contrast to SVMs whose outputs
can not directly be seen as probabilities (see also Platt (2001) and Section 3.2.2).

RVM Noise Models and KFD Loss

In the above discussion we assumed a Gaussian noise model and some yet unspeci-
fied prior that corresponds to a regularizer (Smola et al., 1998b). Of course, one is
not limited to Gaussian models. E.g. assuming a Laplacian noise model we would
get ‖¸‖1 instead of ‖¸‖22 in the objective (3.65) or (3.37), respectively, yielding
what was introduced as robust KFD (Section 3.4.8). We have already discussed
the connection between noise models and loss functions in Section 2.1.4 (cf. Ta-
ble 2.1 giving a selection of different noise models and their corresponding loss
functions, which could be used and Figure 2.3 for an illustration). All of them still
lead to convex linear or quadratic programming problems in the KFD framework.

RVM Priors and KFD Regularizers

Still open in this probabilistic interpretation of KFD was the choice of the prior
p(ff, b|C). One choice would be a zero–mean Gaussian as for the RVM. Assum-
ing again that this Gaussians’ variance C is known and a multiple of the identity,
this would lead to a regularizer of the form P (ff) = ‖ff‖2 as proposed earlier in
Section 3.4.7. As noted before the disadvantage is that choosing a single, fixed
variance parameter for all ff we do not achieve sparsity as in RVM anymore. But
of course any other choice, again using the connection between densities and loss
functions (or regularizers, respectively) illustrated in Table 2.1 is possible. Espe-
cially interesting here is the choice of a Laplacian prior, which in the optimization
procedure would correspond to a l1–loss on the ff’s, i.e. P (ff) = ‖ff‖1 and yields
the sparse KFD problem or linear sparse KFD problem, respectively, depending on
the noise model.

3.6.3 Support Vector Machines

Considering the fact that the least squares (kernel–regression) problem solved
by (3.37) is equivalent to KFD, it is straight forward to derive a corresponding
regression technique. Instead of ±1 outputs y we now have real–valued y ’s.
In fact, such an approach has been proposed in Saunders et al. (1998a), as a
“kernelized” version of ridge regression.

The connection to SVM regression (e.g. Vapnik, 1995) is obvious: it is equiv-
alent to problem (3.37) with the ε–insensitive loss for ¸ (cf. Table 2.1) and a
K–regularizer, i.e. P (ff) = ff>Kff = ‖w‖2.

We can as well draw the connection to a SVM classifier. In SVM classifica-
tion one is maximizing the (smallest) margin, traded off against the complexity
controlled by ‖w‖2 (cf. Section 2.2). Contrary, besides parallels in the algorithmic
formulation, there is no explicit concept of a margin in KFD. Instead, implicitly,

3.6 COMPARISON TO OTHER TECHNIQUES 65

the average margin, i.e. the average distance of the examples to the boundary, is
maximized (see also Figure 5.7).

Of course, since KFD is equivalent, we can also use the motivation that lead
to the least squares SVM approach to link up SVM and KFD. The difference
between LQSVM/KFD and SVM is that the inequality constraints generating the
margin are replaced by equality constraints. This way we loose the large margin
but achieve a small with-in class variance.

3.6.4 Arc-GV

The last connection we want to make here is to an algorithm called Arc-GV
(Breiman, 1997). Arc-GV is a Boosting-type algorithm (Freund and Schapire,
1997; Friedman et al., 1998; Breiman, 1997). In Boosting (or more precisely
but less intuitively, Leveraging) we are given a set of potential base hypotheses
{hi : X → Y} which is implemented through a so called weak learner. Now the
idea is that even if each single hypothesis is not much better than chance we
can build a good classifier if we combine many weak hypotheses into a “strong”
one, i.e. we seek some function f : X → Y that is a linear (actually convex)
combination of the base hypotheses,

f (x) =

J∑
j=1

wjhj(x), wj ≥ 0, (3.66)

which we call combined hypothesis. This clearly is similar to the kernel expansion
(3.25) found in kernel-based methods and there has been some work showing that
these techniques are very much related (cf. Rätsch, 2001). Indeed, one can show
that most Boosting techniques can be understood as also maximizing some margin.
However, this margin is not measured in the kernel space (which might be infinite
dimensional) but in the space spanned by the used hypotheses. Also, this margin
is not measured using the `2-norm but the `1-norm. For details see e.g. Rätsch
(2001) and references there in. More information about Boosting and its most
important extensions can be found in Mason et al. (1998); Rätsch et al. (2001,
2000c). Boosting and Leveraging techniques usually differ in how they choose
the next hypothesis that is added to (3.66). We will not discuss how the original
Arc-GV algorithm does this. However, in Rätsch et al. (2000c) it was shown that
Arc-GV iteratively constructs a solution that converges to the optimum of the
following mathematical programming problem:

max ρ

s.t. yi
∑J
j=1 wjhj(xi) ≥ ρ ∀i

‖w‖1 = 1,
,

where the quantity ρ is the margin which should be maximized. If we now recall
that an SVM tries to find a hyperplane such that the margin is maximized and
assume that we drop the threshold b, the dual optimization problem solved by an
SVM (cf. (2.22)) can be stated as

max ρ

s.t. yi
∑N
j=1 wjΦj(xi) ≥ ρ ∀i

‖w‖2 = 1.

66 3 KERNEL FISHER DISCRIMINANTS

Here N denotes the dimensionality of the feature space. We see that this is
identical to the Arc-GV problem except for the `2-norm constraint on the weight
vector w and that the hypothesis we can choose from are the single dimensions
of the feature space mapping Φ. For SVM we needed to use the two norm since
using the kernel we do not have explicit access to the single dimensions j of the
feature space and can hence not compute the `1-norm.

3.6.5 Mathematical Programming and Learning

Collecting the ideas from the previous sections, we can build up a table where
we have a smooth transition from KFD via SVM to Arc-GV on the level of their
mathematical programming formulations (cf. Table 3.1). This is not meant to be

Table 3.1: Structural comparison of different techniques on the level of mathematical program-
ming formulations.

primal dual
KFD/LQSVM min 12‖w‖

2
2 + C‖ξ‖22

s.t. yi((w ·Φ(xi)) + b)=1− ξi ∀i
SKFD min 12‖w‖

2
2 + C‖ξ‖1

s.t. yi((w ·Φ(xi)) + b)=1− ξi ∀i
SVM min 12‖w‖

2
2 + C‖ξ‖1 max ρ

s.t. yi((w ·Φ(xi)) + b)≥1− ξi ∀i s.t. yi
PN
j=1 wjΦj(xi) ≥ ρ ∀i

‖w‖2 = 1
Arc-GV max ρ

s.t. yi
PJ
j=1 wjhj(xi) ≥ ρ ∀i

‖w‖1 = 1

a rigorous mathematical equivalence but rather a structural analogy. The primal
sparse KFD (SKFD) problem and the primal SVM problem differ in the way ¸
is computed, the dual SVM problem and the (dual) Arc-GV problem in the way
the length of w is penalized. We tried to highlight the parts that are essentially
different in Table 3.1. It can be seen, that in the primal perspective the way of
penalizing and computing the slacks is important. In the dual domain the way
we measure the length of w is of importance. This naturally suggest a complete
host of other algorithms one could derive by playing around with these quantities.
However, having already proposed more than enough KFD variants we shall refrain
from this.

Interestingly enough, we see that many (and there are more than just the
algorithms listed in Figure 3.1; see e.g. Rätsch (2001)) state of the art learning
techniques can be cast as mathematical optimization problems. Naturally these
problems are structurally very similar. An appealing property of the mathematical
programming formulation is that we might use all the tools from optimization
theory to analyze these methods. Furthermore, such a structural equivalence
might be taken as one explanation why all these methods perform similarly good
in practice. It might also be taken as a basis to apply algorithms in new domains,
e.g. to derive Boosting algorithms for one-class classification (Rätsch et al., 2002)
or regression (Rätsch et al., 2002). In fact, as we outlined in Section 3.2.1 one

3.7 RELATION TO OTHER WORK 67

could see KFD as regression technique that is applied to classification.

3.7 Relation to Other Work

Since we published our first paper on kernel Fisher discriminants (Mika et al.,
1999a) there has been a fairly large amount of work targeting in a similar direction.
Indeed, KFD can be derived from a variety of different concepts, and it only
recently became clear that there are many algorithms with different names that
are actually (more or less) the same.

Independently of us Baudat and Anouar (2000) and Roth and Steinhage (2000)
published papers with exactly the same idea, i.e. perform Fisher’s discriminant in
a kernel feature space. The main difference can be seen in that they both carried
out the calculations for the multi-class case which we purposefully avoided here.
There has up to now not been any empirical (or theoretical) evidence that shows
any advantage of finding multiple features for discrimination at once.

As we already mentioned, the least square support vector machine proposed in
Suykens and Vanderwalle (1999), whilst being motivated completely differently
is also exactly the same as KFD. This has been noted e.g. in Gestel et al.
(2001). The same connection was shown in Xu et al. (2001). Finally, Billings
and Lee (2002) yet again proposed to do Fisher’s discriminant using kernel func-
tions. Building upon the connection between KFD and a least squares regression
to the labels (cf. Section 3.2.1) we have also a connection to the kernel-ridge
regression approach proposed in Saunders et al. (1998a).

A variant of Fisher’s discriminant for cases where the classes have extremely
unbalanced priors is proposed in Elad et al. (2002). They consider the case of
discriminating target images (faces) from clutter (i.e. non-faces). The resulting
method is, as the authors note, up to a re–weighting equivalent to Fisher. They
finally introduce some pre-processing on the images which amounts to a kernel
function (although the authors do this explicitly instead of resorting to kernel
functions).

On the theoretical side Shashua (1999) showed some straight forward equiva-
lence between support vector machines and KFD.

3.8 Summary

In the task of learning from data it is, to a certain extent, equivalent to have prior
knowledge about e.g. invariances or about specific sources of noise. In the case
of feature extraction, we seek features, which are all sufficiently (noise-) invariant
while still describing interesting structure. For classification we compute discrim-
inating features that are – at the same time – invariant with respect to certain
invariance transformations. Oriented PCA on one side and Fisher’s discriminant
on the other side, use particularly simple features, since they only consider first and
second order statistics for maximizing a Rayleigh coefficient (cf. (3.20)). Since
linear methods are often too restricted in real-world applications, we used kernel
functions to obtain nonlinear versions of these linear algorithms, namely oriented

68 3 KERNEL FISHER DISCRIMINANTS

kernel PCA and kernel Fisher discriminant analysis, following the ideas outlined in
Schölkopf et al. (1998b) for PCA.

Having once formulated kernel Fisher discriminants we have shown how they
can be cast into a quadratic optimization problem allowing us to derive a variety
of other algorithms such as robust, sparse and linear sparse KFD. Important for
a successful learning technique is that the underlying optimization problem can be
solved efficiently. The central problem in KFD, as with all kernel based learning
techniques, is that the kernel matrix K can only be stored for small datasets. To
circumvent this problem, we proposed several methods to optimize the different
algorithms more efficiently using either greedy techniques or exploiting the special
structure of the problem. As we will see in Chapter 5, KFD and its variants are
very capable of achieving state of the art results. Finally, we have shown how KFD
relates to other techniques.

Comparing KFD to other techniques it certainly has it advantages but also
it drawbacks. Appealing about KFD is that the underlying idea is very intuitive
and well motivated. Furthermore, there exists a global solution and this solution
can be found within a reasonable computational complexity. We conjecture that
future research on KFD will produce comparably efficient techniques as they are
now available for e.g. SVM. However, for the time being the KFD problem is still
more demanding than the SVM problem from an algorithmic point of view. A
feature that makes KFD an interesting choice in many applications is its strong
connection to probabilistic approaches. Often it is not only important to get a
small generalization error but also to be able to assign a confidence to the final
classification. Unlike for SVM, the outputs of KFD can directly be interpreted
as probabilities. A drawback is that there is up to now no satisfying theoretical
framework that explains the good performance, this very much in contrast to
e.g. SVM. Whilst maximizing the average margin instead of the smallest margin
does not seem to be a big difference most up to date theoretical guarantees are
not applicable. In Chapter 4 we will try to do a first step in building up a theory
capable of explaining the good performance of KFD.

69

Chapter 4

Bounds

In nichts zeigt sich der Mangel an mathe-
matischer Bildung mehr, als in einer über-
trieben genauen Rechnung.

Carl Friedrich Gauß

In this chapter we present some theoretical results targeting at giv-
ing learning guarantees for techniques based on covariance struc-
tures like e.g. kernel Fisher discriminants. However, the present
material is yet only concerned with principal component analy-
sis. But we conjecture that this could form a basis for deriving
generalization error bounds for KFD.

IN the last chapter we have introduced a kernelized version of Fisher’s discrim-
inant and some variations. However, we have not yet investigated in how far

these algorithms fulfill the requirements of a “good” statistical learning machine
as discussed in Chapter 2, e.g. if they are consistent. The question arises if it
is possible to give similar generalization guarantees for KFD and its variants as
e.g. for SVM (cf. Theorem (2.9) and (2.18))?

The present chapter does not answer this question but we hope it lays the
ground for further investigations. Instead of considering the KFD problem we
start with investigating if it is possible to give guarantees on the eigenvalues and
eigenvectors computed from covariance matrices (i.e. we consider principal com-
ponent analysis (PCA)). The rational behind this is twofold:

• The PCA problem is structurally simpler than the KFD problem. However,
it relies on the same quantities, i.e. we know that the KFD problem can be
solved by computing eigenvalues and eigenvectors of matrices based on first
and second order statistics of the data.

• If it is not possible to show for PCA that the results possess some “nice”
properties it seems unlikely that this would be possible for KFD. The other
way around, having developed a framework to analyze the behavior of PCA
it should be possible to extend this to KFD.

70 4 BOUNDS

The techniques used here are very recent in the field of machine learning at
the time of writing this thesis. The first part considers eigenvalues of covari-
ance matrices and how fast the empirical eigenvalues converge to their expected
value. It uses the concept of stability as introduced e.g. in Bousquet and Elisseeff
(2002) and concentration inequalities (McDiarmid, 1989; Devroye et al., 1996).
The second part tries to bound how much an empirically computed eigenvector
deviates from a “true” eigenvector using the concept of Rademacher complexity
as e.g. introduced in Koltchinskii and Panchenko (2000); Bartlett and Mendelson
(2002).

It arises following the question: in how far can bounding the closeness of the
eigenvectors or eigenvalues to their true value be useful to give learning guaran-
tees for KFD? Very recently a new paradigm of deriving generalization bounds
for learning machines was introduced. Recalling what was presented in Chapter 2,
we notice that e.g. VC-theory targets at giving bounds that hold uniformly over
a complete class of functions. For learning machines this means that we get
guarantees over all functions this machine implements, including the worst case.
However, since we believe that our learning machines are sensibly designed to
pick functions which are related to the specific problem we try to solve, i.e. cover
some of the properties of the underlying distribution, such bounds will be overly
pessimistic. VC-bounds do not take into account the special way an algorithms
searches a class of functions nor do they take into account the known observa-
tions.1 For instance, an algorithm might be able to implement a function class
with infinite VC-dimension but for a given problem it will only search in a very
limited part of this class. It seems likely that it is possible to derive better bounds
by also considering algorithmic details and the training data more closely. Recent
work targets exactly at this and seems very promising for algorithms like KFD.
We consider especially the concept of stability and its relation to the generaliza-
tion error as introduced in e.g. Bousquet and Elisseeff (2002) and the concept of
algorithmic luckiness as proposed in Herbrich and Williamson (2002).

Stability Bounds Bousquet and Elisseeff (2002) derive bounds for the gener-
alization error that are based on the stability of a specific algorithm. Roughly,
stability measures how much the outcome (the decision function) changes upon
small changes in the training data. Intuitively, an algorithm that is very stable,
i.e. whose solution does not depend much on a single example, tends to have
a generalization error that is close to the empirical error (or, as considered in
Bousquet and Elisseeff (2002) as well, the leave-one-out error; cf. Section 4.4).
This intuition is beautifully summarized in the following citation due to Talagrand
(1996) which we take from Bousquet and Elisseeff (2002):

A random variable that depends (in a “smooth way”) on the influence
of many independent variables (but not too much on any of them) is
essentially constant.

For the results (or similar ones) presented in Bousquet and Elisseeff (2002) to
be applicable for KFD one would need to show that KFD is stable, e.g. that the
largest change in the output of our classifier when removing one training sample

1At least they only do this indirectly by using e.g. the achieved margin, and the training error.

71

(denoted by Z \ (xi , yi)) is smaller than some constant β. More precisely, it is
very likely that we can derive good generalization bounds for KFD if it has uniform
stability (Bousquet and Elisseeff, 2002):

Definition 4.1 (Uniform Stability). An algorithm A has uniform stability βM with
respect to the loss function ` and a sample of size M if

∀Z ∈ (X × Y)M ,∀i ∈ {1, . . . ,M} : ‖ `(AZ , ·)− `(AZ\(xi ,yi), ·)‖∞ ≤ βM .

For the results in Bousquet and Elisseeff (2002) to be nontrivial the constant
βM , seen as function of the number of examples, must scale with 1

M . Now the
directions found by KFD are generalized eigenvectors from covariance structures.
If we can show that eigenvectors estimated from covariance structures converge
quickly and are stable might enable us to use stability bounds for KFD.

Algorithmic Luckiness An approach in a sense similar to the one just described
but motivated differently, is taken by the algorithmic luckiness framework of Her-
brich and Williamson (2002) which can be seen as an extension of the pure luck-
iness (Shawe-Taylor et al., 1998). The idea in both approaches is to reduce the
size of the function space whose complexity is measured through covering num-
bers (e.g. Smola, 1998). The covering number N (ε,G, ρ) at scale ε > 0 of a set
G ⊆ H (of functions in our case) with respect to the metric ρ : H ×H → R+ is
defined as the size of the smallest subset C ⊆ H, such that for every g ∈ G there
exists a c ∈ C with ρ(g, c) ≤ ε. In other words, it measures how many spheres of
radius ε, centered at elements of H are necessary to cover the set G. The smaller
the covering number the smaller the set G is. In fact, what we need to bound is
not the covering number of the set of hypothesis but, once the loss function we
use is fixed (cf. Chapter 2.1.4) only the covering number of the set of functions
induced by it, i.e.

L`(H) = {(x, y)→ `(h(x), y)|h ∈ H},

i.e. we form equivalence classes over hypothesis h ∈ H which induce an identical
loss. In the algorithmic luckiness framework one then introduces a so called al-
gorithmic luckiness function and a lucky set. The algorithmic luckiness function
L maps an algorithm A and a training sample Z to a real value. The lucky set
HA(L,Z) is a subset of all possible hypothesis the algorithm can choose from.
This subset is restricted to those hypothesis that achieve a higher luckiness on an
arbitrary subset of size M2 of the complete training sample (assuming M is even)2

compared to the luckiness achieved on the first M2 training examples in Z. There
are many details which go far beyond the scope of this work. However, what we
ultimately need to bound is that with high probability the covering number of the
induced loss functions L`(HA(L,Z)) of the lucky set is smaller than some function
ω of the luckiness L of our algorithm on an M

2 sample (we need an ω-small algo-
rithmic luckiness functions). If this is possible one can derive good generalization
bounds depending on the algorithm and the training data likewise. Our hope is
that the ratio of between class variance and within class variance optimized for by

2Said differently, which achieve a higher luckiness on the first M
2

examples in any possible
permutation of M examples.

72 4 BOUNDS

KFD could serve as an algorithmic luckiness functions. Since the value of this ratio
is given by the largest eigenvalue of a generalized eigenproblem we conjecture that
the study of the stability of these empirical eigenvalues can be useful in applying
the algorithmic luckiness framework to KFD.

Existing Bounds Since the class of functions implemented by KFD is exactly
the class of hyperplanes in the feature space E connected to the kernel any bound
which holds uniformly over this class of functions would be applicable to KFD.
However, the practical value of most generalization error bounds is restricted to
their shape, rather than their actual prediction: More often than not, their pre-
dictions are trivial, i.e. larger than one. What makes generalization error bounds
interesting is to see which quantities are involved in these bounds and how they
relate to the error. Since KFD does not maximize the margin we can not expect
very good predictions from bounds that are tailored to an algorithm that maxi-
mizes the margin. Likewise, since the results of KFD are not sparse it would be
pointless to apply a bound that depends on the degree of sparsity in the solution
(cf. compression schemes (Littlestone and Warmuth, 1986)). But drawing the
conclusion that KFD can not be an useful algorithm because it does not optimize
what is considered important in existing bounds would be too easy: as we will see
in Chapter 5 its performance is on par with e.g. SVM and other state of the art
techniques and we strongly believe that it is possible to underpin this observation
theoretically.

There exists some other work dealing with sensitivity and perturbation analysis
of eigenvalues and eigenvectors of (mostly symmetric) matrices. However, stan-
dard matrix analysis is concerned with the uncertainty due to numerical errors,
rather than with the randomness introduced through the sampling of the data un-
derlying a covariance matrix (e.g. Eisenstat and Ipsen, 1998; van Dorsselaer et al.,
2000). In Johnstone (2000) an analysis is carried out for the distribution of the
largest principal component. But this analysis is not valid for covariance matrices.
Finally, Beran and Srivastava (1985) analyzed the use of bootstrap methods to
give confidence regions for functions of covariance matrices.

4.1 Notation

To start, let us review and adopt our notation. Since we consider PCA now,
an unsupervised learning technique, let X = {x1, . . . , xM} ⊆ RN be our training
sample which we consider to be a multiset, i.e. an unordered collection of objects
with possible repetitions. As mentioned above, we want to use the concept of
stability. Stability is based on the question what happens to our result if we
delete, add or alter one of the training samples. Hence, we define the multiset
operations X ∪x to be the addition of x to X (regardless if there is already a z ∈ X
with x = z) and X \ x to be the deletion of one arbitrary occurrence of x from
X . Hence for our training sample X \ xi denotes X with the i-th training example
(or an identical element) removed and X (\xi) ∪ x the sample X with the i-th (or
an identical) element replaced by x. Let CX and mX denote the covariance and

4.2 STABILITY OF EIGENVALUES 73

mean estimated from X respectively, i.e.

CX :=
1

M − 1
∑
x∈X
(x−mX) (x−mX)> , (4.1)

mX :=
1

M

∑
x∈X
x, (4.2)

where we have chosen an unbiased estimate for the covariance matrix CX , i.e. one
can show that

E[CX] = lim
M→∞

CX

=: C,

where C denotes the true covariance matrix of the data given by

C := E
[
(X − E [X]) (X − E [X])>

]
. (4.3)

If we assume that the data have zero mean we can use the following definition for
the covariance matrix:

CX :=
1

M

∑
x∈X
xx>, (4.4)

which, under the assumption E[X] = 0 is again unbiased.
In the whole chapter we make one very important assumption: We assume that

the data all lie within a hyper-sphere of fixed, finite radius, i.e. ‖x − E[X]‖ ≤ R,
R ∈ R+, for all x drawn from the true distribution. In many applications this is
easily verified. However, there are others when such an assumption does hardly
hold. Its importance stems from the fact that it makes us somewhat independent
from the dimensionality N of the data by limiting the maximal value xi in each
dimension to R. A trivial consequence is that

max
x,z
‖x− z‖2 ≤ 4R2,

for all x and z from the distribution.

4.2 Stability of Eigenvalues

The first result we will establish is concerned with the eigenvalues of an empirical
covariance matrix (4.1). The same result has been derived independently in Shawe-
Taylor et al. (2002). We show that by changing one element in the training set
X the change in the estimated eigenvalues will only be of order 1M .

In how far is such a result interesting in the context of PCA? What we would
like to do is to use concentration inequalities to answer the following questions:

1. How much will the true reconstruction error (or retained energy) differ from
what we observed empirically?

2. How far away are the empirical eigenvalues from the true eigenvalues?

74 4 BOUNDS

To understand how these questions are connected to the eigenvalues of the empir-
ical covariance matrix we need to review some more prerequisites. In the following
we assume that the reader is fairly familiar with principal component analysis and,
more generally, eigenproblems. For more information about PCA see e.g. Duda
and Hart (1973); Bishop (1995); Diamantaras and Kung (1996) and references
there in. For eigenproblems the reader is referred e.g. to Wilkinson (1965) and
Golub and van Loan (1996).

Let us define A as our learning machine, i.e. here PCA, and AX as the function
chosen by our learning machinery when trained on the M-sample X , i.e. AX is
described by a selected number of eigenvectors vi , i ∈ I ⊆ {1, . . . , N}, and
corresponds to a function AX : RN → RN , AX (x) =

∑
i∈I(vi · x)vi . Furthermore,

let λi(C) denote the i-th (not necessarily singular) eigenvalue of the matrix C
where λ1(C) ≥ λ2(C) ≥ . . . ≥ λN(C). The first question is motivated by the fact
that if we define the loss function `(AX , x) as the squared reconstruction error

`(AX (x), x) = ‖x− AX (x)‖2 = ‖x−
∑
i∈I
(vi · x)vi‖2,

and chose as the empirical error the mean squared error, i.e.

Remp(A,X) =
1

M

M∑
i=1

`(AX (xi), xi),

it is well known, that the sum of dropped eigenvalue is equal to the empirical error,
i.e.

Remp(A,X) =
∑
i∈J
λi(CX), (4.5)

where J = {1, . . . , N} \ I (e.g. Diamantaras and Kung, 1996). The risk or
generalization error is denoted by

R(A,X) =
∫
`(AX (x), x)dP (x).

Since we want to minimize the reconstruction error the most natural (and probably
the only sensible) choice for I is {1, . . . , k}, 1 ≤ k ≤ N, i.e. choosing the first
k eigenvectors. This way the empirical error (4.5), i.e. the sum of the dropped
eigenvalues, will be as small as possible when choosing k directions to project on.
Using this notations we reformulate the first question as

PX [|R(A,X)− Remp(A,X)| ≥ t], (4.6)

i.e. we want to know how probable it is that the empirically observed reconstruction
error if equal to the expected reconstruction error. Likewise the second questions
now reads

PX [|
∑
I
(λi(C)− λi(CX)) | ≥ t], (4.7)

where C = EX [CX] (cf. (4.3)).
Concentration inequalities provide us with bounds on how much an empirical

process deviates from its expected value. In particular, we will use McDiarmid’s
inequality (McDiarmid, 1989). To state this theorem we first need to define what
we understand by stability:

4.2 STABILITY OF EIGENVALUES 75

Definition 4.2 (Stability). Let X1, . . . , XM be independent random variables tak-
ing values in a set Z and let f : ZM → R be a function. If there exist absolute
constants ci , i = 1, . . . ,M, such that

sup
x1 ,...,xM,

x′
i
∈Z

|f (x1, . . . , xM)− f (x1, . . . , xi−1, x′i , xi+1, . . . , xM)| ≤ ci , 1 ≤ i ≤ M,

(4.8)
we call f stable. Analogously, let F be a class of functions. If for all f ∈ F
condition (4.8) holds, we call F stable.

McDiarmid showed in particular for each stable function f the following theorem:

Theorem 4.1 (McDiarmid’s Inequality). Under the conditions of Definition 4.2,
for all ε ≥ 0

P [f (X1, . . . , XM)− E f (X1, . . . , XM) ≥ ε] ≤ exp

(
−
2ε2∑M
i=1 c

2
i

)
and

P [E f (X1, . . . , XM)− f (X1, . . . , XM) ≥ ε] ≤ exp

(
−
2ε2∑M
i=1 c

2
i

)
These expressions closely resemble the questions we raised, i.e. (4.6) and (4.7):
They both involve an empirical quantity (Remp and λi(CX), respectively) and an-
other quantity which is its expected counterpart (R and λi(C)). However, there
is one caveat here which is intimately connected to the problem of estimating
eigenvalues from empirical covariance matrices: Even if we have chosen CX to be
unbiased, i.e. E[CX] = C, the relation E[λi(CX)] = λi(E[CX]) does not hold true!
Instead, it is well known, that the leading eigenvalues of a covariance matrix are
over–estimated and that the trailing eigenvalues are under–estimated. Especially,
λi(CX) is not an unbiased estimator of λi(C).3

Remark 4.1. One can show (Wilkinson, 1965) that the function computing the
largest eigenvalue λ1 is a convex function of the matrix (interpreting the symmetric
matrix as a

(
N+1
2

)
vector) and that the function λN is a concave function4

We have not yet resolved this problem in answering our questions (and neither
did Shawe-Taylor et al. (2002)). Instead, we prove a slightly weaker statement
which is summarized in the following theorem:

Theorem 4.2 (Probabilistic bound on eigenvalues). Let X ⊆ RN be an M
sample distributed iid. according to some fixed but unknown probability distribution
P with ‖x‖ ≤ R for all x ∼ P . Then for any I ⊆ {1, . . . , N} and all t > 0:

PX

∑
j∈I
λj(CX)− EX̄

∑
j∈I
λj(CX̄)

 ≥ t
 ≤ e−

t2(M−2)2

32MR4 (4.9)

≤ e−
t2(M−4)
32R4

3However, the sum of all empirical eigenvalues is an unbiased estimator of the sum of all true
eigenvalues. This simply is true since

P
λi (CX) = tr(CX), the trace is a linear function and

hence E[tr(CX)] = tr(E[CX]) = tr(C).
4Let Z i j denote a matrix all zero except for Z i ji j = Z

i j
j i = 1. Then by convexity/concavity of

the leading/trailing eigenvalue we mean λ1((1 − γ)A + γZ i j) ≤ (1 − γ)λ1(A) + γλ1(Z i j) and
λN((1− γ)A+ γZ i j) ≥ (1− γ)λN(A) + γλN(Z i j).

76 4 BOUNDS

and

PX

EX̄
∑
j∈I
λj(CX̄)

−∑
j∈I
λj(CX) ≥ t

 ≤ e−
t2(M−2)2

32MR4 (4.10)

≤ e−
t2(M−4)
32R4 .

The proof can be found below. We see that the answer we can give to the
second question is not how much the empirical eigenvalues deviate from the true
eigenvalues but rather how much they will deviate from the expected eigenvalues
when performing PCA on an M sample. This also has consequences for the
first question we raised. Using Theorem 4.2 we will show the following weaker
statement:

Lemma 4.1 (Probabilistic bound on reconstruction error). Under the assump-
tions of Theorem 4.2:

PX
(
Remp(A,X)− EX̄

[
Remp(A, X̄)

]
≥ t
)
≤ e−

t2(M−2)2

32MR4

≤ e−
t2(M−4)
32R4

and

PX
(
EX̄
[
Remp(A, X̄)

]
− Remp(A,X) ≥ t

)
≤ e−

t2(M−2)2

32MR4

≤ e−
t2(M−4)
32MR4 .

Proof. This follows trivially by substituting (4.5) into (4.9) and (4.10), respec-
tively.

It remains an open question if it is possible to bound the original questions, i.e. (4.6)
and (4.7). John Shawe-Taylor and Andre Elisseeff (private communication) sug-
gested that this might be possible by using covering numbers. In principle what
one would need to do is to bound the probability that the expected value of the
eigenvalues or the expectation of the empirical error is not very different from the
true eigenvalue or expected risk, respectively, i.e. P[R(A,X) − EX̄ [Remp(A, X̄)]
and P[

∑
I (λi(C)− EX̄ [λi(CX̄)])]. We conjecture that bounding these probabili-

ties should be possible with a high confidence.

4.2.1 Proof of Theorem 4.2

To prove Theorem 4.2 we will show that the eigenvalues of an empirical covariance
matrix are stable in the sense of Definition 4.2. First note that exchanging one ele-
ment in the sample we estimate the covariance matrix from does only cause a small
change. The following relation can be shown by a straight forward calculation:

Lemma 4.2 (Update of Covariance Matrices). Consider the definition (4.1) of
the empirical covariance matrix. Addition and deletion of one element from the
training set X results in rank one update and a scaling of order one of the empirical

4.2 STABILITY OF EIGENVALUES 77

covariance matrix, i.e.

CX∪x =
M − 1
M

[
CX +

M

M2 − 1 (mX − x) (mX − x)
>
]

CX\xi =
M − 1
M − 2

[
CX −

M

(M − 1)2 (mX − xi) (mX − xi)
>
]
.

Exchanging one element results in a rank two update, i.e.

C(X\xi)∪x = CX−
M

(M − 1)2 (mX − xi) (mX − xi)
>+
1

M

(
mX\xi − x

) (
mX\xi − x

)>
.

(4.11)
For the definition (4.4) a similar relation trivially holds true as well.

Proof. See Appendix B.1.

Now the question is how much the i-th eigenvalue changes under a rank one or
rank two update, respectively. Luckily, there is the following Theorem due to
Wilkinson (1965) (see also Golub and van Loan (1996)):

Theorem 4.3 (Eigenvalues under rank 1-updates (Wilkinson, 1965)). Suppose
B = A+τcc>where A ∈ RN×N is symmetric, c ∈ RN has unit `2-norm and τ ∈ R.
If τ ≥ 0, then

λi(B) ∈ [λi(A), λi−1(A)], for i = 2, . . . , N,

while if τ ≤ 0, then

λi(B) ∈ [λi+1(A), λi(A)], for i = 1, . . . , N − 1.

In either case, there exists m1, . . . , mN ≥ 0,
∑
mi = 1, such that

λi(B) = λi(A) +miτ, i = 1, . . . , N.

The theorem says that whatever the rank one update is, all eigenvalues will just be
shifted up or down, respectively, and the total amount of this shift will be exactly
τ . As a straight forward consequence of Theorem 4.3 we find:

Lemma 4.3 (Eigenvalues under symmetric rank k update). Suppose B =
A +

∑k
j=1 τjcjc

>
j , where A is as in Theorem 4.3, cj ∈ RN has unit `2-norm and

τj ∈ R. Then there exists mi j ≥ 0, i = 1, . . . , N, j = 1, . . . , k with
∑
i mi j = 1 for

all j , such that

λi(B) = λi(A) +

k∑
j=1

mi jτj , ∀i = 1, . . . , N.

Proof. Define Bj := Bj−1 + τjcjc>j where B0 := A (hence Bk = B). Then by
Theorem 4.3 for each j = 1, . . . , k there exists mi j ≥ 0 with

∑
i mi j = 1 such that

λi(Bj) = λi(Bj−1) +mi jτj for any i . It follows that

λi(B) = λi(Bk)

= λi(Bk−1) +mikτk

= . . .

= λi(A) +

k∑
j=1

mi jτj ∀i .

78 4 BOUNDS

We will now use this lemma for the special case k = 2 to bound the change in the
eigenvalues of the empirical covariance matrices under consideration. During the
proof we will use the following trivial relation:

Lemma 4.4. For a symmetric matrix A ∈ RN×N and ρ 6= 0 the relation λi(A) =
λi(ρA)/ρ holds true.

We are now ready to state the first main result in proving Theorem 4.2:

Proposition 4.1. Let x ∈ RN . Then for j = 1, . . . , N there exists mj1, mj2 ≥ 0,∑
j mjk = 1, k = 1, 2, such that

λj(C(X\xi)∪x) = λj(CX)−mj1
M‖mX − xi‖2

(M − 1)2 +mj2
‖mX\xi − x‖2

M
,

for all i = 1, . . . ,M.

Proof. Let

∆i1 =
mX − xi
‖mX − xi‖

∆i2 =
mX\xi − x
‖mX\xi − x‖

,

where we assume that mX − xi 6= 0 and mX\xi − x 6= 0; otherwise these terms are
just omitted in the following. Then we have from equation 4.11 in Lemma 4.2

C(X\xi)∪x = CX −
M‖mX − xi‖2

(M − 1)2 ∆i1∆
>
i1 +

‖mX\xi − x‖2

M
∆i2∆

>
i2.

Since ‖∆i j‖ = 1 and CX is symmetric we can apply Lemma 4.3, yielding the desired
result.

Now we have all necessary prerequisites to state that the eigenvalues of the
empirical covariance matrix are stable in the sense of (4.8):

Theorem 4.4. Assume that X = {x1, . . . , xM} ⊂ RN is generated according to
some unknown but fixed distribution P and that ‖x − E[X]‖ ≤ R < ∞ for all
x ∼ P . Let CX and mX be the covariance matrix and mean estimates from X
(cf. (4.1), (4.2)) and let C(X\xi)∪x,m(X\xi)∪x be the covariance and mean estimated
from X with the i-th element replaced by x. Then for any I ⊆ {1, . . . , N} and
i = 1, . . . ,M: ∣∣∣∣∣∣

∑
j∈I

[
λj(CX)− λj(C(X\xi)∪x)

]∣∣∣∣∣∣ ≤ 8R2

M − 2 .

Proof. Using Proposition 4.1 we know that there exists mj1, mj2 ≥ 0,
∑
j mjk = 1

(k = 1, 2), such that∣∣∣∣∣∣
∑
j∈I

[
λj(CX)− λj(C(X\xi)∪x)

]∣∣∣∣∣∣ =∣∣∣∣∣∣
∑
j∈I

[
mj2
‖mX\xi − x‖2

M
−mj1

M‖mX − xi‖2

(M − 1)2

]∣∣∣∣∣∣ (4.12)

4.3 BOUNDING THE CHANGE IN EIGENVECTORS 79

Now, using the triangle inequality and that the mjk sum to one over j (with
mjk ≥ 0) we get:∣∣∣∣∣∣

∑
j∈I

[
λj(CX)− λj(C(X\xi)∪x)

]∣∣∣∣∣∣ ≤ ‖mX\xi − x‖
2

M
+
M‖mX − xi‖2

(M − 1)2 . (4.13)

Since we assumed that all data lie in a ball with radius R we know that ‖mX\xi −
x‖2 ≤ 4R2 and ‖mX − xi‖2 ≤ 4R2. Hence we end up with:∣∣∣∣∣∣

∑
j∈I

[
λj(CX)− λj(C(X\xi)∪x)

]∣∣∣∣∣∣ ≤ 4R2

M
+
4R2M

(M − 1)2

≤
8R2

M − 2 .

Theorem 4.2 now follows by a straight forward application of McDiarmid’s
inequality (cf. Theorem 4.1). Setting ci = 8R2

M−2 yields the desired result.

4.3 Bounding the Change in Eigenvectors

We will now change our focus from eigenvalues to eigenvectors. In particular we
will ask how reliable the estimate of an eigenvector from an empirical covariance
matrix is. This problem is closely related to what is known as perturbation in
matrix theory (Stewart and Sun, 1990). It will turn out, that this problem is more
complex than bounding the change in the eigenvalues. While for the eigenvalues
the multiplicity of the eigenvalue did not matter (i.e. the number of times λi is
equal to λj) it will for eigenvectors. This can easily be demonstrated: Assume
that there are two eigenvectors vi∗ and vj∗ and that the associated eigenvalues are
equal, i.e. λi∗ = λj∗ . Then these two eigenvectors span an orthogonal subspace
and any other choice of two orthogonal vectors in this subspace can be used instead
to represent the eigenvectors.5 I.e. if we empirically observe two eigenvectors with
identical eigenvalues it is impossible to bound how close any of these eigenvectors is
to the “true” eigenvector, simply because there is a complete (invariant) subspace
the “true” eigenvector can be chosen from. In other words, the question would
not be well defined. However, what can be done is to bound how close the
subspace spanned by vi∗ and vj∗ is to a true invariant subspace of the distribution.
Furthermore, it will turn out that the essential quantity to obtain bounds on the
reliability of eigenvectors or subspaces spanned by eigenvectors is how much the
corresponding eigenvalues are separated from the other eigenvalues. The larger
this gap is, the more reliable the estimate is.

4.3.1 The Bound

To begin with, let us state the result. The first variant, for which we will give a
detailed proof in the next section, is concerned with only one eigenvector:

5More formally, we have for any vector z = αvi∗ +βvj∗ , α, β ∈ R, that Az = αAvi∗ +βAvj∗ =
λi∗(αvi∗ + βvj∗) = λi∗z, i.e. each such z is also an eigenvector of A with eigenvalue λi∗ .

80 4 BOUNDS

Theorem 4.5. Let X ⊆ RN be a random iid. sample of sizeM with ‖x‖ ≤ R <∞,
E[X] = 0, and let CX be as in (4.4). Let C = E[CX] and let vi be the i-th
eigenvector of CX and V a normal matrix for the subspace orthogonal to vi .
Finally let E = C − CX and

[viV]
>CX [viV] =

[
λ 0

0 D

]
, [viV]

>E[viV] =

[
ε e>

e E22

]
.

Then with probability (1− δ) over the random draw of the sample X , if

d := min
j 6=i
|λi(CX)− λj(CX)| ≥ ρ

where

ρ =
64

M

√√√√ M∑
i=1

〈xi , xi 〉+ 68R

√
2

M
log

(
2

δ

)
there exists p ∈ RN−1, ‖p‖2 ≤ 4

d ‖e‖2, such that ṽ = (vi + V p)/
√
1 + p>p is a

unit `2-norm eigenvector of C. Moreover:

dist(span(vi), span(ṽ)) ≤
ρ

d
.

A few remarks are in place:

Remark 4.2. The distance dist(A,B) between two equally dimensional subspaces
(here the span of the empirical and true eigenvector) is defined as the norm of the
difference between the orthogonal projection operators onto these spaces. In our
case these are exactly the eigenvectors itself and hence

dist(span(vi), span(ṽ)) = ‖vi − ṽ‖2.

Remark 4.3. The central statement of the theorem is that if the empirical eigen-
value λi corresponding to vi is separated from all other eigenvalues (i.e. is a singular
eigenvalue) at a rate which depends upon the average norm of the observations
and decreases like 1√

M
, then with high probability the empirical eigenvector will be

close to a true eigenvector.

Remark 4.4. Even if the bound is non–trivial the theorem does not guarantee that
the vector ṽ is actually the i-th eigenvector of C. In principle it could be any
eigenvector. But we conjecture that this is very unlikely.

Theorem 4.5 can be generalized to the case when we consider more than one
eigenvector at once, i.e. a complete subspace spanned by several eigenvectors.

Lemma 4.5. Let X , CX , C and E be as in Theorem 4.5. Let I = {i1, . . . , iD} ⊆
{1, . . . , N} and let VI = [vi1 , . . . , viD}, 1 ≤ D ≤ N, be a matrix containing the
eigenvectors of CX indexed by I. Finally, let V a normal matrix for the subspace
orthogonal to VI . Define

[VIV]
>CX [VIV] =

[
Λ 0

0 Q

]
, [VIV]

>E[VIV] =

[
E11 E>21
E21 E22

]
.

Then with probability (1− δ) over the random draw of the sample X , if

d := sep(Λ, Q) ≥ ρ,

4.3 BOUNDING THE CHANGE IN EIGENVECTORS 81

where

ρ =
80

M

√√√√ M∑
i=1

〈xi , xi 〉+ 85R

√
2

M
log

(
2

δ

)
there exists a matrix P ∈ R(N−1)×D with ‖P‖2 ≤ 4

d ‖E21‖2, such that the columns
of Ṽ = (VI + V P)(I + P>P)−

1
2 define an orthogonal basis for a subspace spanned

by D eigenvectors of C. Moreover:

dist(span(VI), span(Ṽ)) ≤
ρ

d
.

Again we need a few remarks:

Remark 4.5. The separation sep(A,B) of two equally dimensional symmetric ma-
trices is, in analogy to what occurred in Theorem 4.5, defined as

sep(A,B) = min
λ∈λ(A),µ∈λ(B)

|λ− µ|,

i.e. in our case it measures the smallest distance between eigenvalues associ-
ated with eigenvectors indexed by I and the remaining eigenvalues indexed by
{1, . . . , N} \ I.
Remark 4.6. The span (or range) span(A) of a matrix A is given by the subspace
spanned by its columns. The distance of these subspaces is again measured by
the distance of the orthogonal projection operators.

Remark 4.7. As said before Lemma 4.5 is the straight forward generalization of
Theorem 4.5. If the subspace spanned by the eigenvectors under consideration is
sufficiently separated from the remaining subspace spanned by the other eigenvec-
tors, where the sufficiency depends on the average norm of the observations and
1√
M

, then it is very likely that there is a similar subspace spanned by eigenvectors of
the true covariance matrix. Again, the Lemma does not imply that this subspace
is connected to the same eigenvalues.

4.3.2 Proof of Theorem 4.5

The proofs to Theorem 4.5 and Lemma 4.5 will both be based on the following
theorems which are due to Stewart (1973) and can be found e.g. in Golub and
van Loan (1996).

Theorem 4.6 (Perturbation of Invariant Subspaces (Stewart, 1973)). Let A
and A+ E be N × N symmetric matrices and let

V = [V1, V2] , V1 ∈ RD×N , V2 ∈ R(N−D)×N

be an orthogonal matrix such that span(V1) is an invariant subspace for A. Parti-
tion the matrices V>AV and V>EV as follows:

V>AV =

[
Q1 0

0 Q2

]
, V>EV =

[
E11 E>21
E21 E22

]
.

If d = sep(Q1, Q2) > 0 and

‖E‖2 ≤
d

5
,

82 4 BOUNDS

then there exists a matrix P ∈ R(N−D)×D with

‖P‖2 ≤
4

d
‖E21‖2

such that the columns of Ṽ1 = (V1+ V2P)(I +P>P)−
1
2 define a orthonormal basis

for a subspace that is invariant for A+ E. Moreover, then

dist(span(V1), span(Ṽ1)) ≤
4

d
‖E21‖2.

An invariant subspaces is any subspace spanned by an arbitrary subset of D
eigenvectors of A. Especially, if span(V1) is an invariant subspace of A, then
λ(A) = λ(Q1) ∪ λ(Q2). In a slightly less general form, as we will do later in the
proofs, we could require the columns of V1 to be eigenvectors of A. However, what
we will show is in principle independent of the representation, i.e. the columns of
V1, chosen for that subspace. In the special case D = 1 (then V1 must be an
eigenvector of A) there is a slightly refined version of the same theorem:

Theorem 4.7 (Perturbation of Eigenvector (Stewart, 1973)). Under the as-
sumptions of Theorem 4.6 and the additional assumption that D = 1, i.e.

V = [v1, V2] ,

where v1 is an eigenvector of A, partition the matrices V>AV and V>EV as follows:

V>AV =

[
λ 0

0 Q

]
, V>EV =

[
ε e>

e E22

]
.

If d = minµ∈λ(Q) |λ− µ| > 0 and

‖E‖2 ≤
d

4
,

then there exists a vector p ∈ RN−1 with

‖p‖2 ≤
4

d
‖e‖2

such that ṽ1 = (v1 + V2p)/
√
1 + p>p is a unit `2-norm eigenvector for A + E.

Moreover,

dist(span(v1), span(ṽ1)) ≤
4

d
‖e‖2.

Note the slightly improved constant in the condition on ‖E‖2.
What we will do now is use Theorem 4.7 to prove Theorem 4.5. The proof of

Lemma 4.5 follows in complete analogy using Theorem 4.6.

Proof of Theorem 4.5. We will make the proof in several steps.

1. Applying Theorem 4.7 In Theorem 4.7 set A = CX and let v1 be the i-th
eigenvector of CX . Then it follows from 4.7 that if

d := min
i 6=j
|λi(CX)− λj(CX)| > 0,

4.3 BOUNDING THE CHANGE IN EIGENVECTORS 83

and

‖E‖2 = ‖C − CX ‖2 ≤
d

4
,

there exist the vector p ∈ RN−1 with ‖p‖2 ≤ 4
d ‖e‖2 such that we can

construct v as being a unit `2-norm eigenvector of C.

2. Bounding the Approximation Error Suppose for a moment that we can
apply Theorem 4.7 and that ‖E‖2 ≤ ρ̃ ≤ d

4 . Then from Theorem 4.7 it
follow that

dist(span(vi), span(ṽ)) ≤
4

d
‖e‖2.

Now, since the `2-norm is mutually consistent (cf. Golub and van Loan,
1996), i.e. ‖PQ‖2 ≤ ‖P‖2‖Q‖2 for matrices P and Q, the following in-
equality holds true

‖e‖2 = ‖v>i EV ‖2 ≤ ‖vi‖2‖E‖2‖V ‖2 = ‖E‖2,

where we used ‖vi‖2 = ‖V ‖2 = 1 since vi and V are normal by assumption.
Since we assumed that ‖E‖ ≤ ρ̃ it follows that

dist(span(vi), span(ṽ)) ≤
4ρ̃

d
.

Since also d ≥ 4ρ̃ by assumption, the bound will be non–trivial, i.e. ≤ 1, if
it is applicable.

3. Bounding ‖E‖2 The crucial assumption above was that we could bound
‖E‖2 by some constant ρ̃ that is smaller than d4 . However, since we can not
compute E = C − CX simply because we do not know C we need to find a
bound which does not depend on C. Furthermore, since we do not want to
make any unnecessary assumptions about the distribution P generating our
data X such a bound can only be of a probabilistic nature.

What we will do in the following is to derive a bound of the form: with
probability 1− δ over the random draw of X

‖E‖2 ≤ ρ̃(M,R,X , δ).

Then, setting ρ = 4ρ̃ the proof of Theorem 4.5 follows.

Bounding ‖E‖2 We want to bound ‖E‖ from above. We will do this by casting
this problem as the problem of bounding the deviation between an average and its
expectation. First, we define the function classes F and G as:

F = {f : f (x) = (u>x)2, ‖u‖ ≤ 1}, (4.14)

G = {g : g(x) = u>x, ‖u‖ ≤
1

R
}, (4.15)

which we will later use to express the covariances involved in E.

84 4 BOUNDS

Lemma 4.6. Under the assumption ‖x‖ ≤ R and ‖u‖ ≤ 1 we have

u>x ≤
x>x

‖x‖ = ‖x‖ ≤ R,

and hence
∀f ∈ F : |f (x)| = (u>x)2 ≤ R2.

Similarly, with ‖u‖ ≤ 1
R we get

∀g ∈ G : |g(x)| = |u>x| ≤ 1.

Next we need to introduce the concept of Rademacher complexities. We follow
Bartlett and Mendelson (2002) and define

Definition 4.3 (Rademacher complexity). Let µ be a probability measure on
the space X and let F be a class of uniformly bounded functions on X . Then for
every integer M the Rademacher complexity RM(F) of F is defined as

RM(F) = Eµ Eε
2

M
sup
f ∈F

∣∣∣∣∣
M∑
i=1

εi f (Xi)

∣∣∣∣∣ , (4.16)

where Xi , i = 1, . . . ,M are independent, random variables distributed according to
µ and εi , i = 1, . . . ,M are independent Rademacher random variables, i.e. P(εi =
1) = P(εi = −1) = 1

2 . Likewise, the empirical counterpart R̂M(F) is defined by

R̂M(F) = Eε
2

M
sup
f ∈F

∣∣∣∣∣
M∑
i=1

εi f (Xi)

∣∣∣∣∣ , (4.17)

and hence RM(F) = Eµ R̂M(F) (cf. Bartlett and Mendelson, 2002).

We will have to bound the Rademacher complexity of F and will do so, by
using an existing bound on the Rademacher complexity of G. Luckily, there is a
theorem which helps us to relate these two complexities:

Theorem 4.8 (Bartlett and Mendelson (2002), Theorem 12(4)). Let G be a
class of real functions. If ϕ : R → R is Lipschitz with constant L and satisfies
ϕ(0) = 0, then RM(ϕ ◦ G) ≤ 2LRM(G).

Here ϕ ◦ G denotes the element wise application of ϕ to elements g ∈ G.
Now, if we choose ϕ(x) = 1

Rx
2 we have ϕ ◦ G = F and could hence bound the

Rademacher complexity of F by the one of G, provided the conditions of the
theorem are fulfilled. The second condition ϕ(0) = 02 = 0 if obviously true. The
following Lemma shows that ϕ is also Lipschitz:

Lemma 4.7. For a, b ∈ R, |a|, |b| ≤ D ≤ ∞, the function ϕ : R→ R, ϕ(a) = 1
r a
2,

r > 0 is Lipschitz with constant 2Dr , i.e.

|ϕ(a)− ϕ(b)| ≤
2D

r
|a − b|.

4.3 BOUNDING THE CHANGE IN EIGENVECTORS 85

Proof of Lemma 4.7.

|ϕ(a)− ϕ(b)| = |
1

r
a2 −

1

r
b2|

=
1

r
|(a + b)(a − b)|

=
1

r
|a + b||a − b|

≤
1

r
(|a|+ |b|)|a − b|

≤
2D

r
|a − b|.

Since we assumed ‖x‖ ≤ R and have already shown f (x) ≤ R2 we can apply
Lemma 4.7 with D = R2, r = R, leading to the conclusion:

Lemma 4.8 (Bounding RM(F)). For the classes F and G defined above and
under the assumption ‖x‖ ≤ R for all x sampled from the assumed distribution:

RM(F) ≤ 4RRM(G).

What remains now, is to bound RM(G) which we will do by using the empirical
Rademacher complexity and the following theorem:

Theorem 4.9 (Bartlett and Mendelson (2002), Theorem 11). Let G be a class
of functions mapping to [−1, 1]. For any integer M

P

[∣∣∣∣∣RM(G)− 2M supg∈G
∣∣∣∣∣
M∑
i=1

σig(Xi)

∣∣∣∣∣
∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−ε2M
8

)
and

P
[∣∣∣RM(G)− R̂M(G)∣∣∣ ≥ ε] ≤ 2 exp(−ε2M

8

)
.

The proof of this inequalities is a straight forward application of McDiarmid’s
inequality. One can show that the involved, empirical quantities are stable with
4
M . We will use the second inequality and since we only need a one–sided bound
on RM(G) we can drop the factor of two in front. We get, that with probability
1− δ

RM(G) ≤ R̂M(G) +
√
8

M
log(
1

δ
). (4.18)

This theorem is directly applicable to our class G under consideration: as shown
before, g ∈ G maps to [−1, 1] (cf. Lemma 4.6). Finally, we need to compute
R̂M(G). This was done by Bartlett and Mendelson (2002) and we reproduce their
proof in the appendix:

Lemma 4.9 (Bartlett and Mendelson (2002)). Let X1, . . . , XM be random el-
ements of X with ‖X‖ ≤ R as usual and let the class G of function be defined as
above. Then

R̂M(G) ≤
2

RM

√√√√ M∑
i=1

〈Xi , Xi 〉.

86 4 BOUNDS

Having collected these prerequisites, let us start to actually bound ‖E‖2. By
definition

‖E‖2 = sup
x6=0

‖Ex‖2
‖x‖2

= max
‖x‖=1

‖Ex‖2

From the last equality it follows that

‖E‖2 =
√
λ1(E>E),

since
λ1(A) := max

‖x‖=1
x>Ax and ‖Ex‖2 =

√
x>E>Ex.

Now, since E is real and symmetric there exists U, V ∈ RN×N such that E =
U>V U, U is normal (i.e. U>U = I) and V a diagonal matrix containing the eigenval-
ues of E. Then E>E = (U>V U)(U>V U) = U>V>V U and therefore the eigenvalues
of E>E are those of E squared. In particular it follows that√

λ1(E>E) = max(λ1(E),−λN(E))

First we rewrite ‖E‖ using the definition of E = C −CX and the definition of the
largest/smallest eigenvalue, yielding the following:

‖E‖2 =
√
λ1(E>E)

= max(λ1(E),−λN(E))
= max(max

‖u‖=1
(u>Eu),− min

‖u‖=1
(u>Eu))

= max
‖u‖=1

∣∣u>(C − CX)u∣∣
= max

‖u‖=1

∣∣u>Cu− u>CXu∣∣ .
Now, since CX ′ for arbitrary iid. draw of the sample X ′ is an unbiased estimator
of C, we have C = ECX ′ and

u>Cu = u>(EX ′ CX ′)u
= EX ′ [u>CX ′u],

for any (fixed) u. Therefore:

‖E‖2 = max
‖u‖=1

∣∣EX ′ [u>CX ′u]− u>CXu)∣∣ .
Now consider again the function class F defined in (4.14). Since we assumed
E[X] = 0, we can write:

u>CXu =
1

M

∑
x∈X
(u>x)2︸ ︷︷ ︸
f (x)∈F

=
1

M

∑
x∈X
f (x),

4.3 BOUNDING THE CHANGE IN EIGENVECTORS 87

and likewise for CX ′ . Substituting this expression in (4.19) yields:

‖E‖2 = max
‖u‖≤1

∣∣EX ′ [u>CX ′u]− u>CXu∣∣
= max

f ∈F

∣∣∣∣∣EX ′
[
1

|X ′|
∑
y∈X ′
f (y)

]
−
1

M

∑
x∈X
f (x)

∣∣∣∣∣
= max

f ∈F

∣∣∣∣∣EX ′ [f (X ′)]− 1M∑
x∈X
f (x)

∣∣∣∣∣ . (4.19)

But now we have cast the problem of bounding ‖E‖2 as one of bounding the
maximal difference between an expectation and the empirical mean.
We start by using that expressions like (4.19) are very stable. The proof is ele-
mentary and can be found in the appendix. We get the following Lemma:

Lemma 4.10. With probability 1− δ

‖E‖2 ≤ E ‖E‖2 +

√
2R2

M
log

(
1

δ

)
. (4.20)

We continue the proof following Bartlett et al. (2002); van der Vaart and Well-
ner (1996) where we find a bound on the expectation of (4.19) in terms of the
Rademacher complexity of F :

Lemma 4.11 (Bartlett et al. (2002), Lemma 4). For any class of functions F :

EX

[
sup
f ∈F
EX ′ [f (X ′)]−

1

M

M∑
i=1

f (xi)

]
≤ EX

[
sup
f ∈F

∣∣∣∣∣EX ′ [f (X ′)]− 1M
M∑
i=1

f (xi)

∣∣∣∣∣
]

≤ 2RM(F)

We use Lemma 4.11 to conclude from (4.20) that still with probability 1− δ:

‖E‖2 ≤ 2RM(F) +

√
2R2

M
log

(
1

δ

)
. (4.21)

Next, we apply Lemma 4.8 to change the Rademacher complexity of F into the
one of G yielding

‖E‖2 ≤ 8RRM(G) +

√
2R2

M
log

(
1

δ

)
. (4.22)

Now we can apply Theorem 4.9 to replace the (true) Rademacher complexity of
G with the empirical complexity and get: With probability 1− δ

‖E‖2 ≤ 8RR̂M(G) + 8R

√
8

M
log

(
2

δ

)
+

√
2R2

M
log

(
2

δ

)
. (4.23)

88 4 BOUNDS

Finally we bound R̂M(G) using Lemma 4.9 and end get that with probability at
least 1− δ

‖E‖2 ≤
16

M

√√√√ M∑
i=1

〈xi , xi 〉+ 8R

√
8

M
log

(
2

δ

)
+

√
2R2

M
log

(
2

δ

)
(4.24)

=
16

M

√√√√ M∑
i=1

〈xi , xi 〉+ 17R

√
2

M
log

(
2

δ

)
. (4.25)

Now defining

ρ̃ :=
16

M

√√√√ M∑
i=1

〈xi , xi 〉+ 17R

√
2

M
log

(
2

δ

)
,

we find that if

ρ = 4ρ̃

=
64

M

√√√√ M∑
i=1

〈xi , xi 〉+ 68R

√
2

M
log

(
2

δ

)
,

is smaller than d = mini 6=j |λi(CX) − λj(CX)| the conditions of Theorem 4.7 are
fulfilled with probability 1− δ. This completes the proof of Theorem 4.5.
The proof for Lemma 4.5 is almost identical. In step 2 we use that V1 and V2 are
normal. The only difference is that in the final step we have the condition

ρ = 5ρ̃

=
80

M

√√√√ M∑
i=1

〈xi , xi 〉+ 85R

√
2

M
log

(
2

δ

)
.

4.4 Leave-One-Out Error Calculation for KFD

In this last section we will discuss how to compute the leave–one–out error for
KFD. The leave-one-out error (Luntz and Brailowsky, 1969), sometimes called
delete estimate, of an algorithm A on a training set Z = (X × Y)M is defined as

Rloo(A,Z) =
1

M

M∑
i=1

`(AZ\(xi ,yi), yi),

i.e. it measures the average loss over examples in the training set that we incur
if they are left out during training. The leave-one-out error can be seen as an
extreme form of cross validation (e.g. Efron and Tibshirani, 1997): Instead of
partitioning the training set into, say, five folds and train on four subsets to test
on the fifth, the training set is split intoM folds, i.e. we doM-fold cross validation.
The most remarkable property of the leave-one-out error is that it provides us with

4.4 LEAVE-ONE-OUT ERROR CALCULATION FOR KFD 89

an (almost) unbiased estimate of the generalization error of our learning algorithm
A trained on the data Z. One can show (Luntz and Brailowsky, 1969) that

R(A,Z ′) = EZ [Rloo(A,Z)],

where Z ′ denotes a training set of size M − 1. However, there are also some
drawbacks:

• The leave-one-out error is known to have a high variance, i.e. a particular
estimate might well be overly optimistic or pessimistic.

• In the absence of any algorithmic advantages one can use (as we shall do
below) computation of the leave-one-out error can be very expensive since
we have to train the learning machine M times.

Here we deal with the second issue: the computational complexity. Clearly, if we
had to solve the KFD problem M times (and M is large) then, since KFD scales
roughly with O(M3), computation of the leave-one-out error would have a cost of
O(M4). In many practical applications that would be prohibitive. Here we present
a way to compute the leave-one-out error for KFD at a cost of O(M3), i.e. the
same as running the algorithm itself.

As we have seen in Section 3.5.4, the KFD problem with either the ‖w‖2 or the
‖ff‖2 regularizer can be solved by a system of linear equations. We first consider
the case ‖w‖2 which can be solved by[

1
CK + I 1

1> 0

] [
ff

b

]
=

[
y

0

]
, (4.26)

Now, the idea is that if we leave out one example in the training set this linear
system remain largely unchanged. Assume that this left out element is the p-th
example. Then we have to solve the same system as before but with the p-th
row and column removed. However, equivalently we can solve system (4.26) but
setting the p-th row and column to zero and requiring αp = 0 instead. This would
amount to the following problem:

. . . 1
CK1,p−1 0 1

CK1,p+1 . . .
. . .

...
...

...
. . .

. . . 1
CKp−1,p−1 + 1 0 1

CKp−1,p+1 . . .

. . . 0 1
CKp,p + 1 0 . . .

. . . 1
CKp+1,p−1 0 1

CKp+1,p+1 + 1 . . .
. . .

...
...

...
. . .

. . . 1
CKM,p−1 0 1

CKM,p+1 . . .

. . . 1 0 1 . . .

ff1
...
ffp−1
ffp
ffp+1

...
ffM
b

=

y1
...
yp−1
0

yp+1
...
yM
0

.

(4.27)

In fact, requiring αp = 0 is not strictly necessary but keeps the system at full
rank. A straight forward calculation reveals that the matrix in (4.27) is just a rank

90 4 BOUNDS

two update of the matrix in (4.26). Let

U =

0 1
CKp,1

.

0 1
CKp,p−1

1 0

0 1
CKp,p+1

.

0 1
CKp,M

, V =

1
CKp,1 0

.
1
CKp,p−1 0

0 1
1
CKp,p+1 0

.
1
CKp,M 0

.

Then we can compute the matrix in the linear system we need to solve if leaving
out the p-th example by[

1
CK + I 1

1> 0

]
− UV>=: A− UV>.

However, to solve the system what we need is not the matrix itself but its inverse.
Here we can use the same trick as we already did for the sparse greedy algorithm:
A rank k update of a matrix results in a rank k update of its inverse. More
specifically we will use the following formula (Golub and van Loan, 1996):

(A− UV>)−1 = A−1 + A−1U(I − V>A−1U)−1V>A−1.

In our case this is an operation of order O(M2)6. Since we have to repeat this
procedure M times we can compute the leave-one-out error in O(M3).

For the case we use the ‖ff‖2 regularizer the system we have to solve is given
by [

1
CK
>K + I 1

1> 0

] [
fi

b

]
=

[
y

0

]
, (4.28)

where here ff = 1
CKfi. We can apply the same trick as before. The only difference

is that the rank two update is now given through

U =

0 1
CKp•K•1

.

0 1
CKp•K•p−1

1 0

0 1
CKp•K•p+1

.

0 1
CKp•K•M

, V =

1
CKp•K•1 0

.
1
CKp•K•p−1 0

0 1
1
CKp•K•p+1 0

.
1
CKp•K•M 0

.

4.5 Summary

We discussed in this chapter two possible ways to derive generalization error bounds
for KFD based on stability and algorithmic luckiness. We motivated that bounds
of the first kind could be build upon an analysis of the stability of the eigenvector
solution computed by KFD while bounds of the second kind could be build upon the
eigenvalue estimated in KFD. While it is still ongoing research to actually derive

6The matrix I − V>A−1U is of size 2× 2 and its inverse can be found analytically.

4.5 SUMMARY 91

such bounds, we demonstrated that it is at least possible to derive guarantees on
the eigenvalues and eigenvectors as computed by simple PCA. Specifically, we
have shown that the empirical eigenvalues of PCA are with high probability close
to the expected empirical eigenvalues computed on an M sample. We have also
shown that an empirical eigenvector is with high probability close to an eigenvector
of the underlying distribution. Future work will either try to generalize what has
been done here to the generalized eigenproblem solved for by KFD or to use the
tools presented in this section to directly derive bound for KFD. But the results
presented here might be interesting in their own right. PCA is a widely used
technique and the bounds derived here are the first distribution free guarantees
for PCA we are aware of. Finally, we showed that it is possible to compute the
leave-one-out error of KFD at a reasonable cost which is of the same order as the
algorithm itself.

93

Chapter 5

Applications

Wer A sagt, muß nicht B sagen. Er kann
auch erkennen, daß A falsch war.

Bertold Brecht

This chapter summarizes our experimental results. We illustrate
certain aspects of the proposed techniques and give an experi-
mental comparison of the distributions of the output generated
by KFD. Also, we evaluate the performance of the different al-
gorithms proposed and present experiments on real world data to
demonstrate that KFD is capable of competing with other tech-
niques like SVM.

IN this chapter we first present some experiments on toy data to illustrate the
nature of the results produced by the proposed kernel Fisher discriminants. All

experiments with KFD, if not stated explicitly, use the ‖ff‖2 regularization, i.e. op-
timize (3.37), and use RBF kernels (2.35).

In Figure 5.1 we show the results of KFD (cf. (3.35)) and linear sparse KFD
(LSKFD, cf. (3.55)) on the same toy data set that was used to illustrate SVMs
(cf. Figure 2.10). It can be observed, that introducing the non–linearity through
the RBF kernel yields a sensible non-linear decision function in the input space.
Also, we see that LSKFD produces solutions which are sparse in the expansion
coefficients (cf. (3.25)), i.e. only a few of the training examples are used to describe
the solution (in the linear case only two). For SVMs the set of support vectors
is structured in the sense that every example that is not outside the margin area
becomes a support vector. For LSKFD we do not observe such a behavior: the
set of non-zero coefficients does not have a specific structure. However, being
allowed to choose any example for the expansion we can get sparser solutions
(cf. Table 5.5).

Figure 5.2 shows an illustrative comparison of the features found by KFD and
the first and second (non–linear) feature found by kernel PCA (Schölkopf et al.,
1998b) on a toy data set. For both we used a polynomial kernel of degree two
(cf. (2.36)). Depicted are the two classes (crosses and dots), the feature value

94 5 APPLICATIONS

Figure 5.1: Illustration of linear and non–linear KFD and LSKFD. For the non–linear case a
RBF kernel (2.35) was used. The left two panels show the results for KFD, the right two panels
for LSKFD (see also Figure 2.10 for the result of an SVM on the same toy data). Training
examples from the two classes are represented by red ’x’ and blue ’+’, respectively. The solid
curve shows the decision surface, i.e. (w ·Φ(x))+ b = 0, the dotted curves show the area where
(w · Φ(x)) + b = ±1. For LSKFD “support vectors” are marked by small circles, (for KFD all
examples are support vectors).

(indicated by gray level) and contour lines of identical feature value. Each class
consists of two noisy parabolic shapes mirrored at the x and y axis respectively.
We see, that the KFD feature discriminates the two classes in a nearly optimal
way, whereas the kernel PCA features, albeit describing interesting properties of
the data set, do not separate the two classes well (although higher order kernel
PCA features might be discriminating, too).

Figure 5.2: Comparison of feature found by KFD (left) and those found by kernel PCA: first
(middle) and second (right); details see text.

We repeated a similar experiment on the USPS data set. This data set consists
of 7291 scanned and segmented 16 × 16 gray-value pixel images of handwritten
digits (cf. Figure 5.10). We trained linear PCA, kernel PCA, Fisher’s discriminant
and KFD on the first 500 training examples (where the task was to discriminate
digit three against the rest). We used a RBF kernel and, where necessary, set
parameters to values that we found to be optimal in other experiments (see Sec-
tion 5.3.1). Fisher’s discriminant as well as KFD solve an eigenproblem and hence
it is possible to compute more than just one (the leading) eigenvector. In fact,
the next eigenvectors computed from the within-class and between-class scatter
are those directions that are most discriminating after the directions with larger
eigenvalue have been projected out. What we show in Figure 5.3 is the embedding
into a two dimensional space which we get if we project the (complete) data set
onto the first two directions found by each method. We see that for both linear
PCA and kernel PCA the directions with largest variance are not discriminating.
For Fisher’s discriminant the data are at least a little separated but there is still
a large overlap between the classes. For KFD the separation is evidently much
better.

95

Figure 5.3: Comparison of the first two features found by linear PCA (upper left), kernel PCA
(upper right), linear Fisher’s discriminant (lower left) and KFD (lower right) on the USPS dataset
in discriminating digit 4 (red x) against the remaining nine digits (blue +). Depicted is the
feature value extracted by projecting the data onto the first (generalized) eigenvector versus the
second (generalized) eigenvector found by the methods (see text for details). PCA, since it is
an unsupervised technique does not succeed in discriminating the two classes. Linear Fisher and
KFD use the labels. However, the overlap for linear Fisher is substantial and it is much smaller
for KFD.

Oriented Kernel PCA A toy example (Figure 5.4) shows a comparison of kernel
PCA and oriented kernel PCA (cf. Section 3.4.2). Here we use oriented kernel PCA
with the full covariance matrix (4.1) to measure the information in the features
(like (kernel) PCA does) and the tangent covariance matrix (3.23) to measure the
noise. We used (i) rotated patterns and (ii) along the x-axis translated patterns for
the tangent covariance matrix. The toy example shows how imposing the desired
invariance yields meaningful invariant features.

Regression Since we have discussed that KFD (and linear Fisher as well) is
equivalent to a least squares regression to the labels we can use it as well for re-
gression (cf. Section 3.2.1). To illustrate this fact, we conducted a toy experiment
on the “sinc” function (cf. Figure 5.5) using the sparse KFD variant, i.e. (3.53). In
terms of the number of support vectors we obtain similarly sparse results as with
RVMs Tipping (2000), and a much smaller number of non–zero coefficients than
in SVM regression.

96 5 APPLICATIONS

Figure 5.4: Comparison of first features found by kernel PCA and oriented kernel PCA (see
text); from left to right: KPCA, oriented KPCA with rotation and translation invariance; all with
Gaussian kernel.

5.1 The Output Distribution

Next we compare the output distributions generated by a SVM and KFD as well
as some of its variants (cf. Figure 5.6 and Figure 5.7). By maximizing the small-
est margin and using linear slack variables for examples which do not achieve a
reasonable margin, the SVM produces a training output sharply peaked around
±1 with Laplacian-like tails inside the margin area (the inside margin area is the
interval [−1, 1], the outside area its complement). Contrarily, plain KFD tends to
produce normal distributions which have a small variance along the discriminating
direction. Comparing the distributions on the training set to those on the test
set, there is almost no difference for KFD with the right amount of regularization.
In this sense the direction found on the training data is consistent with the test
data. For SVM the output distribution on the test set is significantly different.
In the example given in Figure 5.7 KFD and its variants performed slightly better
than SVM (1.5%/1.6% vs. 1.7% for the best parameters found by 5-fold cross
validation; cf. Section 5.3.2), a fact that is surprising looking only on the training
distribution (which is perfectly separated for SVM but has some overlap for the
KFD algorithms). We get a similar picture for robust KFD (Section 3.4.8) and
linear sparse KFD (Section 3.4.8). In this case the distributions are more Lapla-
cian due to the density model connected to the `1-penalization (cf. Section 2.1.4).

−10 −5 0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.5: Illustration of KFD regression. The left panel shows a fit to the noise–free “sinc”
function sampled on 100 equally spaced points, the right panel with Gaussian noise of std. dev. 0.2
added. In both cases we used RBF–kernel exp(−‖x − y‖2/c) of width c = 4.0 and c = 3.0,
respectively. The regularization was C = 0.01 and C = 0.1 (small dots training samples, circled
dots support vectors).

5.2 EVALUATION OF DIFFERENT ALGORITHMS 97

Regularization
too small optimal too large

K
F
D

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

ro
bu

st
K

F
D

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

LS
K

F
D

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

SV
M

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

Figure 5.6: Comparison of the output distribution on the training data of the ringnorm data
set produced by KFD, robust KFD, linear sparse KFD, and a SVM using RBF kernels. Each
row shows the results for different choices of the regularization (too small, optimal, too large).
The kernel width in each row is constant, set to the optimal value found in the model selection
process (see Section 5.3.2). Results are averaged over 100 runs.

Also, we observe peaks at ±1 in the distribution of the training outputs. But still,
the distribution of the projections of the training and test data are much more
consistent than for SVM.

5.2 Evaluation of Different Algorithms

We now report experiments to illustrate the run-time behavior of some algorithms
proposed in Section 3.5. Specifically we consider the sparse greedy approach
(Section 3.5.2), the coordinate descent/SMO approach (Section 3.5.3) and the

98 5 APPLICATIONS

column generation approach (Section 3.5.6). The first two are used to optimize
the standard KFD problem, the last one is used for the linear sparse KFD. We
investigate how fast the methods converge compared to solving the complete op-
timization problem at once using e.g. a mathematical optimization software. Also,
we analyze how much we pay for the approximative character of these methods in
terms of performance.

5.2.1 Evaluation of the Sparse Greedy Approach

We will show that the sparse greedy approach from Section 3.5.2 improves sig-
nificantly over the full quadratic optimization of (3.37). Furthermore, we show
that the approximation does not significantly degrade the quality of the solutions.
All timing experiments were carried out on the same machine using an optimized
linear algebra library (BLAS). We compared this to solving the quadratic program
given by (3.37) using as quadratic optimizer loqo (Vanderbei, 1997).

Runtime First we compare the runtime of the sparse greedy algorithm to the
quadratic optimizer. We used a one-against-the-rest task constructed from the
USPS handwritten digit data set (Figure 5.10). All experiments were done with a
RBF kernel exp(‖x− y‖2/c), c = 0.3 ·N (N being the dimensionality of the data,
i.e. N = 256), and with a fixed regularization constant C = 1. The results are
summarized in Figure 5.8. It can be seen that the new training algorithm halves
the scaling exponent of the training time for large sample sizes. In addition, it
is important to keep in mind that the sparse greedy approach needs to store at
most an m×m matrix, where m is the maximal number of kernel functions chosen
before termination. In contrast, solving the full problem we need to store M ×M
matrices.

SVM training set

−2 −1 0 1 2 −2 −1 0 1 2

KFD − training set

−2 −1 0 1 2

Robust KFD − training set

−2 −1 0 1 2

Linear Sparse KFD − training set

SVM test set

−2 −1 0 1 2 −2 −1 0 1 2

KFD − test set

−2 −1 0 1 2

Robust KFD − test set

−2 −1 0 1 2

Linear Sparse KFD − test set

Figure 5.7: Comparison of output distributions on training and test set for SVM and KFD, robust
KFD, and linear sparse KFD for optimal parameters on the ringnorm dataset (averaged over 100
different partitions). It is clearly observable, that the training and test set distributions for KFD
and its variants are quite consistent while they are considerable different for SVM. This might
be one explanation for the good performance of KFD.

5.2 EVALUATION OF DIFFERENT ALGORITHMS 99

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

Number of Samples

C
P

U
 T

im
e

in
 S

ec
on

ds

Figure 5.8: Runtime of sparse greedy KFD training. Depicted is the number of samples in the
training set versus the CPU time of the sparse greedy algorithm (dash dotted lines) and the
QP formulation (3.37) (solid line). The estimates are averages over ten trials, one for each of
the ten one–against–the–rest problems in the USPS database. The three lines for sparse greedy
KFD are generated by requiring different accuracies on the dual error function in the stopping
criterion, namely 10−a, a = 1, . . . , 3 relative to the function value (in that order from bottom
to top). There is a speed-accuracy trade-off in that for large a, the algorithm converges more
slowly. In the log-log plot it can be seen that the QP algorithm roughly scales cubic in the
number of samples while the sparse greedy algorithm scales with an exponent of about 3

2
for

large sample sizes .

Performance To test how the performance of this approach relates to the “true”
solution we repeated the above experiment on the USPS database for different
regularization constants C = 10−3, 10−4, 10−5 and different kernel widths c =
0.3·N, 0.4·N, 0.5·N. The algorithm was terminated when the average achievement
in the dual objective over the last five iterations was less than 10−1, 10−2, 5 ·
10−3, 10−3, respectively, relative to the objective or when a maximum of 500
coefficients was found. As the purpose of this experiment is to show that the
sparse greedy approach is capable of producing results comparable to the full
system, no model selection was performed and just the best results on the test
set are reported (cf. Table 5.1). A small improvement in the test error can be
achieved by using an optimized threshold b rather than the one given by the
algorithm itself. This optimized b is found by training a linear support vector
machine on the one dimensional outputs of the training data, i.e. we try to find a
threshold which maximizes the smallest distance of the projections to the decision
boundary (details e.g. in Mika et al. (1999a)). So far the best result for KFD on
the USPS dataset (without using prior knowledge) was 3.7% (Mika et al., 2000),
using an expansion restricted to the first 3000 training patterns and the optimized
threshold. From Table 5.1 it can be seen that the sparse greedy approach produces
results close to the QP solution, however, using a significantly smaller number of
kernel functions (less than 500 vs. 3000). It can be observed that the chosen
precision for the termination criterion is an important parameter. Although the
high precision of 10−3 takes longer to train than for smaller precisions, the runtime

100 5 APPLICATIONS

Table 5.1: Minimal 10–class test error on the USPS dataset using the parameters described in
the text. Shown is the threshold on the improvement in the dual objective used to terminate the
algorithm (tolerance), the test error using the threshold given by the algorithm itself, and the
test error using an extra, optimized threshold b (see text). The best result of 3.8% is almost
identical to the result of 3.7% obtained on the same dataset using an expansion fixed to the first
3000 training examples (Mika et al., 2000). Note, moreover, that for the sparse greedy algorithm
the number of examples in the expansion (3.25) is less than 500 in each single classifier.

tolerance 10−1 10−2 5 · 10−3 10−3

test error with QP threshold 10.4% 6.4% 5.3% 3.9%

test error with optimized threshold 10.3% 6.3% 5.3% 3.8%

of the approach is more than ten times smaller than solving the QP with 3000
patterns.

5.2.2 Evaluation of Coordinate Descent

Similarly as described above for the sparse greedy approach we evaluated the co-
ordinate descent method described in Section 3.5.3. We used again the USPS
dataset and evaluated the time necessary for convergence. Here we varied the
minimal number of significant figures (3.62) and the maximal size of the primal
infeasibility we tolerate. Since these two quantities are related we coupled them
in choosing the minimal number of significant figures as a and requiring a maxi-
mal primal infeasibility of 10−a, for a = 1, 2, 3, 4. Using again a RBF kernel, the
results of our findings are shown in Figure 5.9. The kernel width and the reg-
ularization constant were fixed to near optimal values. The direct optimization
of the complete mathematical program was done using CPLEX (CPL, 1994), a
commercial package. The runtime behavior of the coordinate descent approach is,

10
2

10
3

10
4

10
−2

10
0

10
2

10
4

Number of Samples

C
P

U
 T

im
e

in
 S

ec
on

ds

10
2

10
3

10
4

10
−2

10
−1

10
0

Number of Samples

T
es

t E
rr

or

Figure 5.9: Runtime of Coordinate Descent/SMO. Left panel: Shown is the number of examples
in the training set versus the CPU time in seconds of the SMO-type algorithm proposed in
Section 3.5.3 (black lines) and the QP formulation (3.37) (red line with dots). The estimates
are averages over ten trials, one for each of the ten one–against–the–rest problems in the USPS
database. The four lines for the coordinate descent method are generated by requiring a different
number of significant figures and different accuracies on the primal infeasibility. From top to
bottom they were chosen as a and 10−a, respectively, for a = 1, 2, 3, 4. The right panel shows
the number of examples vs. the 10-class test error. In contrast to the sparse greedy approach,
already the lowest precision gives results that are identical to higher precisions or the full solution.

5.2 EVALUATION OF DIFFERENT ALGORITHMS 101

for sample sizes larger than about 500 examples not worse than the optimization
of the QP. However, note that this coordinate descent techniques only needs a
very small amount of memory which remains constant during the optimization.
This in contrast to the full optimization but also compared to the sparse greedy
approach which is growing in each iteration. Also, the time spend for each it-
eration stays constant. In the right panel of Figure 5.9 we plotted the number
of training samples versus the ten-class generalization error which was computed
using a winner takes all scheme. Particularly amazing is the fact that already the
smallest precision of a = 1 significant figures yields the same result as solving the
complete QP. Interpolating the graph on the left (solving the complete QP for
more than 4000 training samples was not feasible anymore), we see that we can
get a speed up of a factor 100 and more using the coordinate descent approach.
And this with only very little memory needs and without loss in generalization
ability. This is also confirmed by the following experiment where we performed
a model selection for the coordinate descent approach on the USPS data. The
results for one significant figure and a maximal primal infeasibility of 10−1 were
not worse than for precisions up to four significant figures and an infeasibility of
at most 10−4. However, the training time is much smaller for the low precisions.
The best 10-class test error over all tested parameter combinations with one sig-
nificant figure was 3.5% for a kernel width of c = 0.3 · 256 and a regularization
constant of C = 10−2. This improves the best KFD result of 3.7% on the USPS
data set so far which was obtained by expanding into the first 3000 examples only.
It is considerably better than the result of a SVM on the same data (without prior
knowledge) which achieves an error of 4.2%.

5.2.3 Evaluation of Column Generation

The last algorithm which we want to evaluate here is the column generation ap-
proach proposed for linear sparse KFD (cf. Section 3.5.6). We have yet only
performed a small benchmark to verify that the solutions are not worse than those
of the complete linear optimization problem. To this end, we ran a five fold model
selection on ten datasets in 5 different realizations for 25 combinations of the
parameters C and c using RBF kernel. In fact, we repeated what we will present
in Section 5.3.2. To get more reliable estimated we ran this complete model se-
lection 5 times, i.e. we had to do 5 · 10 · 5 · 25 · 5 = 31250 training runs. Averaged
over these 31250 repetitions, solving the full linear program using CPLEX (CPL,
1994) took 3.1 seconds per run, using the column generation approach (also based
on CPLEX) took 2.6 seconds per run. The difference in the results was negligible.

However, we also noticed, that using larger data set (for instance the USPS
data) the column generation approach ran into difficulties. It is unclear yet whether
these problems are related to the technique itself or rather to the implementation in
the CPLEX software. Also, it was observed e.g. for linear programming machines
(Demiriz et al., 2001) that the speed of column generation crucially depends on
the problem formulation. Small changes which leave the problem identical from a
mathematical point of view can have a big influence on the convergence.

102 5 APPLICATIONS

5.3 Benchmark Performance

We will now evaluate in more detail how KFD and its variants compare to other
techniques on real world and benchmark data sets. First we present an experiment
where we incorporated invariances into an optical character recognition task using
KFD (Section 5.3.1). In another set of experiments (Section 5.3.2) we compare
KFD, sparse KFD and linear sparse KFD to support vector machines, radial basis
function networks, AdaBoost and regularized AdaBoost.

5.3.1 USPS Invariance Experiment

original

shift left

shift right

shift up

shift down

left rotate

right rotate

thickening

thinning

Figure 5.10: Examples of the USPS handwritten digit data used in some of the experiments. Each
column shows the first occurrence of a digit in the training set. The top row shows the original
data. Each pair of subsequent rows shows the horizontally translated, vertically translated,
rotated and thickened/thinned example, respectively, used in the invariance experiment. The
data set consists of 7291 training examples and 2007 test examples, each 16 × 16 gray value
pixels.

In a first experiment we incorporate prior knowledge in KFD for the USPS
database (cf. Figure 5.10). We used the regularized within-class scatter (3.33)
(µ = 10−3) as SN and added to it an multiple λ of the tangent covariance (3.23),
i.e. SN = Nµ + λT . As invariance transformations we have chosen horizontal
and vertical translation, rotation, and thickening (cf. Schölkopf, 1997), where we
simply averaged the matrices corresponding to each transformation. Figure 5.10
shows some examples of these data and the applied transformations. The feature
was extracted by using the restricted expansion (3.57), where the patterns zi were
the first 3000 training examples. As kernel we have chosen a Gaussian with width
c = 0.3·N, which is optimal for SVMs (Schölkopf, 1997). For each class we trained
a KFD which classified that class against the rest and computed the 10-class error

5.3 BENCHMARK PERFORMANCE 103

by the winner-takes-all scheme. The threshold was estimated by minimizing the
empirical risk on the normalized outputs of KFD and then choosing the solution
with a maximal margin (which is very simple in this case since the projected data
are one dimensional).
Without invariances, i.e. λ = 0, we achieved a test error of 3.7%, slightly better
than a plain SVM with the same kernel (4.2%) (Schölkopf, 1997). For λ = 10−3,
using the tangent covariance matrix led to a very slight improvement to 3.6%.
That the result was not significantly better than the corresponding one for KFD
(3.7%) can be attributed to the fact that we used the same expansion coefficients
in both cases. The tangent covariance matrix, however, lives in a slightly different
subspace (cf. discussion in Section 3.4.5). And indeed, a subsequent experiment
where we used vectors which were obtained by k–means clustering a larger dataset,
including virtual examples generated by appropriate invariance transformation, led
to 3.1%, comparable to an SVM using prior knowledge (e.g. Schölkopf (1997);
best SVM result 2.9% with local kernel and virtual support vectors).

5.3.2 IDA Benchmarks

In this final set of experiments we perform an extensive comparison of KFD, sparse
KFD and linear sparse KFD to other techniques on a collection of 10 different
data sets. These data sets come from a variety of sources, among them the
statlog repository1 and the UCI repository2. Those of them which are originally
multi-class problems have been partitioned into two class problems by building
two super-classes from the original classes. If there originally were separate test
and training/validation sets they have been merged to form one larger data set.
Then these data sets of now only two class problems have randomly been split
into 100 partitions of training, and test data, keeping the class ratio at the level
of the complete data set. The data and the 100 splits can be found online at
the Fraunhofer FIRST.IDA benchmark repository3. More details on how the data
were generated can be found in Rätsch et al. (2001).

We compared kernel Fisher discriminants and support vector machines, both
with Gaussian kernel, to RBF-networks (e.g. Moody and Darken, 1989), AdaBoost
(Freund and Schapire, 1997) and regularized AdaBoost (Rätsch et al., 2001)
(cf. Table 5.3). For KFD we used the regularized within-class scatter (3.33)
and computed projections onto the optimal direction w ∈ F by means of (3.32).
To use w for classification we have to estimate a threshold. Although being seem-
ingly a trivial problem there is a host of possibilities to do this and which threshold
we choose can have a large influence on the solution. For various reasons we
did not use the threshold that the quadratic programming formulation of KFD
suggests, i.e. the one which minimizes the mean squared error between labels and
output (cf. (3.35)). In practice this threshold shows a rather poor performance
and the example in Section 3.2.3 also suggests that this is not a good choice.
Again we decided to compute the threshold such that we maximize the margin on
the outputs in analogy to a support vector machine, where we deal with errors on
the training set by using the SVM soft margin approach. The computational cost

1ftp://ftp.ncc.up.pt/pub/statlog
2http://www.ics.uci.edu/˜mlearn/MLRepository.html; (Blake and Merz, 1998)
3http://ida.first.fhg.de/˜raetsch/data/benchmarks.htm

104 5 APPLICATIONS

Table 5.2: Statistics of the data sets used in the comparison.
Size of

dimensionality training set test set

Banana 2 400 4900
B.Cancer 9 200 77
Diabetes 8 468 300
German 20 700 300

Heart 13 170 100
Ringnorm 20 400 7000

F.Sonar 9 666 400
Thyroid 5 140 75
Titanic 3 150 2051

Waveform 21 400 4600

is negligible and this one–dimensional problem can easily be solved using gradient
descent. The results in Table 5.3 show the average test error and the standard
deviation of the averages’ estimation, over 100 runs with the different realiza-
tions of the datasets. To estimate the necessary parameters, we ran 5-fold cross
validation on the first five realizations of the training sets and took the model
parameters to be the median over the five estimates. The same setting has been
used in Rätsch et al. (2001). Usually we did more than just one model selection
run by first coarsely scanning the range of candidate values for the parameters and
then refining this range in further runs. It has to be noted, that such this model
selection procedure is not quite clean. The way the data were generated, there
will be examples which are in the test set of one partition that are in the training
set of another partition. Then by averaging over the estimated parameters and
repeating this procedure the algorithm potentially gains some knowledge about
the test set of a partition. But since we applied this procedure consistently for all
algorithms we do not expect a big influence in the comparison, except that the
results are slightly biased.

Comparing only plain KFD to the other techniques KFD yields the best result
in 5 out of 10 cases and is among the best two methods in 9 out of 10 cases.
Comparing SVM and the three KFD variants (cf. Table 5.4) we get a similar
picture.

However, comparing the average performance over the ten data sets suggest
that SVM, KFD, SKFD and LSKFD perform equally well, closely followed by
regularized AdaBoost. Only RBF networks and plain AdaBoost are slightly worse
although this difference is hardly significant.

In Table 5.5 we compare the sparsity of the optimal solutions produced by
SVM, sparse KFD and linear sparse KFD (for plain KFD all coefficients are non-
zero). It is noteworthy that the solutions of SKFD and LSKFD are much sparser
than those of an SVM. As we have seen in the previous tables this high sparsity
can be achieved without a loss in terms of the generalization error.4

4However, one should note that it is possible to post-process the SVM solution to get a
sparser approximation using so called reduced set methods (e.g. Burges and Schölkopf, 1997;
Schölkopf et al., 1999b). On the other hand, these methods are applicable to KFD as well.

5.3 BENCHMARK PERFORMANCE 105

Table 5.3: Comparison between KFD, a single RBF classifier, AdaBoost (AB), regularized Ad-
aBoost (ABR) and support vector machine (SVM) (see text). Best method in bold face, second
best emphasized. Shown is the generalization error for the ten data sets averaged over 100
partitions and the averages’ standard deviation.

RBF AB ABR SVM KFD
Banana 10.8±0.06 12.3±0.07 10.9±0.04 11.5±0.07 10.8±0.05
B.Cancer 27.6±0.47 30.4±0.47 26.5±0.45 26.0±0.47 25.8±0.46
Diabetes 24.3±0.19 26.5±0.23 23.8±0.18 23.5±0.17 23.2±0.16
German 24.7±0.24 27.5±0.25 24.3±0.21 23.6±0.21 23.7±0.22
Heart 17.6±0.33 20.3±0.34 16.5±0.35 16.0±0.33 16.1±0.34
Ringnorm 1.7±0.02 1.9±0.03 1.6±0.01 1.7±0.01 1.5±0.01
F.Sonar 34.4±0.20 35.7±0.18 34.2±0.22 32.4±0.18 33.2±0.17
Thyroid 4.5±0.21 4.4±0.22 4.6±0.22 4.8±0.22 4.2±0.21
Titanic 23.3±0.13 22.6±0.12 22.6±0.12 22.4±0.10 23.2±0.20
Waveform 10.7±0.11 10.8±0.06 9.8±0.08 9.9±0.04 9.9±0.04
Average 18.0% 20.2% 17.5% 17.2% 17.2%

Table 5.4: Comparison between SVM, KFD, sparse KFD (SKFD) and sparse KFD with linear loss
on ¸ (LSKFD) (see text). Best result in bold face, second best in italics (which is by coincidence
also consistent with Table 5.3). Also shown is the average performance over all data sets which
suggest that KFD and its variants are well competitive with SVM.

SVM KFD SKFD LSKFD
Banana 11.5±0.07 10.8±0.05 11.2±0.48 10.6±0.04
B.Cancer 26.0±0.47 25.8±0.46 25.2±0.44 25.8±0.47
Diabetes 23.5±0.17 23.2±0.16 23.1±0.18 23.6±0.18
German 23.6±0.21 23.7±0.22 23.6±0.23 24.1±0.23
Heart 16.0±0.33 16.1±0.34 16.4±0.31 16.0±0.36
Ringnorm 1.7±0.01 1.5±0.01 1.6±0.01 1.5±0.01
F.Sonar 32.4±0.18 33.2±0.17 33.4±0.17 34.4±0.23
Thyroid 4.8±0.22 4.2±0.21 4.3±0.18 4.7±0.22
Titanic 22.4±0.10 23.2±0.20 22.6±0.17 22.5±0.20
Waveform 9.9±0.04 9.9±0.04 10.1±0.04 10.2±0.04
Average 17.2% 17.2% 17.2% 17.3%

5.3.3 Other Work

There have been some successful applications of KFD, especially in the area of
computer vision, in particular in the field of face detection. This might have
historical reasons as Fisher’s (linear) discriminant has been very popular in this
field. But it might also stem from the fact that people in these areas are specifi-
cally interested to obtain outputs which are interpretable as probabilities, this for
instance in contrast to SVM. Yang et al. (2000) generalized what is known as
eigenfaces to the kernel case building upon KFD. A series of papers published
at the 5th IEEE conference on automatic face and gesture recognition also used
KFD for face recognition: Kurita and Taguchi (2002) modify KFD to be make it
easier applicable to face data, and Liu et al. (2002) applied KFD in practical face
recognition tasks. Additionally Yang (2002) compared kernel eigenfaces (kernel
PCA eigenvectors) against what they call kernel fisher-eigenfaces (i.e. the eigen-

106 5 APPLICATIONS

Table 5.5: Comparison of the degree of sparsity achieved with SVM, sparse KFD and linear sparse
KFD. Shown is the fraction of expansion coefficient which are zero for the optimal solution and
the average over all data sets. Note the much higher degree of sparsity in SKFD and LSKFD
than for SVM at a comparable performance (cf. Table 5.4).

SVM SKFD LSKFD
Banana 78% 86% 92%
B.Cancer 42% 88% 88%
Diabetes 57% 97% 97%
German 58% 96% 98%
Heart 51% 88% 96%
Ringnorm 62% 85% 94%
F.Sonar 9% 67% 99%
Thyroid 79% 88% 89%
Titanic 10% 8% 95%
Waveform 60% 81% 96%
Average 44.8% 78.8% 94.4%

vectors found by KFD). In a more general vision setting Bradshaw et al. (2000)
applied KFD to learn image semantics, e.g. to discriminate target objects from
background clutter or to classify parts on an image as sky, trees and persons.

5.4 Summary

In this chapter we analyzed the proposed KFD techniques experimentally. We
have shown that KFD and its variants yield solutions that are as good as the ones
obtained using other state of the art techniques, among them SVMs and regu-
larized AdaBoost. We illustrated on real world data sets that sparse and linear
sparse KFD yield solutions that only need a small number of examples to describe
the decision function. The set of examples chosen to express the solution is very
different from the support vectors selected by a SVM. But the freedom to choose
any example instead of only those which “support” the separating hyperplane as
in SVM might be one explanation for the much higher degree of sparsity in sparse
and linear sparse KFD. On the USPS data set of handwritten digits, we demon-
strated that the proposed algorithms for KFD work in practice. The sparse greedy
approximation, the coordinate descent (SMO) techniques or the column genera-
tion method achieve the desired speed up in computation time. When comparing
the solutions of the proposed algorithms, we observe no loss in terms of the gen-
eralization error. However, training of KFD is so far still more expensive than for
example training a SVM. But we conjecture that further research on optimization
strategies will help circumvent this shortcoming, especially for the sparse KFD
variants. For practical applications with only a small number of examples (less
than 1000) solving the corresponding eigenproblem is a good choice: The imple-
mentation is straight forward, and fast and reliable packages to find eigenvectors
or invert matrices are available for most computer platforms. For larger datasets
the coordinate descent method poses an interesting alternative. Especially since,
as observed in the experiments, already a low precision (and hence quickly con-

5.4 SUMMARY 107

verging) solution yields good results. If computational cost in evaluating the final
decision is an issue (e.g. in real time applications) the linear sparse KFD technique
is an interesting option because of its high sparsity.

In another set of experiments we demonstrated on toy and real world data
that incorporating prior knowledge into oriented kernel PCA and KFD using the
tangent covariance matrix yields reasonable results. Using the USPS data set with
invariances we were able to achieve a test error that is close to the best results
reported so far for this data.

Usually the good performance of SVMs is explained by the large margin and
the sparsity of the solution. However, KFD does not maximize the margin (only
the average margin) and only for SKFD and LSKFD the solutions are sparse. We
conjecture that one explanation for the good performance of KFD might be the
strong consistency of the output distributions on training and test set. Under the
assumption that the training and test data are identically sampled from the same
distribution this similarity appears desirable. Comparing these distributions for a
SVM they do differ significantly.

Finally, we have shown on toy data and the USPS set that directions found
by KFD might be interesting for visualization of high dimensional data. Using the
fact that with KFD we can compute more than just one discriminating direction,
embeddings into two and more dimensions are easily realizable. Since KFD is able
to use the prior knowledge coded for by the labels we expect that such embed-
dings will more closely reflect the class structure. In particular in comparison to
unsupervised techniques like (kernel) PCA or for example locally linear embed-
ding (Roweis and Saul, 2000). However, a thorough evaluation of KFD as an
embedding technique still has to be carried out.

109

Chapter 6

Conclusion

Ein Mathematiker weiß nie, wovon er
spricht, noch ob das, was er sagt, wahr
ist.

Bertrand Russell

IN this thesis we have considered learning methods based on the maximization
of a Rayleigh coefficient. We proposed non–linear generalizations of methods

like oriented PCA, and especially Fisher’s discriminant. We started by reviewing
some background material of statistical learning theory and discussed under which
theoretical conditions learning is possible. It turned out that it is particularly im-
portant to have some mechanism that allows to control the complexity of the
resulting machine. We then demonstrated how to turn a linear, scalar-product
based algorithm into a non–linear algorithm using kernel functions.

Then, as the central part of this thesis, we applied this “kernelization” idea to
Rayleigh coefficients. We have shown how introducing kernel functions results in
powerful, state of the art learning techniques, namely oriented kernel PCA and
kernel Fisher discriminants (KFD). We then focused primarily on KFD and dis-
cussed how to formulate KFD as a mathematical optimization problem. Within
this framework we proposed several ways to introduce an appropriate regulariza-
tion. Also, we were able to derive several interesting variations of KFD within
the mathematical programming framework: robust KFD, sparse KFD, and linear
sparse KFD. Additionally we discussed how to efficiently solve the optimization
problems arising in KFD and its variants. Among the proposed techniques, the
sparse greedy optimization (cf. Section 3.5.2) and the coordinate descent ap-
proach (cf. Section 3.5.3) are especially interesting for solving the KFD problem.
For linear sparse KFD especially the column generation approach proposed in Sec-
tion 3.5.6 is very well suited. Finally, we showed how KFD relates to techniques like
support vector machines, relevance vector machines and Arc-GV. Seen as mathe-
matical optimization problems these techniques are structurally extremely similar,
their main difference lying in the way how training errors and model complexity
are measured. We conjecture that on the basis of mathematical programming

110 6 CONCLUSION

formulations it is possible to explain at least partially why seemingly so different
techniques perform similarly well in practice.

Having successfully derived KFD we discussed first results and directions that
target at giving generalization error bounds for KFD. We motivate why recent
techniques based on the notion of stability and algorithmic luckiness are particularly
interesting for KFD. Two possible directions to derive error bounds for KFD would
be (i) to show that resulting eigen-directions are very stable and concentrated and
(ii) that the achieved ratio of between class variance and within class variance
can serve as an algorithmic luckiness measure. The first way would require the
stability of the eigenvectors found by KFD, the second way the stability of the
eigenvalues. As a first step we subsequently derived bounds for the derivation of
empirically estimated eigenvalues and eigenvectors from their expectations. These
bounds are interesting in their own right since they establish the first distribution
free learning guarantees for PCA. Finally, we showed that it is possible for KFD
to compute the leave one out error at a cost which is just a constant multiple of
the computational cost for solving a single KFD problem.

To illustrate interesting properties and to evaluate the performance of KFD and its
variants we presented a large collection of experiments using artificial and real world
data. Comparing the distributions of the training and test data when projected
onto the direction of discrimination between KFD variants and support vector
machines showed an important difference in both approaches. For all KFD variants
the distribution of the training data closely resembles the one of the test data.
The distribution of the data in the direction of discrimination is consistent between
training and test set. For support vector machines, however, we observe the
converse: The training set outputs have a distribution which strongly differs from
the distribution on the projected test data. We conjecture that this consistence
of KFD might be one reason for its good generalization ability.

In a second set of experiments we evaluated the performance of the proposed
algorithms and showed that they reduce the computational cost for solving the
KFD problems considerably (compared to using a full quadratic optimization or
an eigensolver) without a loss in terms of generalization ability.

Finally we evaluated the performance of KFD, sparse KFD and linear sparse
KFD on a large collection of data sets. Comparing these results to support vector
machines, AdaBoost and radial basis function networks showed, that the perfor-
mance of the KFD algorithms is on par or better than the other approaches. In
particular, KFD generates results that are equally good as those produced by a sup-
port vector machine, today’s de facto standard in learning. Here we also showed
that sparse KFD and linear sparse KFD produce results that are noticeably sparser
than those of a support vector machine at a comparable performance.

In summary, we demonstrated that the kernel based versions of Fisher’s discrimi-
nant belong to the best learning techniques available today. Their intuitive inter-
pretation, the capability to produce results that can be interpreted as probabilities
and their simple implementation make them particularly interesting for many appli-
cations. However, we also showed that most state of the art learning techniques,
besides being based on similar optimization problems, have a performance that

111

is close to each other. It would certainly be wrong to draw from this work the
conclusion the KFD is better than other techniques, but we have demonstrated
that KFD yields good results. And as for most algorithms, there are particular
situations in which the special way of solving the learning problem imposed by
KFD has its advantages.

113

Appendix A

Mathematical Programming

In this appendix we collected some material of general interest
dealing with mathematical optimization problems and techniques.
We review some basic concepts such as duality and the Karush-
Kuhn-Tucker conditions. We conclude by reviewing a special tech-
nique for solving linear and quadratic programs, the so called in-
terior point methods and how they can be applied to KFD.

A.1 Linear and Quadratic Optimization

Mathematical programming is concerned with the question of how to find solutions
to problems of the form

min
x∈X
f (x), subject to x ∈ S, (A.1)

i.e. how to find solutions x that (globally) minimize the objective function f and
are in the set of feasible solutions S (constraints). Depending on the structure of
f , X and S such a problem can be relatively easy or very difficult to solve. Here we
will only discuss the cases of convex optimization, i.e. the objective f is a convex
function and the constraint set S can be written as

x ∈ S ⇔ ci(x) ≤ 0,∀i = 1, . . . , N,

for some (finite of infinite) number N of convex constraint functions ci : X → R.
The most prominent examples of this type of problems are known as linear (LP)
and quadratic programming (QP), respectively. The generic LP or QP can be
written in the form

min
x

1

2
x>Hx+ c>x, subject to Ax ≤ b, (A.2)

where for linear problems H is all zero (i.e. missing) and a positive matrix other-
wise. A is a N ×M matrix of constrains where each row Ai• of A codes for the
constraint Ai•x ≤ bi , and the vector b summarizes the right hand sides. Note that
every possible LP/QP can be written in this generic form by suitably transforming

114 A MATHEMATICAL PROGRAMMING

the constraints1. Both, LPs and QPs have some nice properties making them
especially interesting:

• If there is a feasible solution at all, the problem is either unbounded (i.e. the
optimal objective value is −∞ or there exists a global (finite) minimum.
However, this minimum needs not to be unique.

• There are polynomial time algorithms (in the number of variables, i.e. the
dimensionality of x) that are capable of either finding such a global minimum
or determining the infeasibility of the problem.

We will not go into much detail about convex optimization and mathematical
programming in general but only review some basic facts used in this thesis. More
information can be found in one of the many textbooks about optimization (e.g.
Luenberger, 1984; Bertsekas, 1995; Nash and Sofer, 1996).

In the following we assume that the domain X of our optimization problem
is RN . Central to the issue of linear and quadratic programming are the famous
Kuhn-Tucker and Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn
and Tucker, 1951). Kuhn & Tucker proved the following Theorem:2

Theorem A.1 (Kuhn-Tucker Condition). Consider the Lagrangian

L(x, a) = f (x) + a>Ax, (A.3)

where a ≥ 0. If there exists (x̄, ā) ∈ RM × RN+ such that for all x ∈ RM and
a ∈ RN+

L(x̄, a) ≤ L(x̄, ā) ≤ L(x, ā),

i.e. (x̄, ā) is a saddle point of the Lagrangian (A.3), then x̄ is a solution to (A.2).

The coefficients ai summarized in the vector a are called Lagrange multipliers.
From the proof of Theorem A.1 one also gets the well-known KKT conditions:
For each of the constraints Ai•x ≤ bi and corresponding Lagrange multiplier ai
either of the following two conditions holds:

Ai•x− bi = 0 or ai = 0 or equivalently (Ai•x− bi)ai = 0.

Motivated by the last equality, sometimes the KKT conditions are also called
complimentary conditions. From Theorem A.1 we see that one possibility to find
a solution to our MP problem is to find a saddle point of the Lagrangian. However,
the questions arises when the condition of Theorem A.1 is not only sufficient but
also necessary. Luckily, for our special setting of quadratic or linear problems,
respectively they already are.

Differentiating L(x, a) with respect to x and a and using the saddle point
condition, the complementary condition and the fact that a ≥ 0, one can show

1However, all of the following can be done for an arbitrary mixture of equality and inequality
constraints, leading to much more efficient formulations.

2Most Theorems and alike here and in the following can be stated in a slightly more general
form, e.g. only assuming convexity of the objective and the constraints on some et X . However,
we do state them in a way sufficient for our purposes, i.e. linear and quadratic optimization.

A.1 LINEAR AND QUADRATIC OPTIMIZATION 115

that for problems of the form (A.2) we get the following necessary and sufficient
optimality conditions:

∂

∂x
L(x, a)

!
= 0.

∂

∂a
L(x, a)

!
≤ 0,

a>(Ax− b) != 0,
a ≥ 0.

Lets us inspect more closely what this means for an LP and QP respectively:

Linear Optimization The Lagrangian for the linear optimization problem (A.2)
(i.e. the matrix H is empty) can be written as:

L(x, a) = c>x+ a>(Ax− b).

Then the optimality conditions read

∂

∂x
L(x, a) =c+ Aa = 0.

∂

∂a
L(x, a) =Ax− b ≤ 0,

a>(Ax− b) = 0,

a ≥ 0.

If we now use the first equality in the Lagrangian we can eliminate the primal
variables x. If we further recall, that for optimality we had to find a maximal
(saddle) point in a we see that the following dual problem computes exactly the
optimal ā:

max
a
−b>a, subject to Aa+ c = 0, a ≥ 0,

The complimentary condition will be satisfied since it was just a consequence of
the theorem. This dual problem has some interesting properties. Most noticeable,
one can show, that for a given pair (x, a) that is both, primal and dual feasible,
the dual objective will always be smaller than the primal and only at an optimal
solution (x̄, ā) they will coincide. The difference between primal and dual objective
is called duality gap and can be taken as a measure on how well an intermediate
solution approximates the true solution. The second important property in linear
optimization is that if we form the dual of the dual, we retain again the primal
problem.

Quadratic Optimization If we now consider quadratic optimization problems
(i.e. now H is a positive matrix) we get analogous to the linear problem the
following Lagrangian

L(x, a) =
1

2
x>Hx+ c>x+ a>(Ax− b),

116 A MATHEMATICAL PROGRAMMING

together with the optimality conditions

∂

∂x
L(x, a) =Hx+ c+ Aa = 0.

∂

∂a
L(x, a) =Ax− b ≤ 0,

a>(Ax− b) = 0,

a ≥ 0.

We can again use the first equality with the Lagrangian and obtain, in analogy to
the linear case, the following dual problem:

max
a,x
−
1

2
x>Hx− b>a subject to Hx+ Aa+ c = 0, a ≥ 0.

If we additionally use the equality constraint to solve for x by

x = −H−1(c + Aa),

we can eliminate the primal variables and obtain, dropping constant factors:

max
a
−
1

2
a>A>H−1Aa− (c>H−1A>+ b)a subject to a ≥ 0.

Whilst this dual looks less nice than the linear case we have seen, that e.g. for
SVM or KFD it can have a pretty simple structure as well.

Finally, lets us summarize some other important facts about the primal-dual
relation of linear and quadratic programs. The first fact was already mentioned:

• If a primal (dual) solution exists, there also exists a dual (primal) solution
and the optimal objective functions values are equal.

Another important relation is the possibility to identify the case when no optimal
solution exists via the dual:

• There exists no primal (dual) solution, iff the dual (primal) problem is un-
bounded from above (below) or infeasible.

Often it will be much easier to determine whether a problem is infeasible than to
figure out that there is no optimal solution (e.g. there might be a sequence of
feasible solutions that converges to some optimal value; but there is no feasible
solution taking this objective value).

A.2 Interior Point Optimization

There are many different techniques to find the optimal solution of a linear or
quadratic program, among them the well known simplex methods (Dantzig, 1962),
the ellipsoid method (Khachiyan, 1979) or barrier methods (Bertsekas, 1995).
In this section we will consider another technique called interior point methods
(Karmarkar, 1984; Mehrotra, 1992). The idea with interior point methods is to
find a point which in primal and dual feasible and fulfills the the Karush-Kuhn-
Tucker conditions. As we have seen above such a point, if it exists, will be an

A.2 INTERIOR POINT OPTIMIZATION 117

optimal solution. The particular approach to interior point methods presented
here follows Vanderbei (1997) and uses an predictor-corrector technique. The
name interior point methods stems from the fact that we iteratively estimate
approximate solutions to the original problem that lie inside a cone defining the
feasible region of our problem, i.e. in the interior of this cone. To achieve this it
will turn out that we have to solve a system of linear and non-linear equations.
Since solving general non-linear equations in closed form is difficult we resort to an
iterative approximation scheme called predictor-corrector approach. The idea is
to avoid solving a non-linear problem by solving a sequence of linearized problems.
In each iteration we first make a predictor step, solving a linearized version of our
problem. Using these predicted values, we resubstitute them into the linearized
problem and resolve it to account for higher order effect, yielding the corrector step
which is then taken. The exposition will only be made for quadratic optimization
problems.

We will now derive a general purpose interior point formulation. Let M =
M1 + M2 + M3 denote the number of variables, N = N1 + N2 the number of
constraints, and let H ∈ RM×M , A ∈ RN×M , b ∈ RN , and c, x ∈ RM with

A =

(
A11 A12 A13
A21 A22 A23

)
b =

(
b1
b2

)
(A.4)

H =

H11 H12 H13
H21 H22 H23
H31 H32 H33

 x =

x1x2
x3

 c =

c1c2
c3

 (A.5)

be a partitioning which will become clear in the following. Finally, let A•i or
Ai• denote all blocks in the i-th columns or rows of the partitioned matrix A,
respectively. Now we formulate the most general primal problem, containing all
sorts of equality and inequality constraints:

min
x

c>x+
1

2
x>Hx (A.6)

subject to:
b1 ≤ A1•x ≤ b1 + r

b2 ≤ A2•x

l1 ≤ x1 ≤ u

l2 ≤ x2
x3 free

(A.7)

To derive an interior point formulation the first step is to replace all inequality
constraints by simple non-negativity constraints using slack variables. Defining
w = (w1,w2)

>, p, t and g = (g1,g2)> we eliminate all inequality constraints and
get the modified primal problem:

min
x

c>x+
1

2
x>Hx (A.8)

118 A MATHEMATICAL PROGRAMMING

subject to:
Ax−w = b

w1 + p = r

(x1, x2)
>− g = l

x1 + t = u

w,p,g, t ≥ 0, x free

(A.9)

where l = (l1, l2)>. After some longish calculations the corresponding dual can be
derived as:

max
y

b>y −
1

2
x>Hx+ l>z− u>s− r>q (A.10)

subject to:
A>•1y + z1 − s − H1•x = c1
A>•2y + z2 − H2•x = c2
A>•3y − H3•x = c3
y1 + q − v1 = 0

y2 − v2 = 0

v,q, z, s ≥ 0, y free

(A.11)

where y = (y1, y2)>, v = (v1, v2)> and z = (z1, z2)>.

Now we know from the theory of mathematical programming that the optimal
solution, if it exists, must be

• primal feasible,

• dual feasible,

• and fulfill the Karush-Kuhn Tucker complimentary condition.

The first two conditions are given by the primal and dual constraints. The third
condition can be expressed as g>i zi = 0, w

>
i vi = 0, p

>q = 0 and s>t = 0, for
i = 1, 2. Introducing the notation

G =

g1 0 . . . 0

0 g2 . . . 0

0 0

0 . . . gN−1 0

0 . . . 0 gN

i.e. the uppercase symbol denotes a diagonal matrix with elements specified by the

A.2 INTERIOR POINT OPTIMIZATION 119

corresponding lowercase vector, these condition can be summarize as:

A11x1 + A12x2 + A13x3 −w1 = b1

A21x1 + A22x2 + A23x3 −w2 = b2

w1 + p = r

x1 − g1 = l1

x2 − g2 = l2

x1 + t = u

A>11y1 + A
>
21y2 + z1 − s−H11x1 −H12x2 −H13x3 = c1

A>12y1 + A
>
22y2 + z2 −H21x1 −H22x2 −H23x3 = c2

A>13y1 + A
>
23y2 −H31x1 −H32x2 −H33x3 = c3

y1 + q− v1 = 0

y2 − v2 = 0

G1Z1e = µe

G2Z2e = µe

PQe = µe

STe = µe

W1V1e = µe

W2V2e = µe

Here we have already replaced the condition that the non-linear equations are zero
by the relaxed condition that they are equal to some value µ ≥ 0. The rational
behind this is, that using the predictor-corrector approach we can only make small
steps without leaving the interior. However, we need some starting point for our
iteration and requiring µ = 0 from the beginning would hardly be possible and
result in very small steps in the other variables (and also make the intermediate
problems to be solved extremely ill-posed). Hence we will start with some positive
value µ = µ0 > 0 which is then suitably reduced while the iteration continues (see
below).

To derive the predictor-corrector steps, we now introduce ∆-variables for the
steps, i.e. we rewrite our system such, that we replace all variables (e.g. x1) by a
the variable plus a step (e.g. x1+∆x1). We then rearrange the system such, that

120 A MATHEMATICAL PROGRAMMING

the we can solve it for the ∆-variables, yielding the steps. First define

b1 − A11x1 − A12x2 − A13x3 + w1 =: ρ1

b2 − A21x1 − A22x2 − A23x3 + w2 =: ρ2

r − w1 − p =: α

l1 − x1 + g1 =: ν1

l2 − x2 + g2 =: ν2

u− x1 − t =: τ

c1 − A>11y1 − A>21y2 − z1 + s+H11x1 +H12x2 +H13x3 =: σ1

c2 − A>12y1 − A>22y2 − z2 +H21x1 +H22x2 +H23x3 =: σ2

c3 − A>13y1 − A>23y2 +H31x1 +H32x2 +H33x3 =: σ3

y1 + q− v1 =: β1

y2 − v2 =: β2

µG−11 e− z1 − G−11 ∆G1∆z1 =: γz1

µG−12 e− z2 − G−12 ∆G2∆z2 =: γz2

µP−1e− q− P−1∆P∆q =: γq

µT−1e− s− T−1∆T∆s =: γs

µV −11 e− w1 − V −11 ∆V1∆w1 =: γw1

µV −12 e− w2 − V −12 ∆V2∆w2 =: γw2 .

These quantities will become the new right-hand sides. Here we have already
decided for a specific way to linearize the non-linear equations. The system now

A.2 INTERIOR POINT OPTIMIZATION 121

becomes:

A11∆x1 + A12∆x2 + A13∆x3 − ∆w1 =: ρ1

A21∆x1 + A22∆x2 + A23∆x3 − ∆w2 =: ρ2

∆w1 + ∆p =: α

∆x1 − ∆g1 =: ν1

∆x2 − ∆g2 =: ν2

∆x1 + ∆t =: τ

A>11∆y1 + A
>
21∆y2 + ∆z1 − ∆s−H11∆x1 −H12∆x2 −H13∆x3 =: σ1

A>12∆y1 + A
>
22∆y2 + ∆z2 −H21∆x1 −H22∆x2 −H23∆x3 =: σ2

A>13∆y1 + A
>
23∆y2 −H31∆x1 −H32∆x2 −H33∆x3 =: σ3

−∆y1 − ∆q+ ∆v =: β

G−11 Z1∆g1 + ∆z1 =: γz1

G−12 Z2∆g2 + ∆z2 =: γz2

P−1Q∆p+ ∆q =: γq

ST−1∆t+ ∆s =: γs

V −11 W1∆v1 + ∆w1 =: γw1

V −12 W2∆v2 + ∆w2 =: γw2 ,

where in the last six equations we set the values of the corresponding diagonal
matrices to the current value of these variables in the predictor step and to the
value found in this step in the corrector step.

What remains is to solve this huge system of equations twice in each iteration.
Luckily, the system is very sparse, compared to its size (see next equation). The
approach taken in (Vanderbei and Shanno, 1997) is to use some predefined pivoting
to reduce this system until any further reduction will lead to a uncontrollable fill-in
of non-zero elements. We again follow (Vanderbei and Shanno, 1997) in which
order to solve for the variables. Do do so, we first rewrite the problem in one
big matrix (cf. system on page 122). We see that we can trivially (i.e. with low
computational effort) solve this system for ∆t, ∆g1, ∆g2, ∆p, ∆v1 and ∆v2:

∆t = S−1T (γs − ∆s), (A.12)

∆g1 = G1Z
−1
1 (γz1 − ∆z1), (A.13)

∆g2 = G2Z
−1
2 (γz2 − ∆z2), (A.14)

∆p = PQ−1(γq − ∆q), (A.15)

∆v1 = V1W
−1
1 (γw1 − ∆w1), (A.16)

∆v2 = V2W
−1
2 (γw2 − ∆w2). (A.17)

Resubstituting this solutions in the equations on page 122 we get the new, smaller
system shown on page 123. Again, we can still easily solve this system for the

122 A MATHEMATICAL PROGRAMMING

2 6 4−
S
T
−
1

−
I

−
G
−
1
1
Z
1

−
I

−
G
−
1
2
Z
2

−
I

−
P
−
1
Q

−
I

−
I

−
I

I

−
I

I

−
H
1
1
−
H
1
2
−
H
1
3
A
> 1
1
A
> 2
1

I
−
I

−
H
2
1
−
H
2
2
−
H
2
3
A
> 1
2
A
> 2
2

I

−
H
3
1
−
H
3
2
−
H
3
3
A
> 1
3
A
> 2
3

−
I

A
1
1

A
1
2

A
1
3

−
I
A
2
1

A
2
2

A
2
3

−
I

−
I

−
I

I

−
I

I

−
I

−
I

I
V
−
1

1
W
1

I
V
−
1

2
W
2

3 7 52 6 4∆
t

∆
g
1

∆
g
2

∆
p

∆
w
1

∆
w
2

∆
x
1

∆
x
2

∆
x
3

∆
y
1

∆
y
2

∆
q

∆
z 1
∆
z 2 ∆
s

∆
v
1

∆
v
2

3 7 5=

2 6 4−
γ
s

−
γ
z 1

−
γ
z 2

−
γ
q

β
1

β
2

σ
1

σ
2

σ
3

ρ
1

ρ
2

−
α

ν
1

ν
2

−
τ

γ
w
1

γ
w
2

3 7 5

A.2 INTERIOR POINT OPTIMIZATION 123

 −
V
1
W
−
1

1
−
I

−
I

−
V
2
W
−
1

2
−
I

−
H
1
1
−
H
1
2
−
H
1
3
A
> 1
1
A
> 2
1

I
−
I

−
H
2
1
−
H
2
2
−
H
2
3
A
> 1
2
A
> 2
2

I

−
H
3
1
−
H
3
2
−
H
3
3
A
> 1
3
A
> 2
3

−
I

A
1
1

A
1
2

A
1
3

−
I

A
2
1

A
2
2

A
2
3

−
I

P
Q
−
1

I
G
1
Z
−
1
1

I
G
−
1
2
Z
2

−
I

S
−
1
T

 ∆
w
1

∆
w
2

∆
x
1

∆
x
2

∆
x
3

∆
y
1

∆
y
2

∆
q

∆
z 1
∆
z 2 ∆
s

 =

 β
1
−
V
1
W
−
1

1
γ
w
1
=
:
β̂
1

β
2
−
V
2
W
−
1

2
γ
w
2
=
:
β̂
2

σ
1

σ
2

σ
3

ρ
1

ρ
2

−
α
+
P
Q
−
1
γ
q
=
:
−
α̂

ν
1
+
G
1
Z
−
1
1
γ
z 1
=
:
ν̂
1

ν
2
+
G
2
Z
−
1
2
γ
z 2
=
:
ν̂
2

−
τ
+
S
−
1
T
γ
s
=
:
−
τ̂

124 A MATHEMATICAL PROGRAMMING

variables ∆q, ∆z1, ∆z2 and ∆s by:

∆q = P−1Q(∆w1 − α̂), (A.18)

∆z1 = G
−1
1 Z1(ν̂1 − ∆x1), (A.19)

∆z2 = G
−1
2 Z2(ν̂2 − ∆x2), (A.20)

∆s = ST−1(∆x1 − τ̂). (A.21)

Defining the diagonal matrices

E1 = (V1W
−1
1 + P

−1Q)−1, (A.22)

E2 = (V2W
−1
2)

−1, (A.23)

D1 = ST
−1 + G−11 Z1, (A.24)

D2 = G
−1
2 Z2, (A.25)

we can rewrite the system on page 123 as:

−E−11 −I
−E−12 −I

−H11 −D1 −H12 −H13 A>11 A>21
−H21 −H22 −D2 −H23 A>12 A>22
−H31 −H32 −H33 A>13 A>23

−I A11 A12 A13
−I A21 A22 A23

∆w1
∆w2
∆x1
∆x2
∆x3
∆y1
∆y2

=

β̂1 − P−1Qα̂
β̂2

σ1 − G−11 Z1ν̂1 − ST−1τ̂
σ2 − G−12 Z2ν̂2

σ3
ρ1
ρ2

.

Finally, we solve for ∆w1 and ∆w2 through

∆w1 = −E1(β̂1 − P−1Qα̂+ ∆y1), (A.26)

∆w2 = −E2(β̂2 + ∆y2), (A.27)

arriving at the final system
−H11 −D1 −H12 −H13 A>11 A>21
−H21 −H22 −D2 −H23 A>12 A>22
−H31 −H32 −H33 A>13 A>23
A11 A12 A13 E1
A21 A22 A23 E2

∆x1
∆x2
∆x3
∆y1
∆y2

 =

σ1 − G−11 Z1ν̂1 − ST−1τ̂

σ2 − G−12 Z2ν̂2
σ3

ρ1 − E1(β̂1 − P−1Qα̂)
ρ2 − E2β̂2

 .
(A.28)

A.2 INTERIOR POINT OPTIMIZATION 125

At this point, at least if do not make any special assumptions about the struc-
ture of H and A no further trivial reduction is possible. However, the advantage
of deriving an individual interior point code for a specific problem like e.g. KFD
(cf. Section 3.5.5) is, that there might be further reduction possible, making the
last system even smaller. If finally this system can not be reduced any further
it has to be solved using standard numerical methods. Updates are done such,
that we maintain positivity of the constraint variables (cf. Vanderbei, 1997, for
details). It is worthwhile to note, that the standard mathematical programming
literature usually assumes that both, H and A are very sparse, structured matri-
ces. Then solving the final system can be very efficient by using a clever pivoting
technique. However, in kernel based learning we usually have that either H or
A contain the complete kernel matrix K which, usually, is not sparse. Recently
Achlioptas et al. (2002) proposed to replace the dense kernel matrix by a sparse
approximation. This would clearly be an alternative here. Also recently, there has
been some interest in low-rank approximations of the kernel matrix or its inverse
using incomplete Cholesky factorizations (cf. Smola and Schölkopf, 2000; Bach
and Jordan, 2002). For specific kernel problems this might also yield good ap-
proximate solutions here. Some authors also proposed to use iterative methods
to solve this last system which could e.g. then be parallelized over a cluster of
computers (e.g. Freund and Nachtigal, 1994; Freund and Jarre, 1996). The sys-
tem to solve is a symmetric, indefinite system. Hence many iterative techniques
like QMR, SYMMLQ or GMRES (cf. Golub and van Loan, 1996, and references
there in), to name only a few, are possible. The central problem however is, that
this system will become more and more ill-conditioned as we approach the final
solution, thus requiring more and more iterations.

Starting, Stopping and Inbetween

We will not discuss the issue of how to initialize the variables, how to monitor the
stopping conditions and how to update the factor µ in great detail here. They
all play a crucial role in successfully implementing an interior point code, e.g. one
that converges fast and reliably. The latter is indeed very difficult to achieve for
any mathematical optimization technique. Implementations that are numerically
stable and have the suitable “tricks” built in are very difficult to program and one
reason why commercial packages like CPLEX (CPL, 1994) are rather expensive.

Initialization is done by solving the reduced system once for D and E being
the identity matrix and the right-hand site suitably adjusted. Then a value for
the other variables is computed and appropriately adjusted away from zero for the
non-negative variables.

Termination is rather trivial: We monitor the primal and dual infeasibility and
the duality gap. If all are below predefined thresholds we know that we are very
close to the optimal solution and terminate.

Dealing with the different situations during the optimization is much more
difficult. First we have to adjust the value of µ. Using the current variable
assignment it can be computed as

µ =
g>z+ p>q+ s>t+w>v

2M1 +M2 + 2N1 + N2

126 A MATHEMATICAL PROGRAMMING

Since we wish to make progress to the optimal solution Vanderbei (1997) suggest
to use a value of µ that is one tenth of that we compute. Furthermore it is
suggested to reduce µ even more if we can make large steps, i.e. do not have to
shorten the step directions much to maintain positivity. More details on how to
implement the particular interior point strategy presented here can be found on
(Vanderbei, 1997). There is also a free implementation available on the web page
of R. Vanderbei. However, this is also a general purpose implementation and can
not take into account the special structure of e.g. KFD problem.

Interior Point Codes for KFD

We now use this notation to derive interior point codes especially adopted to KFD,
sparse KFD and linear sparse KFD.

KFD For the plain KFD approach (cf. (3.37)) with either ‖w‖2 or ‖ff‖2 regu-
larizer we define

x3 =

ff¸
b

 , H33 =
CP I

0

 , r = 0, c = 0, A13 = [K I 1
]
,b1 = y.

where P is either K or I, depending on which regularizer we choose. All other parts
of the general QP (A.6) are empty. This problem is exactly the KFD problem.
Substituting these quantities into the reduced KKT (A.28) we get

−CP −D31 K>

−I −D32 I

−D33 1>

K I 1 E1

∆ff

∆¸

∆b1
∆y1

 = [some right hand side
]
,

where E1 and D31, D32, D33 are some diagonal matrices. This system can be
further reduced by pivoting on ∆¸, yielding:−CP −D31 K>

−D33 1>

K 1 E1 + (I +D32)
−1

∆ff∆b1
∆y1

 = [some other right hand side
]
.

For KFD with P = K the only possible pivot left would be ∆y1. However, doing so
would result in a very complex system containing terms of the form K>DK where
D is some diagonal matrix. For small M and hence small K this might make sense
but we do not carry out this step explicitly. For the P = I variant however, we
can still easily pivot in ∆ff, yielding[
0 1>

1 1
CK(−CI +D31)

−1K>+ E1 + I

] [
∆b1
∆y1

]
=
[
some other right hand side

]
.

It is interesting to note how this system resembles the system of linear equalities
presented in (3.64) that could be solved alternatively.

A.2 INTERIOR POINT OPTIMIZATION 127

Sparse KFD, Linear Sparse KFD We will not write down the reduced KKT
systems for these approaches explicitly but only describe how they can be cast
into the general formulation (A.6). The derivation of the reduced KKT system
and its possible further reduction is straight forward.

To represent the sparse KFD problem (cf. (3.53)) in terms of the general QP
(A.6) we define:

x2 =

[
ff+
ff−

]
, x3 =

[
¸

b

]
, c =

[
C1

C1

]
,

H33 =

[
I

0

]
, A12 =

[
K −K

]
, A13 =

[
I 1

]
,

r = 0, b1 = y, l2 = 0.

Again, all unspecified quantities are empty or all zero. For linear sparse KFD
(LSKFD) we get

x2 =

ff+
ff−
¸+
¸−

 , x3 =
[
b
]
, c =

1

1

C1

C1

 ,
A12 =

[
K −K I −I

]
, A13 =

[
1
]
,

r = 0, b1 = y, l2 = 0.

For all variants of KFD we notice that deriving a specialized reduced KKT
system for the interior point optimizer actually makes sense: Compared to the
general reduced KKT system (A.28) substantial further reductions are possible
making it easier and faster to solve the reduced KKT system.

129

Appendix B

Proofs

This appendix contains some proofs from Chapter 4.

B.1 Proof of Lemma 4.2

Proof. To begin with, let us rewrite the covariance matrix (4.1) in a different,
equivalent way. We have

CX =
1

M − 1
∑
x∈X
(x−mX) (x−mX)> (B.1)

=
1

M − 1
∑
x∈X

(
xx>− xm>X −m>X x+mXm>X

)
=

1

M − 1
∑
x∈X
xx>+

M

M − 1mXm
>
X −

M

M − 1mXm
>
X −

M

M − 1mXm
>
X

=
1

M − 1
∑
x∈X
xx>−

M

M − 1mXm
>
X .

Lets us apply this to the definition of CX∪x:

CX∪x :=
1

M

∑
x∈X∪x

xx>−
M + 1

M
mX∪xm

>
X∪x.

First we split this expression into parts containing only old examples x ∈ X and
the new example (with a slight abuse of notation also denoted by x).

CX∪x =
1

M

∑
x∈X
xx>+

1

M
xx>−

1

M(M + 1)
(M2mXm

>
X + xx

>+MmX x+Mm
>
X),

where we used that
∑
x∈X∪x x = MmX + x. Now we expand all terms and use the

relation 1
M −

1
M(M+1) =

1
(M+1) to collect the xx> terms. Furthermore, we split the

130 B PROOFS

term M
M+1mXm

>
X we would get into the sum of 1

M+1 and M−1
M+1 .

CX∪x =
1

M

∑
x∈X
xx>−

M − 1
M + 1

mXm
>
X −

1

M + 1
mXm

>
X +

1

M + 1
xx>

−
1

M + 1
mX x

>−
1

M + 1
xm>X .

If we multiply the complete expression by M−1M we have to multiply each term in
the expression by the inverse, i.e. M

M−1 , and get

CX∪x =
M

M − 1

(
1

M − 1
∑
x∈X
xx>−

M2

M2 − 1mXm
>
X +

M

M2 − 1xx
>

−
M

M2 − 1mX x
>−

M

M2 − 1xm
>
X

)
,

Noting that M2

M2−1mXm
>
X = −

M
M−1mXm

>
X +

M
M2−1mXm

>
X we get

CX∪x =
M

M − 1

(
1

M − 1
∑
x∈X
xx>−

M

M − 1mXm
>
X

+
M

M2 − 1
[
mXm

>
X + xx

>−mX x>− xm>X
]).

Using (B.2) and collecting all terms with M
M2−1 in front into a quadratic expression

proofs the first statement of the Lemma.
The proof for the second part, i.e. for the update rule of CX\x follows along the

same lines. Finally to show what happens if we exchange one example is simply an
application of what we just proved for the removal and the addition on an example,
i.e.

C(X\x)∪x =
M − 2
M − 1

[
CX\x +

M − 1
(M − 1)2 − 1

(
mX\x − x

) (
mX\x − x

)>]
=
M − 2
M − 1

[
M − 1
M − 2

[
CX −

M

(M − 1)2 (mX − xi) (mX − xi)
>
]

+
M − 1

(M − 1)2 − 1
(
mX\x − x

) (
mX\x − x

)>]

= CX −
M

(M − 1)2 (mX − xi) (mX − xi)
>

+
1

M

(
mX\xi − x

) (
mX\xi − x

)>
.

B.2 Proof of Lemma 4.9

Proof. Here we reproduce in detail the proof given in Bartlett and Mendelson
(2002). Let ε1, . . . , εM be independent Rademacher random variables. Then from

B.3 PROOF OF LEMMA 4.10 131

the Definition (4.17) for R̂M we get:

R̂M(G) =Eε

[
2

M
sup
g∈G

∣∣∣∣∣
M∑
i=1

εig(Xi)

∣∣∣∣∣ |Xi
]

(definition of bRM)

=Eε

[
2

M
sup
‖u‖≤R

∣∣∣∣∣
M∑
i=1

εi 〈u, Xi 〉

∣∣∣∣∣ |Xi
]

(definition of G)

=Eε

[
2

M
sup
‖u‖≤R

∣∣∣∣∣〈u,
M∑
i=1

εiXi 〉

∣∣∣∣∣ |Xi
]

(linearity of scalar product)

≤Eε

[
2

M

∣∣∣∣∣ 〈
∑M
i=1 εiXi ,

∑M
i=1 εiXi 〉

R‖
∑M
i=1 εiXi‖

∣∣∣∣∣ |Xi
]

(worst case is u =
X
(. . .)/(R‖

X
(. . .)‖)

=
2

RM
Eε

 M∑
i ,j=1

εiεj 〈Xi , Xj 〉

 1
2

|Xi

 (def. of norm and scalar products)

≤
2

RM

 M∑
i ,j=1

Eε [εiεj 〈Xi , Xj 〉 |Xi]

 1
2

(Jensen’s inequality)

=
2

RM

(
M∑
i=1

Eε
[
ε2i 〈Xi , Xi 〉 |Xi

]) 1
2

(Eε [εi εj] = 0)

=
2

RM

(
M∑
i=1

〈Xi , Xi 〉

) 1
2

(Eε [ε2i] = 1) (B.2)

≤
2√
M
.

The chain of inequalities up to Equation B.2 shows the claim.

B.3 Proof of Lemma 4.10

Proof. We want to show that ‖E‖2 is strongly concentrated around its expecta-
tion. We do this by showing that ‖E‖2 is stable in the sense of Definition 4.2.
Then applying McDiarmid’s inequality (cf. Theorem 4.1) yields the result. We will
use that f (x) ≤ R2 and Equation (4.19).

max
f ∈F

∣∣∣∣∣EY [f (Y)]− 1M
M∑
i=1

f (xi) +
1

M
f (xi)−

1

M
f (x ′i)

∣∣∣∣∣
≤ max
f ∈F

(∣∣∣∣∣EY [f (Y)]− 1M
M∑
i=1

f (xi)

∣∣∣∣∣+ 1M |f (xi)− f (x ′i)|
)

≤ ‖E‖2 +
1

M
max
f ∈F
|f (xi)− f (x ′i)|

≤ ‖E‖2 +
2R2

M
.

132 B PROOFS

Similarly:

max
f ∈F

∣∣∣∣∣EY [f (Y)]− 1M
M∑
i=1

f (xi) +
1

M
f (xi)−

1

M
f (x ′i)

∣∣∣∣∣
≥ max
f ∈F

(∣∣∣∣∣EY [f (Y)]− 1M
M∑
i=1

f (xi)

∣∣∣∣∣− 1M |f (xi)− f (x ′i)|
)

≥ ‖E‖2 −
1

M
max
f ∈F
|f (xi)− f (x ′i)|

≥ ‖E‖2 −
2R2

M
.

Hence we can apply McDiarmid with c = ci = 2R2

M for all i = 1, . . . ,M.

133

Bibliography

D. Achlioptas, F. McSherry, and B. Schölkopf. Sampling techniques for kernel
methods. In T.G. Diettrich, S. Becker, and Z. Ghahramani, editors, Advances
in Neural Information Proccessing Systems, volume 14, 2002.

M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and
Remote Control, 25:821–837, 1964.

N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale–sensitive Di-
mensions, Uniform Convergence, and Learnability. Journal of the ACM, 44(4):
615–631, 1997.

J.A. Anderson. Logistic discrimination. In P.R. Kirshnaiah and L.N. Kanal, editors,
Classification, Pattern Recognition and Reduction of Dimensionality, volume 2
of Handbook of Statistics, pages 169–191. North Holland, Amsterdam, 1982.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Math-
ematical Society, 68:337–404, 1950.

F.R. Bach and M.I. Jordan. Kernel independent component analysis. Journal of
Machine Learning Research, 3:1–48, 2002.

P. Bartlett, O. Bousquet, and S. Mendelson. Localized rademacher complexities.
In J. Kivinen and R.H. Sloan, editors, Proceedings COLT, volume 2375 of
Lecture Notes in Computer Science, pages 44–58. Springer, 2002.

P.L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 2002. to
appear.

G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel ap-
proach. Neural Computation, 12(10):2385–2404, 2000.

K.P. Bennett, A. Demiriz, and J. Shawe-Taylor. A column generation algorithm
for boosting. In P. Langley, editor, Proceedings, 17th ICML, pages 65–72, San
Francisco, 2000. Morgan Kaufmann.

K.P. Bennett and O.L. Mangasarian. Robust linear programming discrimination
of two linearly inseparable sets. Optimization Methods and Software, 1:23–34,
1992.

134 BIBLIOGRAPHY

R. Beran and M.S. Srivastava. Bootstrap tests and confidence regions for functions
of a covariance matrix. Annals of Statistics, 13(1):95–115, 1985.

D.P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

S.A. Billings and K.L Lee. Nonlinear Fisher discriminant analysis using a minimum
squared error cost function and the orthogonal least squares algorithm. Neural
Networks, 15(2):263–270, 2002.

C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1995.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/˜mlearn/MLRepository.html, a huge collection of arti-
ficial and real-world data sets.

B. Blankertz, G. Curio, and K-R. Müller. Classifying single trial EEG: Towards
brain computer interfacing. In T.G. Diettrich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Proccessing Systems, volume 14, 2002.

B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin
classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop
on Computational Learning Theory, pages 144–152, 1992.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, March 2002.

B. Bradshaw, B. Schölkopf, and J. Platt. Kernel methods for extracting local
image semantics. unpublished manuscript, private communication, 2000.

L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics
Department, University of California, July 1997.

C.J.C. Burges and B. Schölkopf. Improving the accuracy and speed of support
vector learning machines. In M. Mozer, M. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems, volume 9, pages 375–381,
Cambridge, MA, 1997. MIT Press.

C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:
273–297, 1995.

Using the CPLEX Callable Library. CPLEX Optimization Incorporated, Incline
Village, Nevada, 1994.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, UK, 2000.

G.B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press, Prince-
ton, NJ, 1962.

A. Demiriz, K.P. Bennett, and J. Shawe-Taylor. Linear programming boosting via
column generation. Journal of Machine Learning Research, 2001. To appear in
special issue on Support Vector Machines and Kernel Methods.

BIBLIOGRAPHY 135

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recogni-
tion. Number 31 in Applications of Mathematics. Springer, New York, 1996.

K.I. Diamantaras and S.Y. Kung. Principal Component Neural Networks. Wiley,
New York, 1996.

M. Doljansky and M. Teboulle. An interior proximal algorithm and the exponential
multiplier method for semidefinite programming. SIAM J. Optim., 9(1):1–13,
1998.

R.O. Duda and P.E. Hart. Pattern classification and scene analysis. John Wiley
& Sons, 1973.

B. Efron and R.J. Tibshirani. Improvements on cross-validation: the .632+ boot-
strap method. J. Amer. Statist. Assoc, 92:548–560, 1997.

S.C. Eisenstat and I.C.F. Ipsen. Three absolute pertubation bounds for matrix
eigenvalues imply relative bounds. SIAM Journal on Matrix Analysis and Appli-
cations, 20(1):149–158, 1998.

M. Elad, Y. Hel-Or, and R. Keshet. Pattern detection using a maximal rejection
classifier. Pattern Recognition Letters, 23(12):1459–1471, 2002.

R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7:179–188, 1936.

R.W. Freund and F.A. Jarre. A qmr-based interior-point algorithm for solving
linear programs. Math. Programming, Series B, 1996.

R.W. Freund and N.M. Nachtigal. A new krylov-subspace method for symmetric
indefinite linear systems. In Proceedings of the 14th IMACS World Congress,
1994.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55
(1):119–139, 1997.

J. Friedman, T. Hastie, and R.J. Tibshirani. Additive logistic regression: a sta-
tistical view of boosting. Technical report, Department of Statistics, Sequoia
Hall, Stanford Univerity, July 1998.

J.H. Friedman. Regularized discriminant analysis. Journal of the American Statis-
tical Association, 84(405):165–175, 1989.

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,
San Diego, 2nd edition, 1990.

U. Garczarek. Classification Rules in Standardized Partition Spaces. PhD thesis,
Universität Dortmund, Department of Statistics, 2002.

T.v. Gestel, J.A.K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and
J. Vanderwalle. Bayesian framework for least squares support vector machine
classifiers, Gaussian process and kernel Fisher discriminant analysis. Technical
report, Katholieke Universiteit Leuven, August 2001.

136 BIBLIOGRAPHY

F. Girosi. An equivalence between sparse approximation and support vector ma-
chines. Neural Computation, 10:1455–1480, 1998.

F. Girosi, M. Jones, and T. Poggio. Priors, stabilizers and basis functions: From
regularization to radial, tensor and additive splines. Technical Report A.I. Memo
No. 1430, Massachusetts Institute of Technology, June 1993.

G.H. Golub and C.F. van Loan. Matrix Computations. John Hopkins University
Press, Baltimore, London, 3rd edition, 1996.

T. Graepel, R. Herbrich, B. Schölkopf, A.J. Smola, P.L. Bartlett, K.-R. Müller,
K. Obermayer, and R.C. Williamson. Classification on proximity data with LP-
machines. In D. Willshaw and A. Murray, editors, Proceedings of ICANN’99,
volume 1, pages 304–309. IEE Press, 1999.

T. Graepel, R. Herbrich, and J. Shawe-Taylor. Generalization error bounds for
sparse linear classifiers. In Proc. COLT, pages 298–303, San Francisco, 2000.
Morgan Kaufmann.

A.J. Grove, N. Littlestone, and D. Schuurmans. General convergence results for
linear discriminant updates. In Proc. 10th Annu. Conf. on Comput. Learning
Theory, pages 171–183. ACM, 1997.

D.J. Hand. Kernel discriminant analysis. Research Studies Press, New York, 1982.

T.J. Hastie, A. Buja, and R.J. Tibshirani. Penalized discriminant analysis. Annals
of Statistics, 23:73–102, 1995.

T.J. Hastie and R.J. Tibshirani. Discriminant analysis by gaussian mixtures. Jour-
nal of the Royal Statistical Society, pages 155–176, 1996.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-
CRL-99-10, UC Santa Cruz, July 1999.

R. Herbrich and T. Graepel. Large scale bayes point machines. In T.K. Leen, T.G.
Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems, volume 13, pages 528–534. MIT Press, 2001.

R. Herbrich, T. Graepel, and C. Campbell. Bayesian learning in reproducing kernel
Hilbert spaces. Technical report, Technical University of Berlin, 1999. TR
99-11.

R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines. Journal of
Machine Learning Research, 1:245–279, August 2001.

R. Herbrich and R.C. Williamson. Algorithmic luckiness. Journal of Machine
Learning Research, 3:175–212, September 2002.

P.J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.

T.S. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for
detecting remote protein homologies. J. Comp. Biol., 7:95–114, 2000.

BIBLIOGRAPHY 137

T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf, C.J.C.
Burges, and A.J. Smola, editors, Advances in Kernel Methods — Support Vector
Learning, pages 169–184, Cambridge, MA, 1999. MIT Press.

I.M. Johnstone. On the distribution of the largest principal component. Technical
report, Department of Statistics, Stanford University, August 2000.

N. Karmarkar. A new polynomial algorithm for linear programming. Combinatorica,
4:373–395, 1984.

W. Karush. Minima of functions of several variables with inequalities as side
constraints. Master’s thesis, Dept. of Mathematics, Univ. of Chicago, 1939.

S.S. Keerthi and S.K. Shevade. SMO algorithm for least squares SVM formula-
tions. Technical Report CD-02-08, National Univ. of Singapore, 2002.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy.
Improvements to Platt’s SMO algorithm for SVM classifier design.
Technical Report CD-99-14, National University of Singapore, 1999.
http://guppy.mpe.nus.edu.sg/˜mpessk.

L.G. Khachiyan. A polynomial time algorithm in linear programming. Doklady
Akademia Nauk SSSR, 244:1093–1096, 1979. also: USSR Computational
Mathematics and Math. Phys., 20:53–72, 1980.

A.N. Kolmogorov. Stationary sequences in hilbert spaces. Moscow University
Mathematics, 2:1–40, 1941.

V.I. Koltchinskii and D. Panchenko. Rademacher processes and bounding the risk
of function learning. In E. Gine, D. Mason, and J.A. Wellner, editors, High
Dimensional Probability II, number 47 in Progress in Probability, pages 443–
459, Boston, 2000. Birkhäuser.

H.W. Kuhn and A.W. Tucker. Nonlinear programming. In Proc. 2nd Berkeley Sym-
posium on Mathematical Statistics and Probabilistics, pages 481–492, Berkeley,
1951. University of California Press.

T. Kurita and T. Taguchi. A modification of kernel-based Fisher discriminant
analysis for face detection. In Proceedings of the 5th IEEE conference on
automatic face and gesture recognition, pages 300–304, Vancouver, Canada,
2002.

Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in
nonstandard situations. Machine Learning, 46:191–202, 2002.

N. Littlestone and M. Warmuth. Relating data compression and learnability. Tech-
nical report, University of California at Santa Cruz, USA, June 10 1986.

Q. Liu, R. Huang, H. Lu, and S. Ma. Face recognition using kernel based Fisher
discriminant analysis. In Proceedings of the 5th IEEE conference on automatic
face and gesture recognition, pages 197–201, 2002.

138 BIBLIOGRAPHY

D.G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing
Co., Reading, second edition, May 1984. ISBN 0-201-15794-2. Reprinted with
corrections in May, 1989.

A. Luntz and V. Brailowsky. On estimation characters obtained in statistical
procedure of recognition. Technicheskaya Kibernetica, 3, 1969. In russian.

O.L. Mangasarian. Mathematical programming in data mining. Data Mining and
Knowledge Discovery, 42(1):183–201, 1997.

O.L. Mangasarian and D.R. Musicant. Lagrangian support vector machines. Jour-
nal of Machine Learning Research, 1:161–177, March 2001.

L. Mason, P.L. Bartlett, and J. Baxter. Improved generalization through explicit
optimization of margins. Technical report, Department of Systems Engineering,
Australian National University, 1998.

W.S. McCulloch and W. Pitts. A logistic calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

C. McDiarmid. On the method of bounded differences. Surveys in Combinatorics,
pages 148–188, 1989.

G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. John
Wiley & Sons, 1992.

S. Mehrotra. On the implementation of a (primal-dual) interior point method.
SIAM Journal on Optimization, 2:575–602, 1992.

F. Meinecke, A. Ziehe, M. Kawanabe, and K.-R. Müller. A resampling approach
to estimate the stability of one- or multidimensional independent components.
To appear in IEEE Transactions on Biomedical Engineering, 2002.

J. Mercer. Functions of positive and negative type and their connection with the
theory of integral equations. Philos. Trans. Roy. Soc. London, A 209:415–446,
1909.

S. Mika. Kernalgorithmen zur nichtlinearen Signalverarbeitung in Merkmalsräu-
men. Master’s thesis, Technische Universität Berlin, November 1998.

S. Mika, G. Rätsch, and K.-R. Müller. A mathematical programming approach
to the kernel Fisher algorithm. In T.K. Leen, T.G. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems, volume 13, pages
591–597. MIT Press, 2001a.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant
analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors,
Neural Networks for Signal Processing IX, pages 41–48. IEEE, 1999a.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A.J. Smola, and K.-R. Müller.
Invariant feature extraction and classification in kernel spaces. In S.A. Solla,
T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing
Systems, volume 12, pages 526–532. MIT Press, 2000.

BIBLIOGRAPHY 139

S. Mika, B. Schölkopf, A.J. Smola, K.-R. Müller, M. Scholz, and G. Rätsch. Kernel
PCA and de–noising in feature spaces. In M.S. Kearns, S.A. Solla, and D.A.
Cohn, editors, Advances in Neural Information Processing Systems, volume 11,
pages 536–542. MIT Press, 1999b.

S. Mika, A.J. Smola, and B. Schölkopf. An improved training algorithm for kernel
Fisher discriminants. In T. Jaakkola and T. Richardson, editors, Proceedings
AISTATS 2001, pages 98–104, San Francisco, CA, 2001b. Morgan Kaufmann.

A.J. Miller. Subset Selection in Regression. Chapman and Hall, London, UK,
1990.

J. Moody and C. Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation, 1(2):281–294, 1989.

V.A. Morozov. Methods for Solving Incorrectly Posed Problems. Springer Verlag,
1984.

K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction
to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12
(2):181–201, 2001.

S. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, New
York, NY, 1996.

B.K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on
Computation, 24:227–234, 1995.

M. Opper and D. Haussler. Generalization performance of Bayes optimal classifi-
cation algorithm for learning a perceptron. Physical Review Letters, 66:2677,
1991.

E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support
vector machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors,
Neural Networks for Signal Processing VII — Proceedings of the 1997 IEEE
Workshop, pages 276–285, New York, 1997. IEEE.

E. Parzen. On estimation of probability density function and mode. Annals of
Mathematical Statistics, 33:1065–1076, 1962.

J. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in
Kernel Methods — Support Vector Learning, pages 185–208, Cambridge, MA,
1999. MIT Press.

J. Platt. Probabilistic outputs for support vector machines and comparison to
regularized likelihood methods. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers. MIT Press, 2001.

T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent
to multilayer networks. Science, 247:978–982, 1990.

G. Rätsch. Robust Boosting via Convex Optimization. PhD thesis, University of
Potsdam, Neues Palais 10, 14469 Potsdam, Germany, October 2001.

140 BIBLIOGRAPHY

G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression ensembles in infinite
and finite hypothesis spaces. Machine Learning, 48(1-3):193–221, 2002. Spe-
cial Issue on New Methods for Model Selection and Model Combination. Also
NeuroCOLT2 Technical Report NC-TR-2000-085.

G. Rätsch, S. Mika, B. Schölkopf, and K.-R. Müller. Constructing boosting algo-
rithms from SVMs: an application to one-class classification. IEEE PAMI, 24
(9):1184–1199, September 2002. Earlier version is GMD TechReport No. 119,
2000.

G. Rätsch, S. Mika, and M.K. Warmuth. On the convergence of leveraging. In
T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
information processings systems, volume 14, 2002. Longer version also Neuro-
COLT Technical Report NC-TR-2001-098.

G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine
Learning, 42(3):287–320, March 2001. also NeuroCOLT Technical Report NC-
TR-1998-021.

G. Rätsch, B. Schölkopf, A.J. Smola, S. Mika, T. Onoda, and K.-R. Müller.
Robust ensemble learning. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 207–219.
MIT Press, Cambridge, MA, 2000a.

G. Rätsch, B. Schölkopf, A.J. Smola, S. Mika, T. Onoda, and K.-R. Müller. Robust
ensemble learning for data mining. In H. Terano, editor, Proc. PAKDD’00,
Lecture Notes in Artificial Intelligence. Springer, April 2000b.

G. Rätsch, B. Schölkopf, A.J. Smola, K.-R. Müller, T. Onoda, and S. Mika. ν-
Arc: Ensemble learning in the presence of outliers. In S.A. Solla, T.K. Leen,
and K.-R. Müller, editors, Advances in Neural Information Processing Systems,
volume 12, pages 561–567. MIT Press, 2000c.

G. Rätsch, M. Warmuth, S. Mika, T. Onoda, S. Lemm, and K.-R. Müller. Bar-
rier boosting. In Proc. COLT, pages 170–179, San Francisco, 2000d. Morgan
Kaufmann.

B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, 1996.

M. Rosenblatt. Remarks on some nonparametric estimates of a density function.
Annals of Mathematical Statistics, 27:832–837, 1956.

V. Roth and V. Steinhage. Nonlinear discriminant analysis using kernel functions. In
S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information
Processing Systems, volume 12, pages 568–574. MIT Press, 2000.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290(5500):2323–2326, 2000.

P. Ruján. Playing billiard in version space. Neural Computation, 9:197–238, 1996.

BIBLIOGRAPHY 141

S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman Scientific
& Technical, Harlow, England, 1988.

C. Saunders, A. Gammermann, and V. Vovk. Ridge regression learning algorithm in
dual variables. In Proceedings of the 15th International Conference on Machine
Learning, pages 515–521, 1998a.

C. Saunders, M.O. Stitson, J. Weston, L. Bottou, B. Schölkopf, and A.J. Smola.
Support vector machine reference manual. Technical Report CSD-TR-98-03,
Royal Holloway University, London, 1998b.

B. Schölkopf. Support vector learning. Oldenbourg Verlag, Munich, 1997.

B. Schölkopf. The kernel trick for distances. In T.K. Leen, T.G. Diettrich, and
V. Tresp, editors, Advances in Neural Information Processing Systems 13. MIT
Press, 2001.

B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors. Advances in Kernel Methods
– Support Vector Learning. MIT Press, 1999a.

B. Schölkopf, R. Herbrich, and A.J. Smola. A generalized representer theorem. In
D.P. Helmbold and R.C. Williamson, editors, COLT/EuroCOLT, volume 2111
of LNAI, pages 416–426. Springer, 2001.

B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and
A.J. Smola. Input space vs. feature space in kernel-based methods. IEEE
Transactions on Neural Networks, 10(5):1000–1017, September 1999b.

B. Schölkopf, S. Mika, A.J. Smola, G. Rätsch, and K.-R. Müller. Kernel PCA
pattern reconstruction via approximate pre-images. In L. Niklasson, M. Bodén,
and T. Ziemke, editors, Proceedings of the 8th International Conference on
Artificial Neural Networks, Perspectives in Neural Computing, pages 147 – 152,
Berlin, 1998a. Springer Verlag.

B. Schölkopf, A. Smola, R.C. Williamson, and P.L. Bartlett. New support vector
algorithms. Neural Computation, 12:1207 – 1245, 2000. also NeuroCOLT
Technical Report NC-TR-1998-031.

B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

B. Schölkopf, A.J. Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998b.

J. Schürmann. Pattern Classification: a unified view of statistical and neural
approaches. Wiley, New York, 1996.

A. Shashua. On the relationship between the support vector machine for classifi-
cation and sparsified Fisher’s linear discriminant. Neural Processing Letters, 9
(2):129–139, April 1999.

J. Shawe-Taylor, P.L. Bartlett, and R.C. Williamson. Structural risk minimization
over data-dependent hierachies. IEEE Transactions on Information Theory, 44
(5):1926–1940, 1998.

142 BIBLIOGRAPHY

J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M. Anthony. A framework
for structural risk minimization. In Proc. COLT. Morgan Kaufmann, 1996.

J. Shawe-Taylor, N. Cristianini, and J. Kandola. On the concentration of spectral
properties. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Ad-
vances in Neural Information Processing Systems 14, Cambridge, MA, 2002.
MIT Press.

J. Shawe-Taylor and R.C. Williamson. A PAC analysis of a Bayesian estimator.
Technical Report NC2-TR-1997-013, Royal Holloway, University of London,
1997.

P.Y. Simard, Y.A. LeCun, J.S. Denker, and B. Victorri. Transformation invariance
in pattern recognition – tangent distance and tangent propagation. In G. Orr
and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, volume 1524,
pages 239–274. Springer LNCS, 1998.

A.J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin,
1998.

A.J. Smola and P.L. Bartlett. Sparse greedy gaussian process regression. In T.K.
Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems, volume 13, pages 619–625. MIT Press, 2001.

A.J. Smola, S. Mika, and B. Schölkopf. Quantization functionals and regularized
principal manifolds. Technical Report NC-TR-98-028, Royal Holloway College,
University of London, UK, 1998a.

A.J. Smola, S. Mika, B. Schölkopf, and R.C. Williamson. Regularized principal
manifolds. Journal of Machine Learning Research, 1:179–209, June 2001.

A.J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine
learning. In P. Langley, editor, Proc. ICML’00, pages 911–918, San Francisco,
2000. Morgan Kaufmann.

A.J. Smola, B. Schölkopf, and K.-R. Müller. The connection between regular-
ization operators and support vector kernels. Neural Networks, 11:637–649,
1998b.

A.J. Smola, R.C. Williamson, S. Mika, and B. Schölkopf. Regularized principal
manifolds. In Paul Fischer and Hans Ulrich Simon, editors, Proceedings of
EuroCOLT 99), volume 1572 of LNAI, pages 214–229, Berlin, March 1999.
Springer.

G.W. Stewart. Error and pertubation bounds for subspaces associated with certain
eigenvalue problems. SIAM Reviews, pages 727–764, 1973.

G.W. Stewart and J. Sun. Matrix pertubation theory. Academic Press, 1990.

M. Stitson, A. Gammerman, V.N. Vapnik, V. Vovk, C. Watkins, and J. Weston.
Support vector regression with ANOVA decomposition kernels. Technical Report
CSD-97-22, Royal Holloway, University of London, 1997.

BIBLIOGRAPHY 143

J.A.K. Suykens and J. Vanderwalle. Least squares support vector machine classi-
fiers. Neural Processing Letters, 9(3):293–300, 1999.

M. Talagrand. A new look at independence. Annals of Probability, 24:1–34, 1996.

A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-posed Problems. W.H. Winston,
Washington, D.C., 1977.

M.E. Tipping. The relevance vector machine. In S.A. Solla, T.K. Leen, and K.-R.
Müller, editors, Advances in Neural Information Processing Systems, volume 12,
pages 652–658. MIT Press, 2000.

K. Tsuda. Support vector classifier with asymmetric kernel functions. Technical
Report TR-98-31, Electrotechnical Laboratory, Japan, 1998.

K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.R. Müller. A new
discriminative kernel from probabilistic models. Neural Computation, 14:2397–
2414, 2002.

K. Tsuda, G. Rätsch, S. Mika, and K.-R. Müller. Learning to predict the leave-one-
out error of kernel based classifiers. In G. Dorffner, H. Bischof, and K. Hornik,
editors, Artificial Neural Networks — ICANN’01, pages 331–338. Springer Lec-
ture Notes in Computer Science, Vol. 2130, 2001.

A. Turing. Computing machinery and intelligence. Mind, 59:433–560, 1950.

A.W. van der Vaart and J.A. Wellner. Weak Convergence and Empirical Processes.
Springer, 1996.

J.L.M. van Dorsselaer, M.E. Hochstenbach, and H.A. van der Vorst. Computing
probabilistic bounds for extreme eigenvalues of symmetric matrices with the
Lanczos method. SIAM Journal on Matrix Analysis and Applications, 22(3):
837–852, 2000.

R.J. Vanderbei. Interior-point methods: Algorithms and formulations. ORSA
Journal on Computing, 6(1):32–34, 1994.

R.J. Vanderbei. LOQO user’s manual – version 3.10. Technical Report SOR-
97-08, Princeton University, Statistics and Operations Research, 1997. Code
available at http://www.princeton.edu/˜rvdb.

R.J. Vanderbei and D.F. Shanno. An interior point algorithm for nonconvex non-
linear programming. Technical Report SOR-97-21, Statistics and Operations
Research, Princeton University, 1997.

V.N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-
Verlag, Berlin, 1982.

V.N. Vapnik. The nature of statistical learning theory. Springer Verlag, New York,
1995.

V.N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

144 BIBLIOGRAPHY

V.N. Vapnik and A.Y. Chervonenkis. Theory of Pattern Recognition. Nauka,
Moskow, 1974. in Russian.

V.N. Vapnik and A.Y. Chervonenkis. The necessary and sufficient conditions for
consistency in the empirical risk minimization method. Pattern Recognition and
Image Analysis, 1(3):283–305, 1991.

T. Watkin. Optimal learning with a neural network. Europhysics Letters, 21:
871–877, 1993.

C. Watkins. Dynamic alignment kernels. In A.J. Smola, P.L. Bartlett, B. Schölkopf,
and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39–50,
Cambridge, MA, 2000. MIT Press.

J.H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford,
England, 1965.

C.K.I. Williams and M. Seeger. Using the Nyström method to speed up kernel
machines. In V. Tresp T.K. Leen, T.G. Dietrich, editor, NIPS, volume 13, pages
682–688. MIT Press, 2001.

R.C. Williamson, A.J. Smola, and B. Schölkopf. Generalization performance of
regularization networks and support vector machines via entropy numbers of
compact operators. NeuroCOLT Technical Report NC-TR-98-019, Royal Hol-
loway College, University of London, UK, 1998.

J. Xu, X. Zhang, and Y. Li. Kernel MSE algorithm: a unified framework for KFD,
LS-SVM and KRR. In Proceedings of IJCNN, pages 1486–1491, 2001.

M.-H. Yang. Face recognition using kernel methods. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems
14, Cambridge, MA, 2002. MIT Press.

M-H. Yang, N. Ahuja, and D. Kriegman. Face recognition using kernel eigenfaces.
In Proceedings of the 2000 IEEE International Conference on Image Processing,
pages 37–40, Vancouver, Canada, September 2000.

A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engi-
neering Support Vector Machine Kernels That Recognize Translation Initiation
Sites. BioInformatics, 16(9):799–807, September 2000.

