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Summary: We present a framework for the analysis of time series from

nonstationary dynamical systems that operate in multiple modes. The method
detects mode changes and identifies the underlying subdynamics. It unifies

the mixtures of experts approach and a generalized hidden Markov model

with an input-dependent transition matrix. The adaptation of the individ-

ual experts and of the hidden Markov model is performed simultaneously.

We illustrate the capabilities of our algorithm for chaotic time series and

EEG recordings from human subjects during afternoon naps.



1 Introduction

It is a basic assumption of science that nature can be described by separat-
ing its complex structure into smaller parts which can be understood much
more easily. On the other hand, it is well known that the interaction of
even simple elements can produce very complex behavior. Often natural
systems exhibit different kinds of nonstationary behavior generated by the
interaction of coexisting subsystems. Therefore, prediction and classification
of nonstationary dynamical systems may be performed better by identify-
ing appropriate subdynamics and an early detection of the changes between
these modes. Examples can be found in physics, biology, chemistry and cli-
matology, but also in economic systems like financial markets.

Standard statistical techniques generally assume stationarity, i. e. they re-
quire that the underlying system is autonomous and does not change its
parameters over time. If, however, the parameters of the system are varying
in time, an analysis of the system can become very difficult. One approach
to solve this problem was the application of efficient algorithms to short seg-
ments of the data, thereby monitoring possible changes in the characteristic
quantities. These methods may suffer from the curse of dimensionality and
other statistical problems that arise when estimating system parameters from
small sample sizes.

A basic framework for dealing with nonstationarity is the mixtures of experts
(ME) architecture, introduced in Jacobs et al. (1991). The mixtures of ex-
perts framework aims at separating the seemingly complex global behavior
into a couple of lower dimensional subdynamics which can be modeled more
easily.

To illustrate this approach consider the Lorenz system (Lorenz 1963). This
rather simple nonlinear dynamical system exhibits switching between two dif-
ferent oscillatory modes where each each single oscillation can be described
by an approximately linear dynamics near the corresponding fixed point.
Two linear models would be a suitable choice in order to resolve the dy-
namical structure of the system. The nonlinearity of the system could be
incorporated into a gating procedure that models the switching between the
subdynamics. A central problem of using a set of experts is therefore the
calculation of the activities of each expert — called the gating problem.
Many solutions have been proposed for dealing with the gating problem (Ben-
gio and Frasconi 1995; Cacciatore and Nowlan 1994; Jacobs et al. 1991; Keha-
gias and Petridis 1997; Pawelzik et al. 1996; Shi and Weigend 1997; Weigend
et al. 1995). In its original formulation, the mixtures of experts method
can be applied to systems, where different regimes do not overlap in phase



space (i. e. the input space). The expert’s activities are provided by a feed—
forward gating network given the current location in phase space (Weigend
et al. 1995). The use of a recurrent gating network (Cacciatore and Nowlan
1994) allows to distinguish also between overlapping regimes.

An alternative, non-recurrent approach to distinguish between overlapping
regimes is the annealed competition of experts (ACE) method (Miiller et al.
1995; Pawelzik et al. 1996). It has its roots in statistical mechanics and is a
purely performance-driven concept, which considers a moving average pre-
diction error for estimating the activities instead of using a gating network.
An extension to the analysis of linear drifts between two dynamical modes
was proposed later by using a dynamic programming approach based on a
hidden Markov model (Kohlmorgen et al. 1997, 1998; Kohlmorgen 1998).
This approach was successfully applied to the same EEG data sets that we
investigate in this paper. A detailed comparison of the results, however, goes
beyond the scope of this contribution.

All these approaches exhibit conceptual disadvantages. Some do not make
use of all the available information for estimation of the expert activities
(Jacobs et al. 1991; Weigend et al. 1995; Pawelzik et al. 1996; Kohlmorgen
et al. 1997). Others use low-pass filters (Pawelzik et al. 1996), which can
induce systematic delays when detecting switching events. Some approaches
are inconsistent in training and application, because they include future in-
formation in order to calculate the expert’s activities (Bengio and Frasconi
1995).

Here we present a novel framework that resolves the problems and incon-
stistencies of the previous methods mentioned above. It unifies the mix-
tures of experts approach and a generalized hidden Markov model with an
input—dependent transition matrix: the Hidden Markov Mixtures of Experts
(HMME). We apply a maximum likelihood learning method by using an
Expectation-Maximization (EM) algorithm. The HMME approach is always
trained in consistency with the later application: analysis or prediction. In
the case of prediction, it can be used for an early detection of changes be-
tween dynamical regimes. These advantages are among the main differences
to the IOHMM algorithm by Bengio and Frasconi (1995), who used a similar
hybrid architecture. We illustrate our algorithm by using chaotic time series
and EEG recordings from afternoon naps of healthy human subjects.



2 Hidden Markov Mixtures of Experts

2.1 The HMME architecture

We consider a modular dynamical system of K different models (experts),
which are associated with discrete hidden dynamical states (modes). Figure
1 illustrates this concept. The overall prediction y; of the modular system
at time ¢ is given by a linear superposition of the individual predictions yF
of each expert £ depending on the input vector z;:
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Figure 1: Illustration of the HMME architecture. The upper pic-
ture shows a caricature of a nonstationary time series consisting of
three dynamical modes. The experts of a HMME system specialize
on different dynamical modes. The picture below illustrates the
corresponding probabilities gF of the experts.



The dynamical state probabilities gF are determined by the optimal trajec-
tory through the hidden dynamical states. The calculation of this optimal
path can be performed by using the theory of hidden Markov models (Ra-
biner 1988). In addition, we use an input—dependent transition matrix for
dealing with phase space depending transition processes. The parameters of
the HMME model are denoted by the overall parameter vector © which is
composed of the individual parameter vectors ©* of the K experts and of
the parameter vector ©¢ of the HMM.

2.2 The objective function

The objective function to be maximized is the likelihood L for observing the

given input and output sequences X = (zi,...,zr) and Y = (yi,...,y7),
the sequence of hidden dynamical modes Q = (qi,-..,¢r) and their mixed
approximations Y* = (yf,...,y;) depending on the model parameters ©,
i. e. the expected negative log-likelihood

R(©) = —(logL(©)) (2)

has to be minimized. The expectation (.)x must be taken over the distri-
bution of all possible input sequences. Using the Markov assumptions with
one-step memory, the distribution of outputs given the inputs can be factor-
ized into sums of products of two types of factors, output probabilities and
transition probabilities:

T
P(Y,Y",Q|X,0) = P(q0) H (Y ¥t lat, 7, ©) P (gelgi—1, 74, ©) (4)

For consideration of the distrlbutlon of possible sequences of hidden dynam-
ical modes it is common to introduce indicator variables zF which are given
by the sequence @ with zF =1 if ¢, = k, and 2F = 0 if ¢; # k, and ¢y being
the starting state. This yields
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where gF = (2F), and hf*¥ g¥ | = (2kzF ), are the expected values of the in-

dicator variables and their product. We assume Gaussian error distributions
with the variance o2 of the estimated noise level of the data:

P(ytayﬂ(h:k;xta@) = P(y:‘ytaxtaG)P(ytmt:kaxta@) (7)
_ 1 (e —v;)> + (e — vr)”
- 2702 exp < 202 (8)

Further we assume equally distributed initial probabilities g = P(qy =
k|®) = &, 1 < k < K. Using the notation ™ = ¥ (2,,0) := P(g =
k|g—1 =K', x;,0) from Rabiner (1988), the objective function can be written
as
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with the mean squared errors of the mixture system E*? and the experts E*?
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and the entropy C**" between expected and modeled conditional activations
of mode k£ and mode k'
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2.3 Training procedure

Training is performed by a generalized expectation-maximization (GEM)
algorithm (Dempster et al. 1977), because in general there is no way to an-
alytically maximize the objective function R(©). The E-step consists of es-
timating the probabilities, the M—step adapts the models by minimizing the
objective function using gradient descent. Since in the M—step the probabil-
ities are considered to be constant, the derivatives of the objective function
can be simplified drastically. Because the output sequence Y plays the role of
a target value, the adaptation of the experts is a supervised learning problem.
On the other hand there is no direct desired value given for adaptation of the



HMM model. Therefore, the detection of dynamical states and their switch-
ing behavior is an unsupervised learning problem. The partial derivatives
with respect to the constituents of the parameter vector © are

OR(©) 11 & k * k 6yf
OR(©) 1K (h¥ dak ¥
— = —— gy - —1 . (14)

Equation (14) is calculated using the method of Lagrange multipliers for in-

corporating the normalization conditions YK, ak|k =1land Ek W=l hk‘k
Furthermore, this equation is equivalent to the derivative of the Kullback—
Leibler distance between the HMM transition matrix and the estimated con-
ditional probabilities h,]f L Thus, the adaptation of the transition matrix can
be interpreted as minimizing this measure.

During training, the HMM learns to predict the expected conditional proba-
bilities hf'k’, which are calculated according to the theory of hidden Markov

models using the forward and backward probabilities of := P(yt, ¢; = k|z}, OF)

and B := P(yl.,, ¢ = k|z], ©F):
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For classification tasks, the calculation of expected state probabilities gF can

be performed using the normalized HMM state probability that contains past
and future information:

(16)
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In the case of prediction, however, no future information is available. For
consistency between training and application of the algorithm in that case,
the expected state probabilities have to be calculated by an iterated proce-
dure of a—priori and a—posteriori probabilitiesz
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The a—posteriori probability can be identified with the normalized forward
probabilities &F = of / 3, al.

2.4 Simulated annealing

The method of simulated annealing (Kirkpatrick et al. 1983; Kirkpatrick
1984) is suitable for optimization problems, where a global optimum is hid-
den among many local extrema. The standard scheme for finding minima
(maxima) is going downhill (uphill) as far as possible. This often leads to a
local but not necessarily global extremum.

Transfered to the adaptation of the HMME, without annealing, the algorithm
most probably gets stuck in a non—optimal segmentation of the data. Simu-
lated annealing introduces a probabilistic component in the training process
by using the temperature-like parameter o2 of equation (8) with a small
amount of noise on the HMME parameters ©. In our context, the annealing
parameter can be interpreted as a competition factor. First, at high temper-
ature (without competition), all data points are uniformly distributed among
the experts. Finally, at low temperature (hard competition), each data point
is associated with only one expert exclusively. The essence of the process is
a slow decrease of the temperature, allowing ample time for redistribution of
the experts. The annealing process ensures a slow evolution of the shape of
the objective function in parameter space and allows the system to get out
of a local extremum. With this method the experts successively specialize in
a hierarchical manner via a series of phase transitions (Pawelzik et al. 1996),
an effect which has also been analyzed in the context of clustering (Rose
et al. 1990).



3 Detection and prediction of subdynamics

In order to demonstrate the performance of the algorithm, we first applied it
to the Lorenz system (Lorenz 1963) which is given by a set of three coupled
differential equations

X = —oX +0Y
Y = -XZ4+rX-Y (20)
7 = XY —bZ.

With the chosen parameters, 0 = 16, b = 4, and r = 45.92, the dynamics ex-
hibits a switching behavior between oscillations around two fix-points. The
system is globally nonlinear, with the strongest nonlinearity near the switch-
ing area from one oscillatory wing to the other, while each single oscillation
can be assumed to be approximately linear near the corresponding fix—point.
Therefore, we choose two linear experts and a nonlinear radial basis functions
network of Moody Darken type (Moody and Darken 1989) for modeling the
HMME transition matrix:
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Figure 2: Input-dependent transition matrix of the HMME model
learned from the Lorenz dynamics. Each of the four pictures shows
the transition probability Prob(k' — k) from expert #k' to expert
#k depending on the X component of the state vector.
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The RBF-network consists of M = 20 centers. The nonlinearity is thus only
incorporated into the gating procedure. The input and output of the experts
are given by the state vector (X,Y, Z) of the Lorenz system.

Figure 2 shows the final estimation of the input-dependent transition matrix
of the HMME. The functional dependency of the four elements of the transi-
tion matrix is projected onto the plane (X/Prob) between the X—coordinate
of the state vector and the transition probability. Obviously, each expert
specializes on one oscillation and the transition matrix forces the probability
evolution to follow that segmentation of the dynamics. The projection re-
flects also the switching behavior of the Lorenz dynamics near X = 0. The
algorithm can follow even short-term mode changes which is shown in Figure
3 (see also Liehr et al. 1999).
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Figure 3: The upper picture shows a part of the Lorenz dynamics,
the small lower panel shows the probability evolution of one of the
two experts of the HMME and demonstrates the ability to detect
changes between the different dynamical regimes of that process
very quickly.
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4 Analysis of EEG data

To illustrate the performance of our algorithm on experimental data we ana-
lyzed EEG recorded during afternoon naps of a healthy human. The objective
was to give a detailed description of the signal dynamics with a high time
resolution, ultimately to detect the sleep onset in an unsupervised manner.
In general practice, the analysis of sleep and the segmentation into differ-
ent modes depends strongly on the specific experience and intuition of the
medical expert who conveys it. Moreover, manual analysis is rather time
consuming. Furthermore, disagreements of classification between different
medical experts are of the order 10-15%.

Our HMME algorithm might be a tool in order to avoid these problems.
First, it provides an objective method with an exactly defined performance
function for segmentation of the data and for modeling the individual dy-
namical modes. Second, after training, the analysis of new data is very fast
and might be performed online while recording the signal. The EEG is a
signal with high time resolution of typically 100 Hz up to 1000 Hz. There-
fore, it potentially allows to determine the sleep onset more accurately than
other physiological signals like the EOG. The EEG data we used here, was
first analyzed in (Kohlmorgen et al. 1997). For a more detailed analysis, see
(Kohlmorgen 1998; J. Kohlmorgen and Pawelzik 1999).

For this study, we analyzed two single-channel EEG recordings from one
subject, sampled with 100 Hz, both shown in the top of Figures 4 and 5.
In order to reconstruct the dynamical space, we embedded the EEG time
series {s;} with an embedding dimension d = 50 and a delay of 7 = 2 (20
ms). Thus, the input vector is z; = (s¢, S¢—r, ..., 8t—(4-1)-) and the output or
target value is y; = s;1.. The method of reconstruction is based on funda-
mental theoretical work and common in nonlinear dynamics (Packard et al.
1980; Takens 1981). Our choice of embedding parameters was motivated to
capture the most important frequency domains in the power spectrum of the
EEG signal.

We used a set of four linear expert models and the transition matrix was
modeled by an RBF network, as given in equations (21) and (22). The RBF
network consists of M = 5 centers. For smoothing out probability fluctua-
tions of gF and emphasizing the dynamical structure, a short low-pass filter
of 1 s was used for illustration purposes.

The HMME was trained on the first data set NP-11, then we used it for
segmentation of the same data and an additional test data set NP-13, which
was not presented during training.

The segmentation of NP-11 using the HMME that was trained on this data
set is shown in Figure 4. For comparison, the manual segmentation of the
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EEG data is given in the second plot of the same figure. The filled region
shows the 1 s low-pass filtered segmentation of the HMME. A remarkable
result is the dominance of only two experts, expert #4 during the wake state
and expert #1 during the sleep state. They receive the largest amount of
data and are sufficient for explaining the main dynamical parts. The sleep
onset at 6.5 min and the final arousal at 16 min are indicated correctly in
the segmentation. The second of the two intermediate arousals at 12 min is
likewise indicated correctly. The first intermediate arousal at 9 min, however,
is not as prominent as the second one.

Comparing the HMME segmentation with the segmentation of the medical
expert we see that the probability of expert #3 shows some coincidences with
regions of the EEG recording which were classified as artifacts (2.5 min, 5
min, 6.5 min) but it shows also small peaks of high probability which can
not be interpreted within the given manual segmentation. Expert #2 shows
a higher occurance of activity in regions of changes in the EEG like the in-
termediate or final arousal, but it is also hard to interpret its behavior. In
order to assess the generalization ability of the approach with respect to its
segmentation capabilities, we applied the HMME for the segmentation of the
data set NP-13. As shown in Figure 5, the overall structure of the obtained
drift segmentation is again in good agreement with the hand labeling. Like-
wise, the responsibilities of the experts are the same as mentioned above. In
particular, two short intermediate arousals during the nap are nicely repre-
sented in the segmentation by the probabilities of experts #1 and #4. Thus,
one advantage of reusing a previously trained HMME is that one only has to
label the experts once, after training.

13



Dataset NP-11

wake (open)fe

wake (close) e
sleep 1

sleep 2

not considered

artifact r
0 5 10 15 20 25
Time t [min]
1E r r r r -
Y osp .
0 A ll o
1 L] Ll L bl -
Ros 1
0 f
0 5 10 15 20 25
Time t [min]

14



Figure 4: Dataset NP-11. Top: A single channel EEG-O1
(occipital-1) recording of an afternoon nap of about 20 min is used
for training the HMME. The sampling time was 10 ms. Second
plot: Result of a manual segmentation performed by a medical
expert. It is based on the following eight physiological signals
(each EEG channel corresponds to a recording at the indicated
electrode position): EEG-O1 (occipital-1), EEG-O2 (occipital-2),
EEG-F3 (frontal-3), EOG (electrooculogram), ECG (electrocardio-
gram), heart rate, blood pressure and respiration. Two wake states
with eyes opened and eyes closed, and sleep stages 1 and 2 are
classified. Some time regions have not been considered or are clas-
sified as artifacts. Four panels below: HMME segmentation of the
NP-11 EEG recording. The evolution of the four individual ex-
pert probabilities gF are marked by #1 to #4. Probabilities are
smoothed with a Gaussian filter of 1 s standard deviation. Transi-
tions from wake state to sleep onset and back are detected clearly
by transitions between expert #4 and expert #1. Also the short
intermediate arousals can be resolved. Experts #2 and #3 special-
ize on artifacts and very localized dynamical structures which can
not be interpreted on the considered time scale.

Figure 5: Dataset NP-13. Top: Another single channel EEG-O1
(occipital-1) of an afternoon nap of about 30 min is used for test-
ing the generalization performance. The sampling time of the EEG
recording was again 10 ms. Second plot: Manual segmentation
based on the same physiological signals as explained in Figure 4.
Four panels below: The four panels show the segmentation of the
NP-13 EEG recording in order to test the generalization perfor-
mance of the HMME. Probabilities gF are smoothed with a Gaus-
sian filter of 1 s standard deviation. The segmentation by the
HMME shows again a good agreement with the manual segmen-
tation. Both short arousals at 11 min and 16-18 min are clearly
indicated.
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5 Conclusion

A combined supervised and unsupervised method for identification and seg-
mentation of nonstationary dynamics was presented. It applies to time series
of dynamical systems that alternate among different operating modes. An
application to EEG data demonstrated that dynamical structure can be re-
solved by our approach in an unsupervised manner.

We would like to emphasize that the method neither needs prior information
whether the time series contains multiple modes, nor what the dynamics of
the operating modes looks like. Instead of using a single but complex predic-
tor, we apply a divide and conquer strategies which forces a set of competing
predictors to specialize on sub-sequences of the data. Thereby, a segmenta-
tion of the data and an identification of the individual dynamics is developed
simultaneously.

The experiments on chaotic time series showed the proof of concept for our
HMME algorithm. In case of physiological wake/sleep data, the results are
in so far encouraging as our mathematical model worked well on real-world
data and was capable to identify wakefulness and transitions from wake to
sleep in EEG recordings.

We consider our method as a first step towards new algorithms suitable not
only for better EEG analysis but also for the analysis of complex nonstation-
ary time series in general.
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