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1 Introduction
Despite the great success of SVM, it is usually difficult for users to select suitable kernels for SVM
classifiers. Kernel learning has been developed to jointly learn both a kernel and an SVM classi-
fier [1]. Most existing kernel learning approaches, e.g., [2, 3, 4], employ the margin based formula-
tion, equivalent to:

mink,w,b,ξi

1
2‖w‖

2 + C
∑

i ξi, s.t. yi〈φ(xi; k), w〉+ b + ξi ≥ 1, ξi ≥ 0, (1)
where k is the learned kernel which implicitly defines a transformation φ(·; k) to a feature space by
k(xc, xd) = 〈φ(xc; k), φ(xd; k)〉, (w, b) is an SVM classifier, and xi, yi and ξi are input instances,
labels and hinge losses. To make the problem trackable, the learned kernel is usually restricted to a
parametric form k(θ)(·, ·), where θ = [θi]i is the kernel parameter. The most common used form is
a linear combination of multiple basis kernels, as

k(θ)(·, ·) =
∑m

j=1 θjkj(·, ·), θj ≥ 0. (2)

Let γ denote the margin of the SVM classifier with k. It is well known that γ−2 = ‖w‖2. Thus
the term ‖w‖2 makes the margin based formulation (1) prefer the kernel that results in an SVM
classifier with a larger margin. However, the margin itself can not well describe the goodness of a
kernel. Any kernel, even one with a bad performance, can have arbitrarily large margin by enlarging
the kernel’s scaling, and may be selected to be the final solution [5]. Therefore the margin based
kernel learning methods suffer from scaling problems. In linear combination cases, a remedy is to
enforce a norm constraint on kernel parameters. Unfortunately, it is difficult to select suitable types
of norm constraints, and with norm constraints the scaling problem also causes another initialization
problem: different initial scalings of basis kernels lead to different final learned kernels (Examples
can be found in [5]). In nonlinear combination cases, a norm constraint on kernel parameters even
can not generally guarantees that the learned kernel’s scaling keeps finite in the optimization process.

This paper reports our recently presented scaling-invariant principle and algorithm for kernel learn-
ing [5]. Motivated by the generalization bounds of kernel learning, we use the ratio between the
margin of the SVM classifier with a kernel and the radius of the minimum enclosing ball (MEB)
of data in the feature space endowed with the kernel as a measure of the goodness of the kernel,
and propose a new kernel learning method. Our approach differs from the radius-based methods of
Chapelle et al. [1] and Do et al. [6]. It has been shown that their methods are still sensitive to kernel
scalings [5], causing the same problems as margin based methods. We prove that our formulation is
invariant to scalings of learned kernels, and in linear combination cases it is also invariant both to
initial scalings of basis kernels and to types of norm constraints on kernel parameters. Our proposed
kernel learning problem can be transformed to a tri-level optimization problem. By establishing the
differentiability of a general family of multilevel optimal functions, we give a simple and efficient
gradient-based algorithm for kernel learning. Experiments show that our approach achieves higher
accuracies both than SVM with the uniform combination of basis kernels and than other state-of-art
kernel learning methods.

2 Measuring how good a kernel is
We now discuss how to measure the goodness of a kernel. For SVM with a kernel learned from a
kernel family K, if we restrict that the radius of the minimum enclosing ball in the feature space
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endowed with the learned kernel to be no larger than R, then the theoretical results of Srebro and
Ben-David [7] say: for any fixed margin γ > 0 and any fixed radius R > 0, with probability
at least 1 − δ over a training set of size n, the gap between expected and empirical errors is no
larger than

√
8
n (2 + dφ log 128en3R2

γ2dφ
+ 256R2

γ2 log enγ
8R log 128nR2

γ2 − log δ). Scalar dφ denotes the
pseudodimension [7] of the kernel family K. The above results clearly state that the generalization
error bounds of kernel learning in both linear and nonlinear cases depend on the ratio between the
margin and the radius of the minimum enclosing ball of data. Therefore, we use the margin-and-
radius ratio to measure how good a kernel is for kernel learning.

Given any kernel k, the radius of the minimum enclosing ball, denoted by R(k), can be obtained by
the following concave maximization problem [5].

R2(k) = maxβi

∑
iβik(xi, xi)−

∑
i,jβik(xi, xj)βj , s.t.

∑
i βi = 1. βi ≥ 0. (3)

3 Learning kernels with margin-and-radius ratio
By using the margin-and-radius ratio, we propose a new kernel learning formulation, as

mink,w,b,ξi

1
2R2(k)‖w‖2 + C

∑
i ξi, s.t. yi(〈φ(xi; k), w〉+ b) + ξi ≥ 1, ξi ≥ 0. (4)

This optimization problem is called radius based kernel learning problem, referred to as RKL. It can
be reformulated to

mink G(k), (5)
where G(k) = min

w,b,ξi

1
2R2(k)‖w‖2 + C

∑
i ξi, s.t. yi(〈φ(xi; k), w〉+ b) + ξi ≥ 1, ξi ≥ 0. (6)

Functional G(k) defines a measure of the goodness of kernel functions. This functional is scaling
invariant: for any kernel k and any scalar a > 0, equation G(ak) = G(k) holds [5].

Now consider the linear combination case in (2), and use glinear(θ) to denote G(k(θ)) in such case.
From scaling invariance we can get the following properties [5]. First, problems of minimizing
glinear(θ) under different types of norm constraints on θ are equivalent to each other, and also equiv-
alent to the problem of minimizing glinear(θ) without any norm constraint on θ. Second, the prob-
lems of minimizing glinear(θ) with different initial scalings of basis kernels are also equivalent to
each other. Therefore, our formulation completely addresses the problems in margin based methods.

3.1 Reformulation to a tri-level optimization problem
The remaining task is to optimize the RKL problem (5). Given a parametric kernel form k(θ), for
any parameter θ, to obtain the value of the objective function g(θ) .= G(k(θ)) in (5), we need to
solve the SVM-like problem in (6), which is a convex minimization problem and can be solved by
its dual problem. Indeed, the whole RKL problem is transformed to a tri-level optimization problem:

minθ g(θ), (7)

where g(θ) =
{

maxαi

∑
iαi − 1

2r2(θ)

∑
i,jαiαjyiyjKi,j(θ), s.t.

∑
iαiyi = 0, 0 ≤ αi ≤ C

}
, (8)

where r2(θ) =
{

maxβi

∑
iβiKi,j(θ)−

∑
i,jβiKi,j(θ)βj , s.t.

∑
iβi = 1, βi ≥ 0

}
, (9)

where K(θ) denotes the kernel matrix [k(θ)(xi, xj)]i,j , and r(θ) denotes R(kθ). If g(θ), which is
the objective function in the top-level optimization, is differentiable and we can get its derivatives,
then we can use gradient-based methods to solve the RKL problem. The Danskin’s theory states
the differentiability of single-level optimal functions [5], and has been successfully applied in many
kernel learning methods, e.g., [1, 4]. Unfortunately, here our objective function g(θ) is a bi-level op-
timal function, and the Danskin’s theory can not be directly applied, which makes the RKL problem
much more challenging. Below we develop new results about multilevel optimal functions.

4 Differentiability of the multilevel optimization problem
Let Y be a metric space, and X , U and Z be normed spaces. Suppose: (1) The function g1(x, u, z),
is continuous on X×U×Z. (2) For all x ∈ X the function g1(x, ·, ·) is continuously differentiable.
(3) The function g2(y, x, u) (g2 : Y ×X ×U → Z) is continuous on Y ×X ×U . (4) For all y ∈ Y
the function g2(y, ·, ·) is continuously differentiable. (5) Sets ΦX ⊆ X and ΦY ⊆ Y are compact.
By these notations, we propose the following theorem about bi-level optimal value functions [5].
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Theorem 1. Let us define a bi-level optimal value function as

v1(u) = infx∈ΦX
g1(x, u, v2(x, u)), (10)

where v2(x, u) is another optimal value function as
v2(x, u) = infy∈ΦY

g2(y, x, u). (11)

If for any x and u, g2(·, x, u) has a unique minimizer y∗(x, u) over ΦY , then y∗(x, u) are continuous
on X × U , and v1(u) is directionally differentiable. Furthermore, if for any u, the g1(·, u, v2(·, u))
has also a unique minimizer x∗(u) over ΦX , then

1. the minimizer x∗(u) are continuous on U ,

2. v1(u) is continuously differentiable, and its derivative is equal to

dv1(u)
du =

(
∂g1(x

∗,u,v2)
∂u + ∂v2(x

∗,u)
∂u

∂g1(x
∗,u,v2)

∂v2

)∣∣∣
v2=v2(x∗,u)

, where ∂v2(x
∗,u)

∂u = ∂g2(y
∗,x∗,u)
∂u . (12)

To apply this theorem to the objective function g(θ) in the RKL problem (7), we shall make sure the
following two conditions are satisfied. First, both the MEB problem (9) and the SVM dual problem
(8) must have unique optimal solutions. This can be guaranteed by that the kernel matrix K(θ) is
strictly positive definite. Second, the kernel matrix K(θ) shall be continuously differentiable to θ.
Both conditions can be met in the linear combination case when each basis kernel matrix is strictly
positive definite, and can also be easily satisfied in nonlinear cases. If these two conditions are met,
then g(θ) is continuously differentiable and

dg(θ)
dθ = − 1

2r2(θ)

∑
i,jα

∗
i α

∗
jyiyj

dKi,j(θ)
dθ + 1

2r4(θ)

∑
i,jα

∗
i α

∗
jyiyjKi,j(θ)

dr2(θ)
dθ , (13)

where α∗i is the optimal solution of the SVM dual problem (8), and
dr2(θ)

dθ =
∑

iβ
∗
i

dKi,i(θ)
dθ −

∑
i,jβ

∗
i

dKi,j(θ)
dθ β∗j , (14)

where β∗i is the optimal solution of the MEB dual problem (9). In above equations, the value of
dKi,j(θ)

dθ is needed, and its deriving is easy. For example, for the linear combination kernel Ki,j(θ) =∑
m θmKm

i,j , we have ∂Ki,j(θ)
∂θm

= Km
i,j . For the Gaussian kernel Ki,j(θ) = e−θ‖xi−xj‖2 , we have

dKi,j(θ)
dθ = −Ki,j(θ)‖xi − xj‖2.

5 Algorithm
With the derivative of g(θ), we use the standard gradient projection approach with the Armijo rule
for selecting step sizes to address the RKL problem [5]. To compare with the most popular kernel
learning algorithm, simpleMKL [4], in experiments we employ the linear combination kernel form,
as defined in (2). In addition, we also consider three types of norm constraints on kernel parameters:
L1, L2 and no norm constraint. The L1 and L2 norm constraints are as

∑
j θj = 1 and

∑
j θ2

j =
1, respectively. The calculation of the objective function g(θ) and its gradient needs solving an
MEB problem (9) and an SVM problem (8), and both of them can be efficiently solved by SMO
algorithms. In experiments our approach usually achieves approximate convergence within one or
two dozens of invocations of SVM and MEB solvers. More analyses about the algorithm and its
output solutions can be found in [5].

6 Experiments
In this section, we illustrate the performances of our presented RKL approach, in comparison with
SVM with the uniform combination of basis kernels (Unif), the margin based MKL method using
formulation (1) (MKL), and the radius-based principle by Chapelle et al. [1] (KL-C), under different
types of norm constraints. The evaluation is made on eleven public available data sets from UCI
repository and LIBSVM Data (For details see [5]). The used basis kernels are the same as in Sim-
pleMKL [4]: 10 Gaussian kernels with bandwidths γG ∈ {0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20} and 10
polynomial kernels of degree 1 to 10. All basis kernel matrices have been normalized to unit trace,
as in [4, 8]. The initial kernel parameter θ is set to be 1

20e, where e is a unit vector. The trade-off co-
efficients C in SVM, MKL, KL-C and RKL are automatically selected from {0.01, 0.1, 1, 10, 100}
by 3-fold cross-validations on training sets. For each data set, we split it to five parts, and each time
we use four parts as the training set and the remaining one as the test set. The average accuracies
with standard deviations and average numbers of selected basis kernels are reported in Table 1.
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Table 1: The testing accuracies (Acc.) with standard deviations (in parentheses), and the average
numbers of selected basis kernels (Nk). We set the numbers of our method to be bold if our method
outperforms both Unif and other two kernel learning approaches under the same norm constraint.

Index 1 2 3 4 5 6 7 8
Unif MKL KL-C Ours MKL KL-C Ours Ours

Constraint L1 L1 L1 L2 L2 L2 No
Data set Acc. Nk Acc. Nk Acc. Nk Acc. Nk Acc. Nk Acc. Nk Acc. Nk Acc. Nk
Ionosphere 94.0(1.4) 20 92.9(1.6) 3.8 86.0(1.9) 4.0 95.7(0.9) 2.8 94.3(1.5) 20 84.4(1.6) 18 95.7(0.9) 3.0 95.7(0.9) 3.0
Splice 51.7(0.1) 20 79.5(1.9) 1.0 80.5(1.9) 2.8 86.5(2.4) 3.2 82.0(2.2) 20 74.0(2.6) 14 86.5(2.4) 2.2 86.3(2.5) 3.2
Liver 58.0(0.0) 20 59.1(1.4) 4.2 62.9(3.5) 4.0 64.1(4.2) 3.6 67.0(3.8) 20 64.1(3.9) 11 64.1(4.2) 8.0 64.3(4.3) 6.6
Fourclass 81.2(1.9) 20 97.7(1.2) 7.0 94.0(1.2) 2.0 100 (0.0) 1.0 97.3(1.6) 20 94.0(1.3) 17 100 (0.0) 1.0 100 (0.0) 1.6
Heart 83.7(6.1) 20 84.1(5.7) 7.4 83.3(5.9) 1.8 84.1(5.7) 5.2 83.7(5.8) 20 83.3(5.1) 19 84.4(5.9) 5.4 84.8(5.0) 5.8
Germannum 70.0(0.0) 20 70.0(0.0) 7.2 71.9(1.8) 9.8 73.7(1.6) 4.8 71.5(0.8) 20 71.6(2.1) 13 73.9(1.2) 6.0 73.9(1.8) 5.8
Musk1 61.4(2.9) 20 85.5(2.9) 1.6 73.9(2.9) 2.0 93.3(2.3) 4.0 87.4(3.0) 20 61.9(3.1) 19 93.5(2.2) 3.8 93.3(2.3) 3.8
Wdbc 94.4(1.8) 20 97.0(1.8) 1.2 97.4(2.3) 4.6 97.4(1.6) 6.2 96.8(1.6) 20 97.4(2.0) 11 97.6(1.9) 5.8 97.6(1.9) 5.8
Wpbc 76.5(2.9) 20 76.5(2.9) 7.2 52.2(5.9) 9.6 76.5(2.9) 17 75.9(1.8) 20 51.0(6.6) 17 76.5(2.9) 15 76.5(2.9) 15
Sonar 76.5(1.8) 20 82.3(5.6) 2.6 80.8(5.8) 7.4 86.0(2.6) 2.6 85.2(2.9) 20 80.2(5.9) 11 86.0(2.6) 2.6 86.0(3.3) 3.0
Coloncancer 67.2(11) 20 82.6(8.5) 13 74.5(4.4) 11 84.2(4.2) 7.2 76.5(9.0) 20 76.0(3.6) 15 84.2(4.2) 5.6 84.2(4.2) 7.6

The results in Table 1 can be summarized as follows. (a) RKL gives the best results on most sets.
Under L1 norm constraints, RKL (Index 4) outperforms all other methods (Index 1, 2, 3) on 8 out
of 11 sets, and also gives results equal to the best ones of other methods on the remaining 3 sets.
In particular, RKL gains 5 or more percents of accuracies on Splice, Liver and Musk1 over MKL,
and gains more than 9 percents on four sets over KL-C. Under L2 norm constraints, RKL (Index 7)
outperforms other methods (Index 5, 6) on 10 out of 11 sets, with only 1 inverse result. (b) Both
MKL and KL-C are sensitive to the types of norm constraints (Compare Index 2 and 5, as well as
3 and 6). For MKL and KL-C, different types of norm constraints fit different data sets. (c) RKL
is invariant to the types of norm constraints. (d) An interesting thing is that, our presented RKL
gives sparse solutions on most sets, whatever types of norm constraints are used. Compared to MKL
and KL-C under L2 norm constraints, RKL provides not only higher performances but also more
sparsity, which benefits both interpretability and computational efficiency in prediction.

7 Conclusion

By using the margin-and-radius ratio as a measure of the goodness of a kernel, we propose a scaling
invariant principle and a simple algorithm for kernel learning. The experiments validate that our
approach outperforms other state-of-art kernel learning methods.
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