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In this paper the ingredients of computing auditory
perception are reviewed. On the basic level there is
neurophysiology, which is abstracted to artificial neural
nets (ANNs) and enhanced by statistics to machine
learning. There are high-level cognitive models derived
from psychoacoustics (especially Gestalt principles). The
gap between neuroscience and psychoacoustics has to be
filled by numerics, statistics and heuristics. Computerised
auditory models have a broad and diverse range of
applications: hearing aids and implants, compression in
audio codices, automated music analysis, music
composition, interactive music installations, and
information retrieval from large databases of music
samples.

1. INTRODUCTION

What is music? Assume we know in very fine detail
how our brain works, while a person performs musical
activity. Do we then understand music? By this means,
we might never understand the subjective quality of an
overwhelming musical experience. But we take the
view: If we could give a comprehensive analysis of the
neural processes related to music activity, we could
ground music theory on neurophysiology. We look for
general neural principles underlying music activity and
for representations of music. Unfortunately, up to now
we are far from entirely understanding the brain pro-
cesses involved. We know a lot about the early auditory
processing from outer ear to hair cell. We have some
fuzzy knowledge of the localisation of specific abilities
in the brain. And we can apply some generally known
principles of neural information processing to music. On
the whole our comprehension of auditory processing is
very fragmentary. How can we fill the gap? In computa-
tional neuroscience, neural activity observed in experi-
ments is quantitatively expressed by mathematical for-
mulas. In artificial neural networks, the formalised
mechanisms of voltage propagation and neural develop-
ment principles are abstracted to neuro-mimetic learning
algorithms. In this bottom-up approach, algorithms are
derived from experiments with single neurons or small
neuron populations. These algorithms can perform pat-
tern recognition tasks that resemble human abilities to a
low degree.
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We can also take a top-down approach. We can
observe human performance of auditory activity taken
as a whole, by means of psychological experiments.
Experiments give rise to hypotheses about underlying
cognitive principles that can be manifested by statistical
inference. The principles discovered can be turned into
computational models. By combining formalised neu-
rons, artificial neural networks and cognitive models, we
can implement a model of auditory perception. Can we
make use of such a model, e.g. in hearing aids, compres-
sion, automated music analysis, or music composition?
We can, to some extent. But often it does not work

so well due to the fact that the neurological and psycho-
acoustic knowledge on which it is based is relatively
poor. Often artificial neural networks (ANN) are based
on well-known numerical methods with new fashionable
names. To outperform classical methods, ANNs require
good pre-processing, sensible choice of the network
parameters, and many heuristics. Algorithms can be
improved by taking into account statistical learning
theory (Vapnik 1998). Further improvement is achieved,
especially in terms of computational costs, by additional
use of numerical techniques, like spectral analysis, filter
design, and optimisation.
Hardware implementations of the functionality of the

inner ear supply reasonable cochlear implants, whereas
implants of later stages of the auditory pathway do not
yet aid deaf patients significantly. Implementations of
frequency and temporal masking, and just-noticeable
differences increase compressibility of audio data. Com-
pressibility is a hot topic in the definition of audio-visual
code standards (like MPEG-3,-4,-7), within the conver-
gence of TV/radio, mobile communication, and the
Internet. Machine learning algorithms can index sounds
by classification. Some ANNs map sounds to a space, in
which particular axes represent perceptual qualities.
These mappings imply perceptual similarity measure-
ments. Hopefully, with these sound indices and the sim-
ilarity measurements, large music audio databases can
be searched, and information can be retrieved. Filtering
music samples according to the auditory periphery, fol-
lowed by ANNs or statistical analysis with some built-
in heuristics, can extract musical parameters such as
pitch, harmony, tone centres, metre and rhythm. Taking
advantage of competing perceptual rules, paradoxical
sounds can be synthesised. These acoustic illusions
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correspond to the works of M. C. Escher, and yield inter-
esting compositional effects.
This article has the following structure: In section 2,

we take the psychoacoustic top-down view of auditory
perception. We start with addressing the problem of
identifying an acoustic object within a diversity of audit-
ory impressions by auditory feature binding (the binding
problem). We have this capability when separating out
a single instrument from an ensemble, during a chamber
music performance, for example. Grouping principles
such as proximity, good continuation, closure, and
common fate are a means of segregating auditory
information.
In section 3 we follow the bottom-up approach. We

describe the effect of the auditory periphery, the means
of information exchange between neurons (spikes and
synapses), as a way to calculate amplitude modulations.
The tonotopy principle is explained. Two hypotheses
regarding the neural implementation of the binding prob-
lem are given. Independent component analysis (ICA)
and possible applications to the cocktail party problem
are briefly introduced.
In section 4, suggestions of perceptual spaces and

similarity measures for rhythm, pitch, tone centres and
timbre are presented.
Finally, in section 5, it is pointed out how some com-

positional approaches profit from music cognition and
perception: (i) artificial neural nets for automatic com-
position, (ii) bio-feedback set-ups in interactive installa-
tions, and (iii) effective use of auditory illusions.

2. AUDITORY SCENE ANALYSIS

2.1. The binding problem

We are constantly exposed to a chaos of diverse sens-
ory impressions. How can we identify an object in
the environment? How can certain sensory impressions
form a ‘Gestalt’ according to certain criteria and pro-
vide us with information about the object in the envir-
onment (the ‘binding problem’)? The ‘Gestalt’ concept
originated from Ehrenfels (1890) and Mach (1886).
They initially presented musical examples. Sub-
sequently, visual perception was investigated. From
the 1970s on, computer-supported sound synthesis and
analysis enforced the application of Gestalt theory to
auditory perception, exhaustively reviewed in Bregman
(1990).

2.2. Grouping principles

In the following, principles are introduced which aid
binding in auditory perception (figure 1, Bregman 1990):
the principle of ‘proximity’ refers to distances between
auditory features with respect to their onsets, pitch and
loudness. Features that are grouped together have a
small distance between each other, and a long distance

to elements of another group. Temporal and pitch prox-
imity are competitive criteria, e.g. the slow sequence of
notes A–B–A–B . . . (figure 1, A1), which contains large
pitch jumps, is perceived as one stream. The same
sequence of notes played very fast (figure 1, A2) pro-
duces one perceptual stream consisting of As and
another one consisting of Bs.
‘Similarity’ is very similar to proximity, but refers to

properties of a sound, which cannot be easily identified
with a single physical dimension (Bregman 1990: 198),
like timbre.
The principle of ‘good continuation’ identifies

smoothly varying frequency, loudness or spectra with
a changing sound source. Abrupt changes indicate the
appearance of a new source. In Bregman and Dannen-
bring (1973) (figure 1, B), high (H) and low (L) tones
alternate. If the notes are connected by glissandi (figure
1, B1), both tones are grouped to a single stream. If high
and low notes remain unconnected (figure 1, B2), Hs
and Ls each group to a separate stream. ‘Good continua-
tion’ is the continuous limit of ‘proximity’.
The principle of ‘closure’ completes fragmentary

features, which already have a ‘good Gestalt’, e.g.
ascending and descending glissandi are interrupted by
rests (figure 1, C2). Three temporally separated lines
are heard one after the other. Then noise is added
during the rests (figure 1, C1). This noise is so loud
that it would mask the glissando, unless it was inter-
rupted by rests. Amazingly, the interrupted glissandi
are perceived as being continuous. They have ‘good
Gestalt’: They are proximate in frequency before and
after the rests. So they can easily be completed by a
perceived good continuation. This completion can
be understood as an auditory compensation for
masking.
The principle ‘common fate’ groups frequency com-

ponents together, when similar changes occur syn-
chronously, e.g. synchronous onsets, glides or vibrato.
Chowning (1980, figure 1, D) performed the following
experiment: First, three pure tones are played; a chord
is heard, containing the three pitches. Then the full
set of harmonics for three vowels (‘oh’, ‘ah’ and ‘eh’)
is added, with the given frequencies as fundamental
frequencies, but without frequency fluctuations. This
is not heard as a mixture of voices but as a complex
sound in which the three pitches are not clear. Finally,
the three sets of harmonics are differentiated from one
another by their patterns of fluctuation. We then hear
three vocal sounds being sung at three different
pitches.
Other important topics in auditory perception are

attention and learning. In a cocktail party environ-
ment, we can focus on one speaker. Our attention
selects this stream. Also, whenever some aspect of
a sound changes, while the rest remains relatively
unchanging, then that aspect is drawn to the listener’s
attention (‘figure ground phenomenon’). Let us give
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Figure 1. Psychoacoustic experiments demonstrating grouping principles (cf. section 2.2, from Bregman 1990).

an example for learning: the perceived illusory con-
tinuity (cf. figure 1, C) of a tune through an inter-
rupting noise is even stronger, when the tune is more
familiar (Bregman 1990: 401).

3. COMPUTATIONAL MODELS OF THE
AUDITORY PATHWAY

Now the auditory pathway and modelling approaches
are described. The common time–log-frequency repres-

entation in stave notation originates from the resonat-
ing pattern of the basilar membrane. The major proper-
ties of the hair cell in the inner ear are temporal
coding and adaptation behaviour. An algorithm is pre-
sented that implements the auditory principle of tono-
topy. Two hypotheses on the neural implementation
of the binding problem are approached.
The effect of outer and middle ear can be imple-

mented as a bandpass filter (IIR filter of second order,
Oppenheim and Schafer 1989) with a response curve
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maximal at 2 kHz and decreasing towards lower and
higher frequencies.

3.1. Log-frequency coding of the basilar
membrane

Incoming sound waves cause a travelling wave on the
basilar membrane. Hair cells are located on the basilar
membrane. Due to varying stiffness of the basilar
membrane and the stiffness, size and electrical reson-
ance of the hair cell, different places on the basilar
membrane are tuned to different frequencies. Frequen-
cies below 500 Hz are mapped approximately linearly
on the basilar membrane. In the range of 50 Hz to 8
kHz the mapping is approximately logarithmic. This
is in accordance to the Weber–Fechner perceptual law,
which is also apparent in the perception of loudness.
This particular mapping has strong implications on

pitch perception. The musical understanding of pitch
class as octave equivalence is based on uniform spa-
cing of the corresponding resonance frequencies on
the basilar membrane. Also, music representation on
a music sheet in the time–log-frequency plane reflects
that fact. In the range lower than 500 Hz and higher
than 8 kHz, the deviation of relative pitch (measured
in mel) from strictly logarithmic scaling is due to the
resonance properties of the basilar membrane. Apart
from correlograms (see below), this time–log-
frequency representation is widely used in higher level
analysis (see below), e.g. as receptive fields for traject-
ories in the time–frequency domain (Todd 1999,
Weber 2000).
A model of the basilar membrane may be imple-

mented as a filter bank. The spacing and the shape of
the filters have to be determined. A first approach is
the discrete Fourier transform, which is very quick,
but gives equal resolution in the linear (i.e. non-log)
frequency domain. For signals which do not contain
very low frequencies, the constant Q transform (Brown
1991, Brown and Puckette 1992) is an appropriate
method. Equal logarithmic resolution can be achieved
also by the continuous wavelet transformation (CWT)
(Strang and Nguyen 1997). A more exact modelling
of the basilar membrane is supplied by a filter spacing
according to the critical band units (CBU) or the
equivalent rectangular bandwidths (ERB) (Moore
1989). After mapping frequency on a critical band rate
(Bark) scale, masking curves can be approximated by
linear functions in the form of a triangle. Gammatone
filters realise a fairly good approximation of the filter
shape. More complex masking templates are suggested
in Fielder, Bosi, Davidson, Davis, Todd and Vernon
(1995). Addition of simultaneous masking is an on-
going research topic.

3.2. Information exchange between neurons

Within a neuron, voltage pulses passively propagate
along a dendrite until they reach the axon hillock. In

the axon hillock, all incoming voltage pulses accumu-
late until they cross a threshold. As a consequence, a
stereotype voltage pulse (spike) is generated. The spike
propagates across the axon until it reaches a synapse.
In the presynaptic axon, neurotransmitters are packed
in the vesicles (figure 2(a)). The vesicles release the
neurotransmitters into the synaptic cleft, triggered by
the incoming spikes. The emitted neurotransmitters
enter the receptor channels of the postsynaptic dendrite
of the receiving cell.
A sequence of spikes can encode information as

follows: (i) by the exact time, when the neuron fires
(time coding hypothesis), (ii) by the time interval
between proceeding spikes, the inter-spike interval, and
(iii) the spike rate, the inverse of the mean inter-spike
interval. To precisely model (i) and (ii) we could solve
a system of partly nonlinear differential equations
(Hodgkin and Huxley 1952) describing current flow
in the axon. To ease this task we can calculate the
‘integrate and fire’ model (Maass 1997). Voltage is
integrated until threshold is reached. After a refractory
period, integration starts again from rest potential.
Point (iii) is a rough simplification of spike behaviour
and is the basis of the connectionist neuron in artificial
neural nets.
According to Meddis and Hewitt (1991), the syn-

apse of the hair cell is formalised as a dynamic system
consisting of four elements (figure 2(b)). In this model,
the activity transmitted by the hair cell to the auditory
nerve is considered proportional to the number of neu-
rotransmitters c(t) in the synaptic cleft. c(t) depends
on the number of transmitters q(t) in the hair cell by
means of the nonlinear function k(t). k(t) describes the
permeability of the presynaptic hair cell membrane
and is triggered by the presynaptic membrane poten-
tial. The closer q(t) is to the maximum capacity, the
less neurotransmitter is produced. A portion of the
transmitters (factor r) returns from the synaptic cleft
into the presynaptic hair cell. The temporal behaviour
of the system is described by a nonlinear first-order
differential equation; the change in parameter is calcu-
lated from the balance of the incoming and outgoing
quantities, e.g.

∂c
= k(t)q(t) − lc(t) − rc(t).

∂t

This hair cell model reproduces some experimental
results from hair cells of gerbils. In particular, and
firstly, frequent spikes occur with the onset of a tone.
The spike rate decreases to a constant value, when the
tone continues (adaptation behaviour, figure 3(b)).
After the offset of the tone, it decreases to about zero.
Secondly, below 4–5 kHz, spikes occur in the hair
cell (almost) only during the positive phase of the
signal (phase locking). So in this range, frequency is
coded both by the position of the responding hair
cell on the basilar membrane and by temporal spike
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(a)

(b)

Figure 2. (a) Information is transmitted from the presynaptic to
the postsynaptic cell. The action potential in the presynaptic cell
forces the vesicles to empty neurotransmitters into the synaptic
cleft. The emitted neurotransmitters enter the receptor channels
and change the potential of the postsynaptic cell. (b) The hair
cell synapse is modelled by a dynamic system consisting of four
departments (Meddis and Hewitt 1991). The nonlinear function
k(t) includes the presynaptic action potential and controls the
permeability of the presynapticmembrane. The evoked potential
in the auditory nerve scales with c(t) (cf. section 3.2).

behaviour. For frequencies above 5 kHz, spikes occur
about equally often during the positive and the nega-
tive phases of the signal. Therefore, above 5 kHz,
frequency is only coded by the place information on
the basilar membrane.

3.3. Missing fundamental and autocorrelation

Schreiner and Langner (1988) experimentally found
neurons that respond to specific amplitude modulation

frequencies. They presented some evidence that neu-
rons which respond to increasing amplitude modula-
tion frequencies line up orthogonally to neurons which
respond to increasing fundamental frequencies.
Autocorrelation can be used to extract the missing

fundamental (Terhardt, Stoll and Seewann 1982) from
a complex tone by detecting amplitude modulation.
Consider the modified autocorrelation function

Ri(n,t) = Σwt(k)si(k)si(k+n),
k

where wt(k) is a rectangular window possibly multi-
plied by an exponential function. Let Rn(t) be the
summation of Ri(n,t) across all channels i. This means
that the basic periodicities of the signal and their
multiples are added up in each channel i. A maximum
in Rn(t) corresponds to the least common multiple of
the basic periods of the single frequency components.
In terms of frequencies, this represents the greatest
common divisor. This corresponds fairly well to the
virtual pitch of the signal (figure 3(c)).
Scheirer (1999) considers an autocorrelation–time

representation (‘correlogram’) a more perceptually
plausible representation than a frequency–time repres-
entation. He gives some examples of segregation of
different instruments and voices extracted from a mix-
ture. However, the biological plausibility of autocorrel-
ation is still subject to discussion.

3.4. Later auditory processing

Following the hair cells, the signal chain is continued
by the auditory nerve, the auditory nucleus, the super-
ior olivary nucleus, the inferior colliculus, the medial
geniculate nucleus, the primary auditory cortex, and
higher areas. Knowledge about music processing in
the auditory pathway subsequent to the hair cell, espe-
cially in the cortex, is poor. In addition to invasive
methods in animals, methods for investigation in
humans comprise functional magnetic resonance
imaging (fMRI), electroencephalogram (EEG, e.g.
using event-related potentials, ERP), or implanted elec-
trodes in epileptic patients. In the auditory nucleus,
cells are found that response to onset and offset tones.
Cells in the superior olivary nucleus help spatial local-
isation of sound sources by inter-aural phase and
intensity differences. In cortex, some vague differences
of brain activity are observed, according to different
music styles or musical training of the test subjects
(Petsche 1994, Marin and Perry 1999).
There are also feedback connections that tune the

auditory periphery. It is observed that the cochlea and
middle ear can be activated from higher areas to pro-
duce sounds (otoacoustic emissions).

3.5. Hebbian learning

If presynaptic and postsynaptic electric activity occur
synchronously, the postsynaptic receptor channels
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(a)

(b)
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(c)

Figure 3. A cadential chord progression (C–F–G7–C) played on the piano is processed by (a) an auditory model consisting of a
basilar membrane filter bank, (b) a hair cell model (Meddis and Hewitt 1991), and (c) autocorrelation and temporal integration.
Tones corresponding to peaks in the correlogram are indicated (cf. section 3.1–3).

Figure 4. The self-organising feature map (Kohonen 1982) realises the tonotopy principle in the auditory pathway. Φ is a nonlinear
mapping between the continuous somato-sensory input space I and the discrete ‘cortex’ output space O. Given an input vector x,
first a best-matching neuron i(x) in O is identified. The synaptic weight vector wi of neuron i(x) may be viewed as the coordinates
of the image of neuron i projected in the input space (from Haykin 1999).

become more permeable, so that a presynaptic activity
evokes stronger activity on the postsynaptic dendrite.
This principle is called Hebbian Learning.
According to the principle of tonotopy, proximate hair

cells on the basilar membrane project to proximate neu-
rons in the central nervous system. In computer science,
the tonotopic principle is realised by an algorithm, the
‘self-organising feature map’ (SOM, Kohonen 1982,
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figure 4). The tonotopy property of the SOM is also
optimal in the sense of the information theoretic principle
of ‘maximal information preservation’ (Linsker 1989). A
more noise-robust version of the SOM is given by Grae-
pel, Burger and Obermayer (1997).

3.6. Feature binding by hierarchical organisation

A hypothetical solution to the binding problem works
via integration by anatomic convergence. This model
assumes that at an early stage, basic object features such
as frequency components are detected. Through pro-
gressive convergence of the connections, cells emerge
with more specific response properties on a higher pro-
cessing level. For example, they respond to tones,
chords, harmonies and keys. This corresponds to hier-
archical artificial intelligence approaches (cf. context-
free grammars). Even though hierarchical structures in
the brain are joined by lateral connections, in practice a
strictly hierarchical concept is successful, e.g. within a
framework of a knowledge database and a Bayesian net-
work (Kashino, Nakadai, Kinoshita and Tanaka 1998).

3.7. Feature binding by neural synchronisation

Another way of trying to explain feature binding is
through neural synchronisation. The temporal binding
model assumes that assemblies of synchronously firing
neurons represent objects in the cortex. For example,
such an assembly would represent a particular speaker.
These assemblies comprise neurons, which detect spe-
cific frequencies or amplitude modulation frequencies.
The relationship between the partials can then be
encoded by the temporal correlation among these neu-
rons. The model assumes that neurons, which are part of
the same assembly, fire in synchrony, whereas no con-
sistent temporal relation is found between cells
belonging to representations of different speakers. Evid-
ence for feature binding by neural synchronisation in the
visual cortex is given by Engel, Roelfsema, Fries, Brecht
and Singer 1997).
Terman and Wang (1995), Wang (1996) and Brown

and Cooke (1998) supply an implementation based on
time–log-frequency representation of music. Their
model consists of a set of oscillators in the time–fre-
quency domain or the correlogram. Oscillators which are
close to each other are coupled strongly (Hebbian rule
and principle of proximity). An additional global inhib-
itor stops oscillators belonging to different streams being
active at the same time. This approach can be used for
vowel segregation and also for segregation of different
voices according to the proximity principle (Cooke and
Brown 1999, figure 1, A). A more promising approach
is based on the ‘integrate and fire’ model (cf. section
3.2, Maass 1997). An ensemble of such models displays
synchronous spike patterns.

3.8. Implementations of acoustical source separation

A mixture of several sound sources (speech, music, other
sounds) is recorded by one or several microphones. The
aim is the decomposition into the original sources. Since
an important application is the development of hearing
aids, the goal is demixing with at most two microphones.
There are some successful applications of source sep-

aration for artificial mixtures (sources are recorded sep-
arately and are then digitally mixed by weighted
addition). On the other hand, mixtures in real environ-
ments are more difficult to demix. The different
approaches can be roughly divided into two categories:
(i) mimicking the auditory system, (ii) employment of
techniques of digital signal processing without reference
to biology. Okuno, Ikedo and Nakatani (1999) aims to
combine (i) and (ii) synergetically. A possible treatment
similar to (i) is as follows. An auditory model is used
for pre-processing and from the output of the auditory
model (cochleagrams and correlograms), harmonic sub-
structures are extracted. By the use of Gestalt principles,
spectral units are built from this. From these separated
units, sound can be resynthesised (Nakatani, Okuno and
Kawabata 1995). In another approach the spectral units
are determined as a sequence of correlograms, and the
auditory transformation is inversely calculated (Slaney
1994, 1998).

3.9. Independent component analysis

The larger portion of methods according to (ii) above
deals with the realisation of the Independent Component
Analysis (ICA, Comon 1994, Cardoso 1998, Müller, Phi-
lips and Ziehe 1999). Sanger (1989) indicates a refer-
ence to biological systems, but his approach is largely a
purely statistical model. Ideally, the problem is modelled
as follows. The sources are transformed into m sensor
signals x1(t), . . ., xm(t) by temporally constant linear mix-
tures. The sensor signals are the signals recorded by the
different microphones (t is the time index, which is omit-
ted in the sequel). With s = (s1, . . ., sn)T and x = (x1, . . .,
xm)T, we can put this in matrix notation as x = As, where
A denotes the (unknown) mixing matrix. We aim at iden-
tifying the demixing matrix W, so that for y = Wx the
components of y correspond to the source signals s. (In
principle, order and scaling of the rows of s cannot be
determined.) The ICA approach to solve this problem is
based on the assumption that the source signals si are
distributed statistically independent (and at most one is
Gaussian). The determination of the demixing matrix is
possible if there are at least as many microphones as
sources, and the mixing matrix A is invertible. In prac-
tical applications, the assumptions of statistical inde-
pendence and the invertibility of A are not critical.
Nevertheless, it is problematic that the model does not
account for real reverberation. So decomposition of mix-
tures in a real acoustic environment works only under
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very special conditions. First approaches are by Lee,
Girolami, Bell and Sejnowski (1998), Casey and
Westner (2000), Parra and Spence (2000) and Murata,
Ikeda and Ziehe (2000). In addition, it is still a tough
problem to separate one speaker from a cocktail party
environment with several sound sources using only two
microphones, as all applicable algorithms up to now
require as many microphones as sound sources.

4. GEOMETRIC MODELS

We can map sounds on perceptual spaces. The axes of
the space correspond to perceptual proximities, in par-
ticular musical parameters. There are geometrical per-
ceptual models of pitch, keys, timbre and emotions.
Applications are found in composition, information
retrieval and music theory.
Camurri, Coletta, Ricchetti and Volpe (2000) use a

geometrical arrangement of emotional states combined
with a mapping of emotions to rhythmic and melodic
features. In their installation, autonomous robots react to
visitors by humming sad or happy music, and by moving
in a particular manner. Whalley (2000a, b) models the
psychological interplay of emotions in a character as a
physical dynamic system, whose parameters are mapped
to musical entities. The dynamic system determines the
underlying structure of the piece.
Geometric models are also used to visualise proximit-

ies of single musical parameters: Shepard (1982) sup-
plies a geometric model of pitch: the perceived pitch
distance is calculated as the combined Euclidean dis-
tance of the notes on the pitch height axis, the chroma
circle, and the circle of fifths. For building geometric
models of perception, visualisation and clustering algo-
rithms are often used, such as multi-dimensional scaling
(MDS, Shepard 1962), principal component analysis
(ICA, Comon 1994, cf. section 3.9), or SOM (Kohonen
1982, cf. section 3.5 and figure 4). For example, a plaus-
ible model of inter-key relations is provided by the MDS
analysis of psychoacoustic experiments (Krumhansl and
Kessler 1982): all major and minor keys are arranged on
a torus, preserving dominant, relative and parallel major/
minor relations.
This structure also emerges from a learning procedure

with real music pieces as training data (Leman 1995,
Purwins, Blankertz and Obermayer 2000). The constant
Q transform (Brown and Puckette 1992, Izmirli and
Bilgen 1996) can be applied, to calculate the constant Q
profile (Purwins et al. 2000, figure 5). The constant Q
analysis is used as a simple cognitive model. The only
explicit knowledge that is incorporated in the model is
octave equivalence and well-tempered tuning. This rep-
resents minimal information about tonal music. The rel-
evant inter-key relations (dominant, relative, and parallel
relations) emerge merely on the basis of trained music
examples (Chopin’s Préludes, op. 28) in a recording in
audio data format (figure 6).

Since the perception of timbre is complex, it is chal-
lenging to project timbres into a two- or three-
dimensional timbre space, in which the dimensions are
related to physical quantities (Grey 1977, McAdams,
Winsberg, Donnadieu, DeSoete and Kimphoff 1995,
Lakatos 2000). For example, in the three-dimensional
timbre space of McAdams et al. (1995), the first dimen-
sion is identified with the log attack time, the second
with the harmonic spectral centroid, and the third with a
combination of harmonic spectral spread and harmonic
spectral variation.
By using appropriate interpolation, composers can

build synthesis systems which are triggered by these
models: moving in timbre space can yield sound morph-
ing; walking on the surface of the tone centre torus
results in a smooth modulation-like key change. The
implied similarity measures of the geometrical models
aid information retrieval in huge sound databases, e.g.
searching for a music piece, given a melody.

5. COGNITION AND PERCEPTION IN
COMPOSITION

5.1. Automated composition

The use of neuro-mimetic artificial neural nets for music
composition is only partially successful. Melody genera-
tion with the ‘backpropagation through time’ algorithm
with perceptually relevant pre-processing (Mozer 1994),
as well as using stochastic Boltzmannmachines for choral
harmonisation (Bellgard and Tsang 1994) does not yield
musically pleasant results. They do not reach the quality
of compositions generated by the elaborated rule-based
system in Cope (1996). Bach choral harmonisation with a
simple feed-forward net (Feulner 1993), and harmonis-
ation in real time (Gang and Berger 1997) with a sequen-
tial neural network are more musically interesting.

5.2. Biofeedback music installations

It is possible to find some biophysical correlates of emo-
tional content by measurements of cardiac (ECG), vas-
cular, electrodermal (GSR), respiratory, and brain func-
tions (EEG) (Krumhansl 1997). Biophysical
measurement can be used in a biofeedback set-up in a
music performance. Constantly biophysical functions are
recorded from the performer. These data are used to con-
trol music synthesis. In EEG, detection of alpha waves
(Knapp and Lustad 1990), or state changes interpreted as
attention shifts (Rosenboom 1990) are clues to generate
musical structure in real time. During such a feedback
set-up, control of skin conductance and heartbeat can be
learned by the performer.

5.3. Psychoacoustic effects

Stuckenschmidt (1969) reports that Ernst Krenek elec-
tronically generated sounds using a method similar to the
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Figure 5. The constant Q transform (Brown and Puckette 1992) and the cq-profile (Purwins, Blankertz and Obermayer 2000) of
a minor third (C-E�) played on a piano. A twelve-dimensional constant Q profile is closely related to pitch classes and to probe
tone ratings (Krumhansl and Kessler 1982). Cq-profiles can be efficiently calculated; they are stable with respect to sound quality
of the music sample and they are transposable (cf. sections 3.1 & 3).

Figure 6. Emergence of inter-key relations. Inter-key relations are derived from a set-up including constant Q profile calculation
and a toroidal SOM (cf. figure 4) trained by Chopin’s Préludes, op. 28 recorded by A. Cortot in 1932/33, in audio data format.
The image shows a torus surface. Upper and lower, left and right sides are to be glued together. Keys with dominant, or major/
minor parallel and relative relations are proximate (cf. section 4).

endlessly ascending or descending Shepard scales in the
oratorio Spiritus Intelligentiae Sanctus (1955–6) to create
a sense of acoustic infinity. Risset (1985) used many
musical illusions in his pieces. He extended the Shepard
scales to gliding notes and invented endlessly accelerating
rhythmic sequences. Conflicts between groupings based
on timbre similarity on the one hand and on pitch proxim-
ity on the other can create musical form. In the instru-
mentation of Bach’s Ricercar from The Musical Offering,
Webern outlines musical gestures and phrases by chan-
ging instrumentation after each phrase. The particular
phrases are focused, yet the melody is still recognisable
(Bregman 1990: 470). There are still a couple of per-
ceptual effects in auditory scene analysis to be explored
for compositional use, even though a good composer
might intuitively know about them already.

6. CONCLUSION

Do findings from neuroscience, psychoacoustics, music
theory, and computational models match? Grouping

principles aid the understanding of voice leading and
harmonic fusion. Stave notation, the widely used repres-
entation of music, stems from the frequency coding on
the basilar membrane. Classical ANNs are based on
mere spike rate, whereas current research seems to sup-
port the time coding hypothesis. The specific timing of
spikes transmits information. Time coding would enable
a neural implementation of binding by synchronised
spiking. The hair cell synapse model (Meddis and
Hewitt 1991) reveals adaptation behaviour, which cor-
relates to the way attention is directed in an auditory
scene. Pace and temporal coding of frequency corre-
spond to relative pitch perception (mel) in the frequency
range above 5 kHz. We suggest that a computational
model can easily mimic any required behaviour, by
introducing numerous parameters. That would contradict
Occam’s razor favouring the simplest model. The con-
nection between perception of virtual pitch and neurons
sensitive to auditory amplitude modulations is not yet
entirely understood. SOM and ICA represent a high
abstraction level from neurobiology. In this paper we
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could have additionally described the effective support
vector machine (SVM, Smola and Schölkopf 1998) for
regression and classification, Bayesian networks, or
hidden Markov models (HMM, Rabiner 1989), which
yield good results when applied to pre-processed lan-
guage. However, these models have even less biological
plausibility.
Progress in neuroscience is developing rapidly. It has

great influence on our field. All sorts of applications
entirely based on a thorough knowledge of the auditory
system might be used to good advantage. However, we
have to recognise that music composition is based on
perceptual rules, rather than on pure mathematics and
rough music aesthetics.
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Cooke, M., and Brown, G. 1998. Matlab Auditory Demonstra-
tions (MAD), Version 2.0: http://www.dcs.shef.ac.uk/
~martin/MAD/docs/mad.htm (good demonstrations of
oscillators, runs on UNIX).

O’Mard, L. P. 1997. Development System for Auditory Mod-
elling (DSAM), Version 2.0: http://www.essex.ac.uk/
psychology/hearinglab/dsam/home.html (large, requires
some effort to learn).

Slaney, M. 1998. Auditory Toolbox for Matlab, Version 2:
http://rvl4.ecn.purdue.edu/~malcolm/interval/1998-010/
(portable, easy to handle, useful for frequency estimation).

Auditory mailing list archive including actual research topics:
http://sound.media.mit.edu/dpwe-bin/mhindex.cgi/
AUDITORY/postings/2000

Information resource for auditory neurophysiology: http://
neuro.bio.tu-darmstadt.de/langner/langner.html
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Mach, E. 1886. Beiträge zur Analyse der Empfindungen. Jena.
Marin, O. S. M., and Perry, D. W. 1999. Neurological aspects
of music perception and performance. In D. Deutsch (ed.)
The Psychology of Music, 2nd edn, pp. 653–724. Academic
Press Series in Cognition and Perception. San Diego: Aca-
demic Press.

McAdams, S., Winsberg, S., Donnadieu, S., DeSoete, G., and
Kimphoff, J. 1995. Perceptual scaling of synthesized
musical timbres: common dimensions, specificities and
latent subject classes. Psychological Research 58: 177–92.

Meddis, R., and Hewitt, M. J. 1991. Virtual pitch and phase
sensitivity of a computer model of the auditory periphery.
I: Pitch identification. Journal of the Acoustical Society of
America 89(6): 2,866–82.

Mozer, M. C. 1994. Neural network music composition by pre-
diction: exploring the benefits of psychoacoustic constraints
and multi-scale processing. Connection Science 6(2&3):
247–80.

Müller, K.-R., Philips, P., and Ziehe, A. 1999. JADE-TD:
combining higher-order statistics and temporal information
for blind source separation (with noise). Proc. of the First

Int. Workshop on Independent Component Analysis and
Signal Separation: ICA’99, pp. 87–92. Assios, France.

Murata, N., Ikeda, S., and Ziehe, A. 2000. An approach to
blind source separation based on temporal structure of
speech signals. Neurocomputation (in press).

Nakatani, T., Okuno, H. G., and Kawabata, T. 1995. Residue-
driven architecture for computational auditory scene ana-
lysis. Proc. of the 14th Int. Joint Conf. on Artificial Intelli-
gence (IJCAI-95), pp. 165–72.

Okuno, H. G., Ikeda, S., and Nakatani, T. 1999. Combining
independent component analysis and sound stream segrega-
tion. Proc. of IJCAI-99 Workshop on Computational Audit-
ory Scene Analysis (CASA’99), pp. 92–8.

Parra, L., and Spence, C. 2000. Convolutive blind separation
of non-stationary sources. IEEE Transactions on Speech
and Audio Processing, pp. 320–7.

Petsche, H. 1994. Zerebrale Verarbeitung. In H. Bruhn, R.
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