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Abstract

Machine learning and pattern recognition algorithms have in the past years developed to become a working horse in
brain imaging and the computational neurosciences, as they are instrumental for mining vast amounts of neural data
of ever increasing measurement precision and detecting minuscule signals from an overwhelming noise floor. They
provide the means to decode and characterize task relevant brain states and to distinguish them from non-informative
brain signals. While undoubtedly this machinery has helped to gain novel biological insights, it also holds the danger
of potential unintentional abuse. Ideally machine learning techniques should be usable for any non-expert, however,
unfortunately they are typically not. Overfitting and other pitfalls may occur and lead to spurious and nonsensical
interpretation. The goal of this review is therefore to provide an accessible and clear introduction to the strengths and
also the inherent dangers of machine learning usage in the neurosciences.
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1. Introduction

The past years have seen an immense rise of in-
terest in the decoding of brain states as measured in-
vasively with multi-unit arrays and electrocorticogra-
phy (ECoG) or non-invasively with functional Mag-
netic Resonance Imaging (fMRI), electroencephalog-
raphy (EEG), or Near-infrared spectroscopy (NIRS).
Instrumental to this development has been the use of
modern machine learning and pattern recognition al-
gorithms (e.g. Bishop (1995); Vapnik (1995); Duda
et al. (2001); Hastie et al. (2001); Müller et al. (2001);
Schölkopf and Smola (2002); Rasmussen and Williams
(2005)). Clearly, in this development the field of real-
time decoding for brain-computer interfacing (BCI)
has been a technology motor (e.g. Dornhege et al.
(2007); Kübler and Kotchoubey (2007); Kübler and
Müller (2007); Wolpaw (2007); Birbaumer (2006);
Pfurtscheller et al. (2005); Curran and Stokes (2003);
Wolpaw et al. (2002); Kübler et al. (2001)). As a re-
sult a number of novel data driven approaches spe-
cific to neuroscience have emerged: (a) dimension re-
duction and projection methods (e.g. Hyvärinen et al.
(2001); Ziehe et al. (2000); Parra and Sajda (2003);
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Morup et al. (2008); von Bünau et al. (2009); Blan-
chard et al. (2006); Bießmann et al. (2009)), (b) clas-
sification methods (e.g. Müller et al. (2001); Müller
et al. (2003); Parra et al. (2002, 2003); Lal et al. (2004);
Blankertz et al. (2006a, 2008b); Müller et al. (2008);
Parra et al. (2008); Tomioka et al. (2007); Tomioka and
Müller (2010)), (c) spatio-temporal filtering algorithms
(e.g. Fukunaga (1972); Koles (1991); Ramoser et al.
(2000); Lemm et al. (2005); Blankertz et al. (2008b);
Dornhege et al. (2006); Tomioka and Müller (2010);
Parra et al. (2008); Dornhege et al. (2007); Blankertz
et al. (2007)), (d) measures for determining synchrony,
coherence or causal relations in data (e.g. Meinecke
et al. (2005); Brunner et al. (2006); Nolte et al. (2004);
Marzetti et al. (2008); Nolte et al. (2008, 2006); Gen-
tili et al. (2009)) and (e) algorithms for assessing and
counteracting non-stationarity in data (e.g. Shenoy et al.
(2006); Sugiyama et al. (2007); von Bünau et al. (2009);
Blankertz et al. (2008a); Krauledat et al. (2007)). More-
over a new generation of source localization techniques
is now in use (e.g. Haufe et al. (2008, 2009)) and has
been successfully applied in BCI research (e.g. Pun
et al. (2006); Noirhomme et al. (2008); Grosse-Wentrup
et al. (2007)).

Despite of this multitude of powerful novel data ana-
lytical methods, this review will place its focus mainly
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on the essentials for decoding brain states, namely we
will introduce the mathematical concept of classifica-
tion and model selection, and explicate how to prop-
erly apply them to neurophysiological data. To this
end, the paper first reviews the mathematical and algo-
rithmic principles starting from a rather abstract level
and regardless of the scope of application. The sub-
sequent discussion of the practicalities and ’tricks’ in
the spirit of Orr and Müller (1998) will then link to
the analysis of brain imaging data. Unlike existing re-
views on this topic (cf. Wolpaw et al. (2002); Kübler
and Müller (2007); Dornhege et al. (2007); Haynes and
Rees (2006); Pereira et al. (2009)), we will elaborate on
common pitfalls and how to avoid them when applying
machine learning to brain imaging data.

A final note: while the paper introduces the main
ideas of algorithms, we do not attempt a full treatment
of the available literature. Rather, we present a some-
what biased view, mainly drawing from the author’s
work and providing – to the best of our knowledge –
links and reference to related studies and further read-
ing. We sincerely hope that it will nevertheless be useful
to the reader.

The paper outline is the following: After a brief intro-
duction, we discuss machine learning principles in Sec-
tion 2 and then, Section 3 provides feature extraction
and dimensionality reduction methods, both supervised
and unsupervised. The main contributions of this re-
view are a detailed account of how to validate and select
models (Section 4), and the elaboration of the practical
aspects of model evaluation and most common pitfalls
specific to brain imaging data in Section 5.

2. Learning to classify

Neuroscientific experiments often aim at contrast-
ing specific brain states. Typically, the experimenter
chooses a neurophysiological paradigm that maximizes
the contrast between the brain states (note that there
may be more than two states), while controlling for
task unrelated processes. After recording brain imag-
ing data, the goal of analysis is to find significant dif-
ferences in the spatial and the temporal characteristics
of the data contrasting the different states as accurate as
possible. While simple statistics such as considering,
e.g., grand averages (averaging across trials and sub-
jects) may help for model building, more sophisticated
machine learning techniques have become increasingly
popular due to their great modeling power. Note that
the methods we will presented in this paper are likewise
applicable to multivariate fMRI voxel time series, to

single trial responses in fMRI or EEG, and brain imag-
ing data from any other spatio-temporal, or spectral do-
main. Formally, the scenario of discrimination of brain

Figure 1: Left: Typical work flow for machine learning based clas-
sification of brain imaging data. First, brain imaging data are ac-
quired according to the chosen neurophysiological paradigm. Then
the data are preprocessed, e.g., by artifact rejection or bandpass filter-
ing. The machine learning based approach comprises the reduction of
the dimensionality by extraction of meaningful features and the final
classification of the data in the feature space. Right: example of a
linear classification of time series in the time frequency domain. Es-
pecially, the linear classifier partitions an appropriately chosen low
dimensional feature space.

states can be cast into a so-called classification problem,
where in a data-driven manner a classifier is computed
that partitions a set of observations into subsets with dis-
tinct statistical characteristics (see Fig. 1). Note, how-
ever, that not only paradigms with known physiological
connotation but also novel scenarios can be scrutinized,
where (1) a new paradigm can be explored with respect
to its neurophysiological signatures, (2) a hypothesis
about underlying task relevant brain processes is gen-
erated automatically by the learning machine. Feeding
this information back to the experimenter, may lead to
a refinement of the initial paradigm, such that, in prin-
ciple, a better understanding of the brain processes may
follow. In this sense, machine learning may not only
be the technology of choice for a generic modeling of a
neuroscientific experiment, it can also be of great use in
a semi-automatic exploration loop for testing new neu-
rophysiological paradigms.

2.1. Some theoretical background

Let us start with the general notion of the learning
problems that we consider in this paper. A classifier is
a function which partitions a set of objects into several
classes, for instance, recordings of brain activity during
either auditory, visual, or cognitive processing into the
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three distinct modalities (classes) 1. Thus, based on a
set of observations, the machine learning task of clas-
sification is to find a rule, which assigns an observa-
tion x to one of several classes. Here, x denotes a vec-
tor of N−dimensional neuroimaging data. In the sim-
plest case there are only two different classes. Hence,
a classifier can be formalized as a decision function
f : RN → {−1,+1}, that assigns an observation x to one
of the classes, denoted by −1 and 1, respectively. Typ-
ically, the set of possible decision functions f is con-
strained by the scientist to a (parameterized) class of
functions F , e.g., to the class of linear functions. Note,
a linear decision function f corresponds to a separating
hyperplane (e.g., see Fig. 1), that is parameterized by its
normal vector w and a bias term b. Here, the label y is
predicted through

(2.1) y = f (x; w, b) = sgn(w>x + b).

Then, based on a set of observed input-output relation
(x1, y1), . . . , (xn, yn) ∈ RN × {−1,+1}, learning can be
formally described as the task of selecting the parame-
ter value (w, b) and hence selecting the decision func-
tion f ∈ F such that f will correctly classify unseen ex-
amples x. Here, the observed data (xi, yi) is assumed to
be independently and identically distributed (i.i.d.) ac-
cording to an unknown distribution P(x, y) that reflects
the relationship between the objects x and the class la-
bels y, e.g., between the recorded brain activity and the
paradigm specific mental states. However, in order to
find the optimal decision function one needs to specify
a suitable loss function that evaluates the goodness of
the partitioning. One of the most commonly used loss
functions for classification is the so-called 0/1-loss (see
Smola and Schölkopf (1998) for a discussion of other
loss functions)

(2.2) l(y, f (x)) =

0 y = f (x)
1 else.

Given a particular loss function, the best decision func-
tion f one can obtain, is the one minimizing the ex-
pected risk (also often called generalization error)

(2.3) R[ f ] =

∫
l(y, f (x)) dP(x, y),

under the unknown distribution P(x, y). As the under-
lying probability distribution P(x, y) is unknown the ex-
pected risk cannot be minimized directly. Therefore, we

1The classes could also correspond to complex brain states as in
mind reading paradigms (see Haynes and Rees (2006)) or brain states
such as attention, workload, emotions, etc.

have to try to estimate the minimum of (2.3) based on
the information available, such as the training sample
and properties of the function class F . A straightfor-
ward approach is to approximate the risk in (2.3) by
the empirical risk, i.e., the averaged loss on the train-
ing sample

(2.4) Remp[ f ] =
1
n

n∑
i=1

l(yi, f (xi)),

and minimize the empirical risk with respect to f . It
is possible to give conditions on the learning machine
which ensure that asymptotically (as the number of ob-
servations n → ∞) the minimum of the empirical risk
will converge towards the one of the expected risk. Con-
sequently, with an infinite amount of data the decision
function f that minimizes the empirical risk will also
minimize the expected risk. However, for small sam-
ple sizes this approximation is rather coarse and large
deviations are possible. As a consequence of this, over-
fitting might occur, where the decision function f learns
details of the sample rather than global properties of
P(x, y) (see Fig. 2 and 4).

Figure 2: Illustration of the overfitting dilemma: Given only a small
sample (left) either, the solid or the dashed hypothesis might be true,
the dashed one being more complex, but also having a smaller empir-
ical error. Only with a large sample we are able to see which decision
reflects the true distribution more closely. If the dashed hypothesis is
correct the solid would underfit (middle); if the solid were correct the
dashed hypothesis would overfit (right). From Müller et al. (2001).

Under such circumstances, simply minimizing the
empirical error (2.4) will not yield a small generaliza-
tion error in general. One way to avoid the overfitting
dilemma is to restrict the complexity of the function f
Vapnik (1995). The intuition, which will be formalized
in the following is that a “simple” (e.g., linear) function
that explains most of the data is preferable over a com-
plex one (Occam’s razor, cf. MacKay (2003)). This is
typically realized by adding a regularization term (e.g.,
Kimeldorf and Wahba (1971); Tikhonov and Arsenin
(1977); Poggio and Girosi (1990); Cox and O’Sullivan
(1990)) to the empirical risk, i.e.,

(2.5) Rreg[ f ] = Remp + λ‖T f ‖2.

Here, an appropriately chosen regularization operator
‖T f ‖2 penalizes high complexity or other undesired
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properties of a function f ; λ introduces an additional
parameter to the model (often called hyperparameter)
that needs to be estimated as well. The estimation
of this parameter and hence taking model complex-
ity into account, raises the problem of model selection
(e.g., Akaike (1974); Poggio and Girosi (1990); Moody
(1992); Murata et al. (1994)), i.e., how to find the op-
timal complexity of a function or accordingly the ap-
propriate function class (in Section 4 we will discuss
the practical aspects of model selection). As a brief
remark, Linear Discriminant Analysis (LDA) employs
regularization through shrinkage (Stein (1956); Fried-
man (1989)) while neural networks use early stopping
(Amari et al. (1997)), weight decay regularization or
asymptotic model selection criteria (e.g., network infor-
mation criterion (Murata et al. (1994); Akaike (1974)),
see also (Bishop (1995); Orr and Müller (1998))). On
the other hand, support vector machines (SVMs) reg-
ularize according to what kernel is being used (Smola
et al. (1998)) and limit their capacity according to
Vapnik-Chervonenkis (VC) theory (Vapnik (1995)). We
will now briefly outline a few algorithms.

Figure 3: Schematic illustration of model selection. The solid line
represents the empirical error, the dashed line the expected error. With
higher complexity, the ability of the model to overfit the sample data
increases, visible from a low empirical and an increasing expected
error. The task of model selection is to determine the model with the
smallest generalization error.

2.2. Linear Classification

For computing the parameters of a linear decision
function (cf. (2.1) and Fig. 1), namely the normal vec-
tor w and the bias b, we will in the following discuss
different linear methods: Linear Discriminant Analysis
(LDA) including procedures for regularizing LDA, as
well as linear programming machines (LPM).

2.2.1. Linear Discriminant Analysis, Fisher’s Discrim-
inant and Regularization

In case of LDA the two classes are assumed to be
normally distributed with different means but identical
full rank covariance matrix. Suppose the true means µi

(i=1,2) and the true covariance matrix Σ are known, then
the normal vector w of the Bayes optimal separating hy-
perplane of the LDA classifier is given as

w = Σ−1(µ1 − µ2).

In order to compute w for real data, the means and co-
variances need to be approximated empirically, see Sec-
tion 2.2.2.

A more general framework is the well-known
Fisher’s Discriminant analysis (FDA), that maximizes
the so-called Rayleigh coefficient

(2.6) J(w) =
wT S Bw
wT S Ww

,

where the within class scatter S w =
∑2

i=1 S i with S i =∑
x∈Ci

(x − µi)(x − µi)T and the class means are de-
fined as µi = 1

ni

∑
x∈Ci

x and ni is the number of pat-
terns xi in class Ci. The between class scatter S B =

1/2
∑2

i=1(µ − µi)(µ − µi)T , where µ = 1/2
∑2

i=1 µi. A so-
lution to (2.6) can be found by solving the generalized
Eigenvalue problem (cf. Golub and van Loan (1996)).
Considering only two classes, FDA and LDA can be
shown to yield the same classifier solution. However,
both methods can be extended for the application to
multiple classes.

Although it is a common wisdom that linear meth-
ods such as LDA and FDA are less likely to overfit, we
would like to stress that they also require careful reg-
ularization: not only for numerical reasons. Here, the
regularization procedure will be less necessary to avoid
the typical overfitting problems due to excessive com-
plexity encountered for nonlinear methods (see Fig. 2
and Fig. 4-right). Rather regularization will help to limit
the influence of outliers that can distort linear models
(see Fig. 4-center). However, if possible, a removal
of outliers prior to learning is to be preferred (e.g.,
Schölkopf et al. (2001); Harmeling et al. (2006)).

A mathematical programming formulation of regu-
larized Fisher Discriminant analysis (RFDA) as a lin-
ear constrained, convex optimization problem was in-
troduced in Mika et al. (2001) as

minw,b,ξ
1
2
‖w‖22 +

C
n
‖ξ‖22(2.7)

s.t. yi · ((w>xi) + b) = 1 − ξi, i = 1, . . . , n
ξi ≥ 0,

where ‖w‖2 denotes the 2 -norm (‖w‖22 = w>w) and C is
a model parameter that controls for the amount of con-
straint violations introduced by the slack variables ξi.
The constraints yi · ((w>xi) + b) = 1 − ξi ensure that
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the class means are projected to the corresponding class
labels ±1. Minimizing the length of w maximizes the
margin between the projected class means relative to the
intra class variance. Note that (2.8) can be the starting
point for further mathematical program formulations of
classifiers such as the sparse FDA, which uses an 1-
norm regularizer: ‖w‖1 =

∑
|wn| etc. (cf. Mika et al.

(2003)).

Figure 4: The problem of finding a maximum margin “hyper-plane”
on reliable data (left), data with outlier (middle) and with a misla-
beled pattern (right). The solid line shows the resulting decision line,
whereas the dashed line marks the margin area. In the middle and on
the left the original decision line is plotted with dots. The hard margin
implies noise sensitivity, because only one pattern can spoil the whole
estimation of the decision line. Figure from Rätsch et al. (2001).

2.2.2. Linear Discriminant Analysis with Shrinkage
The optimality statement for LDA depends crucially

on the never fullfilled assumption, that the true class dis-
tributions are known. Rather, means and covariance ma-
trices of the distributions have to be estimated from the
training data.

The standard estimator for a covariance matrix is the
empirical covariance which is unbiased and has under
usual conditions good properties. But for extreme cases
of high-dimensional data with only a few data points
that is typically encountered in neuroimaging data, the
empirical estimation may become inprecise, because the
number of unknown parameters that have to be esti-
mated is quadratic in the number of dimensions. As
substantiated in Blankertz et al. (2010), this results in
a systematic error: Large eigenvalues of the original co-
variance matrix are estimated too large, and small eigen-
values are estimated too small. Shrinkage is a common
remedy for the systematic bias (Stein (1956)) of the esti-
mated covariance matrices (e.g., Friedman (1989)): the
empirical covariance matrix Σ̂ is replaced by

(2.8) Σ̃(γ) := (1 − γ)Σ̂ + γνI

for a tuning parameter γ ∈ [0, 1] and ν defined as av-
erage eigenvalue of Σ̂ and I being the identity matrix.

Then the following holds: Σ̃ and Σ̂ have the same Eigen-
vectors; extreme eigenvalues (large or small) are modi-
fied (shrunk or elongated) towards the average ν; γ = 0
yields unregularized LDA, γ = 1 assumes spherical co-
variance matrices.

Using LDA with such a modified covariance ma-
trix is termed regularized LDA or LDA with shrinkage.
For a long time, complex or time-consuming methods
have been used to select shrinkage parameter γ, e.g., by
means of cross validation. Recently an analytic method
to calculate the optimal shrinkage parameter for cer-
tain directions of shrinkage was found (Ledoit and Wolf
(2004); see also Vidaurre et al. (2009) for the first ap-
plication to brain imaging data) that is surprisingly sim-
ple. The optimal value only depends on the sample-to-
sample variance of entries in the empirical covariance
matrix (and values of Σ̂ itself). When we denote by (xk)i

and (µ̂)i the i-th element of the vector xk and µ̂, respec-
tively and denote by si j the element in the i-th row and
j-th column of Σ̂ and define

zi j(k) = ((xk)i − (µ̂)i) ((xk) j − (µ̂) j),

then the optimal parameter γ for shrinkage towards
identity (as defined by (2.8)) can be calculated as
(Schäfer and Strimmer (2005))

γ? =
n

(n − 1)2

∑d
i, j=1 vark(zi j(k))∑

i, j s2
i j +

∑
i(sii − ν)2

.

2.2.3. Linear Programming Machines
Finally, we would like to introduce so-called Lin-

ear Programming Machines (LPMs, Bennett and Man-
gasarian (1992); Tibshirani (1994, 1996); Hastie et al.
(2001); Müller et al. (2001); Rätsch et al. (2002)). Here,
slack variables ξ corresponding to the estimation error
incurred as well as parameters w are optimized to yield
a sparse regularized solution

minw,b,ξ
1
2
‖w‖1 +

C
n
‖ξ‖1(2.9)

s.t. yi · ((w>xi) + b) ≥ 1 − ξi, i = 1, . . . , n
ξi ≥ 0.

LPMs achieve sparse solutions (i.e. most values of w
become zero) by means of explicitly optimizing the
1−norm in the objective function instead of the 2−norm,
which is known to yield non-sparse solutions. Due to
this property, LPM and sparse FDA are excellent tools
for variable selection. In other words, while solving the
classification problem, the user is not only supplied with
a good classifier but also with the list of variables that
are relevant for solving the classification task (Blankertz
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et al. (2006a); Müller et al. (2001); Blankertz et al.
(2002); Lal et al. (2004); Tomioka and Müller (2010)).

2.3. Beyond linear classifiers
Kernel based learning has taken the step from lin-

ear to nonlinear classification in a particularly interest-
ing and efficient2 manner: a linear algorithm is applied
in some appropriate (kernel) feature space. While this
idea first described in Schölkopf et al. (1998) is simple,
it is yet very powerful as all beneficial properties (e.g.,
optimality) of linear classification are maintained3, but
at the same time the overall classification is nonlinear
in input space, since feature- and input space are non-
linearly related. A cartoon of this idea can be found
in Fig. 5, where the classification in input space re-
quires some complicated non-linear (multi-parameter)
ellipsoid classifier. An appropriate feature space rep-
resentation, in this case polynomials of second order,
supply a convenient basis in which the problem can be
most easily solved by a linear classifier.

However, by virtue of the kernel-trick the input space
does not need to be explicitly mapped to a high dimen-
sional feature space by means of a non-linear function
Φ : x 7→ Φ(x). Instead, kernel based methods take ad-
vantage from the fact that most linear methods only re-
quire the computation of dot products. Hence, the trick
in kernel based learning is to substitute an appropriate
kernel function in the input space for the dot products in
the feature space, i.e.,

k :RN × RN→ R,(2.10)
such that k(x, x′) = φ(x)>φ(x′).

More precisely, kernel-based methods restrict to the par-
ticular class of kernel functions k that correspond to
dot products in feature spaces and hence only implic-
itly maps the input space to the corresponding feature
space. Commonly used kernels are for instance:

G k(x, x′) = exp
(
−
‖x − x′‖2

2σ2

)
,(2.11)

σ > 0

P k(x, x′) = (x>x′ + c)d(2.12)
S k(x, x′) = tanh(κ(x>x′) + θ),(2.13)

κ > 0, θ < 0

Examples of kernel-based learning machines are
among others, e.g., Support Vector Machines (SVMs)

2By virtue of the so-called ’kernel trick’ Vapnik (1995).
3As we do linear classification in this feature space.

(Vapnik (1995); Müller et al. (2001)), Kernel Fisher
Discriminant (Mika et al. (2003)) or Kernel Principal
Component Analysis (Schölkopf et al. (1998)).
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Figure 5: Two dimensional classification example. Using the second
order monomials x2

1,
√

2x1 x2 and x2
2 as features a separation in fea-

ture space can be found using a linear hyperplane (right). In input
space this construction corresponds to a non-linear ellipsoidal deci-
sion boundary (left). From Müller et al. (2001).

2.4. Support Vector Machines

In order to illustrate the application of the kernel-
trick, let us consider the example of the SVM (Vapnik
(1995); Müller et al. (2001)). Here, the primal optimiza-
tion problem of a linear SVM is given similar to (2.7)
and (2.9) as

minw,b,ξ
1
2
‖w‖22 + C

n∑
i=1

ξi(2.14)

s.t. yi · ((w>xi) + b) ≥ 1 − ξi, i = 1, . . . , n
ξi ≥ 0.

However, in order to apply the kernel trick we rather use
the dual of (2.14), i.e.,

maxα
n∑

i=1

αi −
1
2

n∑
i, j=1

αiα jyiy j ·
(
x>i x j

)
(2.15)

s.t. C ≥ αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αiyi = 0,

To construct a nonlinear SVM in the input space, one
(implicitly) maps the inputs x to the feature space by
a non-linear feature map Φ(x) and computes an opti-
mal hyperplane (with threshold) in feature space. To
this end, one substitutes Φ(xi) for each training exam-
ple xi in (2.15). As the xi only occur in dot products,
one can apply the kernel trick and substitute a kernel
k for the dot products, i.e., k(xi, x j) = Φ(xi)>Φ(x j)
(cf. Boser et al. (1992); Guyon et al. (1993)). Hence,
the non-linear formulation of the SVM is identical to
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(2.15), with the exception that the kernel k(xi, x j) sub-
stitutes for the dot (x>i x j). Advantageously, many of the
αi will be vanishing; the samples associated with these
non-zero coefficients are referred to as support vectors
(SV). As the weight vector w in the primal formulation
reads w =

∑
i yiαiΦ(xi), we obtain the nonlinear deci-

sion function as

f (x) = sgn
(
w>Φ(x) + b

)
= sgn

 ∑
i:αi,0

yiαi ·
(
Φ(xi)>Φ(x)

)
+ b


= sgn

 ∑
i:αi,0

yiαi · k(xi, x) + b

(2.16)

Here, the sum in (2.16) is a sparse expansion as it only
runs over the set of SVs. Note, while the αi are de-
termined from quadratic optimization problem 4 (2.15),
the threshold b can be computed by exploiting the fact
that for all support vectors xi with C ≥ αi ≥ 0, the slack
variable ξi is zero, and hence

(2.17)
n∑

j=1

y jα j · k(xi, x j) + b = yi.

If one uses an optimizer that works with the double dual
(see, e.g., Vanderbei and Shanno (1997); Boyd and Van-
denberghe (2004)), one can also recover the value of the
primal variable b directly from the corresponding dou-
ble dual variable.

Note that recently Braun et al. (2008) has observed
that the excellent generalization that is typically ob-
served when using SVMs in high dimensional appli-
cations with few samples is due to its very economic
representation in Kernel Hilbert space. Given the ap-
propriate kernel, only a very low dimensional subspace
is task relevant.

2.5. k-nearest neighbors
A further well-known non-linear algorithm for clas-

sification is the so-called k-nearest neighbor method.
Here, every unseen point x is compared through a dis-
tance function dist(x, xi) to all points xi (i = 1, . . . , n) of
the training set. The k minimal distances are computed
and the majority over the corresponding labels yi is
taken as a resulting label for x (note that this simple rule
also holds for multiclass problems). This strategy pro-
vides a very simple local approximation of the condi-
tional density function. The k-nearest neighbor method

4A selection of Open Source software for SVMs can be found on
www.kernel-machines.org.

is known to work well, if a reasonable distance (typi-
cally the Euclidean one) is available and if the number
of data points in the training set is not huge. The hyper-
parameter k can be selected, e.g., by cross-validation; if
the data is noisy a large k should be chosen.

2.6. Application to brain imaging data
The predominant methods both for fMRI and

EEG/MEG analysis are so far mostly linear, however,
nonlinear methods can easily be included in the analysis
by including these model classes into the model selec-
tion loop, as we will discuss in a later section in detail.
For a brief discussion of linear versus nonlinear meth-
ods see, e.g., Müller et al. (2003).

In EEG studies mainly LDA, shrinkage/regularized
LDA, sparse Fisher, and linear programs are in use (e.g.,
Dornhege et al. (2007)) are in use. Here, it was ob-
served that through a proper preprocessing the class
conditional distributions become Gaussian with a very
similar covariance structure (cf. Blankertz et al. (2002,
2006a); Dornhege et al. (2007)). Under such circum-
stances, theory suggests that LDA would be the optimal
classifier. However, changes in the underlying distri-
bution, the use of multimodal features (e.g., Dornhege
et al. (2004)), or the presence of outliers may require
to proceed to nonlinear methods (see the discussion in
Müller et al. (2003)).

The driving insight in fMRI analysis was to go from
univariate analysis tools that correlate single voxels with
behavior to a full multivariate correlation analysis (e.g.,
Hansen et al. (1999); Haxby and et al (2001); Strother
et al. (2002); Cox and Savoy (2003); Kamitani and Tong
(2005); Haynes and Rees (2006); Kriegeskorte et al.
(2006); Mitchell et al. (2008)). A main argument for
using especially SVMs and LPMs was their well-known
benign properties in the case where the number of input
dimensions in x is high while the number of samples
is low (e.g., Vapnik (1995); Müller et al. (2001); Braun
et al. (2008)). This particular very unbalanced situation
is an important issue in fMRI, since the number of vox-
els is of the order ten-thousands while the number of
samples rarely exceeds a few hundreds (e.g., Hansen
et al. (1999); Strother et al. (2002); Cox and Savoy
(2003)). Physiological priors that allow, e.g., to define
regions of interest, have led to further specialized analy-
sis tools like the search-light method. Here, the signal to
noise ratio is improved by discarding some potentially
noisy and task unrelated areas while enhancing the in-
teresting bit of information spatially (e.g., Kriegeskorte
et al. (2006)). In some cases improvements through the
use of nonlinear kernel functions have been reported,
e.g., LaConte et al. (2005) studied polynomial kernels.
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Other priors have been derived from the paradigm. For
example, for understanding the neural basis of word
representation, Mitchell et al. (2008) used word co-
occurances in language inferred from a large scale doc-
ument corpus, to derive a codebook of fMRI patterns
corresponding to brain activity for representing words.
These patterns could be superimposed for out of sam-
ple forecasting, thus predicting the most probable way a
certain novel word is represented in the fMRI pattern.

3. Dimensionality Reduction

So far, we did not much concern about the domain of
the input data and solely assumed the classifiers to be
applicable to the data (x, y). In practice and particularly
in the domain of computational neuroscience, the input
data x often exhibit an adverse ratio between its dimen-
sionality and the number of samples. For example, a
typical a common task for EEG-based Brain-Computer
Interfaces (BCI) requires the classification of one sec-
ond intervals of brain activity, recorded at sampling fre-
quencies up to 1 kHz, from possibly 128 electrodes.
Hence, the dimensionality of the input data x amounts
approximately to 105, while the number of training sam-
ples is typically rather small, up to a few hundred sam-
ples. Moreover, the data is contaminated by various
sources of interfering noise, while the discriminative in-
formation that is the task relevant part of the data is of-
ten concentrated in a low dimensional subspace. Conse-
quently, in order to make the classification task feasible
the dimensionality of the data needs to be significantly
reduced, and informative features have to be extracted
(see also Fig. 1). Thus, feature extraction likewise in-
volves spatial, spectral, and temporal preprocessing of
the input.

Nevertheless, the extraction of relevant features is a
highly paradigm specific task and also differs for the
various recording techniques due to their temporal and
spatial resolutions. Moreover, the extraction of task
relevant features should be facilitated by incorporat-
ing prior neurophysiological knowledge, e.g., about the
cognitive processes underlying the specific paradigm.
In return, purely data driven feature extraction meth-
ods can potentially provide new findings about the in-
volved cognitive processing and might therefore con-
tribute to the generation of neurophysiological hypothe-
ses (Blankertz et al. (2006a)). Thus, feature extraction
has to be considered not just as a data analytical but
rather as a heavily interdisciplinary endeavor.

The common approaches for dimensionality reduc-
tion can be subdivided into two main categories.
On the one hand side there are variants of factor

Figure 6: Essential difference between PCA and ICA. The left panel
shows a mixture of two super-Gaussian signals in the observation co-
ordinates, along with the estimated PCA axes (green) and ICA axes
(red). Projecting the observed data to these axes reveals, that PCA
did not properly identify the original independent variables (central),
while ICA has well identified the original independent data variables
(right).

models, such as the well-known Principle Compo-
nent Analysis (PCA), Independent Component Analysis
(ICA) (cf. Comon (1994); Bell and Sejnowski (1995);
Ziehe and Müller (1998); Hyvärinen et al. (2001)),
non-negative matrix factorization, archetypal analysis,
sparse PCA (Lee and Seung (2000); Zou et al. (2004);
Schölkopf et al. (1998)) or Non-Gaussian Component
Analysis (Blanchard et al. (2006)); that perform a fac-
torization of the input data x in a purely unsupervised
manner, i.e., without using the class information. The
application of these methods serves several purposes
(a) dimensionality reduction by projecting onto a few
(meaningful) factors, (b) removal of interfering noise
from the data to increase the signal-to-noise ratio of the
signals of interest, (c) removal of nonstationary effects
in data or (d) grouping of effects. Notwithstanding their
general applicability, unsupervised factor analysis often
requires manual identification of the factors of interest.

The second class of methods, namely supervised
methods, make explicit use of the class labels in or-
der to find a transformation of the input data to a re-
duced set of features with high task relevance. For ex-
ample, the Common Spatial Pattern (CSP) (cf. Fuku-
naga (1972); Koles (1991); Ramoser et al. (2000)) algo-
rithm and derivatives thereof (Blankertz et al. (2008b);
Lemm et al. (2005); Dornhege et al. (2006); Tomioka
and Müller (2010)) is widely used to extract discrimina-
tive oscillatory features.

In the following, we will briefly describe two fre-
quently used dimensionality reduction methods. First
we will briefly introduce the unsupervised Independent
Component Analysis, and subsequently discuss the su-
pervised CSP algorithm.

3.1. Independent component analysis

Under the often valid assumption that the electric
fields of different bioelectric current sources superim-
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pose linearly, the measured neurophysiological data can
be modeled as a linear combination of component vec-
tors. For instance, in case of independent component
analysis (ICA) it is assumed that the observed signals
x(t) are a linear mixture of M ≤ N mutually indepen-
dent sources s(t), i.e., data are modeled as a linear com-
bination of component vectors:

(3.18) x(t) = As(t),

where A ∈ RN×M denotes the linear mixing matrix. In
this case (3.18) is invertible and ICA decomposes the
observed data x(t) into independent components y(t) by
estimating the inverse decomposition matrix W � A−1,
such that y(t) = Wx(t).

There exists a vast number of ICA algorithms that
can solve the task of estimating the mixing matrix A.
They only differ in the particular choice of a so-called
index funtion and the respective numerical procedures
to optimize this function. In general, the index function
employs a statistical property that takes on its extreme
values if the projected sources are independent. Most
research conducted in the field of ICA uses higher-order
statistics for the estimation of the independent compo-
nents (Comon (1994); Hyvärinen et al. (2001)). For
instance, the Jade algorithm (Cardoso and Souloumiac
(1993)) is based on the joint diagonalization of matri-
ces obtained from ”parallel slices” of the 4th-order cu-
mulant tensor. Although this algorithm performs very
efficiently on low dimensional data, it becomes compu-
tational infeasible for high dimensional problems, as the
effort for storing and processing the 4th-order cumulants
is O(m4) in the number of sources. As a remedy for this
problem Hyvärinen and Oja (1997) developed a general
fix-point iteration algorithm termed FastICA, that opti-
mizes a contrast function measuring the distance of the
source probability distributions from a Gaussian distri-
bution.

Note that ICA can recover the original sources s(t)
only up to scaling and permutation. Fig. 6 sketches the
essential difference between ICA and the well known
PCA method.

3.2. Common spatial pattern

Unlike unsupervised methods such as PCA and ICA,
the common spatial pattern (CSP) algorithm (Fukunaga
(1972)) makes explicit use of the label information in
order to calculate discriminative spatial filters that em-
phasize differences in signal power of oscillatory pro-
cesses (Koles and Soong (1998)). To illustrate the basic
idea of CSP: suppose we observe two class distributions
in a high-dimensional space, the CSP algorithm finds

Figure 7: Essential steps of CSP: The blue and green ellipsoids refer to
the two class conditional covariance matrices along with the principal
axes, while the mutual covariance matrix is depicted in gray. Left:
original data. Central: data distribution after whitening. Right: after
a final rotation the variance along the horizontal direction is maximal
for the green class, while it is minimal for the blue class and vice versa
along the vertical direction.

directions (spatial filters) that maximize the signal vari-
ance for one class, while simultaneously minimizing the
signal variance for the opposite class.

To be more precise, let Σ1 and Σ2 denote the two class
conditional signal covariance matrices. The spatial CSP
filters w are obtained as the generalized Eigenvectors of
the following system

(3.19) Σ1w = λΣ2w.

A solution to (3.19) is typically derived in two steps:
first the data are whitened with respect to the mutual
covariance matric Σ1 + Σ2; secondly a terminal rotation
aligns the principal axes with the coordinate axes (see
Fig. 7). However, the interpretation of filter matrix W is
two-fold, the rows of W are the spatial filters, whereas
the columns of W−1 can be seen as the common spatial
patterns, i.e., the time-invariant coupling coefficients of
each source with the different sensors. For a detailed
discussion on the relation between spatial patterns and
spatial filters see (Blankertz et al. (2010)).

Originally the CSP algorithm was conceived for dis-
criminating between two classes, but has also been ex-
tended to multi-class problems (Dornhege et al. (2004);
Grosse-Wentrup and Buss (2008)). Further extension of
CSP were proposed in Lemm et al. (2005); Dornhege
et al. (2006); Tomioka and Müller (2010); Farquhar
(2009); Li and Guan (2006) with the goal of simultane-
ously optimizing discriminative spatial and spectral fil-
ters. For a comprehensive overview of optimizing spa-
tial filters we refer to Blankertz et al. (2008b).

4. Cross-validation and Model selection

Given the data sample, the task of model selection is
to choose a statistical model from a set of potential mod-
els (the function class), which may have produced the
data with maximum likelihood, i.e., to choose the model
which resembles the underlying functional relationship
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best. The set of potential models is in general not re-
stricted, although in practice limitations are imposed by
the preselection of a model class by the scientists. A
typical setting may, for example, comprise models from
distinct classes, such as linear and non-linear models;
but may also solely consist of non-linear models that
differ in the employed SV-kernel function which needs
to be selected. On the other hand, model selection is
also frequently used to determine the optimal value of
model hyperparameters5. However, in all these cases
the general task remains the same: the expected out-of-
sample performances of the different models need to be
evaluated on the common basis of the given data sam-
ple.

As discussed previously, complex models can poten-
tially better adapt to details of the data. On the other
hand an excessively complex model will tend to over-
fit, i.e., will rather fit to the noise than to the under-
lying functional relationship. Hence, its out-of-sample
performance will deteriorate (see Fig. 2 for an illustra-
tion of overfitting). However, overfitting not only oc-
curs when a model has too many degrees of freedom,
in relation to the amount of data available. Also simple
models tend to overfit, if the influence of outliers is not
treated appropriately (see Fig. 4). However, in any case
the training error does not provide an unbiased estimate
of the model performance and hence can not be used to
select the best model.

At this point we would like to stress, that an unbiased
estimation of the model performance is one of the most
fundamental issues in statistical data analysis, as it pro-
vides the answer to: How will the model generalize on
new, previously unseen data and hence how accurately
it will perform in practice. In terms of machine learn-
ing, this quantity is called the generalization error or
expected risk of a model (cf. (2.3)), which applies like-
wise to a regression or classification model. So model
selection in essence reduces to reliably estimating the
ability of a model to generalize well to new unseen data
and to pick the model with the smallest expected error
(see Fig. 3).

4.1. Estimation of the Generalization Error

In order to present a universally applicable concep-
tual framework of estimating the generalization error,
let D = {(x1, y1), . . . , (xn, yn)} represent our original
sample set of n labeled instances. Moreover, let f (·|D)
be the model that has been learned on the sample set

5This might simultaneously be the regularization strength C of a
SVM and kernel width σ of say a Gaussian kernel.

and correspondingly f (x|D) denotes the model predic-
tion at the instance x. Suppose further that the error of
the model at an instance (x, y) from the sample space is
measured by a given loss function err = l(y, f (x|D)),
e.g., by the mean squared error, or the 0/1-loss as it is
commonly used for classification. Based on this nota-
tion, we will introduce the prevalent concepts for assess-
ing the generalization error of a statistical model given a
sample set. All of the following concepts have in com-
mon that they are based on a holdout strategy.

A holdout strategy generally splits the sample set in
two independent, complementary subsets. One subset,
commonly referred to as training set, is solely used for
fitting the model, i.e., to estimate the model parameters,
such as, the normal vector of the separating hyperplane
of an SVM. In contrast, the second subset is exclusively
used for the purpose of validating the estimated model
on an independent data set and is therefore termed val-
idation set. Formally, let Dv ⊂ D denote the holdout
validation set of size nv, and define Dt = D \ Dv as the
complementary sample set for training. The estimated
validation error is defined as

(4.20) errv =
1
nv

∑
i∈Dv

l(yi, f (xi|Dt)).

Note, the learned model as well as the accuracy of the
estimated generalization error will depend on the partic-
ularly chosen partition of the original sample into train-
ing and validation set and especially on the size of these
sets. For example, the more instances we leave for val-
idation, the less samples remain for training and hence
the model becomes less accurate. Consequently, a bias
is introduced to the estimated model error. On the con-
trary, using fewer instances for validating the model will
increase the variance of the estimated model error.

4.1.1. Cross-validation
To trade off between bias and variance several ap-

proaches have been proposed. On the one hand side,
there is a multitude of cross-validation (CV) schemes,
where the process of splitting the sample in two is re-
peated several times using different partitions of the
sample data. Subsequently, the resulting validation er-
rors are averaged across the multiple rounds of CV. The
miscellaneous CV schemes differ by the way they split
the sample data in two. The most widely used method
is K-fold CV. Here, the sample data is randomly divided
into K disjoint subsets D1, . . . ,DK of approximately
equal size. The model is then trained K times, using
all of the data subsamples except for one, which is left
out as validation set. In particular, in the k-th run Dk
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is selected as validation set, while the union of the re-
maining K−1 subsamples, i.e.,D\Dk serves as training
set. The K-fold CV-error is then the averaged error of
the K estimated models, where each model is evaluated
separately on its corresponding validation set

(4.21) errCV =
1
n

K∑
k=1

∑
i∈Dk

l (yi, f (xi|D \ Dk)) .

Note, that the cross-validation error is still a random
number that depends on the particular partition of the
data into the K folds. Therefore, it would be highly de-
sirable to perform a complete K-fold CV to estimate its
mean and variance by averaging across all possible par-
titions of the data into K folds. In practice this is compu-
tationally intractable even for small samples. Neverthe-
less, repeating the K-fold cross-validation several times
can additionally reduce the variance of the estimator at
lower computational costs.

An alternative cross-validation scheme is the so-
called leave-one-out cross-validation (LOO-CV). As
the name already indicates, LOO-CV uses all but a sin-
gle data point of the original sample for training the
model. The estimated model is then validated on the
single observation left out. This procedure is repeated,
until each data point once served as validation set. In
particular, in the i-th run the validation set corresponds
to Di = (xi, yi), while the model is trained on the com-
plement D \ Di. The LOO-CV estimator is defined as
the averaged error

(4.22) errLOO =
1
n

n∑
i=1

l (yi, f (xi|D \ Di)) .

Note that LOO-CV actually performs a complete n-fold
CV. However, since the model has to be trained n times,
LOO-CV is computational demanding. On the other
hand, it leads to an almost unbiased estimate of the
generalization error, but at the expense of an increased
variance of the estimator. In general, cross-validation
schemes provide a nearly unbiased estimate of the gen-
eralization error, at the cost of significant variability,
particularly for discontinuous loss functions Efron and
Tibshirani (1997). In order to achieve a good compro-
mise between bias and variance the use of 10-fold or
5-fold CV are often recommended.

4.1.2. Bootstrapping
In case of discontinuous error functions bootstrap

methods Efron and Tibshirani (1993) may smooth over
possible discontinuity. A bootstrap sample b is cre-
ated by sampling n instances with replacement from

the original sample D. The bootstrap sample b is then
used for training, while the set left out that is D \ b
serves as validation set. Using a sampling procedure
with replacement, the expected size of the validation set
is n(1− 1

n )n ≈ 0.368n. Correspondingly, the training set,
which is of size n, has ≈ 0.632n unique observations
which leads to an overestimation of the prediction er-
ror. The .632 bootstrap estimator Efron and Tibshirani
(1993) corrects for this, by adding the underestimated
resubstitution error,

errboot =
1
B

∑
b

0.632 ·
∑
i<b

l (yi, f (xi|b ))

+0.368 ·
n∑

i=1

l (yi, f (xi|D)) .
(4.23)

However, the standard bootstrap estimate is an upwardly
biased estimator of the model accuracy. In particular, it
can become to overly optimistic for excessively com-
plex models that are capable to highly overfit the data.

In the context of a feature subset selection exper-
iment for regression, a comprehensive comparison of
different schemes for estimating the generalization er-
ror has been conducted in Breiman and Spector (1992).
Among others schemes, they compared leave-one-out
cross-validation, K-fold cross-validation for various
K, stratified version of cross-validation and bias cor-
rected bootstrap on artificially generated data. For the
task of model selection they concluded ten-fold cross-
validation to outperform the other methods.

5. Practical Hints for Model Evaluation

5.1. Models with Hyperparameters

Many preprocessing and classification methods have
one or more hyperparameters that need to be adjusted to
the data by means of model selection. Examples are the
kernel width of an Gaussian kernel, the regularization
parameter λ of the regularized LDA, but also the num-
ber of neighbors in a k-nearest neighbor approach, or
the number of principal components to be selected. Ac-
cording to the previously introduced general concept of
model selection, those hyperparameters have to be se-
lected by means of an unbiased estimate of the general-
ization performance, i.e., have to be evaluated on a val-
idation set that is independent of data used for training.
Since the selection of the hyperparameter is an integral
part of the model, the model selection scheme and there-
fore the estimation of the validation error becomes part
of the model itself. Consequently, the cross-validation
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error that has been used for adjusting the hyperparam-
eter of a model becomes a biased estimate of the over-
all model performance, as it has been minimized by the
model selection. Consequently, to estimate the gener-
alization error of the entire model (including the hyper-
parameter selection) another independent data set is re-
quired.

To emphasize the severeness of this issue, let us con-
sider the following illustrative example. Given a fixed
data set the classification performance of linear dis-
criminant analysis (without hyperparameters) needs to
be compared with the performance of an SVM with
a Gaussian kernel. Cross-validation is performed for
LDA and also for an SVM using a Gaussian kernel
for various combinations of the hyperparameters, i.e.,
the kernel width and the regularization parameter. One
can expect the SVM to yield better results than LDA
for some combinations, while it will perform worse for
others. Nevertheless, it cannot be concluded that the
SVM with the ‘optimal selection’ of its hyperparame-
ters outperforms the LDA solution. Obviously, as it has
been minimized by the model selection procedure, the
CV-error of the selected SVM is to optimistic about the
model performance. Note that the CV-error is a ran-
dom number that exhibits a certain degree of variability.
Accordingly, repeated sampling from the distribution of
the CV error will favor models with a larger set of pa-
rameter combinations (here, the SVM model). In par-
ticular, the smaller CV error for some parameter com-
binations of the SVM could just be a lucky coincidence
induced by repeatedly evaluating the SVM model. The
severeness of biasing the results depends on several fac-
tors, e.g., how much complexity can be controlled by
the parameters, dimensionality of the features, and the
methods of selecting the parameters.

Nested Cross-Validation: In order to obtain an unbiased
estimate of the generalization performance of the com-
plete model (including selection of the hyperparameter),
an additional data set is required which is independent
from both, the training and the validation data. To this
end, a nested cross-validation scheme is most appropri-
ate. Algorithmically, it can be described as two nested
loops of cross-validation. In the inner loop, the hyperpa-
rameter as part of the model has to be selected according
to inner CV error, while in the outer loop, the selected
models are evaluated with respect to their generalization
ability on an independent validation set. The outer loop
CV-error is similar to (4.21)

(5.24) errCV =
1
n

K∑
k=1

∑
i∈Dk

l
(
yi, fCV

(
xi|D

\k)) .

Here, Dk denotes the kth validation set of the outer CV-
loop, while we use the short hand notation D\k for the
corresponding outer loop training setD\Dk. However,
the main difference in the above equation compared
to the ordinary K-fold CV is that the model fCV(·|D\k)
refers to the model that has been selected via the inner
K-fold CV over the data setD\k, i.e.,
(5.25)

fCV

(
·|D\k) := argmin

f∈F

K∑
l=1

∑
i∈D\kl

l
(
yi, f

(
xi|D

\k \ D
\k

l

))
,

with F denoting the set of models corresponding to dif-
ferent value of the hyperparameter andD\kl denoting the
lth validation set of the inner CV loop. In order to distin-
guish more easily between the different layers of cross-
validation, one often refers to the holdout set Dk of the
outer loop as test sets. Note, in each round of the outer
CV loop the model fCV(·|D\k) and hence the hyperpa-
rameter that is selected can be different. Consequently,
nested CV will provide a probability distribution how
often a hyperparameter had been selected by the model
selection scheme rather than a particular value. On the
other hand nested CV gives an unbiased estimate of the
generalization performance of the complete model (in-
cluding selection of the hyperparameters).

5.2. Cross-Validation for Dependent Data

Another practical issue when estimating the general-
ization error of a model is the validity of the assump-
tion about the independence of the training and the val-
idation data. Obviously, if all instances are distributed
independently and identically then arbitrary splits into
training and validation set will yield stochastically in-
dependent samples and the prerequisite is trivially ful-
filled. However, often the experimental design induces
dependencies between samples. In such a case, special
care is required when splitting the sample in order to
ensure the aforementioned independence assumption.

For example, a frequently used paradigm in human
brain research divides the course of an experiment into
blocks of different experimental conditions. We say that
an experiment has a block design, if each block com-
prises several single-trials all belonging to the same con-
dition, see Fig. 8-a.

In such a setting, special care has to be taken in val-
idating the classification of single-trials according to
the experimental conditions. Typically, samples within
such a block are likely to be stochastically depen-
dent, while stochastic independence can be generally
assumed for samples belonging to different blocks. To
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(b)
Training set

Test set

Figure 8: Schema of a block design experiment. (a) Alternation be-
tween the two conditions that are to be discriminated is on a longer
time scale, compared to shorter segments for which classification
is evaluated. This setting requires special treatment for validation.
(b) Applying cross validation on the epochs violates the assumption
that samples in the training set are independent from the ones in the
test set. Due to slowly changing nonstationarities in the brain signals,
a trial in the test set is very likely to be classified correctly, if trials
from the same block are in the training set.

illustrate this, let us consider a neuroimaging record-
ing. Here, typically many slowly varying processes of
background activity exist, and hence neighboring trials
within a single block are dependent with respect to the
information they share about the state of these slow cor-
tical processes. Consequently, applying a simple hold-
out strategies as they are conventionally employed by
generic LOO or K-fold CV, to block design data will
most likely violate the assumption of independence be-
tween the training and validation data, see Fig. 8-b.

In order to demonstrate the possible effect of applying
a standard CV scheme to block-wise data, we will con-
duct an illustrative experiment to demonstrate the fail-
ure of a generic CV, that severely underestimates the
generalization performance. Moreover, we show that
the block CV scheme introduced below yields an ac-
curate estimate of the generalization error. However,
before we present this example, we will formally in-
troduce a cross-validation scheme that is tailored to the
particualar needs of block-wise data.

5.2.1. Block Cross-validation
As indicated, data within a single block are likely to

be stochastically dependent, while stochastic indepen-
dence can be assumed for data across blocks. Con-
sequently, the most simple form of a cross-validation
scheme for block-wise data corresponds to a leave-one-
block-out cross-validation. Analog to LOO-CV a single
block is left out for validation and the model is trained
on the remaining data. For most of the experimental
paradigms such a CV scheme will be appropriate.

However, in order to introduce a more general
block-wise CV method, we will assume that for some
pre-defined constant h ∈ N the covariance matrices

Cov((xi, yi), (xi+ j, yi+ j)) (measured in a suitable norm)
are of negligible magnitude for all | j| > h. That is, sam-
ples that are further apart than h samples are assumed
to be uncorrelated. A so-called h-block cross-validation
scheme is a modification of the LOO-CV scheme. Sim-
ilar to LOO-CV it uses each instance (xi, yi) once as val-
idation set, but unlike LOO-CV it leaves an h-block (of
size 2h + 1) of the neighboring h samples from each
side of the ith sample out of the training set. Following
the notation in Racine (2000), we denote the h-block by
(x(i:h), y(i:h)), thus the training set of the ith iteration corre-
sponds toD(−i:h) :=D \ (x(i:h), y(i:h)). The generalization
error of the model is consequently obtained by the cross
validation function

(5.26) errh =
1
n

n∑
i=1

l(yi, f (xi|D(−i:h))).

Although the latter policy resolves the problem of de-
pendencies, it still has one major drawback. As it was
shown in Shao (1993) for the particular choice of the
mean squared error as loss function, due to the small
size of the validation sets the h-block cross-validation
is inconsistent for the important model class of linear
functions. This means, even asymptotically (i.e., for
n → ∞) h-block cross-validation does not reliably se-
lect the true model f ∗ from a class of linear models.

As worked out in Racine (2000), a way out of this pit-
fall is a technique called hv-cross validation. Heuristi-
cally spoken, hv-cross validation enlarges the validation
sets sufficiently. To this end, for a “sufficiently large” v
each validation set is expanded by v additional observa-
tions from either side, yielding Di = (xi:v, yi:v). Hence,
each validation setDi is of size nv = 2v + 1. Moreover,
in order to take care of the dependencies, h observations
on either side of (x(i:v), y(i:v)) are additionally removed to
form the training data. Hence, the training data of the
ith iteration is D(−i:(h+v)) :=D \ (x(i:(h+v)), y(i:(h+v))). Now,
the cross-validation function
(5.27)

errhv =
1

nv(n − 2v)

n−v∑
i=v

∑
j∈Di

‖y j − f (x j|D(−i:(h+v))‖
2

is an appropriate measure of the generalization er-
ror. For asymptotic consistency it is necessary that
limn→∞ nv/n = 1, thus choosing v such that v = (n −
nδ − 2h − 1)/2 for a constant 0 < δ < 1 is sufficient to
achieve consistency (Shao (1993)).

5.3. Caveats in Applying Cross-Validation
Preprocessing the data prior to the application of

cross-validation also requires particular care to avoid bi-
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asing the generalization error of the model. Here, in or-
der to adhere to the independence assumption of train-
ing and validation set, any parameters of the preprocess-
ing needs to be estimated solely on the training set and
not on the test set. This holds likewise for the estima-
tion of principle and independent component analysis,
but also for simpler preprocessing strategies, such as
normalization of the data. If cross-validation is used,
the estimation of the parameters of preprocessing has to
be performed within the cross-validation loop on each
training set separately and afterwards transfer to the cor-
responding test and validation data, respectively. In or-
der to achieve a stringently sound validation, it is for ex-
ample inappropriate to perform ICA on the entire data,
select desirable components and use features extracted
from those components as input to a classifier, whose
performance needs to be evaluated by cross-validation.
Although the bias induced by unsupervised preprocess-
ing techniques will usually be not as severe, it can result
in improper model selection and overoptimistic results.
In contrast, strong overfitting may occur, if a prepro-
cessing method which uses class label information is
performed on the whole data set.

5.4. Model Evaluation Allowing for Feature Selection

Feature selection is widely used in order to decrease
the dimensionality of the feature vectors and thus to fa-
cilitate classification. Typically, feature selection meth-
ods are supervised, i.e., they exploit the label informa-
tion of the data. A simple strategy is, e.g., to select those
features that have a large separability index like Fisher
Score (Müller et al. (2004)). A more sophisticated strat-
egy is to use classifiers for feature selection, as, e.g., in
Müller et al. (2004); Lal et al. (2004); Blankertz et al.
(2006a); Tomioka and Müller (2010). For the same rea-
sons as laid out in Section 5.3 it is vital for a sound val-
idation that such feature selection methods are not per-
formed on the whole data. Again, cross-validation has
to be used to evaluate the entire model including feature
selection scheme, rather then just cross validating the
final step of classification. More specifically, feature se-
lection has to be performed within the cross-validation
loop on each training set.

5.5. Model Evaluation Allowing for Outlier Rejection

It requires a prudent approach to fairly evaluate the
performance of models which employ outlier rejection
schemes. While the rejection of outliers from the train-
ing data set is unproblematic, their exclusion from the
test set is rather not. Here, two issues have to be consid-
ered. (1) The rejection criterion must not use the labels

of the test data, and all parameters (such as thresholds)
have to be estimated on the training data. (2) For evalu-
ation, a metric has to be used, that takes into account the
rejection of trials. Obvioulsy, the rejection of test sam-
ples in a classification task means a reduced amount of
information compared to a method that obtains the same
classification accuarcy on all test samples. See Ferrez
and Millán (2005) for an application of a performance
measure based on Shannon’s information theory in the
context of rejected samples based on the detection of an
error-related brain response.

An outlier rejection method may use label infor-
mation (e.g., when class-conditional Malahanobis dis-
tances are used), but only training data may be used to
determine parameters of the method, as in the estima-
tion of the covariance matrix for the Malahanobis dis-
tance.

5.6. Loss Functions Allowing for Unbalanced Classes
The classification performance is always evaluated by

some loss function, see Section 4.1. Typical examples
are 0-1-loss (i.e., average number of misclassified sam-
ples) and area under the receiver operator characteris-
tic (ROC) curve (Fawcett (2006)). When using mis-
classification rate, it must be assured that the classes
have approximately the same number of samples. Oth-
erwise, a performance measure that respects the sizes of
the classes (or the priors one has about their frequency
in the application case) has to be employed. In odd-
ball paradigms, e.g., the task is to discriminate brain
responses to an attended rare stimulus from responses
to a frequent stimulus, a typical ratio of frequent-to-
rare stimuli is 85:15. In such a setting, an uninforma-
tive classifier which always predicts the majority class
would obtain an accuracy of 85%. Accordingly, a dif-
ferent loss functions needs to be employed. Denoting
the number of samples in class i by ni, the normalized
error can be calculated as weighted average, where er-
rors committed on samples of class i are weighted by
N/ni with N =

∑
k nk.

5.7. Regarding Nonstationarities
It is worth to note that any cross-validation scheme

implicitly relies on the assumption that the samples are
identically distributed. In the context of neurophysio-
logical data this transfers to an assumption of station-
arity. Unfortunately, nonstationarities are ubiquitous in
neuroimaging data (e.g. Shenoy et al. (2006)). Accord-
ingly, the characteristics of brain signals and, in partic-
ular, the feature distributions, often change slowly with
time. Therefore, a model fitted to data from the be-
ginning of an experiment may not generalize well on
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data towards the end of the experiment. This detri-
mental effect is obscured, when estimating the gener-
alization performance by cross validation, since train-
ing samples are drawn from the full time course of the
experiment. Accordingly, the classifier is, so to say,
prepared for the nonstationarities that occur within the
data. Therefore, it is advisable to compare the results
of cross-validation with a so called chronological val-
idation, in which the (chronologically) first half of the
data is used for training and the second half for testing.
If the data includes nonstationarities and the classifier
fails to be invariant against them, the chronological vali-
dation would predict a substantially worse performance
than cross-validation. This situation indicates that the
method will suffer from nonstationarity during online
operation. In general, one can avoid non-stationarity by
(a) constructing invariant features (e.g. Blankertz et al.
(2008a)), (b) tracking nonstationarity (e.g. Schlögl et al.
(2009); Vidaurre and Blankertz (2010); Vidaurre et al.
(2010)), (c) modeling nonstationarity and adapting CV
schemes (Sugiyama et al. (2007)), or by (d) projecting
to stationary subspaces (von Bünau et al. (2009)).

6. Conclusion

Decoding brain states is a difficult data analytic en-
deavor, e.g., due to the unfavorable signal to noise ratio,
the vast dimensionality of the data, the high trial-to-trial
variability etc. In the past, machine learning and pat-
tern recognition have provided significant contributions
to alleviate these issues and thus have had their share in
many of the recent exciting developments in the neuro-
sciences. In this work, we have introduced some of the
most common algorithmic concepts, first from a theo-
retical viewpoint and then from a practical neuroscience
data analyst’s perspective. Our main original contribu-
tion in this review is a clear account for the typical pit-
falls, see Table 1.

Due to space constraints, the level of mathematical
sophistication and the number of algorithms described
are limited. However, a detailed account was given for
the problems of hyper-parameter choice and model se-
lection, where a proper cross-validation procedure is es-
sential for obtaining realistic results that maintain their
validity out-of-sample. Moreover, it should be highly
emphasized that the proper inclusion of physiological a-
priori knowledge is helpful as it can provide the learning
machines with representations that are more useful for
prediction than if operating on raw data itself. We con-
sider such a close interdisciplinary interaction between
paradigm and computational model as essential.

Potential pitfall See

Preprocessing the data based on
global statistics of the entire data
(e.g., normalization using the
global mean and variance)

Section 5.3

Global rejection of artifacts or
outliers prior to the analysis (re-
sulting in a simplified test set)

Section 5.5

Global extraction or selection of
features (illegitimate use of infor-
mation about the test data)

Section 5.4

Simultaneously selecting model
parameters and estimating the
model performance by cross val-
idation on the same data (yield-
ing a too optimistic estimate of
the generalization error)

Section 5.1

Insufficient model evaluation for
paradigms with block design

Section 5.2

Neglecting unbalanced class fre-
quencies

Section 5.6

Disregarding effects of non-
stationarity

Section 5.7

Table 1: Hall of Pitfalls. The table presents a (incomplete) list of the
most prominent sources of error that one need to take into considera-
tion, when applying machine learning methods to brain imaging data.
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We would like to end by adding the remark that an un-
foreseen progress in algorithmic development has been
caused by the availability of high quality data with a
clear task description. This has allowed a number of
interested non-(computational) neuroscientists to study
experimental data even without access to expensive
measurement technology Sajda et al. (2003); Blankertz
et al. (2004, 2006b). The authors express their hope that
this development will extend also beyond EEG data.
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Mika, S., Rätsch, G., Müller, K.-R., 2001. A mathematical program-
ming approach to the Kernel Fisher algorithm. In: Leen, T., Diet-
terich, T., Tresp, V. (Eds.), Advances in Neural Information Pro-
cessing Systems. Vol. 13. MIT Press, pp. 591–597.
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