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Brains are able to process environmental stimuli
in a ’single-trial’ mode. Accordingly, human corti-
cal neurophysiology should be approached describing
’single-trial’ behavior as well.
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Abstract
In this thesis, inspired by the development of the Brain-computer-interface (BCI) tech-
nology, we present novel methods for the analysis of macroscopically recorded brain
signals. Here the focus is put on improved feature extraction methods, the detection of
mental states and the analysis of variability of brain responses.

Conditional event-related (de-)synchronization The fluctuation of signal
power in a narrow band induced by an event is conventionally termed event-related
(de-)synchronization and is quantified as the relative deviation from the mean baseline
activity. We extend the ERD terminology with respect to a generalized reference. To
this end, we oppose the time course of the event-related activity against those obtained
from single trials without specific stimulus processing. From this generalized approach
we derive a method to determine the dependencies of the ERD response on initial
cortical states. A comparative study of surrogate and real ERD data validates this
approach.

Spatio–spectral filters The common-spatial-pattern algorithm (CSP) determines
optimally discriminative spatial filters from multivariate broad-band signals. We extend
the conventional algorithm such that it additionally obtains simple frequency filters.
This enables adaptation to the individual characteristics of the power spectrum and
thus improves feature extraction. An empirical comparison with the conventional CSP
method reveals the advantages of our approach in the context of the classification of
imaginary unilateral hand movements.

Extraction of event-related potentials (ERP) Independent component analysis
(ICA) is a tool for statistical data analysis that is able to linearly decompose multivariate
signals into their underlying source components. We present an ICA method that uses
prior knowledge about the phase-locked property of ERPs for their improved extraction
from single trial EEG. The application on artificially generated and real world data
validates this approach in terms of an improved signal-to-noise ratio of the extracted
ERPs.

Adaptive feature combination across time Lateralized µ-rhythm ERD and
lateralized movement-related potentials are the most commonly used discriminative
features for the classification of imaginary hand movements. In the context of real time
classification we present a method that efficiently combines these temporally differently
accentuated features. To this end, we first train weak classifiers for each time instance
and each feature separately. Subsequently we combine these weak classifiers in a strictly
causal, probabilistic manner. The effectiveness of this approach was proven by its
successful application to data from the international BCI competitions in 2003 and
2005.
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Zusammenfassung
Inspiriert, nicht zuletzt durch die Erforschung der Brain-computer-interface (BCI)
Technologie präsentieren wir in dieser Dissertation neue Methoden zur Analyse
makroskopisch gemessener Hirnsignale. Der Fokus liegt hierbei auf Methoden zur
verbesserten Merkmalsextraktion, der Detektion mentaler Zustände und der Analyse
der Variabilität von Reizantworten.

Bedingte ereigniskorrelierte (De-)Synchronization Die durch ein Ereignis in-
duzierte Leistungsschwankung in einem Frequenzband wird konventionell als ERD be-
zeichnet und als relative Veränderung gegenüber der mittleren Grundaktivität gemessen.
Wir erweitern den ERD-Begriff in Bezug auf eine verallgemeinerte Referenz. Dafür kon-
trastieren wir den zeitlichen Verlauf ereigniskorrelierter Aktivität mit dem gemessener
single trials ohne spezifische Reizverarbeitung. Aus diesem verallgemeinerten Ansatz
leiten wir eine Methode zur Bestimmung der Abhängigkeit der ERD-Antwort von ini-
tialen kortikalen Zuständen ab. Vergleichende Untersuchungen auf künstlichen und
realen Daten validieren diesen Ansatz.

Räumlich-spektrale Filter Der Common-Spatial-Pattern Algorithmus (CSP)
bestimmt für multivariate breitbandige Signale diskriminative räumliche Filter. Wir
erweitern den klassischen Ansatz, so dass zusätzlich eine Optimierung einfacher
Frequenzfilter erfolgt. Dies ermöglicht eine Adaptation an das individuelle EEG-
Frequenzspektrums und somit eine verbesserte Merkmalsextraktion. Ein empirischer
Vergleich mit dem klassischen CSP Algorithmus belegt die Vorteile unseres Verfahrens
im Kontext der Klassifikation vorgestellter unilateraler Handbewegungen.

Extraktion ereigniskorrelierter Potenziale (EKP) Independent component anal-
ysis (ICA) ist ein Werkzeug der statistischen Datenanalyse und Signalverarbeitung,
welches multivariate Signale linear in ihre Quellkomponenten zerlegen kann. Wir
präsentieren eine ICA Methode zur Extraktion von single trial EKP, welche unter Aus-
nutzung der Phasengebundenheit des EKP verbesserte räumliche Filter bestimmt. Sim-
ulationen mit künstlichen und echten Daten validieren diesen Ansatz in Bezug auf ein
verbessertes SNR der extrahierten EKP.

Zeitlich adaptive Merkmalskombination Lateralisierte ERD des µ-Rhythmus
und bewegungskorrelierte Potenziale sind die gebräuchlichsten diskriminativen Merk-
male zur Klassifikation vorgestellter Handbewegungen. Wir präsentieren eine Methode
diese zeitlich unterschiedlich ausgeprägten Merkmale für die Echtzeit-Klassifikation zu
verwenden. Hierzu trainieren wir zunächst separat zu jedem Zeitpunkt einfache Klas-
sifikatoren für jedes Merkmal und kombinieren diese anschließend adaptive in einem
strikt kausalen, probabilistischen Ansatz. Die Leistungsfähigkeit dieses Algorithmus
wurde durch seine erfolgreiche Anwendung in den BCI-Wettbewerbe 2003 und 2005 zur
Klassifikation vorgestellter unilateraler Handbewegungen nachgewiesen.
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Notation

Symbol Explanation

(Ω,F , P ) Probability space, equipped with a σ-algebra and a probability measure
ω Elementary event in Ω

P(Ω) Power set of Ω
(R,B) Set of real numbers, equipped with the Borel σ-algebra

Z Set of integer numbers
X,Y, Z,C Random variables

X,Y,O Stochastic processes
fX(x) Probability density function of the random variable X

N (µ,Σ) Gaussian distribution with mean µ and covariance matrix Σ
U[a,b] Uniform distribution on the interval [a, b]
E[X] Expectation value of the random variable X

E[X |Z] Conditional expectation of X given the random variable Z
D Set of observations
xk kth realizations of the random variable X
Xk· kth realizations (path) of the stochastic processes X
T Temporal index set of a stochastic process
|T | Number of elements of the set T
Φ Kernel function
h Bandwidth parameter of a kernel function

A,A> Generic matrix and its transposed
w Spatial filter
b Impulse response filter
λ Regularization parameter

diag(x) Diagonal matrix with the elements (xi)
In (n× n)-Identity matrix
τ Delay parameter
δτ Delay operator
∗ Convolution operator

1B Indicator function on the set B
‖·‖p p-norm
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Preamble

Understanding the brain is a challenge that is attracting scientist from various dis-

ciplines and defines the aim for the interdisciplinary field of computational neuroscience

that serves as the primary theoretical method for investigating the function and mech-

anism of the nervous system. The interest in modelling single trial behavior of the

human brain has rapidly grown in the past decades. Nowadays the scope of modern

neuroscience has been widened to decoding single trial encephalogram data with respect

to the identification of mental states or human intentions. This branch of research is

strongly influenced by the development of an effective communication interface con-

necting the human brain and a computer [97], which finally also attracted the machine

learning community to the field.

Accordingly, this thesis has a dual scope and therefore addresses an interdisciplinary

audience: On the one hand we are going to strive for robust feature extraction methods

that are particularly intended for enhancing the signal-to-noise ratio of single trial brain

responses prior to their analysis. Here we will primarily concentrate on improving the

classification of single trial encephalogram data in the context of BCI applications. This

part will be of interest to practitioners and applied scientists. One the other hand parts

of this thesis will concentrate on methods for variability analyses of brain responses

to identical stimuli. More precisely, we will introduce an elaborate framework that

allows for the variability analysis of spectral perturbations in dependence on internal

or external factors. This part therefore aims for a fundamental issues of computational

neuroscience and thus primarily addresses pure neuroscientists. Nevertheless, variability

of brain responses has a direct impact on the design of classification models, e.g., for

detecting mental states, consequently this part of the thesis should be of interest to

applied research as well.
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2 Preamble

However, this thesis is the work of a mathematician who decided to do applied

neuroscience. Hence it attempts to strike a balance between mathematical stringency

and practical clearness, sufficient to annoy many readers. However, I tried to split the

nuisance equally.

Roadmap

Chapter 1. The first chapter gives a brief introduction to encephalogram data, includ-

ing acquisition techniques and the neurophysiological background. Moreover, we present

the conventional concept of quantifying event-related (de-)synchronization (ERD/ERS)

and the fundamentals about the primary area of application, i.e., brain-computer inter-

facing (BCI).

Chapter 2. The second chapter introduces the necessary mathematical preliminaries.

Basically it recalls the definitions of a random variable and a stochastic process and

elaborates on the concept of conditional expectation. Moreover, we introduce kernel

density estimators and derives an empirical estimator for conditional expectation. At

the end of this chapter a few summarizing examples are given.

Chapter 3. In the third chapter we derive a novel framework for the analysis of

ERD. To this end we first generalize the conventional framework with respect to the

commonly used reference condition. Secondly, based on the generalized model we derive

the novel framework of conditional ERD that allows for the analysis of dependencies of

the ERD characteristics on internal or external factors.

Chapter 4. The fourth chapter is concerned with an improved feature extraction

method in the context of BCI. Here we present a new algorithm, the so-called Common

Spatio-Spectral Pattern (CSSP) algorithm that extends the well known common-spatial-

pattern (CSP) algorithm. Additionally to optimal discriminative spatial filters derived

by CSP, the CSSP method determines simple frequency filters which enable the adap-

tation to the individual characteristics of the signals, i.e., to their individual power

spectra. A comprehensive comparison of various methods on a broad set of BCI exper-

iments proves the efficiency of the proposed method for the classification of imaginary

hand movements.

Chapter 5. In the fifth chapter we introduce an approach for the extraction of
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event-related potentials (ERP) from single trial data. To this end we will particularly

incorporate prior knowledge about the phase-locked nature of ERPs into a Independent

Component Analysis framework. The application on artificially generated and real

world data validate this approach in terms of an improved signal-to-noise ratio of the

recovered ERPs.

Chapter 6. In the sixth and last chapter we report on our winning algorithm that

has been successfully applied to data from the international BCI competitions in 2003

and 2005. In particular we present a Bayesian classification framework which combines

sequences of features efficiently across time.

A brief discussion concludes this thesis.
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Chapter 1

Introduction

At the beginning of the last century Hans Berger detected the human electroen-

cephalogram (EEG). His most outstanding finding was the existence of prominent oscil-

lations in the frequency range between 8 and 12Hz, which he called alpha wave rhythm.

He also studied and described for the first time its suppression (substitution by the faster

beta waves) when the subject opens its eyes (the so-called alpha blockade). Since this

early work, the processing of external or internal stimuli and its accompanying modula-

tion of ongoing neurocortical activity has been studied extensively. These investigations

were mostly focused on the analysis of induced neural activity, such as evoked potentials

and event-related spectral perturbations. However, evoked brain responses are typically

weaker than the accompanying ongoing neural activity. Moreover, recordings of brain

activity are usually contaminated with artifacts that disadvantageously exceed the sig-

nals of neural origin by an order of magnitude, and often reside in the same spectral,

temporal or spatial domain as the evoked components. Consequently, raw recordings

of brain activity just provide evoked single trial responses at a low signal-to-noise ratio

(SNR) and mostly limited neurophysiological investigations to the analysis of averaged

responses to repeated identical stimuli. Averaging responses to several repetitions of

a certain stimulus improves the signal-to-noise ratio of the evoked responses, but also

coincides with masking the variability of the single trial responses and hence inhibits the

understanding of human cortical neurophysiology on the basis of single trial behavior.

To facilitate the analysis of single trial responses, this thesis presents novel concepts

for their analysis, as well as novel feature extraction methods to enhance their SNR.

5



6 Chapter 1: Introduction

1.1 Data acquisition

There exists a variety of different methods to measure brain activity. The question

of which recording technique appears most appropriate in order to investigate a specific

neurophysiological issue, depends on several factors. All available techniques focus on

specific physical or physiological correlates of neural activity. At a first distinction level,

these methods divide into direct and indirect measurements. Here, the first group com-

prises recordings of the electromagnetic field, while the indirect measurements basically

focus on the detection of changes in the blood flow and the blood oxygenation, which

are closely linked to neural activity. Changes in the electrical or magnetic field can be

measured in the range of milliseconds. On the opposite the hemodynamic response rises

to a peak over 4-5 seconds, before falling back to baseline. Consequently the indirect

measurements of vascular activity, for instance by functional magnet resonance imaging

(fMRI), are hampered by a low temporal resolution that typically lies in the range of

seconds. Another differentiation is given by the degree of invasiveness of the different

measurements. Here the available techniques to access the neural activity can be or-

dered, starting at the most invasive methods where electrodes are directly implanted

within the brain, going on to methods that place electrodes subdurally (below the skull

but still above the brain) and finally to non-invasive methods, such as the EEG or

magnetoencephalogram (MEG) that measure neural activity from a macroscopic per-

spective. Generally speaking, the quality of the obtained signals improves along with a

higher degree of invasiveness. However, this comes at the cost of medical risk for the

patient, hence it is impractical to use invasive techniques on healthy subjects. Another

important difference is given by the spatial resolution of the individual methods. On the

one hand there are multielectrode arrays, which can be used to record action potentials

of single neurons in the cerebral cortex. In contrast a moderately good spatial resolu-

tion is provided by the fMRI, where the voxels in the resulting image typically represent

cubes of tissue about 2-4 millimeters on each side, while the spatial resolution of the

EEG and the MEG are worst. Here the resolution directly depends on the number and

the placement of the sensors.
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1.1.1 Electroencephalogram

Throughout this thesis we will restrict ourselves to EEG recordings. However,

as the recorded signals of EEG and MEG are quite similar with respect to temporal

and spatial resolution, most algorithms developed for analyzing EEG signals can be

transferred smoothly to MEG data.

The EEG is an extra-cranial noninvasive recording technique that is sensitive to

changes in the electrical fields generated by neural activity. It was first discovered by

Hans Berger in 1924 and published in 1929 [6]. More precisely, EEG signals are electrical

potentials that are determined at particular positions on the scalp relative to one or

more reference electrodes. Often the electrode which serves as reference is placed at the

earlobe or at the bridge of the nose. Commonly the EEG is simultaneously recorded

at many locations by a set of electrodes placed at different positions on the scalp.

Ordinarily the term channel is used to refer to a single recording position. The distance

between neighboring electrodes usually is in the range of one to a few centimeters.

The currently available EEG caps provide up to 256 channels. An exemplary montage

scheme of a 128 channel EEG recording system using an electrode placed on the nose

as reference is shown in Fig. 1.1. The position of electrodes and the nomenclature of

the corresponding channels follow international standards [16].

As the recorded signals are in the order of ±100µV an amplifier enlarges the signal

range to, e.g., ±5 Volt before it is sampled for the computer. Typical sampling rates for

EEG are in the range of 100Hz and up to 1000 Hz. This is quite sufficient to track the

typical EEG patterns that are reported to have frequency components approximately

below 80 Hz. Only occasionally higher sampling rates up to 5000 Hz are used, for in-

stance to study very high frequency responses at approximately 600Hz accompanying

early evoked somatosensory potentials [4].

As previously stated, EEG recordings have a very good temporal resolution but suf-

fer from spatial insufficiencies that are mostly caused by the scull bone, the meninges

and the intra-cerebral liquor. These layers act as a spatial low-pass filter. Thus spatial

resolution is not necessarily limited by the distance between electrodes (usually approx-

imately 2cm) but additionally by this smearing effect. The EEG as well as any other

data acquisition method, records not only the signal of interest, but also a variety of

specific artifacts, which are signal components picked up by the sensors that are not
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Figure 1.1: Exemplary EEG montage scheme indicating the position of elec-
trodes and nomenclature of the corresponding channels according to interna-
tional standards. This particular montage uses a few selected electrodes for
the additional acquisition of electro-oculogram (EOG) and electro-myogram (EMG).
[Figure taken from [44] with the consent of the author]

caused by neural activity. Typical artifacts in EEG recordings comprise:

• Muscle activity: This class of artifacts is caused by e.g., clenching jaws, facial and

neck muscles. They can easily be recognized and at least partially filtered due to

prominent frequency components above 50 Hz and high amplitudes of up to a few

hundred µV. To ensure accuracy the subjects are instructed to avoid any kind of

movements during the recordings.

• Movements of the eyeball: The eye movement of a healthy subject typically ex-

hibit saccades. Since each eyeball represents a strong dipole at a fixed location,

movements of the eyes typically result in a rotation of the corresponding electric
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fields, which causes large artifacts affecting all electrodes. To avoid the masking of

neural signals by that kind of artifact, the subjects are asked to keep a sustained

gaze at a marked spot during the course of the experiment.

• Eye blinks: In EEG recordings an eye blink is represented as a peak with an higher

signal amplitude than the neural activity. Moreover, eye blinks have a fixed scalp

pattern that exhibits a distinct gradient pointing from the occipital towards the

frontal areas. Thus their impact can be reduced by appropriate spatial filters.

Additionally, the subjects are instructed to avoid or postpone eye blinks until the

occurrence of an explicitly reserved time interval.

• External strays: This class of artifacts is always present in unshielded environ-

ments. The most prominent jamming sources are nearby electrical devices, such

as power supplies, rectifiers, electric bulbs, etc. that are basically reflected by a

prominent 50/60 Hz (and its harmonics) component.

The influence of most artifacts can be removed or at least reduced either by proper

instruction of the subjects, or a posteriori by appropriately (spectrally and spatially)

filtering the recorded signals.

1.2 Neurophysiological background

Throughout this thesis we study brain responses during the processing of either

sensory information or motor commands. The processing of such stimuli mainly causes

responses in the somatosensory and the motor cortex, respectively. Consequently we

restrict our analysis to neural activity originating from these locations. Both cortical

areas reside in the central (perirolandic) region and are separated by the central sulcus.

In particular the primary motor area occupies the precentral gyrus, while the primary

somesthetic area occupies the postcentral gyrus. To give a rough overview, Fig. 1.2

depicts a coarse topography of the human brain.

Beside a differently distinct spatial representation, the human perirolandic sen-

sorimotor cortices show rhythmic macroscopic EEG oscillations (µ-rhythm) [32], with

spectral peak energies around 10 Hz (localised predominantly over the postcentral so-

matosensory cortex) and 20 Hz (over the precentral motor cortex). These oscillations are
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Figure 1.2: Coarse overview about the topography of some important cortical areas in
the human brain. [taken from [44] with the consent of the author]

generated by large populations of neurons in the respective cortex that fire in rhythmi-

cal synchrony. However, the macroscopically observed oscillations exhibit fast inherent

fluctuations as they are limited to brief periods (bursts) of 0.5−2 s duration [71], which

appear to occur in the absence of processing sensory information or motor commands.

Hence the µ-rhythm was originally conceived to reflect a cortical idling or ”nil-work”

state [81]. In contrast recent studies argue for a relationship between brain rhythms and

higher cognitive functions, reporting short- and long-lasting suppression of ongoing ac-

tivity with cognitive processing, but a precise relationship is not yet clearly established.

For an elaborated review of the functional significance especially of µ-rhythm see [82].

However, modulations of the µ-rhythm have been reported for different physiological

manipulations, e.g., by motor activity, both actual and imagined [37, 77, 88], as well

as by somatosensory stimulation [72]. As the attenuation effect of rhythmic activity is

due to a loss of synchrony in the neural population, it is termed event-related desyn-

chronization (ERD) [78], while the dual effect of enhanced rhythmic activity is called

event-related synchronization (ERS).

1.3 Event-related (de-)synchronization

The power spectra of human brain activity measured by EEG or MEG exhibit a

characteristic 1/f shape, with some intermediate spectral peaks. The 1/f part of the

signal is usually considered as noise or ongoing background activity, and is basically
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generated by the predominant amount of neurons firing in an asynchronous fashion.

On the opposite a peak in the power spectrum indicates the presence of a pronounced

rhythmicity that is caused by a neural oscillator. Such an oscillator is composed of

neurons from a certain cortical area, where these neuron fire in synchrony. If a stimulus

is processed by that cortical area, then a subset of these neurons is recruited for this

task and is thereby detached from synchronously firing. It is the goal of ERD analysis

to quantitatively determine the amount of disturbance of such a neural oscillator.

To this end, ERD is conventionally defined as the relative difference in signal power

of a certain frequency band, between two conditions, i.e, a reference period and an

immediate event-related period. Hence ERD and ERS describe the power modulation

of the ongoing activity, induced by a certain stimulus or event. Expressed as a formula,

let (Pt)t∈T denote the time course of the event-related power in a narrow frequency band

covering the spectral peak and let Pref denote the power at the reference condition, then

ERD is quantified as the relative difference in power between both conditions, i.e.,

ERD[t] :=
Pt
Pref

− 1. (1.1)

By convention an ERD corresponds to a decrease in power, while ERS refers to an

increase in signal power [77]. Up to now there have been basically two very similar

methods for estimating the ERD, i.e., the power method [77] and the intertrial variance

method [40]. A schematic representation of both approaches is depicted in Fig. 1.3.

Both methods express ERD as the change of the averaged (expected) rhythmic activity

relative to an (averaged) reference activity of the unperturbed dynamic. The essential

difference between both techniques lies in the fact that the intertrial variance method

compensates for the amount of power modulation, which is introduced by the phase-

locked components. To this end it removes the averaged response from the narrow

bandpass filtered signal.

Notable, in this context, the term ERD is only meaningful if the baseline measured

some seconds before the event represents a rhythmicity seen as a clear peak in the power

spectrum. Similarly, the term ERS only has a meaning if the event results in an ap-

pearance of a rhythmic component and consequently in a spectral peak that was initially

not detectable [78].

However, the conventional concept of ERD and ERS just describe the relative dif-

ference between the averaged power of the unperturbed and the perturbed oscillatory
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Figure 1.3: The two conventional procedures for estimating the relative ERD [40]. The
left path in the diagram illustrates the power method while the right path explains the
inter-trial variance method which adjusts for the averaged evoked potential.

.

system and lacks of an appropriate single trial model, which allows for studying depen-

dencies on initial mental or cortical states.

Moreover, the ERD estimator is affected by additive noise and therefore tends to

underestimate the genuine ERD. To give an illustrative example let us consider the sup-

pression of µ-rhythmic activity caused by processing sensory stimuli. Suppose further

that the narrow band signal comprises the superposition of two oscillatory processes,

i.e., the µ-process itself and the ongoing background activity. Let us intuitively denote

the power of the individual signals by µ2
t and B2

t , respectively (see Fig. 1.4). Assuming

mutually independent phasing of both processes it follows that the expected instan-

taneous band power of the composed signal equals the sum of the individual signals
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Figure 1.4: Power spectrum of an EEG signal obtained at electrode “CP3” over the
left somatosensory cortex.

powers, i.e., Pt = µ2
t +B2

t . Consequently in the case of an exclusive perturbation of the

µ-rhythm (1.1) yields:

∣∣ERD[t]
∣∣ =

∣∣∣∣∣
((
µ2
t +B2

t

)
− µ2

ref +B2
ref

)
µ2

ref +B2
ref

∣∣∣∣∣ (1.2)

'
∣∣∣∣ µ2

t − µ2
ref

µ2
ref +B2

ref

∣∣∣∣ (1.3)

≤
∣∣∣∣µ2

t − µ2
ref

µ2
ref

∣∣∣∣ = ∣∣∣∣ µ2
t

µ2
ref

− 1
∣∣∣∣ . (1.4)

Note that in (1.3) we explicitly used the assumption that the power of the background

activity is approximately equivalent at both conditions, i.e., Bt ' Bref. This assumption

appears to be plausible, as the observed 1/f shape of the power spectrum does not

exhibit any significant change during stimulus processing at other frequencies. However,

the final term in (1.3) corresponds to the exclusive, genuine ERD of the µ-rhythm,

which is clearly underestimated by the conventional ERD measure. Moreover, adding

further task-unrelated rhythmic activity to the system, e.g., occipital α-oscillations,

the absolute value of the estimated µ-rhythm ERD will continuously decrease. This

preliminary thought emphasizes the importance of a preprocessing of the data, e.g, by

advanced feature extraction method that spatially and spectrally filter the signals in

order to enhance the SNR of the µ-rhythm.
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1.4 Brain computer interfacing

The ambitious goal of brain computer interface (BCI) research is to develop a novel

augmented communication system that translates user intentions – reflected by suitable

brain signals – into control signals [97, 104]. Such a signal transduction pathway may

give disabled people direct control over neuro-prostheses or computer applications as

tools for communicating solely by their intentions. In practice the user is behaving ac-

cording to a well-defined paradigm (e.g., movement imagination) that allows for effective

discrimination between different brain states which are used to encode information.

Currently there are plenty of different approaches and realizations of a BCI system

and the number is continuously growing. In principle they can be grouped in several

ways. With respect to the recording technique we distinguish between invasive [33, 45,

50, 51, 94] and non-invasive BCIs [7, 8, 64, 58, 80]. A further distinction is given by

either using the training capabilities of the human [7, 105] or those of the computer

[8, 64, 76]. Finally there are different ways to provoke heterogeneous brain states. Some

BCIs are based on externally evoked potentials [17, 62], while others uses the changes in

the ongoing dynamic which accompany human intentions [7, 8, 64, 58, 80]. In the latter

case, many approaches uses imaginary movements of the foot and the left and the right

hand to provoke different states. In order to distinguish between the individual limbs

they exploit differently lateralized µ-rhythm ERD and ERS effects that accompany the

imaginary movements.

From the signal processing perspective a BCI requires the definition of appropri-

ate features that can be effectively translated into a control signal, either by simple

threshold criteria (cf. [104]), or by means of machine learning. For the latter, the task

is to infer a possibly nonlinear discriminating function that distinguishes the different

states [9, 65, 74, 75]. However, the accuracy of any BCI system is linked to the achiev-

able SNR of the single trial features that represent the different states. Moreover, as

a mandatory requirement for a BCI, it has to operate in an online fashion, i.e., it has

to instantaneously process the recorded neurocortical activity, which is in fact the anal-

ysis of single trial data. Consequently the appropriateness of models describing the

single trial behavior also determines the performance of a BCI. Accordingly, advances

in BCI research are currently characterized by improvements in feature extraction and

refinements to the single trial models [24].
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Preliminaries

In this chapter we will introduce the necessary fundamentals of the theory of proba-

bilities and estimation along with their notations1. We will start with the mathematical

definition of a random variable and will introduce the concept of random variables

sharing a common probability space. Based on that, we will extend the definition of a

random variable to those of a stochastic process, as a family of random variables defined

on a common probability space. The main part of this chapter will elaborate on the

introduction of conditional expectation and its estimation. Usually conditional expec-

tation is used in the context of regression or classification with the goal of explicitly

modelling dependencies between random variables. In chapter 3 we will exploit the con-

cept of conditional expectation to analyze the dependencies of a dynamic system, such

as ERD, on environmental (initial) states/conditions. To this end we will extend the

definition of conditional expectation from random variables to stochastic processes. The

chapter will conclude with two examples which estimate the conditional expectation of

a random variable and of a stochastic process.

2.1 Random variables and stochastic processes

In the following, let (Ω,F , P ) always denote a probability space, equipped with a

probability measure P that maps each set of the σ-algebra F over Ω to a value in [0, 1].

1Note, it is not within the scope of this chapter to give a complete introduction into the field of
probability theory. For this purpose, we would like to refer to an introductory textbook for further
reading, e.g., [27].

15
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Definition 2.1.1 (Random Variable). Let (Ω′,F ′) be an arbitrary measure space,

where random variable X is a function X : Ω → Ω′, such that for every F ′ ∈ F ′ the

pre-image X−1(F ′) is an element of F , i.e., any F−F ′ measurable function defines a

random variable on Ω′.

In case of (Ω′,F ′) equals (R,B) or (Rd,Bd), we briefly refer to the random variable

as a (d-dimensional) real-valued random variable, where B is the Borel σ-algebra, i.e.,

the σ-algebra that contains all open sets.

Remark 2.1.1. In the setting of the previous definition PX−1 defines a probability

measure on (Ω′,F ′) and thereby completing the measure space to a probability space

(Ω′,F ′, PX−1).

In order to study dependencies between random variables or to introduce the defi-

nition of a stochastic process, it is necessary to understand the basic concept of random

variables sharing a common probability space. This can be easily understood from an

illustrative example of two random variables, for instance two dice. Thus let’s define a

common probability space as Ω := {(i, j) : i, j ∈ 1, . . . , 6}, equipped with the σ-algebra

F :=P(Ω) along with an arbitrary probability measure P . (Here P(Ω) denotes the

power set of Ω.) Furthermore we assume two identical measure spaces for each die,

i.e., Ω1 = Ω2 := {1, . . . , 6}, equipped with F1 = F2 :=P(Ω1), see Fig. 2.1. Based on this

particular setting, we define two random variables X and Y as the canonical projections

of an element ω = (i, j) ∈ Ω onto its first and second component respectively. Note that

each elementary event ω ∈ Ω simultaneously determines both random variables, i.e.,

X(ω) and Y (ω). According to the conventional definition of statistical independence,

(Ω,F , P )

X

}}zz
zz

zz
zz

zz
zz

z

Y

!!C
CC

CC
CC

CC
CC

CC

(Ω1,F1, PX−1) (Ω2,F2, PY −1)

Figure 2.1: Schematic of two random variables X and Y , sharing a common probability
space (Ω,F , P ).

the two random variables X and Y are mutually independent, if and only if for all

F1 ∈ F1 and F2 ∈ F2

PX−1(F1) · PY −1(F2) = P
(
X−1(F1) ∩ Y −1(F2)

)
. (2.1)
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Remark 2.1.2. We will use FX ⊆ F as the smallest σ-algebra, for which X is measurable,

i.e., FX contains all sets of the form X−1(F ), F ∈ F1 and FY correspondingly. Then

the statistical independence of the two random variables can by equivalently expressed

as the independence of the two σ-algebras FX and FY over Ω, i.e., for all F1 ∈ FX and

F2 ∈ FY the probability of the intersection P (F1 ∩ F2) is equal to the product of the

probability of the individual events P (F1) · P (F2).

However, the concept of random variables sharing a common probability space can

be easily extended to an infinite number of random variables, which directly leads to

the definition of a stochastic process.

Definition 2.1.2 (Stochastic Process). For a given index set T , a stochastic process

X is a family of d−dimensional real valued random variables (Xt)t∈T defined on a

common probability space (Ω,F , P ), such that:

X : Ω× T −→
(
Rd,Bd

)
, (2.2)

(ω, t) 7−→ Xt(ω). (2.3)

A realization X·(ω) := (Xt(ω))t∈T ∈ Rd×T is called a path of the stochastic process.

(Ω,F , P )

Xt1

uukkkkkkkkkkkkkkkkkkkkkkk

Xt2

{{ww
ww

ww
ww

ww
ww

ww

...

}
X=(Xt)t∈T #+NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

(Rd,Bd) (Rd,Bd) (Rd,Bd)

Remark 2.1.3. From a given stochastic process on Rd one can easily derive a new stochas-

tic process on Rm by linear transformation with a matrix A ∈ Rm×d. The spatially

filtered version YA :=AX : (ω, t) 7→ AXt(ω) defines a family of m-dimensional random

variables (Yt)t∈T and hence a stochastic process. In a similar manner the path-wise tem-

porally filtered version Yb := X ∗ b : ω 7→ X·(ω) ∗ b using an (in-)finite impulse response

filter b gives rise to another stochastic process. Note that the stochastic processes X,YA,

and Yb are defined within a common probability space (Ω,F , P ) (Fig. 2.2).

2.2 Conditional expectations

In order to introduce the concept of conditional expectation, let us consider the ex-

ample of two random variables X and Y , sharing a common probability space (Ω,F , P ).



18 Chapter 2: Preliminaries

(Ω,F , P )

YA=AX
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(Rm,Bm) (Rd,Bd) (Rd,Bd)

Figure 2.2: Schematic of three stochastic processes sharing a common probability
space. The processes YA and Yb are given as filtered versions of the process X.

More precisely, let X be Ω′-valued and Y be an real valued integrable random variable

Y : Ω → R, see Fig. 2.3 for a schematic. Again, using the same formalism as before,

(Ω,F , P )

X

}}{{
{{

{{
{{

{{
{{

{

Y

  A
AA

AA
AA

AA
AA

A

(Ω′,F ′, PX−1) (R,B, PY −1)

Figure 2.3: Schematic of two random variables X and Y , sharing a common probability
space (Ω,F , P ).

PY −1 defines a probability measure on R. According to the conventional definition, the

expected value of Y is given as E[Y ] :=
∫
Ω Y (ω) dP (ω) =

∫
R y dPY

−1.

Definition 2.2.1 (Conditional Expectation). Let FX ⊆ F denote the smallest

σ-algebra, for which X is measurable, i.e., FX contains all sets of the form X−1(F ), F ∈
F . Then a version of the conditional expectation of Y given X is an integrable random

variable E[Y |X] : Ω → R, such that

i) E[Y |X] is an FX−B measurable function (2.4)

ii)
∫
B

E[Y |X] (ω) dP (ω) =
∫
B
Y (ω) dP (ω), ∀B ∈ FX . (2.5)

Example 2.2.1. To quote a simple example, let us consider a fair die, i.e.,

Ω = {1, 2, 3, 4, 5, 6}

F = P (Ω) = 2Ω

P (ω) =
1
6
, ∀ω ∈ Ω. (2.6)

Then we define a random variable Y as the number on the die, i.e., Y (ω) = ω,

and furthermore a random variable X : Ω → {0, 1}, on which we will condition,
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as the function that assigns 1 to all even ω and 0 to all odd ω. It follows, that

FX = {∅, {1, 3, 5}, {2, 4, 6},Ω} and P (F ) = 1
2 for any non-trivial set F of FX . Putting

everything together we finally obtain

E[Y |X] (ω) =


1
1
2

·
(

1
6 + 3

6 + 5
6

)
=
(

1
3 + 3

3 + 5
3

)
= 3 ω odd,

1
1
2

·
(

2
6 + 4

6 + 6
6

)
=
(

2
3 + 4

3 + 6
3

)
= 4 ω even.

(2.7)

Thus E[Y |X] : Ω → R is a random variable, that takes the value “3” on all odd ω and

the value “4” for even ω respectively. One can easily prove that the integrals of Y and

E[Y |X] over any measurable set F ∈ FX are equivalent. Notably, integrating E[Y |X]

over the entire space Ω gives 3
2 + 4

2 = 3.5 that is equivalent to E[Y ].

To get some intuition as to what conditional expectation is all about, you may

interpret it as a random variable that resembles a “less random” version of Y , where

randomness of Y has been “reduced” by the amount of information that is provided

by the observation of the random variable X. Metaphorically speaking, given a certain

knowledge about X, e.g., X ∈ F , we can restrict the feasible set in Ω to X−1(F ) ⊆ Ω.

Along with this additional information about ω our expectation of the random variable

Y changes, and is finally expressed by the conditional expectation. In the context of

the example 2.2.1 this corresponds to: given the partial observation X(ω) =”odd”, we

conclude that ω ∈ {1, 3, 5}, thus our expectation about Y changes “3”.

Proposition 2.2.2 (Basic Properties). Let X,Y and Z be random variables, defined

on a common probability space (Ω,F , P ), with Y and Z integrable, i.e., the integral of

Y and Z exist. Furthermore, let FX ⊆ F be the smallest σ-algebra, for which X is

measurable. Then the following equations hold P almost surely:

a) E[aY + bZ |X] = aE[Y |X] + bE[Z |X] , for a, b ∈ R, (2.8)

b) E[αY |X] = αE[Y |X] , for any FX-measurable function α (2.9)

c) E[ E[Y |X]] = E[Y ] (2.10)

d) E[Y |X] = E[Y ] , for independent X,Y . (2.11)

Additional properties of the conditional expectation and detailed proofs, e.g., of

(2.9) can be found in [27].

Remark 2.2.2. Property (2.8) just states that the conditional expectation is linear.

The second property (2.9) extends the linearity to FX−measurable functions. Since
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the integrals of Y and E[Y |X] are equal for all measurable sets, and the space Ω is

measurable per default, property (2.10) is a direct corollary from the definition of the

conditional expectation. Notably, property (2.11) says that conditioning on independent

information does not allow the inference of further knowledge about the expectation of

Y . Consequently the conditional expectation is a constant function, i.e., E[Y |X] (ω) ≡
E[Y ] ,∀ω ∈ Ω.

Proposition 2.2.3. There is one and only one integrable function ψ : Ω′ → R, such

that E[Y |X] = ψ ◦X and for any measurable subset F ′ ∈ F ′:∫
F ′
ψ dPX−1 =

∫
X−1(F ′)

ψ ◦X dP =
∫
X−1(F ′)

E[Y |X] dP =
∫
X−1(F ′)

Y (ω) dP (ω). (2.12)

The proof of this proposition is a direct application of the factorization theorem

(for a proof of 2.2.3 and the factorization theorem we refer to [27]). However, Fig. 2.4

summarizes the concept of conditional expectation in terms of a commutative diagram.

(Ω,FX, P )

X

����
��

��
��

��
�

E[Y |X]

��9
99

99
99

99
99

Y

		
(Ω′,F ′)

ψ // (R,B)

Figure 2.4: Schematic of the conditional expectation of the real-valued integrable
random variable Y given the random variable X, defined on the same probability space
(Ω,F , P ). The indicated equivalence between Y and E[Y |X] means that integrals over
sets of the form X−1(F ′) for F ′ ∈ F ′ are equal.

Remark 2.2.3. Since a stochastic process just refers to a collection of random vari-

ables on a common probability space, the framework of conditional expectation can

easily be extended from single random variables to stochastic processes. Therefore

let Y = (Yt)t∈T be a family of d−dimensional real valued random variables and X a

single random variable. According to definition 2.2.1 E[Yt |X] is a random variable.

Thus ( E[Yt |X])t∈T defines a family of random variables, i.e, a stochastic process that

we denote by E[Y |X]. Consequently, applying proposition 2.2.3 to each conditional

expectation E[Yt |X] separately results in a family of functions (ψt)t∈T .
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Figure 2.5: Schematic of the conditional expectation of the real-valued integrable
random variable Y given the random variable X, defined on the same probability space
(Ω,F , P ). The indicated equivalence between Y and E[Y |X] means that integrals over
sets of the form X−1(F ′) for F ′ ∈ F ′ are equal.

2.3 Estimating conditional expectations

For the sake of simplicity, let us return to the case of two random variables and

additionally consider X to be a real valued, univariate random variable on Ω and Y as

previously. Then according to proposition 2.2.3 there exists a function ψ : R → R such

that ψ(x) = E[Y |X = x].

(Ω,FX, P )

X

����
��

��
��

��
�

E[Y |X]

��9
99

99
99

99
99

(R,B)
ψ // (R,B)

In the following we derive a closed form solution for the integrable function ψ, given

a set of independent samples of the joint random variables (X,Y ). Using the notation

of fX,Y for the joint probability density function (PDF), the marginal PDF of X is given

as fX(x) =
∫

R fX,Y (x, y) dy. Based on this we define the conditional PDF of Y given X

as

fY |X(y |x) :=
fX,Y (x, y)
fX(x)

. (2.13)

Accordingly, the conditional expectation E[Y |X = x] is expressed as

ψ(x) = E[Y |X = x] =
∫
R
y fY |X(y |x) dy (2.14)

=
1

fX(x)

∫
R
y fX,Y (x, y) dy. (2.15)

Remark 2.3.1. Compare the above formula also with (2.7) in example 2.2.1.

In order to apply formula (2.15) we have to estimate the involved PDFs based on the
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observations of the random variables. For this purpose the next paragraph elaborates

on kernel density estimation.

2.3.1 Kernel density estimation

Kernel density estimators are frequently used to infer PDFs from a given set of

observations. In case of univariate data, a kernel density estimator is generally defined

as follows.

Definition 2.3.1 (Univariate kernel density estimator). Given a set of indepen-

dent observations D := {xk}Nk=1, the univariate kernel density estimator of the PDF fX

is defined by

f̂X(x |D) := =
1
Nh

N∑
k=1

Φ
(
xk − x

h

)
, (2.16)

where h is called the bandwidth or smoothing parameter and Φ is called the kernel

function that satisfies

Φ(u) ≥ 0, ∀u ∈ R (2.17)∫
R

Φ(u) du = 1 (2.18)∫
R
uΦ(u) du = 0. (2.19)

Commonly, there are further assumptions imposed on the bandwidth, e.g.,

h −→ 0, as N →∞ (2.20)

hN −→ ∞, as N →∞. (2.21)

There are several popular kernel functions Φ(u), which satisfy the above require-

ments, for instance:

Triangular kernel : (1− |u|)1{|u|≤1},

Epanechnikov kernel : 3
4(1− u2)1{|u|≤1},

Gaussian kernel : (2π)−
1
2 exp−u2

2 .

In the following, especially for application purposes, we will only consider Gaussian

kernels. In case of Gaussian kernels it has been shown that (see [89]) the optimal
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choice of the bandwidth, with respect to the Asymptotic Mean Integrated Squared

Error (AMISE), equals

h :=
(

4
3

) 1
5

σX N
− 1

5 ≈ 1.06 σ̂X N
− 1

5 . (2.22)

Where σX is the standard deviation of the distribution of X, σ̂X the corresponding

empirical estimate and N the number of observations.

Based on the definition of a univariate kernel density estimator, we will now extend

the density estimation to the bivariate case.

Definition 2.3.2 (Bivariate kernel density estimator). Given a set of independent

observations D :=
{
(xk, yk)

}N
k=1

, the bivariate kernel density estimator of a joint PDF

fX,Y at point (x, y) is defined by

f̂X,Y (x, y |D) =
1

Nh2

N∑
k=1

Φ2

(
yk − y

h
,
xk − x

h

)
. (2.23)

Here Φ2 is the product kernel defined by

Φ2(u, v) := Φ(u) Φ(v), (2.24)

where Φ(.) is a univariate kernel function.

Remark 2.3.2. Integrating (2.23) over y yields an estimator of the marginal PDF, i.e.,

f̂X(x |D) =
∫

R

1
Nh2

N∑
k=1

Φ2

(
yk − y

h
,
xk − x

h

)
dy (2.25)

=
1

Nh2

N∑
k=1

Φ
(
xk − x

h

)∫
R

Φ
(
yk − y

h

)
dy (2.26)

=
1
Nh

N∑
k=1

Φ
(
xk − x

h

)
. (2.27)

which again is the standard univariate kernel density estimator, as defined in 2.3.1.

2.3.2 Nadaraya Watson estimator

Knowing how to obtain bivariate densities estimates, we can now approach the issue

of estimating the conditional expectation E[Y |X] and ψ(x) = E[Y |X = x] respectively.
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Merging (2.16) and (2.23) into (2.15) results in the following estimator of the con-

ditional expectation

ψ̂(x |D) =
(Nh2)−1

1
Nh

∑N
l=1 Φ

(
xl−x
h

) ∫
R
y

N∑
k=1

Φ
(
xk − x

h

)
Φ
(
yk − y

h
,

)
dy (2.28)

=
(Nh2)−1

1
Nh

∑N
l=1 Φ

(
xl−x
h

) N∑
k=1

Φ
(
xk − x

h

)∫
R
yΦ
(
yk − y

h
,

)
dy (2.29)

=
(Nh)−1

1
Nh

∑N
l=1 Φ

(
xl−x
h

) N∑
k=1

Φ
(
xk − x

h

)
yk (2.30)

=
N∑
k=1

yk
Φ
(
xk−x
h

)
∑N

l=1 Φ
(
xl−x
h

) . (2.31)

The last equation is the well-known Nadaraya-Watson estimator [69, 101].

Definition 2.3.3 (Nadaraya Watson estimator). Let D :=
{
(xk, yk)

}N
k=1

be the set

of independent identically distributed observations of the joint random variables (X,Y ).

Then the Nadaraya Watson estimator of the conditional expectation E[Y |X = x] is the

weighted average of the observations {yk}Nk=1, i.e.,

ψ̂(x |D) =
N∑
k=1

yk gk(x), (2.32)

where the weight for the kth observation is given by

gk(x) :=
Φ
(
xk−x
h

)
∑N

l=1 Φ
(
xl−x
h

) . (2.33)

The Nadaraya Watson estimator assigns the largest weight to the observations yk,

for which the corresponding xk is closest to x. In this sense, the Nadaraya Watson

estimator can be interpreted as a local convex combination of the observations {yk}Nk=1,

where local refers to the explanatory variable X.

2.3.3 Examples

Before we transfer the former to the context of EEG analyses in the next chapter,

we would like to give two more brief, sophisticated examples of conditional expectation.
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The first example corresponds to the typical scenario of estimating a regression function

ψ : X 7→ Y , for two real valued continuous random variables X and Y under the

assumption of additive Gaussian noise.

The second example is more complicated and illustrates the estimation of condi-

tional expectation E[Y |X = x] of a stochastic process Y given a real valued continuous

random variable X. It reveals a clear underlying functional dependency of the dynamic

system Y on an initial environmental state variable, represented by X.

Conditional expectation of a random variable

In contrast to example 2.2.1 we will now illustrate the concept of conditional ex-

pectation in terms of two continous random variables X and Y defined on a common

probability space (Ω,F , P ). To this end, let X be uniformly distributed and Y a func-

tion f(X) with additive, independent Gaussian noise. In particular we choose

Y = sinc(X) + η, (2.34)

X ∼ U[−4,4], (2.35)

η ∼ N
(

0,
1
4

)
. (2.36)

Drawing 200 i.i.d. samples from Ω results in a sample set {ω1, . . . , ω200}. Using the

convenient notation of xk = X(ωk) and yk = Y (ωk) respectively, the set of observa-

tions corresponds to D = {(xk, yk)}200
k=1. Based on this set of observations we estimate

Figure 2.6: The estimated conditional expectation ψ̂(x |D) (green) along with the true
functional relationship E[Y |X = x] (gray) for the two random variablesX and Y , defined
in (2.35)) and (2.34). The light blue points represent the set of 200 i.i.d. observations.

the conditional expectation E[Y |X = x] by means of a Nadaraya Watson estimator
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ψ̂(x |D), (cf. definition 2.3.3). More precisely we use the Nadaraya Watson estimator

with Gaussian kernel functions and set the bandwidth parameter to its default value

(cf. (2.22)). Fig. 2.6 summarizes the results by presenting a scatter plot of the samples

along with the estimated conditional expectation. Note that due to the symmetric addi-

tive Gaussian noise, the (mathematically) true functional relationship of the conditional

expectation equals E[Y |X = x] = sinc(x). Remarkably, despite the small sample size,

the estimated conditional expectation ψ̂(x |D) resembles the truth quite accurately.

Conditional expectation of a stochastic process

The setting for the second example is a bit more complicated, since we have to

define a stochastic process together with a random variable on a common probability

space (Ω,F , P ). For this purpose let the random variable X be uniformly distributed

on [−π
2 ,

π
2 ], and let T = {−2π+ j−1

199 (2π− 2)}200
j=1 ⊆ [−2π,−2] be an index set, referring

to the sample points in the temporal domain. For this set we define a stochastic process

Y as the family of random variables (Yt)t∈T , such that for a given t ∈ T

Yt := sinc(t) + ηt ·
2π + t

2(2π − 2)
· sin

(
X +

5
2
t

)
, (2.37)

X ∼ U[−π
2
,π
2 ], (2.38)

ηt ∼ U[0,1]. (2.39)

Under the assumption of mutually independent X and ηt the stochastic process consists

of a deterministic component, i.e., the sinc function and additive noise. However, this

additive noise depends on the random variable X, and thus Y. Remember that an

elementary event ω ∈ Ω simultaneously determines the entire process, yielding a path

Y·(ω). Drawing 200 i.i.d. samples from Ω results in a sample set {ω1, . . . , ω200} and yields

a set of two hundred single trials along with the corresponding realization of Y and X,

i.e., D := {(Y k· , Xk)}200
k=1. Based on this set of observations we estimate the conditional

expectation E[Y |X], as the family of functions ψ̂t(x |D) = ( E[Yt |X = x])t∈T . To this

end we apply the Nadaraya-Watson estimator (cf. definition 2.3.3) with Gaussian basis

functions and set the bandwidth according to (2.22). Fig. 2.7 and Fig. 2.8 visually

represent the results in different ways. Fig. 2.7 presents only the observed single trials

{Y k· }200
k=1 and highlights three particularly chosen traces of E[Y |X = x], namely at

x ∈ {−π
3 , 0,

π
3 }. Due to the specific construction of Y all paths start at the same
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Figure 2.7: Toy example of the conditional expectation of a stochastic process. Two
hundred realizations of the stochastic process Y are displayed as single traces (gray).
The colored traces refer to the estimated conditional expectation E[Y |X = x] at three
different values of the initial state x, namely {−π

3 , 0,
π
3 } (red, green and blue).

position, but dependent on the initial state X, the conditional expectations diverge

quickly for the three different values. In case of an univariate explanatory variable X,

the dependency on the initial state can be demonstrated in even more detail, shown in

Fig. 2.8. Here the vertical axis refers to the explanatory variable X, while the horizontal

axis again indicates time. The particular value of ψ̂t(x |D) = E[Yt |X = x] is presented

using a color coding scheme. In order to generate this drawing, we evaluated (2.32) for a

Figure 2.8: Conditional expectation E[Y |X] of a stochastic process. The horizontal
axis represents the time, while the vertical axis distinguishes different conditions X.
Values of E[Y |X] are visualized using a color coding scheme. The three highlighted
horizontal lines reflect the conditional expectation at those values that were already
emphasized in Fig. 2.7.
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multitude of different values of the explanatory variable from the interval [−π
2 ,

π
2 ]. The

results obtained at the 64 equally spaced different values are summarized in Fig. 2.8.

In this X-t plane, each horizontal line corresponds to a certain value of the explanatory

variable, e.g., the light blue line corresponds to X = π
3 . In contrast a vertical line

at time t corresponds to the regression function ψ(x |D) : X 7→ Yt. From Fig. 2.7 and

Fig. 2.8 the dependency of the stochastic process on the explanatory variable X in terms

of different latencies and magnitudes of the extreme values can be clearly inferred. For

example, at X = π
3 there is a clear deep minima around t = −3.5, which resides much

later in time at t = −3 for X = −π
3 , and is additionally flattened.

Summary

In this chapter, we introduced the mathematical concept of conditional expecta-

tions. We pointed out that the conditional expectation E[Y |X] by itself is a random

variable. Nevertheless, there exists a mapping ψ, such that ψ(x) = E[Y |X = x]. Fur-

thermore, this mapping can be inferred from a given set of observations by means of

the Nadaraya Watson estimator. We also showed how the framework of conditional

expectation can be extended to stochastic processes.



Chapter 3

Conditional ERD
(Towards Single Trial ERD)

The variability of single trial responses has to be taken in to account and suffi-

ciently explained, when describing human cortical neurophysiology. Such a framework

should therefore explicitly incorporate dependencies of the stimulus processing on in-

ternal (mental) or external (environmental) conditions. Investigations of phenomena

of this kind require both suitable data analytical concepts and elaborate experimental

paradigms which enable a reliable discovery of functional relationships between explana-

tory variables and the single trial characteristics of brain responses. So far investigations

of trial-to-trial variability were mostly limited to event-related potentials (ERPs). Here

the impact of various external and internal factors on the latency and the magnitude of

ERP components has been studied intensively [30, 35, 36, 41, 73]. On the opposite, the

variability of ERD has been investigated only occasionally and mostly with respect to

a few external factors [31, 72, 92]. Despite the general interest in the topic, there rarely

exist studies on a relationship between ERD and internal factors (see, e.g., [19, 102]).

From our point of view, this is basically due to the absence of an appropriate model for

analyzing such dependencies. It is the ultimate ambition of this chapter to bridge this

gap by introducing a novel framework to illustrate how such relationships can be ana-

lyzed. At this point we would like to stress that it is the aim of this chapter to provide

the fundamentals of the data analytic concept rather than to pursue a comprehensive

studies, which prove certain neurophysiological hypotheses. That’s why the application

section is designed to serve as a proof of concept. Here, subsequent to the analysis of

29
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artificially generated state dependent ERD data we will highlight the potential of our

framework by means of analyzing EEG data of a single subject. As a matter-of-fact

this does not provide a comprehensive neurophysiological study, but it already envisions

possible directions of future investigation.

Typically ERD is quantified as an averaged response over a set of single trials.

This approach can hardly disclose any state dependencies of the ERD on internal or

external factors. As opposed to the averaged ERD we will denote the novel approach

by conditional ERD. Moreover, we will show that the use of a fixed reference interval,

as it is incorporated in the conventional ERD model, hampers a reliable study of the

variability of ERD responses and may lead to spurious observations of ERD/S. To

overcome this issue, we generalize the conventional ERD framework with respect to the

reference condition. To additionally distinguish between these opposite approaches we

refer to them as the conventional and the generalized ERD framework, respectively.

The chapter is organized as follows: at the beginning, we formulate the conven-

tional ERD framework as a stochastic model. To this end, we first interpret EEG single

trials as realizations of a stochastic process and consecutively construct a stochastic

model for the conventional averaged ERD framework. From this conventional model we

derive a naive extension towards the analysis of conditional ERD. In a second line of

argument, we first generalize the conventional averaged ERD framework, with respect

to the definition of the referential baseline condition. This generalized framework is

then expanded towards the analysis of conditional ERD. The concluding application

section starts with a comparison of the conventional and the generalized ERD frame-

works and their individual capabilities to recover different, known dependencies of ERD

characteristic in a fully controlled, artificial environment of simulated single trial data.

This comparison will basically expose the limitations of the conventional framework.

The comparative analysis of artificially generated data is followed by an investigation of

µ-rhythm ERD, evoked by median nerve stimulation. There we will present three case

studies of analyzing the dependency of the ERD on three different internal factors, i.e.,

on initial states of activation of different cortical areas.
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3.1 Preliminaries

3.1.1 Stochastic model for single trial data

Let (Ω,F , P ) be a probability space. On this probability space we will now con-

secutively construct the different stochastic ERD models. We start with a common

temporal index set T ∈ Z, indicating the sampling time instances of each single trial.

Then the single trial encephalogram data can be represented as a d-dimensional real

valued stochastic process X = (Xt)t∈T , where d refers to the number of electrodes:

(Ω,F , P ) X +3 (Rd,Bd) (3.1)

In this setting each elementary event ω ∈ Ω corresponds to a particular realization X·(ω)

of the stochastic process and thereby represents one observed single trial. Consequently

a set of K elementary events ω1, . . . , ωK drawn i.i.d. from Ω corresponds to a set of

K independently observed single trials {Xk· }Kk=1. For notational convenience we will

denoted the kth single trial by Xk· :=X·(ωk).

3.2 Conventional ERD framework

The following section introduces the stochastic framework underlying the conven-

tional ERD measures [40, 77]. At the beginning we will expand the stochastic model

(3.1) of encephalogram recordings by additionally representing the rhythmic activity

under consideration, e.g., a projection on the µ-rhythm of a single hemisphere. This

first model will already be sufficient to enable the conventional averaged ERD analysis.

Later on we will consider a naive extension of this model, to enable the conventional

framework to analyze conditional ERD. To this end, we add an explanatory variable,

whose influence on the characteristic of the ERD is to be analyzed. Each introduced

stochastic model is always accompanied by a derived ERD measure and an associated

empirical estimator.

3.2.1 Averaged ERD

The analysis of ERD is always concerned with power modulations of a certain

rhythmic activity. Consequently the model (3.1) is now equipped with an additional
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stochastic process reflecting the power envelope of the rhythmic activity under consid-

eration.

Stochastic model

Remember that according to remark 2.1.3, Y :=AX ∗ b defines a stochastic process

on the common probability space Ω for an arbitrary matrix A and an FIR filter b.

Hence, let w ∈ Rd be an appropriate spatial filter, focussing on the cortical region of

interest and b denote a suitable FIR bandpass filter for the corresponding frequency

band, e.g., a complex Morlet wavelet [96]. Then, Y :=
∣∣w>X ∗ b

∣∣2 defines an univariate

stochastic process that represents the instantaneous power of the rhythmic activity

under investigation.

(Ω,F , P )

Y=|w>X∗b|2

#+NNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNN
X +3 (Rd,Bd)

(R,B)

(3.2)

Remember that the quantification of ERD requires a reference and an event-related

condition. Consequently we suppose the common index set to be composed of two

disjoint subsets, i.e., T = T0∪T1, where T0 serves as reference interval, while T1 indicates

the disjoint period, when the ERD effect is to be quantified. Typically the stochastic

process at rest is assumed to be stationary, i.e., it has identical distributions for all

t ∈ T0. This implies that the statistical moments are independent of the time index,

i.e., for s, t ∈ T0 it follows that E[Yt] = E[Ys]. Thus for reasons of robustness the

reference power is usually defined as average across the reference interval

Yref :=
1
|T0|

∑
t∈T0

Yt. (3.3)

Conventionally the ERD is expressed as the relative deviation of the power from this

reference and hence it follows

ERDconv[t] =
E[Yt]

E[Yref]
− 1, t ∈ T . (3.4)

Remark 3.2.1. Note that (3.4) describes the ERD measure according to the power

method [77]. With minor modifications the intertrial variance method [40] (cf. also
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Fig. 1.3) can be represented as well. To this end, the stochastic process Y is substituted

by Y :=w>X ∗ b and the expectation values in (3.4) change accordingly such that they

reflect the intertrial variance, i.e., E
[
|Yt − E[Yt]|2

]
. In this context, E[Yt] corresponds

to the phase locked components of the spatially and bandpass filtered signal. Since the

intertrial variance method can be easily derived from the power method, but requires a

slightly more complicated notation, we will subsequently restrict ourselves solely to the

power method.

Empirical estimator

In case of the stochastic model (3.2) a finite set of K observations corresponds to

D = {Y k· }Kk=1. Note that we suppressed the contextual information about the stochastic

process X, as Y already contains the relevant information. Using the index set T0 ⊂ T
as reference condition, the empirical estimates of the expected reference band power

and the expected power at t ∈ T are obtained as:

P̂ref =
1

K · |T0|

K∑
k=1

∑
t∈T0

Y k
t (3.5)

P̂ (t) =
1
K

K∑
k=1

Y k
t , t ∈ T , (3.6)

such that finally the averaged ERD at t ∈ T is estimated by

ERDconv[t |D] =
P̂ (t)
P̂ref

− 1. (3.7)

We refer to (3.7) as the empirical estimator of the conventional averaged ERD.

3.2.2 Conditional ERD

In order to enable the analysis of dependencies of the ERD characteristic on external

or internal states, we naively extend the conventional stochastic ERD model, introduced

in the previous paragraph. However, later on in the application section 3.4, we will show

that this naive approach has the drawback of possibly giving rise to spurious observations

of ERD. As we will point out, the reason for the failure originates from the definition

of the reference condition. Hence in section 3.3 we will generalize the conventional

ERD framework with respect to the reference condition. There we will also derive an

improved conditional ERD estimator.
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Stochastic Model

Let Z denote an explanatory variable, whose influence on the characteristic of

the ERD is to be analyzed. Typically Z is a measurable function of the process X,

for instance the initial power of a certain cortical rhythm at the event onset. But Z

may also reflect an external condition, such as the intensity of the stimulation, the

interstimulus interval or any other parameter whose impact on the ERD characteristic

shall be investigated. However, we incorporate Z without further specification as an

additional random variable into the common probability space Ω:

(Ω,F , P )

Z

��

Y=|w>X∗b|2

#+NNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNN
X +3 (Rd,Bd)

(R,B) (R,B)

(3.8)

This enables us to extend (3.4) towards the quantification of conditional ERD by simply

replacing all expected values by their corresponding conditional expectations:

ERDconv[t |Z] =
E[Yt |Z]

E[Yref |Z]
− 1. (3.9)

Here the conditional expectation of the reference power is given by the averaged condi-

tional expectations of the individual random variables

E[Yref |Z] =
1
|T0|

∑
t∈T0

E[Yt |Z] . (3.10)

Remember that conditional expectations are random variables and so is the conditional

ERD. Fortunately, according to proposition 2.2.3 for any t ∈ T there exists a mapping

ψt : R → R such that

ψt(z) = E[Yt |Z = z] . (3.11)

Substituting the conditional expectations in (3.9) accordingly, enables us to express the

conditional ERD at an arbitrary instance Z = z as

ERDconv [t |Z = z] =
ψt(z)
ψref(z)

− 1, (3.12)

where ψref(z) is defined according to (3.10). This measure quantifies the conditional

ERD given the observation of state Z = z and thereby establishes a functional relation-

ship between the state variable Z and the ERD.
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Empirical estimator

In terms of the stochastic model (3.8) a finite set of K observations comprises the

realizations of the explanatory variable Z along with the observed paths of the stochastic

process Y. Thus we denote the set of observed samples by D = {
(
Y k· , zk

)
}Kk=1.

In order to derive an empirical estimator for conditional ERD measure (3.12), we

replace ψt(z) = E[Yt |Z = z] with the corresponding Nadaraya Watson estimator (cf.

definition 2.3.3) that is given by

ψ̂t(z |D) =
K∑
k=1

Y k
t gk(z), t ∈ T . (3.13)

Here the weight gk(z) of the kth observation depends on the choice of the kernel function

Φ and is given by

gk(z) = Φ
(
zk − z

h

)( K∑
l=1

Φ
(
zl − z

h

))−1

. (3.14)

Moreover, using ψ̂ref(z |D) = 1
|T0|
∑

t∈T0
ψ̂t(z |D) as reference, the empirical estimator

for conditional ERD is finally determined by

ERDconv [t |Z = z,D] =
ψ̂t(z |D)

ψ̂ref(z |D)
− 1. (3.15)

We refer to (3.15) as the empirical estimator for the conventional conditional ERD.

3.3 Generalized ERD framework

In the following we derive a novel, alternative measure for the quantification of the

conditional ERD. To this end, we generalize the ERD framework with respect to the

reference condition. Instead of using a fixed reference value, the novel measure contrasts

the evolution (time course) of the instantaneous power (envelopes) between a rest and an

event-related condition. In particular we consider the (conditional) expectation of the

envelope of the ongoing dynamics as reference and define the generalized (conditional)

ERD as the relative deviation of the (conditionally) expected power envelope of the

event-related dynamics.
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3.3.1 Generalized averaged ERD

Before elaborating on the analysis of conditional ERD, we introduce the generalized

stochastic framework with respect to the calculation of averaged ERD. In particular

we extend the stochastic model (3.2) further such that it comprises the observation

of both dynamics, i.e., perturbed (event-related) and unperturbed (ongoing) activity,

respectively.

Stochastic model

We additionally equip the common probability space Ω with an auxiliary binary

random variable C that distinguishes between perturbed and unperturbed activity.

(Ω,F , P )

C

vvmmmmmmmmmmmmmmmmmmmmm
Y=|w>X∗b|2

"*NNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNN
X +3 (Rd,Bd)

(
{0, 1},P ({0, 1})

)
(R,B)

(3.16)

By convention, C = 0 refers to the rest condition, while C = 1 corresponds to event-

related single trials. Based on the above stochastic model, we define the generalized

averaged ERD as follows:

ERDgen[t] :=
E[Yt |C = 1]
E[Yt |C = 0]

− 1, t ∈ T . (3.17)

Consequently for each t ∈ T we use a separate reference that is given by E[Yt |C = 0],

and determine the ERD at time t as the relative deviation of the event-related expec-

tation E[Yt |C = 1] from the reference.

Remark 3.3.1. Under the assumption of a stationary dynamics at rest (C = 0), the

conventional (3.4) and the generalized (3.17) ERD measurements are equivalent. This

directly follows from the following consideration: For a stationary stochastic process

Y the distributions of Yt are identical for all t ∈ T . This implies that all statistical

moments of the stochastic process representing the rest condition are constant across

time, i.e., particularly E[Yt |C = 0] = E[Ys |C = 0] ∀s, t ∈ T . Hence the formulas

(3.4) and (3.17) of the conventional and the generalized ERD are equivalent and lead

to an identical measurement of the averaged ERD. However, as we will see in the first

artificial example, if the process at rest is non-stationary the measurements give rise
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to differently estimated ERD. A typical scenario, where the stationarity assumption is

expected to be violated, is given in the context of repeated stimulations at a short inter-

stimulus interval (ISI). For instance if the stimuli are randomly delivered (P (C = 1) = p,

P (C = 0) = 1−p) at the time instance, when an ERS response of the preceding stimulus

is likely to show up, then the expectation of the dynamics at rest, i.e., E[Yt |C = 0] is

expected to exhibit a negative trend and consequently the stochastic process is non-

stationary. However, typically the interval between two consecutive events is chosen

sufficiently large such that the resulting process at rest can be considered stationary.

Empirical estimator

Suppose a finite set of 2K observations drawn i.i.d. from Ω. In the context of the

generalized stochastic model (3.16) this corresponds to D :=
{(
Y k· , ck

)}2K

k=1
. Moreover,

as the random variable C is typically under the control of the investigator, we further

assume an equal number of K trials observed at both conditions (rest and excitation).

The subsets of trials corresponding to each condition are denoted by C0 = {k : C(ωk) =

0} and C1 = {k : C(ωk) = 1}, respectively. The empirical estimators at time t ∈ T
of the expected reference power and the expected event-related power are obtained

straightforwardly as:

P̂ref(t) =
1
K

∑
k∈C0

Y k
t , and P̂ (t) =

1
K

∑
k∈C1

Y k
t . (3.18)

Thus given a set of observations the averaged ERD at t ∈ T is estimated by

ERDgen[t |D] =
P̂ (t)
P̂ref(t)

− 1. (3.19)

We refer to (3.19) as the empirical estimator of the generalized averaged ERD.

3.3.2 Generalized conditional ERD

Similar to what was described in section 3.2.2 we expand the generalized ERD

framework towards the analysis of dependencies of the ERD characteristic on external

or internal states.
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Stochastic Model

We equip the stochastic model (3.16) with an additional explanatory variable Z,

whose influence on the characteristic of the ERD is to be investigated:

(Ω,F , P )
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vvmmmmmmmmmmmmmmmmmmmmm
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��
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(3.20)

Furthermore we suppose the random variable Z and C to be mutually independent, i.e.,

P (Z,C) = P (Z)P (C). Basically, this assumption ensures that Z has identical condi-

tional distributions at the rest and at the event-related condition. Using this stochastic

model, we quantify the conditional ERD given the variable Z in terms of conditional

expectations. Along the lines of the power method [77] we define the generalized condi-

tional ERD at t ∈ T as follows:

ERDgen [t |Z] :=
E[Yt |Z,C = 1]
E[Yt |Z,C = 0]

− 1. (3.21)

Remember, according to proposition 2.2.3 for t ∈ T there exist functions ψ0
t , ψ

1
t : R → R

such that

ψ0
t (z) = E[Yt |Z = z, C = 0] and ψ1

t (z) = E[Yt |Z = z, C = 1] . (3.22)

Substituting the conditional expectations in (3.21) accordingly, we obtain the condi-

tional ERD given the state Z = z as

ERDgen [t |Z = z] =
ψ1
t (z)

ψ0
t (z)

− 1. (3.23)

Verbalized, given the observation Z = z, we have a certain expectation of the time course

of the unperturbed dynamics, namely
(
ψ0
t (z)

)
t∈T , which serves as reference dynamics.

The conditional ERD is then defined as the relative deviation of the expected event-

related dynamics
(
ψ1
t (z)

)
t∈T , from this reference.

Remark 3.3.2. This conditional ERD measure can be expanded from single instances

to a subset of the state space. For this purpose let Z ∈ B denote a set of the Borel

σ-algebra. Then for Z ∈ Z the conditional ERD is calculated as

ERDgen [t |Z ∈ Z] =

∫
Z ψ

1
t (z) dPZ

−1∫
Z ψ

0
t (z) dPZ−1

− 1. (3.24)
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Moreover, setting Z = Z(Ω) (the image of Ω under the mapping Z) and using the

property E[ E[Yt |Z]] = E[Yt] of the conditional expectation (cf. proposition 2.2.2), the

conditional ERD becomes equivalent to the generalized averaged ERD measure, i.e.,

ERDgen [t |Z ∈ Z(Ω)] =
E[Yt |C = 1]
E[Yt |C = 0]

− 1. (3.25)

This equivalence is quite intuitive, as the condition Z ∈ Z(Ω) is uninformative, i.e.,

provides no further information of the whereabouts of ω. Consequently it should yield

the identical measure as the averaged ERD.

Empirical estimator

Let us suppose a finite set of 2K observations drawn i.i.d. from Ω. In terms of the

stochastic model (3.20) this corresponds to D =
{(
Y k· , ck, zk

)}2K

k=1
. Again, we assume

an equal number of K observed trials at both conditions and denote the corresponding

subsets of trials by C0 = {k : C(ωk) = 0} and C1 = {k : C(ωk) = 1}, respectively.

In order to derive an empirical estimator for (3.25), we replace ψ0
t (z) and ψ1

t (z)

by the corresponding Nadaraya Watson estimators (cf. definition 2.3.3), i.e., ψ̂0
t (z |D) is

estimated as

ψ̂0
t (z |D) =

∑
k∈C0

(Y k
t ) g0

k(z), (3.26)

where the weight g0
k(z) of the kth observation is given as

g0
k(z) = Φ

(
zk − z

h

)∑
l∈C0

Φ
(
zl − z

h

)−1

. (3.27)

Accordingly, we define the empirical estimator ψ̂1
t (z |D) by just exchanging the set C0

with C1. Note that the local smoothing depends on the choice of the kernel function Φ

as well as on its bandwidth h.

Finally, the empirical estimator for conditional ERD is determined by

ERDgen [t |Z = z,D] =
ψ̂1
t (z |D)

ψ̂0
t (z |D)

− 1. (3.28)

We refer to (3.28) as the empirical estimator of the generalized conditional ERD.
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3.4 Application

The following applications will serve as a proof of concept of the proposed frame-

work. We will point up the potential of the proposed generalized ERD framework for the

analysis of averaged and conditional ERD and expose the limitations of the conventional

methods. In order to obtain a first reliable evaluation, we apply both concepts to arti-

ficially generated data. The application in a controlled, artificial set-up will primarily

reveal that the conventional ERD may give rise to observations of spurious ERD. After-

wards we investigate the state dependencies of µ-rhythm ERD evoked by median nerve

stimulation. More precisely, we will study its dependency on the magnitude of the local

pre-stimulus µ-activity, on the magnitude of the occipital pre-stimulus α-activity and

finally on the magnitude of the ERS response of the preceding stimulus. However, the

aim of this concluding investigation is rather to emphasize the potential that is offered

by the conditional ERD framework, than to thoroughly prove any neurophysiological

hypothesis about the dependency of the ERD characteristic, and is therefore restricted

to data of a single subject.

3.4.1 Artificial data

In order to compare the capabilities of the generalized and the conventional con-

ditional ERD framework properly, we generate three sets of surrogate ERD data that

exhibit different kinds of dependency on an explanatory variable Z. The first data set

will solely comprise a dependency of the event-related power envelope on the explanatory

variable, i.e., only the stochastic process during stimulation exhibits this dependency,

while the ongoing dynamics as such is independent, but has an inherent non-stationary

characteristic. In contrast the second data set will solely comprise a dependency of the

ongoing dynamics on the explanatory variable, while the ERD characteristic is unaf-

fected. Finally, the last artificial data set will be most complicated and comprises both

kinds of dependencies, i.e., the stochastic process at rest as well as the ERD character-

istic exhibit separate dependencies on the explanatory variable Z.

Data generation

In order to allow for a first comparison of both approaches in relation to the differ-

ently accentuated dependencies on the explanatory variable, we define the three artificial
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data sets based on a common setup. To this end, let us suppose T ⊂ [−π, π] as index

set, comprising 100 equidistant sample points. Moreover, let us define the conditional

stochastic processes Y of the instantaneous power at rest and at the event-related con-

dition separately such that for t ∈ T

Yt(ω) :=

 ft(ω) C(ω) = 0, i.e., at rest,

αt(ω) · ft(ω) C(ω) = 1, i.e., event-related.
(3.29)

Here ft ≥ 0 represents the power envelope of the unperturbed ongoing activity, while

the ERD is emulated by a multiplicative dampening. In particular we use the following

parameterized version of ft and αt:

ft(θ, β) =
3
2

+ sin(t+ θ) + βt, t ∈ T , θ ∈ [0, 2π], β ∈
{
− 1

3π
, 0
}

(3.30)

αt(s) =
[
1 +

(3− s)
4

(
(t− s)2 − 1

)
1|t−s|≤1

]
, t ∈ T , s ∈ [0, 1]. (3.31)

The parameters θ and β influence the shape of the power envelope, where θ determines

the initial phase of the power envelope, while β controls the presence of a negative linear

trend. The multiplicative dampening function αt(s) offers the parameter s to control

the latency and the magnitude of the maximum attenuation. Here the extreme values

are taken at t = s, with a magnitude of 1−s
4 . Different realizations of the dampening

and the power envelope at several parameter values are exemplified in Fig. 3.1.

Based on the common architecture (3.29)–(3.31), we derive three artificial examples

by defining random variables θ(ω) and s(ω), while β is used in a strict deterministic

fashion. Then the different interdependencies of the explanatory variable Z and the

random variables θ and s determine the individual characteristic of each data set.

t t

Figure 3.1: The left panel exemplifies two different realizations of the parameterized
function ft(θ, 0), simulating the power envelopes of rhythmic ongoing activity. To es-
tablish a better understanding, we also depicted two corresponding arbitrary oscillations
(red and blue thin lines) beside the power envelopes. Right panel: The artificially gen-
erated multiplicative dampening factor αt(s) at three different parameter values. The
parameter s determines the latency and the magnitude of the dampening.
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For all three data sets we assume the explanatory variable Z to be uniformly

distributed on the interval [0, 1], i.e.,

Z ∼ U[0,1]. (3.32)

Data set I The first data set solely comprises a dependency of the ERD characteristic

on the explanatory variable, i.e., only the dampening process αt(s) is affected, while the

ongoing dynamics ft(θ, β) varies independently, but exhibits a deterministic negative

trend. In particular we define the parameters θ, β and s as follows

θ ∼ U[0,2π], β = − 1
3π
, s = Z. (3.33)

Additionally we assume mutually independence of θ and Z.

Data set II In the second example of surrogate ERD data, we solely implement a

dependency of the initial phasing of the power envelope on the explanatory variable,

while the dampening is deterministic. Consequently we remove the negative trend and

let

θ = 2πZ, β = 0, s = 0. (3.34)

Data set III The third and last example of surrogate ERD data comprises, in the

absence of a linear trend, dependencies of s and θ on the explanatory variable Z. In

particular we set

θ = 2πZ, β = 0, s = Z. (3.35)

Consequently both the phasing of the power envelope of the unperturbed dynamics and

the attenuation function are dependent on the explanatory variable.

Needless to say, the estimation of conditional ERD will require more data than

those of the averaged. Consequently to allow for a proper evaluation of the conditional

ERD estimators, we sampled 1000 independent single trials from the stochastic process

Y, according to the particular settings of each data set. More precisely we generated

an equal number of single trials per condition, yielding 500 trials at rest and 500 event-

related trials, respectively. Thus the observed sample set comprises

D =
{(
Y k· , ck, zk

)}1000

k=1
. (3.36)
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Results

Before comparing the results of the conditional ERD estimators, we first study the

estimations of averaged ERD. To this end, let us start with some preliminary theoretical

considerations about the expected outcome of each method.

Averaged ERD Based on the construction of the event-related power attenuation,

using a multiplicative dampening term αt(s) ∈ [0, 1], we define the true averaged ERD

at time t as

ERDtrue[t] :=
∫
αt(s) dPs−1 − 1. (3.37)

Using the single time instance tref = −π as reference the conventional ERD measure

yields:

ERDconv[t] =
∫
αt(s)ft(θ, β) dP (θ, s)−1∫

ftref(θ, β) dPθ−1
− 1. (3.38)

Instead of using the fixed reference condition in denominator at each time instance,

the generalized measure contrasts the time courses of the perturbed and unperturbed

envelopes:

ERDgen[t] =
∫
αt(s)ft(θ, β) dP (θ, s)−1∫

ft(θ, β) dPθ−1
− 1. (3.39)

Considering the particular settings of the different data sets, e.g., with respect to the

independence of random variables, yields the following analytic solutions:

dataset ERDtrue[t] ERDconv[t] ERDgen[t]

I
∫ 1
0 αt(z) dz − 1

(
9
11 −

2t
11π

) ∫ 1
0 αt(z) dz − 1

∫ 1
0 αt(z) dz − 1

II αt(0)− 1 αt(0)− 1 αt(0)− 1

III
∫ 1
0 αt(z) dz − 1 2

3

∫ 1
0 ft(2πz, 0)αt(z) dz − 1 2

3

∫ 1
0 ft(2πz, 0)αt(z) dz − 1

Consequently for the first data set we expect the conventional estimator to underesti-

mate the ERD curve, i.e., to estimate an ERD that is enhanced in magnitude. On the

other hand the generalized estimator shall obtain an estimate close to the true ERD.

In the case of the second data set we expect both methods to perform equally well
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I) II)

III)
t

Figure 3.2: Each panel depicts the true averaged ERD (blue) and the estimates of the
conventional (red) and the generalized method (green) for one of the three different toy
examples I–III.

in estimating the averaged ERD. Finally, the analytic solutions for the third data set

suggest a relatively small systematic error that is identical for both methods 1.

In order to verify these predictions, we apply the conventional and the novel gen-

eralized estimator, according to (3.7) and (3.19) to investigate the three data sets. The

reference condition for the conventional estimator was set to the single time instance

T0 = {−π}. The results, depicted in Fig. 3.2, empirically confirm the findings above.

Conditional ERD As for the averaged ERD we start with an analytic study of the

different conditional ERD measures:

ERDtrue[t |Z = z] =
∫
αt(s) dP (s |Z = z)−1 − 1, (3.40)

ERDconv[t |Z = z] =
∫
αt(s)ft(θ, β) dP (s, θ |Z = z)−1∫
ftref(θ, β) dP (θ |Z = z)−1

− 1, (3.41)

ERDgen[t |Z = z] =
∫
αt(s)ft(θ, β) dP (s, θ |Z = z)−1∫

ft(θ, β) dP (θ |Z = z)−1
− 1. (3.42)

Again using tref = −π and considering the particular settings of the different data sets

yields the following analytic solutions:

1This systematic error is due to the dependence of the random variables θ and s. In the case
of dependent variables it generally holds E[α(s)f(θ)] 6= E[α(s)] E[f(θ)]. Consequently both ERD
measures are doomed to a systematic false estimation of the averaged attenuation E[α(s)].
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dataset ERDtrue[t |Z = z] ERDconv[t |Z = z] ERDgen[t |Z = z]

I αt(z)− 1
(

9
11 −

2t
11π

)
αt(z)− 1 αt(z)− 1

II αt(0)− 1 ft(z,0)
ftref (z,0)αt(0)− 1 αt(0)− 1

III αt(z)− 1 ft(z,0)
ftref (z,0)αt(z)− 1 αt(z)− 1

So, based on those calculations, we expect the conventional estimator to fail for all three

data sets, while the generalized estimator should be capable of revealing the underlying

functional relationship between the explanatory variable and the ERD characteristic.

Fig. 3.3 shows the true conditional ERD and contrasts the different results of the two

competing methods. Comparing the empirical estimates it clearly reveals that the gener-

alized ERD is capable of recovering the underlying relationship of the ERD characteristic

on the explanatory variable Z, while the conventional estimator fails completely.

3.4.2 Median nerve stimulation data

In the following we will investigate the EEG recordings of a single subject, acquired

during a median nerve stimulation (MNS) paradigm. Once again we would like to

stress that it is not the purpose of the following investigation to thoroughly prove

any neurophysiologically hypothesis about the dependency of the ERD characteristic.

Instead we will point out the potential of the proposed generalized ERD framework and

envision possible directions of future neurophysiological investigations.

The processing of MNS mainly causes responses in the somatosensory cortex, in-

cluding modulations of the µ-rhythm. To this end, our analysis will primarily focus

on the µ-rhythm ERD. In particular we will investigate its dependency on the magni-

tude of the local pre-stimulus µ-activity, on the magnitude of the occipital pre-stimulus

α-activity and finally on the magnitude of the ERS response of the preceding stimulus.

Before we describe the details of the experimental design, let us start with the

following considerations. The generalized ERD framework requires the observation of

single trial data at rest and in state of excitation. In principle this requirement can be

incorporated into any arbitrary experimental design, e.g., by using a simple randomized

strategy such that with a certain probability a stimulus is either delivered or withheld.

Alternatively, single trials at rest may also be acquired from data of a solely resting
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ERDtrue[t |Z = z] ERDconv[t |Z = z] ERDgen[t |Z = z]

Figure 3.3: The figure contrasts the true conditional ERD (left column), the estimated
conventional conditional ERD (central column) and the estimated generalized conditional
ERD (right column). Each row corresponds to a particular artificial data set (I-III, top
to bottom). The panel share an identical linear color coding scheme, where blue refers
to -100% (ERD) and red indicates 100%, i.e., to an ERS.

paradigm. Generating virtual event triggers and defining the single trials accordingly,

also provides single trial data for the requested reference condition. However, the latter

procedure is not recommended for the following reason: Typically subjects are exposed

to a sequence of repetitive identical stimuli, at a certain interstimulus interval (ISI).

Thus, depending on the length of the ISI, the dynamics of cortical rhythmic activity

under investigation might still be affected by the preceding stimulus. Thus the actual

cortical activity at stimulus onset may differ from those during rest. Consequently gen-
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erating virtual single trials from a pure resting paradigm or taking single trials of a

randomized stimulation paradigm may give rise to differently estimated reference dy-

namics and thereby to differently estimated conditional ERDs. Nevertheless, there are

also caveats concerning the randomized stimulation paradigm. For instance any ran-

domized sequence of excitation and rest contains just by chance segments of consecutive

trials at rest. The length of such periods has a direct influence on the ISI between the

two neighboring excitations. Thus random sequences provide stimulations with an ir-

regular ISI and consequently with different initial conditions. In order to circumvent

this issue, we suggest composing each single trial as a pair of two stimuli. Where the

 { , \ }

time
//

ISI

priming
stimulus

random
stimulation

Figure 3.4: Schematic layout of a single trial. After a first priming stimulus a second
stimulus is delivered randomly at a predefined ISI. The responses to the second stimulus
are then used for the analysis of conditional ERD.

first excitation takes place surely and serves as an initial or priming stimulus, which is

followed at a predefined ISI by a second, randomly delivered stimulus (Fig. 3.4 depicts

the schematic of this procedure). The analysis of ERD is then confined to the analysis

of the responses to the second stimulus.

Experimental design

The brain activity of a healthy subject was recorded using a 64-channel EEG system

and at a sampling rate of 1000 Hz. During the experiment the subject was sitting relaxed

in a comfortable chair and staring at a fixation cross. According to the single trial layout,

depicted in Fig. 3.4, the right median nerve was electrically stimulated at the wrist. The

ISI between the initial priming stimulus and the second randomly delivered stimulus

was set to 2.5 seconds. The intertrial interval (the period between two consecutive

initial stimuli) was set to approximately 5 seconds. The intensity of both stimuli was

identically set to 10 mA, which was slightly below the motor threshold, i.e., the stimuli

were not sufficient to evoke a thumb twitch. The probability of the second stimulus to
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be delivered was 1
2 . Using a pseudo-random sequence, we recorded a sufficiently large

number of single trials, which allows for the analysis of conditional ERD. In particular

we acquired a total of 1200 single trials, i.e., 600 per condition. Since we are basically

interested in the ERD response to the second, randomly delivered stimulus, we use

that trigger signal as zero point on the time scale. Accordingly the initial stimulus is

delivered at -2500ms and positive time indices refer to the ERD/ERS period of the

stimulus under investigation.

Data preprocessing

Generally MEG/EEG signals obtained at individual sensors are often composed

as a (linear) superposition of several distinct signals. Consequently the amount of

non-µ activity recorded at sensors over the somatosensory region is increased by these

additional signals. As we have already seen in 1.3, the accuracy of the ERD measure

highly depends on the ratio between background and µ-activity. Thus we use spatial

projection techniques, in order to extract the signals of interest, while simultaneously

suppressing interferences. Furthermore we use a wavelet transformation to achieve a

high-resolution representation of the signals in the time-frequency domain.

Spatial Projection For our particular analysis of conditional ERD we need spatial

filters for the left-hemispheric µ-rhythm and the occipital α-rhythm. To this end, we

use the Common Spatial Pattern (CSP) algorithm on the bandpass filtered signal to

project onto the signal originating from the contra-lateral somatosensory cortex, while

Independent Component Analysis (ICA) is applied on the broadband signals for the

extraction of occipital α-sources.

CSP is a technique known from statistical pattern recognition [29] and was sug-

gested by [42] for the spatial analysis of EEG signals and by [84] to find spatial structures

of ERD and ERS. The CSP analysis solves the task of finding a linear subspace, i.e.,

linear combination of channels, for which the variance of the signal is maximized for

one condition while the variance of another condition is minimized. A more detailed

mathematical introduction to the method of CSP will be found in chapter 4, where we

present an extension of the original CSP algorithm. However, in order to apply this

technique we define two virtual conditions based on the observed averaged ERD from an

arbitrary sensor over the left somatosensory cortex. The first condition is defined as the
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Figure 3.5: Using the virtually defined condition T2 and T1 (gray shaded regions in
the right panel), the CSP method is applied. The panels at the left depict the estimated
spatial filter and corresponding spatial pattern. The right panel shows the conventionally
estimated averaged ERD response to the second stimulus separately for the stimulation
condition (black) and the reference condition (green).

ERS period, while the opposite condition is set to the ERD period. Then applying the

CSP algorithm to the band pass filtered signal, determines the optimal spatial filter such

that the variance (the power) is maximized during the ERS period while it is minimized

for the ERD phase. Intuitively, the obtained spatial filter reflects the best linear spatial

projection on the modulated rhythmic µ-activity. Fig. 3.5 depicts the estimated spatial

filter along with the corresponding common spatial pattern and the averaged ERD of

the projected source. It also indicates the two virtual conditions.

In order to extract occipital α-activity, we apply an ICA algorithm to the broadband

signals. For an introduction to ICA and its application to EEG data please refer to

chapter 5, where we will present a method that incorporates prior knowledge into the

ICA framework for an improved extraction of evoked responses. However, for the present

purpose it is sufficient to know that ICA finds a common set of linear spatial filters

such that the projected sources become statistically independent. For the particular

application here we use the Temporal Decorrelation SEParation (TDSEP) algorithm

[110], which exclusively uses second-order statistics in the form of temporally delayed

covariance matrices. Fig. 3.6 depicts the estimated spatial filter along with the spatial

pattern of an extracted occipital α-source.

Time Frequency Representation. Elaborated analysis of the temporal evolution

of evoked spectral perturbations requires a high-resolution representation of the data in



50 Chapter 3: Conditional ERD

Figure 3.6: Left: The spatial filter and the corresponding spatial pattern of one ex-
tracted occipital α generator found by the TDSEP algorithm. The right panel shows the
power spectrum of the projected source, with a distinct peak at 11 Hz.

the time-frequency domain. In classical ERD approaches [40, 77] the signals are first

filtered in a narrow frequency band, squared, lowpass filtered and averaged over trials

(see Fig. 1.3). Unfortunately this procedure has several drawbacks. Basically it yields a

low resolution and low selectivity in the time-frequency domain. Various authors, e.g.,

[26, 72], therefore suggested the use of wavelet transformation, in order to achieve an

appropriate representation of the dynamics. Following this suggestion, we use Morlet

wavelets, which are known to achieve the best ratio between the resolution in the time

and in the frequency domain. Moreover, Morlet wavelets are complex filters, which

give rise to analytic signals and thereby enable access to the instantaneous phase and

the instantaneous amplitude of rhythmic activity. For an easy introduction to wavelet

decomposition, with a particular emphasis on Morlet wavelets we refer to [96]. In order

to bandpass filter the EEG signals, we first determined the individual spectral peak

in the 8–13Hz domain at sensors covering the somatosensory and the occipital region.

Secondly, we applied a Morlet wavelet centered at the spectral peak at congruently

11 Hz.

Referring to the obtained spatial and spectral filters intuitivly as wcsp, wica and b11Hz,

respectively, we define the stochastic processes of contra-lateral µ-rhythm and occipital

α-power as:

Y :=
∣∣∣w>csp · X ∗ b11Hz

∣∣∣2 and O :=
∣∣∣w>ica · X ∗ b11Hz

∣∣∣2 , (3.43)

where X represents the stochastic process of single trial EEG, and T =[-2500,2000 ]ms
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denotes the common index set 2. With respect to the experimental design, the period

[-2500,0 ]ms contains the responses to the initial stimuli, while the interval [0,2000 ]ms is

used for the analysis of conditional ERD. By defining the explanatory random variable

Z differently, we are going to analyze the dependency of the contra-lateral µ-rhythm

ERD on the magnitude of

1.) the pre-stimulus contra-lateral µ activity itself, i.e.,

Zµ := log
∑
t∈Tpre

Yt − log |Tpre|, Tpre := [-500,-100 ]ms, (3.44)

2.) the pre-stimulus occipital α-activity, i.e.,

Zα := log
∑
t∈Tpre

Ot − log |Tpre|, Tpre := [-500,-100 ]ms, (3.45)

3.) the ERS response to the preceding priming stimulus, i.e.,

Zers := log
∑
t∈Ters

Yt − log |Ters|, Ters := [-1950,-1700 ]ms, . (3.46)

Note that the right boundary of the pre-stimulus intervals are commonly set to -100 ms

in order to prevent stimulus related artifacts entering the calculations. Furthermore

Ters, as defined in (3.46), corresponds to the interval [550,800 ]ms relative to the priming

stimulus and hence to its ERS period.

Remark 3.4.1. The use of the logarithm in the definition of the explanatory variables

(3.44)–(3.46) is motivated by the fact that the distribution of bandpower is typically

similar to a log-normal distribution. Thus taking the logarithm of the averaged band-

power yields a distribution similar to that of a Gaussian. In particular, using a constant

kernel width, as for the Nadaraya-Watson-estimator, is more appropriate in case of a

homogeneous distribution. However, since the logarithm is a monotonic transformation

it preserves the locality property of the data and thus does not affect any monotonic

relationship between the explanatory variable and the ERD characteristic.

2More precisely, as we are going to apply the intertrial variance method, we are using Y =˛̨
w>

csp · X ∗ b11Hz − E
ˆ
w>

csp · X ∗ b11Hz

˜˛̨2
.
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Results

For each of the three differently defined explanatory variables (3.44)–(3.46), we

compare the averaged and the conditional µ-rhythm ERD found by the generalized and

the conventional framework. As previously stated, it is not within the scope of this thesis

to thoroughly prove any neurophysiologically hypothesis about the dependency of the

ERD characteristic. Moreover, there exists no genuine truth about such relationship.

Consequently we will compare both methods in a descriptive rather than in a qualitative

manner. In order to apply the conventional estimator we set the reference interval to

Tref := [-500,-100 ]ms, which is the same interval, as it is used to determine the pre-

stimulus activities.

Averaged ERD. As before we start with the comparison of the averaged ERD

estimates, which are contrasted in Fig. 3.7. Here the results of the generalized and

the conventional estimator are slightly different. In particular the generalized averaged

ERD exhibit a more pronounced, longer lasting ERS than the classical estimate. In

order to trace back that difference to its origin, Fig. 3.8 depicts the averaged event-

related power envelopes along with the corresponding references of each method, i.e., a

constant reference in the case of the conventional estimator (left panel) and the reference

dynamics for the generalized measure (right panel). Obviously, the generalized reference

exhibits a distinct negative linear trend. This negative trend clearly indicates that the

cortical µ-generator is still at an excited state and the dynamics at rest must therefore be

considered non-stationary. In this context, please recall the results of the first artificially

generated data set (Fig. 3.2 panel I) and the related discussion in remark 3.3.1.

Figure 3.7: The resulting averaged ERD obtained by the two methods. The red
curve indicates the conventional averaged ERD, while blue corresponds to the generalized
averaged ERD.
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Figure 3.8: Each panel contrasts the estimated averaged event-related dynamics (solid
lines) with the corresponding references (dashed lines). The left panel refers to the
conventional ERD measure, using a constant reference that is estimated in from the
interval [-500,-100 ]ms. The right panel corresponds to the generalized model. The bluish
and reddish areas of each panel indicate the periods of ERD and ERS, respectively.

Conditional ERD. For the estimation of the conditional ERD we set the bandwidth

of the Gaussian kernel to the default value (cf. (2.22)). The resulting conditional ERD

estimates of both methods are contrasted in Fig. 3.9. At a first glance the ERD/ERS

complex exhibits less variability across the domain of the explanatory variable in the

case of the generalized estimator, i.e., the ERD and ERS are similar in magnitude

and latency at different levels of Z. Moreover, in accordance with the findings for the

averaged ERDs, the generalized framework consistently estimates a longer lasting ERS

response than the conventional estimator.

Going into detail, the most conspicuous discrepancy is visible for the µ-rhythm

ERD conditioned on its own pre-stimulus activity. In order to trace these differences

back to their origin, Fig. 3.10 contrasts the conditional expectation of the µ-rhythm

band power at rest versus the stimulation condition at three particularly chosen values

of pre-stimulus activity. The reference dynamics (C = 0) at lowest pre-stimulus activity

exhibits a distinct positive linear trend (cf. left panel of Fig. 3.10). Consequently taking

the pre-stimulus band power as constant reference, as it is done in the conventional ERD

framework, results in a spurious interpretation of ERS even for the reference dynamics

itself. The opposite behavior is observed in the case of increased pre-stimulus activity

(right panel of Fig. 3.10). Here the reference dynamics exhibits a prominent negative

linear trend. Since this pre-stimulus level exceeds even the hyper-synchronization level

after actual stimulation at approximately 800 ms, the conventional ERD measure gives

rise to a spurious interpretation of solely ERD, without any indication of an ERS.
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state conventional generalized

variable conditional ERD conditional ERD

Zµ

Zα

Zers

Figure 3.9: Each panel depicts the estimated conditional µ-rhythm ERD using a color-
coding scheme. The individual rows contrast the results of the two methods for a par-
ticular explanatory variable, i.e., magnitude of the pre-stimulus µ-activity, pre-stimulus
occipital α-activity, and preceding ERS response (top to bottom). The additionally high-
lighted horizontal lines of each panel indicate selected values of the state variable, used
for a further investigations. Note that the vertical axes indicate the exponential of the
explanatory variables and thus correspond to band power values.

Fig. 3.11 contrasts the corresponding conditional ERDs obtained from both methods.

Here the conventional method exposes the forecasted misinterpretation, while the ERD

estimates of the generalized method indicates a slight, directly correlated dependence
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Figure 3.10: The different panels display the estimated conditional dynamics of the
µ-power given its pre-stimulus activity at three different levels. The particularly chosen
state value of each panel corresponds in color and magnitude to those highlighted in
Fig. 3.9. The dashed lines corresponds to the reference dynamics, as they are used in the
generalized framework, while the solid lines indicate the dynamics after an actual stim-
ulation. The colored areas indicate the periods of ERD (blue) and ERS (red) identified
by the generalized framework.

of the ERD magnitude on the initial µ-power. However, the ERS characteristic across

the three different pre-stimulus activity levels appears rather similar.

The discrepancies revealed by the ERD analysis conditioned on the occipital α-

power are less apparent. As before we start to study the conditional expectations

of the µ-rhythm power envelopes. Here Fig. 3.12 contrasts the event-related and the

reference dynamics of the µ-rhythm band power at three particularly chosen values of

the explanatory variable. Comparing the three panels the only detectable difference

here comprises the observation, that a low α-power (left panel) coincides with a lower µ

pre-stimulus activity. Thus the static reference condition of the conventional estimator

is lower compared to the two other α-activity levels. The difference in the baseline

Figure 3.11: The different panels display the estimated conditional ERD of the µ-
rhythm given its pre-stimulus activity at three different levels. The left panel refers to
the conventional measure, while the right panel depicts the solution of the generalized
estimator. Again, the particularly chosen state values correspond in color and magnitude
to those highlighted in Fig. 3.9.
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Figure 3.12: The different panels display the estimated conditional dynamics of the µ-
power given the occipital pre-stimulus α-activity at three different levels. The particularly
chosen state values correspond in color and magnitude to those highlighted in Fig. 3.9.
The dashed lines correspond to the reference dynamics, while the solid lines indicate
the dynamics after actual stimulation. The colored areas denote the periods where the
event-related dynamics falls below the reference dynamics (bluish area) and where it is
exceeded (reddish area).

causes the upward shift of the corresponding conventional conditional ERD estimate

(cf. left panel of Fig. 3.13). However, according to the generalized conditional ERD

analysis the occipital α-power seems to have no effect on the characteristics of the ERD

(cf. right panel Fig. 3.13).

Next, we are going to compare both methods with respect to the estimated ERD,

conditioned on the magnitude of the ERS response to the preceding initial stimulus.

Again we begin with an examination of the conditional expectations of the µ-rhythm

power envelopes. Here Fig. 3.14 contrasts the event-related and the reference dynamics

of the µ-rhythm band power at three particularly chosen values of the appropriate

explanatory variable. The most prominent finding here corresponds to the observation

Figure 3.13: The panels display the estimated conditional ERD of the µ-rhythm given
the occipital pre-stimulus α-activity at three different levels. The left panel refers to
the conventional measure, while the right panel depicts the solution of the generalized
estimator. Again, the particularly chosen value of each panel corresponds in color and
magnitude to those highlighted in Fig. 3.9.
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Figure 3.14: The different panels display the estimated conditional dynamics of the µ-
power given the magnitude of the ERS response to the preceding initial stimulus at three
different levels. The particularly chosen state values correspond in color and magnitude
to those highlighted in Fig. 3.9. The dashed lines correspond to the reference dynamics,
while the solid lines indicate the dynamics after actual stimulation. The colored areas
denote the periods where the event-related dynamics falls below the reference dynamics
(bluish area) and where it is exceeded (reddish area).

that in case of a weak ERS response (left panel) the reference dynamics appears to

be stationary and at a lower power level than those of the two other selected values.

Even more interesting is the fact that the left panel suggests that a low-power ERS

response to the initial stimulus is correlated with a low-power ERS response to the

subsequent stimulus. However, comparing the resulting conditional ERD estimates in

Fig. 3.15 reveals no significant difference between the three states. A comparison of

both methods again discloses a longer lasting ERS response in case of the generalized

estimator, but exposes no further differences.

Figure 3.15: The panels display the estimated conditional ERD of the µ-rhythm given
the magnitude of the ERS response to the preceding initial stimulus at three different
levels. The left panel refers to the conventional measure, while the right panel depicts
the solution of the generalized estimator. Again, the particularly chosen value of each
panel corresponds in color and magnitude to those highlighted in Fig. 3.9.
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Conclusion

We presented the novel framework of conditional ERD that allows for the analysis of

dependencies of the ERD characteristic on external or internal explanatory variables. To

this end, we first extended the conventional averaged ERD measure towards the analysis

of conditional ERD by means of conditional expectations. Here it turned out that this

naive extension is not capable of reliably disclosing functional relationships between the

ERD characteristic and arbitrary explanatory variables. We then identified the fixed

reference condition as the main cause for this inability. Consequently we generalized the

conventional ERD framework with respect to the reference. In particular we substituted

the static reference value by a reference dynamics. Based on this generalized framework,

we derived novel measures for the quantification of averaged and conditional ERD, by

defining ERD/ERS as the relative deviation of the event-related dynamics from this

reference dynamics. In this context we also discussed how the acquisition of such a

reference dynamics can be incorporated into an experimental design.

In order to provide a proof of concept, we compared the individual capabilities of the

conventional and the generalized framework. To this end we applied the corresponding

averaged and conditional ERD estimators to simulated and real ERD data. Here the

analysis of artificially generated data in a controlled scenario revealed the limitations

of the conventional ERD framework. Unlike the conventional method, which failed

completely, the novel generalized measures performed well at retrieving the underlying

functional relationship of the ERD characteristic on an explanatory variable from the

surrogate data. Finally we envisioned the potential of the proposed novel framework

for neurophysiological investigations. Here the analysis of ERD data from a median

nerve stimulation paradigm demonstrated the capabilities of the proposed framework.

In particular we applied the novel estimator of generalized conditional ERD in order to

analyze the contra-lateral µ-rhythm ERD and its dependency on:

• the magnitude of its own pre-stimulus activity,

• the magnitude of the occipital α-activity,

• and the magnitude of the preceding ERS response.

De facto, these three examples represent just the tip of the iceberg. Possible future

investigations shall include comprehensive studies on the impact of various external
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factors such as the inter-stimulus interval or the simultaneous processing of multiple

stimuli, but also the influence of internal factors such as the activation of adjacent cor-

tical areas, the phase and magnitude of various brain rhythms, et cetera. Moreover,

applications such as brain-computer interfacing can also benefit from this generalized

conditional ERD framework. Here advanced classifiers which consider state dependent

behavior of ERD are expected to provide an improved accuracy of discrimination be-

tween different mental states. However, there are definitely more exciting issues that

are now ready for being approached on the basis of this novel ERD concept.
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Chapter 4

Spatio-spectral filters

Electroencephalogram (EEG) data in general is very noisy, non-stationary and

contaminated with artifacts that can deteriorate its analysis, such as the online detection

of mental states in the context of a brain computer interface (BCI). Thus the major

goal of preprocessing or feature extraction is to improve the signal-to-noise ratio of

the data significantly, for instance by spatial projections or spectral filtering. Here

Common Spatial Pattern (CSP) [29, 42, 68, 84] is an efficient method of obtaining

optimally discriminative spatial projections for bandpass filtered data. However, the

frequency band has to be specified appropriately in advance and is kept fixed during

the subsequent optimization. In the following chapter we extend the CSP algorithm such

that it additionally optimizes the spectral filter. To this end, we suggest expanding CSP

to the state space by means of the method of time delay embedding. As we will show,

this allows for individually tuned frequency filters for each channel and hence yields an

improved and more robust feature extraction. The advantages of the proposed method

over the original CSP method are verified in the context of single trial classification of

recordings from a set of BCI experiments of imagined limb movements. Here we show

the efficiency of the proposed method in terms of an improved information transfer rate

(bits per trial).

The chapter is organized as follows: We will start elaborating on the mathematical

background of CSP. Subsequently we will introduce two methods of obtaining spatio-

spectral filters. Here we will first sketch the Common Sparse Spectral Spatial Pattern

(CSSSP) [23], before the Common Spatio-Spectral Pattern (CSSP) [46] algorithm will

be presented in detail. Finally the performances of the three different methods will be
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compared on the basis of a comprehensive set of BCI-experiments in section 4.3.

4.1 Common spatial pattern

Since the EEG data is noisy, consists of a superposition of simultaneously active

brain sources, is typically distorted by artifacts and often exposes non-stationary behav-

ior, automated feature extraction becomes challenging. Moreover, outliers and artifacts

can distort the analysis dramatically, e.g., yielding classifiers with bad generalization

ability [65], i.e., the performance on previously unseen data, can become arbitrarily

worse. So it is important to strive for robust machine learning and signal process-

ing methods that are invariant against such distortions (e.g. [63, 43, 66, 90]). The

common spatial pattern (CSP) algorithm [29] is highly successful in calculating spatial

filters for detecting ERD/ERS effects [42] and for ERD-based BCIs, see [84] and has

been extended to multi-class problems in [21]. Given two class distributions in a high-

dimensional space, the CSP algorithm finds directions (spatial filters) that maximize the

variance for one class, while simultaneously minimizing the variance for the opposite

class. In order to see how this fits into the context of ERD and ERS, let us consider

the issue of discriminating between left hand and right hand imaginary movements. It

is known that motor imagery causes a contra-lateral ERD. Thus a spatial filter, that

focuses on signals originating from the left motor area, yields a signal that is character-

ized by a present motor rhythm during the imagination of right hand movements (left

hand is in idle state), and by an attenuated motor rhythm in case of a left hand move-

ment. But this exactly corresponds to the optimization criterion of the CSP algorithm:

maximizing variance for the class of right hand trials, while simultaneously minimizing

the variance for left hand trials. Moreover, the CSP algorithm calculates the dual filter

that will focus on the area of the right hand (and it will even calculate several filters

for both optimizations by considering orthogonal subspaces).

To be more precise, let X = (Xt)t∈T denote the stochastic process of the (po-

tentially bandpass filtered) multi-channel EEG over the temporal index set T ⊂ Z,

representing the individual sampling points of each single trial. Note, Xt represents

a multivariate random variable. Thus, whenever we would like to refer to a sin-

gle channel c ∈ 1, . . . , C explicitly, we use Xc,t for notational convenience. Further-

more let D =
{(

Xk· , Y k
)}K

k=1
denotes the set of K labelled realizations of X, where
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Y k ∈ {1; 2} represents the class label of the kth trial. Using the short hand notation of

Y1 := {k : Y k = 1} and Y2 for the set of class ’2’ trials, respectively, the estimator of

the two class conditional covariance matrices reads as,

Σ1 =
1

|Y1||T |
∑
k∈Y1

∑
t∈T

Xk
tX

k
t
>

and Σ2 =
1

|Y2||T |
∑
k∈Y2

∑
t∈T

Xk
tX

k
t
>
. (4.1)

Given these two class conditional covariance matrices, CSP is formulated as the following

optimization problem:

max
w

w>Σ1w, s.t. w> (Σ1 + Σ2)w = 1. (4.2)

This optimization problem can be solved by formulating its dual and calculating a

matrix W and diagonal matrix D with elements in [0, 1] such that

WΣ1W
> = D and WΣ2W

> = I −D. (4.3)

Here the row corresponding to the largest diagonal element of D yields the solution w

for the optimization problem (4.2). However a solution for (4.3) can be obtained by:

First whiten the matrix Σ1 + Σ2, i.e., determine a matrix P such that

P (Σ1 + Σ2)P> = I. (4.4)

This decomposition can always be found due to positive definiteness of Σ1+Σ2. Secondly

define S1 :=PΣ1P
> and S2 :=PΣ2P

> respectively and calculate an orthogonal matrix

R and a diagonal matrix D by spectral theory such that

S1
> = RDR>. (4.5)

From S1 + S2 = I directly follows S2
> = R(I −D)R>. Note that the projection given

by the pth row of matrix R has a relative variance of dp (pth element of D) for trials of

class 1 and relative variance 1 − dp for trials of class 2. If dp is close to 1 the spatial

filter given by the pth row of R maximizes variance for trials of class 1. Conversely, since

1 − dp is close to 0 it minimizes the variance for trials of class 2. The final solution of

(4.3) is given by

W := R>P. (4.6)

Based on artificial data, Fig. 4.1 illustrates the two main steps involved in solving the

optimization problem (4.3), i.e., the whitening and the final rotation.
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Figure 4.1: The two essential steps of the CSP optimization. The blue and green
ellipsoids refer to the two class conditional covariance matrices, along with the indicated
principal axes. The gray ellipsoid represents the overall covariance matrix. The left panel
depicts the raw data, the central panel shows the corresponding distributions after the
whitening step, cf. (4.4). The final rotation (cf. (4.5)) in the right panel aligns the principle
axes with the coordinate axes, such that the variance along the horizontal direction is
maximal for the green class, while it is minimal for the blue class and vice versa along
the vertical direction.

Applying the decomposition matrix W , the EEG recordings Xk are projected to

discriminative source signals

Zk = WXk. (4.7)

The interpretation of W is two-fold, the rows of W are the spatial filters, whereas the

columns of W−1 can be seen as the common spatial patterns, i.e., the time-invariant

coupling coefficients of each source with the different scalp electrodes.

4.1.1 Single trial features

Finally, the source signals used for the classification are obtained by decomposing

the EEG according to (4.7). Typically one would retain only a small number 2m of

projections that contain most of the discriminative information between the two classes.

These projections are given by the rows of W that correspond to the m largest and m

smallest eigenvalues {dpi}2m
i=1. The final feature vector of each single trial is represented

by the vector of the log-transformed signal variances (across time) of each projected

single trial {Zkpi,·}
2m
i=1, i.e.,

fki = log
(

Var
[
Zkpi,·

])
, k = 1, . . . ,K, i = 1, . . . , 2m. (4.8)

The 2m-dimensional feature vectors {fk}Kk=1 serve as the final input to the correspond-

ing classifier.
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4.2 Spatio-spectral methods

The performance of the CSP algorithm directly depends on the particular choice of

the passband which is used for spectrally filtering the EEG signals in advance. Although

[68] found evidence that a broad band filter is the best general choice, a subject-specific

choice mostly improves the result. Inspired by the Common Spatio-Spectral Pattern

algorithm [46] the Common Sparse Spectral Spatial Pattern algorithm was introduced

in [23]. The basic idea behind both approaches is to derive a discriminative spatio-

temporal filter in the spirit of CSP. To this end, the CSSP and CSSSP algorithms

alleviate the problem of manually fine-tuning the frequency band by simultaneously

optimizing a temporal and a spatial filter, i.e., the methods not only return optimized

spatial filters, but also Finite Impulse Response (FIR) filters, which act along with the

spatial filter in order to improve the discriminability of different brain states.

4.2.1 Sparse spectral spatial pattern

In order to tackle this issue, the CSSSP method considers the following optimization

problem

max
b,b(1)=1

max
w

w>

 ∑
τ=0,...,T−1

 ∑
j=1,...,T−τ

b(j)b(j + τ)

Στ
1

w − C/T ‖b‖1 ,

s.t. w>

 ∑
τ=0,...,T−1

 ∑
j=1,...,T−τ

b(j)b(j + τ)

 (Στ
1 + Στ

2)

w = 1.

(4.9)

Here w represents the spatial filter, while b is an FIR filter of length T. Note that the

inner maximization step (for a fixed b) is similar to the standard CSP-method, but

uses temporally delayed auto-covariance matrices Στ
1 and Στ

2 instead. In order to avoid

overfitting, the complexity of the sparse spectral filter is limited, i.e., a penalty term for

its complexity is added. The particular choice of the L1-norm of the FIR filter ensures

the sparsity of the obtained solution. Moreover, the degree of sparsity is controlled

by the non-negative regularization factor C. However a solution to (4.9) can be found

using optimization techniques such as gradient descent or line-search methods. Hence

the CSSSP algorithm finally finds global spatio-spectral filters. Note that the obtained

sparse spectral filter b is global, i.e., is applied to all channels.
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In the next section we introduce the CSSP algorithm, which solves the problem of

simultaneously optimizing spectral and spatial filters by extending the standard CSP

method to the state space. As we will explain in detail, solving the CSP problem in

state space yields spectral filters that are individually tuned for each sensor. However,

this additional degree of freedom comes at the expense of a stronger limitation to the

feasible set of FIR filters. Nevertheless, our proposed model is even simpler than the

CSSSP algorithm and can be solved quite efficiently, and as we will show in 4.3 performs

competitively.

4.2.2 Common spatio-spectral pattern

Let us start with a brief introduction to the concept of state space, followed by

the extension of the CSP algorithms to the state space. Subsequently we discuss its

consequences for the optimization problem and propose an intuitive representation of

the results.

Introduction to state space

Very few natural systems have actually been found to be low-dimensional deter-

ministic in the strict sense of theory. Nevertheless the concept of deterministic low-

dimensional chaos has proven to be fruitful in the understanding of many complex

phenomena. Also a number of attempts have been made to analyze various aspects of

EEG time series in the context of nonlinear deterministic dynamic systems.

Determinism in a strict mathematical sense means that there exists an autonomous

dynamic system, defined typically by a first order differential equation ẏ = f(y) in a

state space Γ ⊆ Rd, which is assumed to be observed through a single measurable quan-

tity s = h(y). The system thus possesses d natural variables, but the measurement

is usually a nonlinear projection onto a scalar value. In order to recover the deter-

ministic properties of such a system, we have to reconstruct an equivalent of the state

space Γ. The time delay embedding method is one way to do so. From a sequence

of scalar observations s1, s2, . . . , sN overlapping vectors sn = (sn, sn−τ , . . . , sn−(m−1)τ )

are formed, with τ as the delay time. Then according to Takens Theorem [93] under

certain conditions, such that for mathematically perfect, noise free observations sn and

m sufficiently large, there exists a one-to-one relation between sn and the unobserved
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vectors yn. Thus the attractor of any non-linear dynamics can be reconstructed in the

state space using an appropriate delay coordinate function.

CSP in state space

Since it is not our target to reconstruct the entire dynamics of the EEG-signal,

but rather to extract robust (invariant) features, we extend (4.7) just by one delayed

coordinate, i.e.,

Zk
t = W (0)Xk

t +W (τ)δτXk
t =

(
W (0),W (τ)

) Xk
t

δτXk
t

 . (4.10)

Here, for notational convenience, δτ denotes the delay operator, i.e,

δτXt = Xt−τ . (4.11)

Once again, the optimization criterion is to find projections W (0) and W (τ) such that

signal variance of different Zp discriminates two given classes best, i.e., maximizing

the variance for one class while minimizing it for the opposite class. In order to use

the identical mathematical concepts, as introduced in section 4.1, we just append the

delayed vectors δτXk as additional channels to Xk, i.e.,

X̂k =

 Xk

δτXk

 . (4.12)

Then the optimization criterion can be formulated equivalent to (4.2) and (4.3) re-

spectively, using the class conditional covariance matrices Σ̂l, l ∈ {1, 2} obtained from

X̂k. Following the steps of (4.4)–(4.6) yields a solution Ŵ of the modified optimiza-

tion problem. This filter matrix Ŵ can be decomposed into two submatrices Ŵ (0) and

Ŵ (τ), such that Ŵ (0) applies to Xk and Ŵ (τ) applies to the delayed channels δτXk,

i.e., ŴX̂k =
(
Ŵ (0) Ŵ (τ)

)
X̂k.

Spatio-spectral filters

Based on this, we will now explore the implications of this decomposition further.

Especially we will derive an interpretation into a spatial and a spectral filter. To this

end, let w denote the pth row of the decomposition matrix Ŵ , then the projected signal
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Zkp = w X̂k can be written as

Zkp,t = w(0)Xk
t + w(τ)δτXk

t (4.13)

=
C∑
c=1

w(0)
c Xk

c,t + w(τ)
c δτXk

c,t (4.14)

=
C∑
c=1

γc

(
w

(0)
c

γc
Xk
c,t +

w
(τ)
c

γc
Xk
c,t−τ

)
, t ∈ T , (4.15)

where (γc)c=1,...,C is a pure spatial filter and (w
(0)
c
γc
,

τ−1︷ ︸︸ ︷
0, . . . , 0, w

(τ)
c
γc

) defines a FIR filter

separately for each channel c. This decomposition into a spatial and a FIR filter is not

unique, but there exists a natural partitioning, i.e.,

γc :=

√
w

(0)
c

2
+ w

(τ)
c

2

sĩgn
(
w

(0)
c

) , (4.16)

where

sĩgn(w) =

 −1, w < 0

+1, w ≥ 0
.

(4.17)

Using the signed norm in the definition of the spatial filters γ, maps the non-

zero coefficients of the corresponding FIR filter onto one half of the two dimensional

unit-sphere. Consequently we can easily parameterize the FIR filters by the angle φ(τ)
c ,

defined as

φ(τ)
c := atan

(
w

(0)
c

w
(τ)
c

)
∈
[
−π

2
,
π

2

]
. (4.18)

Fig. 4.2 illustrate these FIR filters by means of the resulting magnitude responses curves

for various values of τ and at different angles φ(τ). Note that for each electrode there

is an individual FIR filter. Consequently each recording site can be tuned individually

to focus on spectral components of interest and thus allows for an adaptation to the

spectral peaks.

Similar to the original CSP algorithm, the spatial origin of each source signal can

be examined using the inverse of the matrix Γ = (γ)p,c. Here each column of the inverse

corresponds to the coupling strength of one particular source with the scalp electrodes.
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Figure 4.2: Magnitude responses of the FIR filters at different values of φ and τ . The
shaded region denotes the frequency range (7–30Hz) of interest. Left panel: Varying φ(τ)

at single fixed delay τ =50ms. Increasing φ(τ) from −π
2 to π

2 keeps the position of the
extreme values in the frequency domain fixed, but turns maxima into minima. Since a
minimum corresponds to a suppression of the spectral information at this frequency, the
FIR filter for φ(τ) = − 1

5π focuses mainly on {10, 30, 50} Hz. Conversely, the filter given by
φ(τ) = 1

5π has the contrary effect, i.e., it cancels these frequencies. Right panel: Varying
τ , while keeping φ fixed at − 2

5π. Increasing τ changes the position and increases the
number of the extreme values. Thus the various FIR filters focus on different sub-bands
in the frequency spectrum.

4.2.3 Online applicability

A major concern in online applications is to implement an algorithm which is as

efficient as possible.

CSP

In case of a CSP based classification the involved operations such as bandpass

filtering and spatial projections define the bottleneck for the speed of the processing.

Especially the spectral filtering of each EEG channel (64-128) is quite time consuming

and dramatically effects the overall processing speed. But fortunately the preprocessing

steps of bandpass filtering, that is typically realized by convolution with a FIR filter

b, i.e., (b ? X), and the spatial filtering (WX) are strictly linear. Consequently both
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operations are commutative, i.e.,

W (b ?X) = b ? (WX) . (4.19)

This implies that we are allowed to first apply the spatial projections and have to filter

only the few selected source signals in the desired bandpass, such that the CSP algorithm

becomes easily applicable in real time.

Spatio-spectral filter

In case of CSSP and due to the non-linear embedding operation δτ an arbitrary

order of the spatial and spectral filtering will not yield identical results. But we can

easily work around this and are allowed to exchange the operations in the following

manner:

Ŵ

 b ?X

δτ (b ?X)

 =

IC
IC

> b ? Ŵ (0)X

δτ (b ? (Ŵ (τ)X))

 . (4.20)

Where IC denotes the C-dimensional identity-matrices and basically adds up corre-

sponding source signals. This enables us to first filter the signals spatially and to select

appropriate sources. Afterwards we can apply the general bandpass filter, e.g., 7–30 Hz

and apply the delay operator, before we finally sum up the corresponding source signals.

Consequently the computational demands are just doubled compared to the original

CSP. Hence the proposed extended CSSSP model is applicable in real time as well.

4.3 Classification of imaginary movements

In this section we compare the CSP, CSSP and CSSSP algorithm on data from 60

EEG experiments of imaginary limb movements performed by 22 different subjects in

terms of the achieved classification performances. The investigated mental tasks were

imagined movements of the left hand (l), the right hand (r), and one foot (f ). In

this study we investigate all resulting two-class classification problems, i.e., all possible

combination of two classes (l -r,l -f and r -f ). Note that in a few experiments only two

mental tasks were used.
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4.3.1 Experimental design

During the experiment the subjects were sitting in a comfortable chair with arms

lying relaxed on the armrests. Each experiment started with a calibration session in

which the subjects performed mental motor imagery tasks in response to a visual cue.

In such a way (labeled) examples of single trial brain activity during the different mental

tasks were obtained. In the calibration session every 4.5–6 seconds one of 3 different

visual stimuli indicated for 3–3.5 seconds which mental task the subject should accom-

plish during that period. The brain activity was recorded from the scalp at a sampling

rate of 100Hz with multi-channel EEG amplifiers using either 32, 64 or 128 channels.

In addition to the EEG channels, we recorded the electromyogram (EMG) from both

forearms and the right leg as well as horizontal and vertical electrooculogram (EOG)

from the eyes (cf. Fig. 1.1 for a schematic of the montage). The EMG and EOG chan-

nels were exclusively used to ensure that the subjects performed no real limb or eye

movements correlated with the mental tasks that could directly (artifacts) or indirectly

(afferent signals from muscles and joint receptors) be reflected in the EEG channels and

thus be detected by the classifier, which should solely operate on the brain activity. For

each involved mental task we obtained between 120 and 200 single trials of recorded

brain activity. In the original experiment, these recorded single trials were then used

to train a classifier which was in a second session applied online to produce a feedback

signal for (unlabeled) continuous brain activity.

Here in this off-line study we will solely use data from the first (calibration) session

to evaluate the performance of the three algorithms. This is basically due to the issue,

that if feedback is provided to a subject, he/she will adapt to this particular feedback

(output of the classifier). Hence the data acquired during a feedback session is biased

towards the specifically used classifier that produced the feedback. Since the feedback in

the original experiment was based on CSP features, we consequently decided to exclude

the data of the feedback session for the evaluation process.

4.3.2 Classification and validation

After choosing all channels except the EOG, the EMG and a few outermost channels

of the cap that are supposed to have non-stationary signal quality, we applied a causal

bandpass filter from 7–30Hz to the data, which encompasses both the µ- and the β-
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rhythm. The single trials were extracted from the temporal frame 500–3500ms after

the presentation of the visual stimulus. During this period discriminative brain patterns

are present in most of the subjects. On these preprocessed single trials we perform the

feature extraction by the CSP, CSSSP and the proposed CSSP method separately.

For each method we project the data to the three most informative directions of each

class, yielding a 6-dimensional subspace. For these six dimensions we calculate the

logarithms of the variances as feature vectors, according to (4.8). Finally we apply a

linear discriminant analysis (LDA) to the feature vectors, to find separating hyperplanes.

Note that in contrast to [8, 10] we omitted the regularization of the linear classifier

itself (RLDA [28]), since the dimensionality of the features is rather small compared the

number of training examples. Furthermore, the introduced delay τ (in case of CSSP)

and the regularization constant C (in CSSSP) appear as underlying hyper-parameters

in the overall optimization scheme. Consequently both have to be subjected to a model

selection procedure in order to find the optimal values for each specific classification

task.

Remark 4.3.1. Using τ = 0 in the set of feasible hyper-parameters incorporates the

original CSP algorithm into the model selection procedure. Note that CSSSP becomes

asymptotically equivalent to CSP if the regularization parameter C tends to infinity

[23].

In order to compare the results of the three methods (CSP vs. CSSSP vs. CSSP) we

split the data set in two. On the (chronological) first half we performed the training of

the classifier, i.e., the feature extraction, model selection and the LDA. The performance

of the estimated models were then evaluated on the second half of the data, to which

the algorithms have had no access before. In the following we refer to these halves of

the data set as “training data” and “test data”.

To select the best CSSP and CSSSP model for each binary classification problem,

i.e., find the optimal τ and C respectively, we estimate the performance of these algo-

rithms by means of a 2 × 5-fold cross validation (CV) on the corresponding training

data. Especially we run a model selection procedure over τ = 0, . . . , 15 (corresponding

to 0, 10, . . . , 150 ms) in case of CSSP and over C ∈ {0, 0.01, 0.1, 0.2, 0.5, 1, 2.5} for the

CSSSP method respectively. In this 2 × 5-fold CV scheme the training data is split

randomly into 5 disjoint subsets of nearly equal size. Now the feature extraction and
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Figure 4.3: Each panel compares the obtained test errors of two algorithms over all
datasets. Crosses above the diagonal implies that the algorithm associated with the x-axis
outperforms the other and vice versa. Left panel: the proposed CSSP clearly outperforms
the CSP. Right panel: CSSSP is superior to CSP. The central panel compares the two
variants of CSP, i.e., CSSP (x-axis) vs. CSSSP (y-axis). However, there is no precise
predominance of one algorithm (see also Fig. 4.4).

the classifier training are performed on 4 subsets and are applied to the excluded subset.

This is repeated for all 5 subsets for 2 different splittings, such that we finally get 10

estimates of the classification error values. The mean of these errors for each hyper-

parameter (τ and C resp.) were then used to select the corresponding hyper-parameter

of each method.

Finally, after the model selection the corresponding CSSP, CSSSP and the CSP

based models for each classification problem were trained on the entire training data

and afterwards applied to the corresponding test data (the previously unseen second

half of the calibration data) of each experiment.

4.3.3 Results

The resulting test errors for all datasets are compared in Fig. 4.3. The superiority

of both CSP extensions to the standard CSP algorithm is clearly observable. However,

in Fig. 4.4 the results of the individual methods are further summarized in terms of

boxplots stating the median-value, the minimum and maximum, the 25% and 75%

percentiles of the test error. The median classification rate for CSP is 23.3%, for CSSSP

20.7% and for CSSP 21.0%. Comparing the two CSP variants directly does not reveal

any predominance of one particular algorithm. Thus the CSSP result is competitive with

CSSSP, even though CSSP solves a much easier optimization problem. However, both

methods optimize over different sets of feasible filters. Here CSSP allows for individually
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Figure 4.4: The boxplots summarizing the individual results for the three different
methods in terms of the median-value, the minimum and maximum and 25% and 75%
percentiles of the test error.

tuned but very simple FIR filters for each channel. On the contrary CSSSP restricts to

a single, but more complex FIR filter simultaneously applied to all channels.

For further illustrations of the properties of CSSP, we study one specific dataset

in more detail. In particular we focus on one particular classification task of imaginary

foot and right hand movement. For this selected dataset we oppose the spatial filters

found by the CSSP method to those of the CSP-method and discuss the impact of the

additional spectral filters.

According to the model selection procedure, described in section 4.3.2, the model

with the lowest CV-error on the training data (τ = 70ms) has been chosen for the

final application. The spatial and spectral filters of the selected model for each class

are visualized in Fig. 4.5 and Fig. 4.6 respectively. These figures also oppose the filters

found by CSP method. The first two spectral filters for class foot supply insight into

how additional spectral information is exploited. Here the corresponding spatial filters

found by the CSSP method are almost identical and focus on the central region, while

the spectral filters have opposite signs in this area. This indicates that information

from the same spatial location, but different frequencies is used for the discrimination.

Moreover, a closer examination of the FIR filter corresponding to τ = 70ms in Fig. 4.2-

right reveals that in the relevant frequency range (7-30 Hz) the maxima and minima are

roughly at 14,21,28Hz. Remember that for opposite signs of Φ(τ) the maxima and the

minima are exchanged. Combining these facts, the first spectral filter focuses basically

on the β band, whereas the second spectral filter has its focus close to the upper α band

(11–13 Hz). So instead of having a spatial projection onto a broad band (7–30 Hz) signal
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Figure 4.5: The scalp maps of the three spatial and spectral filters for the class foot
in descending order of the eigenvalues for both the CSP and the CSSP method. The
spectral filters are gray-scale-coded in the range [−π

2 ,
π
2 ]. The first spatial filters are

almost identical for CSP and CSSP, but already those for the second largest eigenvalue
diverges. Here the spatial filter found by CSP exhibit no clear structure, while the
corresponding CSSP filter resembles the first spatial filter. The main difference in the
projection occurs only in the spectral filter, where these filters have opposite signs in the
central region, indicating that different spectral information is exploited from the same
location.

as the solution given by the standard CSP, CSSP splits the information by projecting

onto two signals of the same local origin, but stemming from different sub-bands, such

that each projection fulfills the optimization criterion of maximizing the variance for

one class, while having minimal variance for the other class.

In this sense the CSSP algorithm is not only able to automatically adapt to the

spectral EEG characteristics of a subject, but also to treat different spectral information,

originating from closely adjoint (or identical) focal areas independently. As a result this
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Figure 4.6: The scalp maps correspond to the spatial and spectral filters of the three
leading eigenvalues for class right hand of the CSP and the CSSP method in descending
order. The first spatial filters are almost identical for CSP and CSSP (except for the
sign). For the second largest eigenvalue the CSSP filters work at the same location,
whereas the CSP filter exhibit no clear focal point at the area of the left motor cortex.

yields an improved spatio-spectral resolution of the discriminative signals and hence

improves the robustness and accuracy of the final classification.

Summary

In this chapter we used the method of delay embedding in order to extend the

CSP-algorithm to the state space. The advantages of the proposed method were proved

by its application to the classification of imaginary limb movements on a broad set of

BCI experiments. We found that the CSSP algorithm, introduced here, outperforms
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the standard CSP algorithm in terms of classification accuracy as well as generalization

ability. Furthermore we compared the obtained results to those of the CSSSP method

that also tackles the problem of simultaneously optimizing spatial and spectral filters.

Here we reliably showed that CSSP performs competitively, although the underlying

optimization procedure is much simpler and more efficient to solve.

It is worth mentioning, that in principle it is possible to further extend the sug-

gested model by incorporating more than just one temporal delay. But this will come

at the expense of a quadratically increasing number of parameters for the estimation of

the covariance matrices, while the number of single trials for training remain the same.

Hence, consistent with our observations, this approach will tend to over-fit the training

data, i.e., the simultaneous diagonalization of the class conditional covariance matrices

finds directions that explain the training data best, but might have poor generalization

ability. The overfitting will primarily be present in the spectral domain, here asymp-

totically (with the number of delayed coordinates) the solution will converge to FIR

filters that are responsive to only a single frequency, i.e., the coefficients of the FIR will

resemble a sine or cosine function.

Recently, another spatio spectral method has been published [95]. In this work

the authors carry out an extensive comparison of CSP, CSSP, CSSSP and the pro-

posed method, finding all extensions of CSP performing competitive, but superior to

the original CSP method.
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Chapter 5

Improving the signal-to-noise

ratio of ERPs

Recordings of encephalogram data typically consist of a (linear) superposition of

several distinct signals. Hence the application of Blind Source Separation (BSS) tech-

niques, such as Independent Component Analysis (ICA) is a quite common approach in

order to disentangle the true underlying source signals. However, incorporating phys-

iological prior knowledge into these decomposition techniques can help in extracting

physiologically meaningful sources.

In this chapter we develop a method that uses prior information about the phase-

locking property of event-related potential (ERP) in a regularization framework, which

shifts the focus of the BSS methods towards the extraction of single-trial ERP. The

proposed method is specifically tailored to trade off between single-trial decomposition

and the separation of the averaged responses. In particular we propose an additional

preprocessing of the data, i.e., we introduce a linear, temporal transformation, that

increases the signal-to-noise ratio (SNR) in the subspace spanned by the event-related

phase-locked components, prior to the application of ICA. We show that the assumed

linear mixture model of the data is invariant under the proposed transformation. Hence,

the estimated spatial filters can be directly used for the decomposition of the single trial

EEG.

The chapter is organized as follow: After a brief review of several approaches for

improving the SNR of single ERPs, we give an introduction into ICA and its application

79
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to encephalographic data. In section 5.2 the linear transformation is described, along

with the proofs of its basic properties. In the experimental section we illustrate the

benefit of the proposed approach in terms of an increased SNR of extracted evoked

components. Here the method is first evaluated in a controlled scenario using artificially

generated data, before we finally present results of recovering somatosensory evoked

potentials from multichannel EEG-recordings.

5.1 Introduction

The analysis of single trial data is an important research issue because variable

behavior could potentially be traced back to variable brain states. Single trial analysis,

however, suffers from the superposition of task-relevant signals by task-unrelated brain

activities, resulting in a low SNR of the observed single trial responses. Here in the

context of the SNR we refer to the ERPs as the signals and to all non-phase-locked

neural activity as well as to non-neural artifacts as interfering noise. Accordingly, the

major goal of data processing prior to the analysis of single trial ERPs is to enhance

their SNR significantly, in other words isolating the phase-locked ERP signal from the

interfering noise.

To this end, the analysis of ERP is mostly focussed on averaged responses to

repeated identical stimuli. This procedure takes advantage of the fact that the phase

locked ERPs persist under averaging over trials, whereas components of arbitrary phase,

such as non-neural artifacts and ongoing ”background” activity, cancel out. Conse-

quently, averaging across trials increases the SNR for phase-locked ERPs, but has the

drawback of masking single-trial variability of the task-related responses, e.g., in am-

plitude or latency. A more advanced averaging technique, called periodic stacking [91],

aims to overcome this problem by simultaneously extracting averaged and differential

responses. Since the method implicitly relies on trial-averaging the analysis of possi-

ble interactions between the single trial responses and the ongoing activity remains a

challenge.

Other techniques suggested to improve the SNR for single trial analysis are based

on temporal or spatial filtering. Commonly used are bandpass, notch or Laplace filters

as well as principle component analysis (PCA) or more sophisticated techniques such

as wavelet denoising [83], or BSS techniques.
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5.1.1 Independent component analysis

Due to the fact that the electric fields of different bioelectric current sources super-

impose linearly, the measured EEG can be modeled as a linear combination of compo-

nent vectors

x(t) = As(t), (5.1)

where x = (x1, . . . , xN )>, s = (s1, . . . , sM ) and A ∈ RN×M . Moreover, in case of

independent component analysis it is further assumed that the observed signals x(t)

are a linear mixture of M ≤ N mutually independent sources s(t), i.e., their joint

probability density function factorizes.

Under these assumptions ICA decomposes the observed data x(t) into indepen-

dent components y(t) by estimating the inverse decomposition matrix, such that

y(t) = Wx(t). However, this recovers the original sources s(t) except for scaling and

permutation. In general, as both the mixing process and the sources are unknown, this

technique belongs to the so-called blind source separation methods [18].

FastICA

Most of the research conducted in this field uses higher-order statistics for the es-

timation of the independent components [18]. For instance Hyvärinen and Oja [34]

maximized the kurtosis of the output signals. They developed a general fix-point it-

eration algorithm termed FastICA, that optimizes a contrast function measuring the

distance of the source probability distributions from a Gaussian distribution [18, 34].

By whitening the data in the preprocessing step first, the complexity of the problem

reduces, i.e., afterwards the estimation of an orthogonal matrix W remains [14]. For

the estimation of the orthogonal matrix from whitened data x the iterative update of

FastICA takes in matrix notation the form

W+ = W − Γ−1
(

E
[
g(y)y>

]
− diag(βi)

)
W, (5.2)

here y = Wx, βi = E[yig(yi)] and Γ = diag( E[g′(yi)]− βi), where g(y) is a non-linear

contrast function. Here g(yi) = y3
i is commonly used and corresponds to an optimization

with respect to the kurtosis. Alternatively people apply hyperbolic tangent as contrast

function.
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TDSEP

The Temporal Decorrelation SEParation (TDSEP) algorithm [110], which is equiva-

lent to Second-Order Blind Identification (SOBI) [5], relies on distinct spectral/temporal

characteristics of the sources and exclusively uses second-order statistics in the form

of temporally delayed covariance matrices Rτ,x := = E
[
(δτx)x>

]
. Here δτ denotes

the temporal delay operator, that shifts the signal x(t) by τ time instances, i.e.,

δτx(t) := x(t − τ). TDSEP estimates the unknown mixing matrix A by simultane-

ous diagonalization of a set of correlation matrices {Rτ,x|τ = τ1, . . . , τK}. Here TDSEP

explicitly exploits the property that the cross-correlation between independent signals

are zero. In general, the issue of simultaneous diagonalization of more than 2 matrices

can be solved only approximatively, and there exist several optimization schemes solving

this problem [15, 107, 109].

5.1.2 Application to EEG data

The application of BSS to neurophysiological signals, especially the decomposi-

tion of ERPs in human scalp EEG, is a challenging task because of the multitude

of active brain sources contrasting with the relative paucity of sensors. Furthermore,

non-stationarity is a general issue for EEG data analysis and can strongly affect the

solution of BSS. However, the practical use of ICA for decomposing brain signals was

first introduced in [52, 98].

Averaged data

Commonly the separation of EEG into neurophysiological sources is approached

by decomposing averaged data. This procedure takes advantage of an increased SNR

along the spatial directions of the phase-locked brain responses; however, the analysis

of their single-trial latency or amplitude variability is hampered. It is important to note

that spatial projections, that are estimated on averaged data, are not suitable to study

the underlying single trials. This is because such filters are “blind” for the interfering

single-trial noise that has canceled out under averaging. Consequently, applying these

filters to single trial data yield a suboptimal decomposition of the data. Moreover,

as trial-averaging ideally cancels out non-phase-locked sources leaving (a few) phase-

locked event-related sources, the intrinsic dimensionality of the data is reduced and so
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overfitting becomes an issue, when applying ICA. This is usually counterbalanced by

projecting onto a lower dimensional subspace prior to the application of ICA (cf. [60,

67, 99, 100]).

Single trial data

The alternative approach, i.e., applying ICA to event-related single-trial EEG, is

rarely studied [54, 39, 56] and suffers from the non-stationarity of EEG as well as from a

low SNR of single-trial ERPs, embedded in ongoing EEG. Additionally, one fundamen-

tal question for the application of BSS poses itself by: ’How many sources?’. Since the

answer to this question directly addresses the issue whether ICA has to solve an under-

or an over-determined system, this question is rather a fundamental data analytical issue

than just a philosophical one. In the following we will assume that the number of sources

exceeds the number of sensors. Hence we are facing the problem of under-determined

BSS. As pointed out in [53], under these circumstances standard ICA techniques tend to

extract mainly prominent signal sources, i.e., non-neural artifacts and non-phase-locked

background brain activity, which are often much larger in amplitude than the ERPs

one is interested in. This is basically due to the fact that the statistical optimization

criteria (contrast functions) of ICA, such as kurtosis, negentropy, time lagged covari-

ances, are dominated rather by the noise sources than by the weak ERP components.

In addition, cortical sources of ERP are usually active only for a brief period of time.

Consequently they are reflected to a minor extent in the statistical properties that are

typically estimated as averages across time. For these reasons the application of ICA to

single-trial EEG data is restricted to the extraction of the dominant sources instead of

the weak and short lasting ERP components. Consequently ICA has been mainly used

as a tool for removing artifacts such as eye blinks, power line noise or muscle movements

from ongoing physiological recordings [38, 98, 99, 100, 111] and only occasionally for the

separation of single-trial data into functionally independent sources [54, 56, 55, 106].

Solving an under-determined system (less sensors than sources) usually requires

additional assumptions about the underlying sources, such as sparsity or super-Gaussian

distributions [13, 59, 108]. In this chapter we tackle this issue by exploiting prior know-

ledge about the sources, concentrating on utilizing the phase-locked characteristics of

ERP signals to improve on their extraction.
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5.2 Incorporating physiological prior knowledge

Before we introduce the incorporation of a spatial prior into the ICA framework, we

will briefly outline the mathematical foundations, and specify the performance measure,

which is later on used for evaluation.

5.2.1 Mathematical preliminaries

Let X = (Xt)t∈T denote the stochastic process of the multi-channel EEG over a

temporal index set T ⊂ Z, representing the individual sampling points of each single

trial. Here Xt represents a multivariate random variable. Furthermore we consider X

to be generated as a stationary linear mixture of M > N independent sources S, i.e.,

X = A · S. The set of K realizations (single trials) of X is given by D =
{
Xk·
}K
k=1

.

Whenever we would like to refer to an individual channel c ∈ 1, . . . , C or source i, we

explicitly use Xk
c,t and Ski,t respectively. Without a loss of generality, we assume the

event-related (phase-locked) sources to be embedded in an Me-dimensional subspace,

spanned by the first Me < N independent sources. The remaining M −Me dimensions

are characterized by artifacts and non-phase-locked background brain sources. Thus

averaging across trials yields:

E[Si] ≡ 0, ∀ i > Me (5.3)

E[Si] 6≡ 0, ∀ i ≤Me. (5.4)

Note that (5.4) is not restricted to identical single-trial responses for the event-related

sources. It only assumes the existence of stimulus locked components that will not

vanish asymptotically under trial-averaging. Consequently (5.4) also covers ERPs that

undergo single trial variability either in amplitude or in latency.

Consequently, for the EEG signal Xc acquired by the cth electrode it follows

E[Xc] = E

[
M∑
i=1

Ac,i · Si

]
=

Me∑
i=1

Ac,i · E[Si] . (5.5)

Thus averaging over trial asymptotically maintains only information about the phase-

locked components and converges to theMe-dimensional subspace spanned by the phase-

locked sources. Implicitly we assume stationarity of the spatial coupling of the ERP

sources with the electrodes, represented by the columns A·,i, i < Me of the mixing

matrix.
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Performance measure

In order to access the quality of an extracted phase-locked source, we measure its

SNR. The SNR is commonly defined as the ratio between the variance (power) of the

averaged ERP (signal) and the averaged variance of the single trial residuals (noise):

SNR :=
Power (ERP)

E[Power (trial− ERP)]
. (5.6)

Note that the variance (power) is computed pathwise, i.e., for each realization of the

stochastic process (single trial) across time. We will explicitly denote this by Vart[·].
Conversely the expectation E[·] corresponds to averaging over trials. Given an estimate

of the decomposition matrix W and using the same notation for the recovered sources

Y = W · X as previously introduced in the context of X, the SNR of a source signal Yi

reads as

SNR(Yi) =
Vart[ E[Yi]]

E[ Vart[Yi − E[Yi]]]
. (5.7)

Remark 5.2.1. It is easy to prove that the above definition of SNR is invariant with

respect to rescaling the signals. This is important, as ICA recovers the independent

sources uniquely except for scaling.

5.2.2 Temporal transformation

As carried out in [53] in an under-determined environment (more linearly mixed

sources than sensors), BSS techniques tend to extract sources that are most promi-

nent with respect to the statistical optimization criteria, such as kurtosis, negentropy

or time lagged covariance. In order to redirect the focus of ICA on the event-related,

phase-locked signal subspace, we utilize property (5.5) and define a filter L(X) of the

mixed process, that enhances the signal along the direction of the event-related compo-

nents, while dampening all noise directions. In order to control the degree of the signal

amplification a regularization parameter λ ∈ [0, 1) is included:

Lλ(X) : Xt 7−→ (1− λ)Xt + λE[Xt] , ∀t ∈ T . (5.8)

For the set of realizations (single trials) D =
{
Xk·
}K
k=1

this translates to

Lλ(D) : Xk· 7−→ (1− λ)Xk· + λX̄·, k = 1, . . . ,K, (5.9)
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where X̄· represents the empirical expectation (average across trials). Each single trial

Xk· is replaced by the weighted average, more precisely a convex combination, of itself

and the average response. Raising the parameter λ from zero towards one increasingly

replaces the single-trial responses by the averaged responses. Simultaneously the noise

contained in the single trial is monotonically suppressed. Consequently the distribution

of the data becomes increasingly concentrated onto the subspace spanned by the phase-

locked ERP components. This property is illustrated on artificially generated data in

Fig. 5.2.

Obviously the temporal transformation Lλ(X) in (5.8) is linear. Based on this

observation we can easily derive the following properties.

Lemma 5.2.1 (Properties of Lλ(X)). Let λ ∈ [0, 1) and Lλ be defined according

(5.8), then for X = A · S the following holds:

i) Lλ is invertible, i.e., L−1
λ exists

ii) the linear mixture model is invariant under Lλ, i.e., Lλ(X) = ALλ(S).

Proof. i) In order to prove the existence of the inverse of Lλ, we will construct

it explicitly. To this end, let λ ∈ [0, 1) be fixed and Y = Lλ(X), i.e., Y t =

(1−λ)Xt +λE[Xt] , ∀t ∈ T . Obviously the following equivalence holds E[Y t] =

(1 − λ) E[Xt] + λE[ E[Xt]] = E[Xt], which implies Y t − λE[Y t] = (1 − λ)Xt.

Dividing both sides of this equation by (1 − λ) recovers Xt. Thus the inverse of

Lλ for λ ∈ [0, 1) is given by:

L−1
λ (Y) : Y t 7−→

Y t − λE[Y t]
1− λ

, ∀t, (5.10)

ii) In order to prove the invariance of the linear mixture model under the transfor-

mation Lλ it is sufficient to show that Lλ is linear. To this end, let Y = Lλ(X)

and Xt = ASt, then

Y t = (1− λ)Xt + λE[Xt] (5.11)

= (1− λ)ASt + λE[ASt] (5.12)

= A ((1− λ)St + λE[St]) , (5.13)

and finally Lλ(X) = A · Lλ(S), ∀λ ∈ [0, 1).
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Note, as the transformation is invertible for all λ ∈ [0, 1), the spatial and spectral

information about the noise processes is preserved under the transformation.

Remark 5.2.2. Along with Lλ its inverse L−1
λ is also linear, thus the following holds for

all λ ∈ [0, 1)

L−1
λ (W · Lλ(X)) = W · L−1

λ Lλ(X) = WX. (5.14)

This ensures that a decomposition matrix W , obtained on the basis of the trans-

formed data Lλ(D), is directly applicable to the raw single-trial Xk. Note that λ equal

zero corresponds to raw single-trial data, while λ → 1 applies to the trial-averaged

data.1 Consequently, by virtue of the transformation (5.8) we are able to trade off be-

tween applying ICA on single trial data in noisy environments and the decomposition

of the averaged responses.This particular processing of the single trial data, prior to

the application of any ICA algorithm, enables us to redirect the focus of the separation

onto the event-related signal subspace, while simultaneously sustaining the information

about the spatial and spectral structure of the single-trial noise.

In order to obtain improved ERP-components we simply apply an ICA method

at several degrees of regularization λ ∈ [0, 1) and decompose the raw data using the

correspondingly estimated demixing matrices W (λ). This yields different estimations

of the underlying independent sources, i.e., Y (λ) = W (λ)X. At each degree λ we then

identify the extracted phase-locked component and evaluate its signal quality. Finally

we simply take the decomposition of the data that extracts the ERP-component best.

Remark 5.2.3. If the feasible set of regularization parameters contains λ = 0, then the

solutions of the non-regularized vanilla ICA are considered in the model selection. Con-

sequently the signal quality of the ERPs extracted by the proposed method is trivially

greater than or equal to the achieved SNR of the vanilla approach.

5.3 Experiments

In this section we will demonstrate the advantage of the proposed method for the

extraction of single-trial ERPs. For this purpose, we will first study its application in

a controlled environment of artificially generated data. In this artificial setting we will
1In the case of λ = 1 (decomposition of the averaged data) the transformation Lλ is not invertible,

thus the estimated filters Wλ are not meaningfully applicable in order to decompose the single trial
data.
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embed one single simulated ERP-component in a three dimensional noisy environment

and will compare the benefit of our method in relation to a standard ICA approach.

The application to artificial data will be followed by real world examples of improved

extraction of somatosensory evoked potentials from multichannel EEG-recordings.

For the decomposition of the multivariate data into independent sources we will

apply the TDSEP-algorithm [5, 110].

5.3.1 Artificial data

The verification of novel approaches on the basis of artificially generated data is

quite advantageous, as it allows us to examine the response of the system with respect

to changes of certain environmental parameters. Thus, for our pupose we generate low

dimensional surrogate EEG data.

Data generation

To meet the assumption of under-determined BSS while keeping things simple, we

simulate three EEG channels as a linear mixture of four independent artificial sources

(simulated ERP, 10Hz narrow band source, white Gaussian and 1
f noise; see Fig. 5.1).

In order to validate our approach at different initial SNR of the ERP, we generated

different data sets by scaling the amplitude of the normalized ERP-component with a

factor σ ∈ [0.01, 10], while keeping the non-phase-locked sources normalized and the

mixing matrix A fixed. In particular A was chosen as:

A =


0.5 1 1 −0.1

1 0.1 1 1

0.5 1 1 1

 ·D,

where D is the diagonal matrix, such that the Euclidean norm of the columns of A is

normalized to unity. Each of the simulated data sets consists of 100 single trials. The

task for the ICA algorithm is to recover the ERP component from the simulated single

trial EEG.

Note that any invertible decomposition matrix of the data corresponds to a basis

of R3. Consequently there will exist at least one independent component that contains

parts of the phase-locked ERP signal. Moreover, from the particular definition of the
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Figure 5.1: Three simulated EEG channels, given as a stationary linear mixture of four
artificially generated sources, i.e., ERP, 10Hz, white Gaussian noise and 1

f noise. The
scaling factor σ, here figuratively indicated as a multiplier in front of the ERP signal, is
used to generate several dataset with a different initial SNR ({σi ∈ [0.0110]}).

mixing process it follows immediately that the ERP signal can not be recovered per-

fectly, i.e, there exists no direction with an infinite SNR. Hence it is the goal of the

regularization approach to find a separation of the data, such that the ERP signal is

recovered by a single independent component and at a high SNR.

Results and discussion

For each data set, indexed by σ ∈ [0.01, 10] we transform the single trials according

to the transformation (5.8) at different values of λ from a fixed, selected set Λ ⊆ [0, 1).

Fig. 5.2 shows the 3D-scatter plots of the transformed data for different values λ. As

it was expected, the data gets increasingly concentrated along the direction of the ERP

signal. The transformed data was subsequently processed by the TDSEP algorithm.

For each data set this yields a collection of decomposition matrices {W (λ) : λ ∈ Λ}.
According to the basic properties of the transformation, we can apply W (λ) directly to

the raw data, yielding differently recovered sources Y (λ) = W (λ)X. At each degree

of regularization we determine the ERP source as the independent component with the

largest SNR. The optimal degree of regularization λ∗ is then individually defined for

each data set, as the regularization value λ ∈ Λ, that yields the maximum SNR.

For each data set we refer to the ratio between the SNR at the optimal level of

regularization and the SNR of the standard ICA (λ = 0) as the relative gain in SNR,

i.e.,

relative gain(λ) =
SNR(Yi(λ))
SNR(Yi(0))

. (5.15)

In Fig. 5.3-left we depict the relative gains for all data sets, indexed by σ ∈ [0.01, 10].
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λ=0 λ=0.1 λ=0.2 λ=0.3 λ=0.4

λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9

Figure 5.2: Each panel depicts a 3D-scatter plot of the transformed data at certain
degrees of regularization. The green lines indicate the spatial directions (columns of the
mixing matrix A) of the three noise signals, while the red line corresponds to the spatial
direction of the ERP signal. Along with an increasing degree of regularization the data
gets stronger concentrated along the subspace spanned by the ERP.

At very low initial SNR of the ERP, i.e., σ ≤ 0.1 there is no improvement, which is to be

expected since the ERP signal is buried under a strong noise floor, even on average due

to the small amount of just one hundred single trials. Thus the spatial direction of the

average across trials is still dominated by the dominant non-phase-locked components

rather than by the ERP sources and consequently the regularization can not provide a

strong enough bias toward the ERP subspace. This changes drastically as the strength

of the raw ERP signal increases with a peak performance at σ = 0.8. When the

ERP becomes more strongly pronounced in the raw data (σ > 0.8), the relative gain –

although above one – starts to decay. This coincides with the level, at which the ERP

source in the mixture becomes stronger pronounced, such that even the vanilla ICA

starts extracting the ERP. It is worth mentioning that even in this situation, when ICA

starts to extract the ERP signal by itself, the regularization approach improves slightly.

To give an impression of the strength of the provided bias, the averaged ERP of the

simulated EEG channel with the best SNR (second channel) is shown as inserted plots in

the left panel of Fig. 5.3 at three different levels of ERP amplitude, i.e., σ = {0.1, 0.8, 3}.

The right panel of Fig. 5.3 provides information about the particularly selected

optimal degree of regularization, λ∗ for each data set. As discussed before, for data sets

with an ERP amplitude σ ≤ 0.1, even regularization does not help to extract the ERP

source of marginal signal strength. For these data sets the SNR remains unchanged
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Figure 5.3: The left panel compares the optimal solutions found by the proposed
method and by non-regularized, standard ICA. More precisely it presents the relative gain
(cf. (5.15)) in the SNR of the extracted phase-locked component for the different data sets
(indexed by σ ∈ [0.01, 10]). For very weak signals there is an almost no improvement, due
to the fact that even the average shows no clear ERP-signal (illustrated by the inserted
plots). The right panel gives the corresponding optimal degree of regularization, at which
the SNR is maximized for each data set. Note in cases where all degrees of regularization
yield the same SNR, we conservatively prefer lower degrees. Especially for the data
sets with ERP amplitude σ < 0.1 the SNR is equal at each degree of regularization,
consequently the optimum refers to the standard ICA solution at λ = 0.

at each degree of regularization. In such a case of equal SNR we conservatively prefer

smaller values for the optimal degree of regularization, hence for these data sets λ∗

equals to zero. If the ERP becomes slightly more pronounced in the raw data, but

stays at a low level, it requires a high degree of regularization (λ∗ = 0.99) in order to

extract the weak ERP source from the over-complete mixture. For data sets with an

even larger ERP amplitude, the degree of regularization that is needed for recovering

the ERP signal best, reduces monotonically.

In order to further elaborate on the properties of the regularization scheme, we

study one exemplarily chosen data set at an ERP amplitude level of σ = 0.8. For that

particular data set Fig. 5.4 shows the evolution of the SNR of the three decomposed

sources as functions of the regularization parameter λ. At λ = 0 the SNR refers to the

solution of standard ICA (no regularization). Obviously the non-regularized, standard

ICA does not focus on the extraction of the ERP signal, which is evident from basically

two observations: the low SNR and the simultaneous presence of two components with

a non-zero SNR. Increasing the degree of regularization forces the separation process to

focus on the extraction of the ERP into one independent component and increases the
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Figure 5.4: The SNR of the three recovered sources as a function of the regularization
parameter λ for a specifically chosen artificial data set (σ = 0.8). The green line reflects
the SNR of the recovered source that is associated with the ERP. Due to the regularization
the SNR of that particular source at λ∗ = 0.85 is almost thrice the SNR of the vanilla ICA
solution at λ = 0. The inserted plots shows the averaged signal (100 single trials) for the
three recovered sources at three exposed degrees of regularization, i.e., λ = {0, 0.85, 0.95}.
At λ = 0 the ERP signal is present in two components, at λ = 0.85 the SNR of the ERP
source has a clear maximum and the ERP is captured by a single source. However, at
higher degrees of regularization, e.g., at λ = 0.95, the ERP is still represented in one
component, but with a lower SNR, mainly due an insufficient representation of the noise.

SNR of the extracted phase-locked component. For that particular data set the maxi-

mum in the SNR suggests an optimal degree of regularization at λ∗ = 0.85. Increasing

the regularization parameter further, the SNR of the extracted ERP component starts

to decay. However, in strict contrast to the non-regularized decomposition, the ERP

component is captured by a single component. The observed decrease in the SNR can

be best explained by a phenomena termed over-regularization. Here the system is at

a state where the averaged signals prevail and the extracted component becomes “less

invariant” against the single trial noise, which is reflected in the decrease of the SNR.

For this specific data set the optimal SNR yields an improvement by roughly a factor

of 2.8 compared to the SNR of the solution obtained from the vanilla decomposition of

the raw single trial data.

5.3.2 Somatosensory evoked potentials

In order to illustrate its usefulness on real data, we apply the proposed method to

five data sets of single trial EEG recordings of Somatosensory Evoked Potentials (SEPs).
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Figure 5.5: The figure presents the relative gain in the SNR of the extracted SEP
component for five different subjects. The achieved relative gain is given as a function
over the regularization parameter λ. The relative improvement strongly varies for the
different data sets, ranging from a factor of 1.2 (black dashed) to a factor of 3.5 (blue
solid).

SEPs excited by median nerve stimulations are well studied and various cortical

responses with different timing and amplitudes are known, e.g., the earliest responses

are at the contralateral primary somatosensory cortex (SI) [1, 2, 57] that is activated at

18− 150 ms, while later responses at ipsilateral SI [2, 57] and bilateral activations with

similar timing in the secondary somatosensory cortex (SII) [57] have been reported.

Data acquisition

In the present study we will examine EEG recordings from five healthy subjects.

The SEPs were excited by weak median nerve stimulation (MNS) delivered at the right

wrist at an intensity of 25% above the individual sensory threshold, but well below the

individual motor threshold. The intensities of the delivered stimuli for the different

subjects range from 1.9 – 2.8 mA at a constant impulse-width of 0.2 ms. Each data set

consists of 100 single trials of weak MNS. The used inter-stimulus interval was about 3 s

with an additive uniformly distributed jitter ([0–250] ms). The EEG was recorded from

56 electrodes, placed on a subset of the 10-10 system [16]. The referential recordings

(against nose reference) were sampled at 1 kHz. Prior to the analysis, a bandpass filter

in the range of [0.1, 80] Hz was applied to the data.



94 Chapter 5: Improving the signal-to-noise ratio of ERPs

Results and discussion

For each data set we transformed the single trials according (5.8) at different values

λ ∈ Λ ⊆ [0, 1), and finally applied the TDSEP algorithm to the transformed data sepa-

rately. This yields separate collections of decomposition matrices {W (λ) : λ ∈ Λ} and

correspondingly differently recovered source signals. At all degrees of regularization, the

estimated components could either be distinguished by its phase-locked or non-phase-

locked property. Throughout all degrees of regularization we identified one component

in each data set that was persistently extracted and could clearly be identified by means

of similarity of the spatial distribution and similar time courses of the averaged signal.

In particular these components enable us to directly quantify the improvement in the

SNR depending on the degree of regularization. As in section 5.3.1 we will refer to the

ratio of the SNR of an ERP source, recovered at a specific degree of regularization, and

the SNR of an ERP source obtained by the standard ICA solution (λ = 0) as the rela-

tive gain (cf. (5.15)). Fig. 5.5 shows the relative gain as a function of the regularization

parameter λ for the extracted SEP component of the five different data sets. For each

data set the SNR of the extracted SEP source monotonically ascends with an increasing

degree of regularization up to a clear maximum. The achieved peak performance in the

relative gain for the different data sets ranges from 25% to 270%, which corresponds to

an improvement of the SNR by a factor 1.25 − 3.7, relative to the solution of vanilla

ICA. The different performance gains resemble the observed differences of the obtained

achievement on the artificial data, see Fig. 5.3. Again these differences are probably

due to the different statistical confidence about the provided spatial bias, and therefore

are directly linked with the ratio between the signal strength of the ERP source and

the interfering noise, i.e., the SNR of the raw data.

For one exemplary chosen data set the SNR as a function of the regulariza-

tion constant λ is shown in Fig. 5.6. At three different degrees of regularization,

λ ∈ {0, 0.55, 0.9}, the spatial distribution at the scalp and the averaged evoked re-

sponse of the recovered ERP component are inserted, emphasizing the similarity of the

extracted sources. With λ, starting at zero (the vanilla decomposition of the raw single

trial data), the SNR increases monotonically up to a clear maximum at λ∗ = 0.55. This

maximum in SNR can be interpreted as the best separation into the signal and the

noise space, with respect to this component. Increasing λ further drives the system into
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Figure 5.6: The estimated SNR of the decomposed phase-locked source as a function
of the regularization parameter λ for one particular data set (magenta dashed line in
Fig. 5.5). Examples of the corresponding scalp patterns and the averaged ERPs are
shown at three degrees of regularization, i.e., λ = {0; 0.55; 0.9}. The scalp distributions
of the source are almost identical, as well as the averaged responses, emphasizing the
equality of the sources.

a state where the averaged signals prevail and the extracted component becomes “less

invariant” against the single trial noise, which is reflected by the decrease of the SNR.

Summary

We have introduced a novel approach improving the decomposition of single-trial

ERPs in terms of an increased SNR. To this end, we incorporated prior knowledge

about the phase-locked property of the signals of interest into the source separation

framework. By virtue of a linear, temporal transformation of the data we enabled

the ICA method to trade off between single-trial decomposition and the separation of

the averaged responses. In particular, the suggested method is incorporated into a

regularization scheme, providing a parameter for controlling the degree of modification

to the data prior to the application of ICA. Favorably, the proposed transformation

does not depend on the specific choice of the source separation method in use and can

be applied prior to any ICA algorithm. Moreover, the estimated decomposition matrix,

that is determined on the basis of the transformed data is directly applicable in the

decomposition of the raw single trial data.

However, the identification of different ERP sources and their allocation to a par-
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ticular ERP component across different degrees of regularization remains an open issue.

In the present study we solved the issue of identification by visual inspection of the

spatial distribution and the averaged signal of the recovered sources.

The benefit of the proposed method was verified by an improved SNR of extracted

phase-locked components from both simulated data and multichannel EEG-recordings

of MNSs. Although the set-up for the simulated data is rather artificial, one could

clearly observe and quantify the gain, achieved by regularizing the ICA methods, in

terms of an improved SNR of the recovered ERP source. On the other hand, this

example on simulated data also reveals the limitation of the method: if the underlying

signal of interest is too weak compared to the noise or the number of trial is too limited,

such that the ERP remains hidden even under trial averaging, then also regularization

cannot help. The successful application to the multichannel EEG-recordings led to an

improvement of the SNR of one extracted SEP components by a factor ranging from

1.25 to 3.7 for data from 5 different subjects.



Chapter 6

Temporal evidence accumulation

In this chapter we will present a general Bayesian classification framework that

efficiently combines sequences of features across time. In particular we will introduce

the algorithm by means of an example of discrimination between imaginary left and

right hand movement. The effectiveness of this procedure was verified by its successful

application to data from the BCI competition in 2005 [12]. Disclosure of the testing

data after the competition deadline revealed this approach to be superior to all other

competing algorithms. More precisely, the method that will be outlined in the following,

is an upgraded version of the winning method in 2003 [11] and therefore succeeded at

two different BCI competitions.

Although the feature extraction method is intended for the classification of imagi-

nary hand movements, the general algorithm is applicable to binary decision processes on

the basis of noisy multivariate feature sequences. However, to provide a decision at ev-

ery time instance our method gathers information from the distinct features across time.

To this end, we train sequences of weak classifiers (one per feature and time instance).

Afterwards these classifiers are combined in a sophisticated probabilistic manner across

time. In particular we suggest a causal weighting scheme that reflects the discriminative

power of each classifier. Here the causality constraint of the decision-making process

had to be satisfied as a mandatory prerequisite of a real-time BCI system.

97
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6.1 Preliminaries

Before we introduce the algorithmic details, we will briefly review the competition

objectives, the neurophysiological features and state some preliminary notes on Bayes

decision theory.

6.1.1 Competition data and objectives

As previously stated our algorithm has been successfully applied in the 2003 and

2005 international data analysis competitions on BCI-tasks [12] (data set III and IIIb,

respectively) for the classification of imaginary left and right hand movements. The

joint objective of both competitions was to detect the respective motor intentions as

early and as reliably as possible after a given cue signal. Consequently, the competing

algorithms were allowed to use the provided information about the event onset. So it

was not within the scope of the competition to detect the event onset itself, as it would

be mandatory to operate a BCI-system in an asynchronous mode.

However, in the following we restrict ourselves to data from the competition in

2005. Here the EEG recordings from three different healthy subjects (O3, S4 and X11)

were provided. Except for the first subject, each data set consists of 540 labeled (for

training) and 540 unlabeled trials (for evaluation) of imaginary hand movements, with

an equal number of left and right hand trials (the first data set provides just 320 trials

each). Each trial has a duration of 7 s: after a 3 s preparation period a visual cue is

presented for one second, indicating the ordered motor intention. This is followed by

another 3 s for performing the imagination task (for details see [12]). In particular the

EEG recordings from two bipolar channels (C3, C4) were provided by the Dept. of Med.

Informatics, Inst. for Biomed. Eng., Univ. of Techn. Graz with bandfilter settings of 0.5

to 30Hz and sampled at 128 Hz. The specific competition task is to provide an ongoing

discrimination between left and right movements for the unlabeled single trials. More

precisely, at every time instance in the interval from 3 to 7 seconds a strictly causal

decision about the intended motor action must be supplied. Moreover, the magnitude

of the provided feedback signal was requested to reflect the degree of confidence into

the decision.



Chapter 6: Temporal evidence accumulation 99

6.1.2 Neurophysiological features

The human perirolandic sensorimotor cortices show rhythmic macroscopic EEG

oscillations (µ-rhythm) [32], with spectral peak energies around 10 Hz (localized pre-

dominantly over the postcentral somatosensory cortex) and 20 Hz (over the precentral

motor cortex). Modulations of the µ-rhythm have been reported for different physio-

logical manipulations, e.g., by motor activity, both actual and imagined [37, 77, 88], as

well as by somatosensory stimulation [72]. Standard trial averages of µ-rhythm power

show a sequence of attenuation, termed ERD [77], followed by a rebound (event-related

synchronization: ERS) which often overshoots the pre-event baseline level [85].

In case of sensorimotor cortical processes accompanying finger movements Babiloni

et al. [3] demonstrated that movement related potentials (MRPs) and ERD indeed show

up with different spatio-temporal activation patterns across primary (sensori-)motor

cortex, supplementary motor area and the posterior parietal cortex. Most importantly,

the ERD response magnitude did not correlate with the amplitude of the negative MRPs

slope.

Most of the pursued non-invasive BCI approaches use the accompanying EEG-

rhythm perturbation in order to distinguish between single trials, e.g., of left and right

hand imaginary movements [48, 70, 79, 103]. Up to now there are only a few approaches

additionally using slow cortical potentials [20, 22, 61]. In the following we use both

features. Thus, in order to extract the rhythmic features we map the EEG to the time-

frequency domain by means of Morlet wavelets [96], whereas the slow cortical MRP are

extracted by the application of a low pass filter, in form of a simple moving average.

6.1.3 Bayes decision theory

Since the modulations of the ongoing rhythmic activity and the slow cortical move-

ment related potential are expected to be differently pronounced over time, we suggest

combining these features adaptively across time on the basis of their instantaneous

discriminatory power.

Bayes Formula: Suppose we know both the class conditional distributions p(x |ωj)
as well as the prior distributions p(ωj) for j = 1, 2. Then the joint probability to

observe x along with class ωj can be either written as p(x, ωj) = p(x |ωj) p(ωj) or
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p(x, ωj) = p(ωj |x) p(x). Rearranging these gives rise to

p (ωj |x, ) =
p (x |ωj) p(ωj)

p (x |ω1) p(ω1) + p (x |ω2) p(ω2)
. (6.1)

which is known as Bayes formula and expresses the class posterior distribution (given

an observation x) in terms of the likelihoods and the priors.

Bayes error of misclassification: Let R1 := {x : p (ω1 |x) ≥ p (ω2 |x)} and R2 de-

notes its complementary set, where the posterior probability of the second class exceeds

those of the first, i.e., R2 = Rc
1. Following Bayes decision rule, we decide ω1 if x ∈ R1

and ω2 otherwise. This particular decision rule leads to the following definition of the

Bayes error of misclassification:

P (error) = P (x ∈ R1, ω2) + P (x ∈ R2, ω1) (6.2)

=
∫
R1

p (x |ω2) p (ω2) dx +
∫
R2

p (x |ω1) p (ω1) dx. (6.3)

In general, the Bayes error of misclassification cannot be calculated directly.

Remark 6.1.1. The Bayes error of misclassification is upper bounded by the minimum

of the class priors p (ω1) and p (ω2). This can be easily seen, as

P (error) =
∫
R1

p (x |ω2) p (ω2) dx +
∫
R2

p (x |ω1) p (ω1) dx (6.4)

≤
∫
R1

p (x |ω1) p (ω1) dx +
∫
R2

p (x |ω1) p (ω1) dx (6.5)

=
∫
p (x, ω1) dx = p (ω1) . (6.6)

In a similar manner, we derive p (ω2) as an upper bound of P (error). Merging both

inequations yields P (error) ≤ min {p (ω1) , p (ω2)}.

Discriminative Power: In order to express the discriminative power v between the

two class conditional distributions, we use the Bayes error of misclassification. In par-

ticular we propose

v := 1− P (error)
min {p (ω1) , p (ω2)}

. (6.7)

According to remark 6.1.1, this definition restricts the values of the discriminative power

to the interval [0, 1]. In this setting ’0’ refers to non-discriminative information, while ’1’

indicates perfect separability. However, as the Bayes error cannot be calculated directly
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for most distributions, we approximate the Bayes error by the Chernoff bound [25], i.e.,

P (error) ≤ min
0≤γ≤1

p (ω1)
γ p (ω2)

1−γ
∫
p (x |ω1)

γ p (x |ω2)
1−γ dx. (6.8)

Fortunately the Chernoff bound can be evaluated analytically if the class conditional

distributions are Gaussian [25]. Consequently we approximate the class conditional

distribution by a multivariate Gaussian. To this end, let p (x |ωj) = N (µj ,Σj), where

N (µj ,Σj) denotes the PDFs of the multivariate Gaussian distributions with class mean

µj and covariance matrix Σj for j = 1, 2. Then the integral in (6.8) can explicitly be

written as (cf. [25])

exp (−k (γ)) =
∫
p (x |ω1)

γ p (x |ω2)
1−γ dx, (6.9)

where

k (γ) :=
γ (1− γ)

2
(µ1 − µ2)

> [γΣ1 + (1− γ) Σ2]
−1 (µ1 − µ2)

+
1
2

ln
det (γΣ1 + (1− γ) Σ2)
det (Σ1)

γ det (Σ2)
1−γ . (6.10)

Moreover, using an equal class prior p(ωj) = 1
2 , we finally approximate the discriminative

power by

v ≈ 1− min
0≤γ≤1

exp (−k(γ)). (6.11)

Note, that the minimum with respect to γ can be easily obtained, e.g., by application

of a simple line search procedure.

6.2 The probabilistic model

Based on these preliminaries, we will now construct our probabilistic classifier. For

this purpose, let X = (Xt)t∈T denote the stochastic process representing the single trial

EEG, indexed by the set T . However, in order to guarantee strict causality, we need to

restrict the feature extraction to a given observational horizon. To this end, we slightly

extend our general notation. Whenever necessary, we indicate a observational horizon

s ∈ T by the subscript |s, e.g., Xk
·|s refers to

(
Xk

1 |s, . . . ,X
k
s |s

)
, where Xk

t|s indicates

the time instance t ≤ s given the observational horizon s. For notational convenience

we omit the index |s in cases when the single trial is entirely observed.
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6.2.1 Feature extraction

Let D =
{(

Xk· , yk
)}K

k=1
be the set of K labeled single trials. Where yk ∈ {L,R}

indicates the label information, i.e., the intended motor action (left vs. right) of the

kth trial. In this context we refer to the subsets of trials labeled as left or right as

Y(L) := {k : yk = L} and Y(R), respectively. Furthermore, as the EEG was recorded just

from two bipolar channels, namely C3 and C4, we refer to the individual components

of Xt explicitly as C3t and C4t, respectively.

Considering ERD as a feature, we model the hand-specific time course of absolute

µ-rhythm amplitudes over both sensorimotor cortices. To this end, we convolve the

EEG signal with complex Morlet wavelets [96] in order to achieve a time-frequency

representation of the single trials at two different frequency bands. Using the notation

bα and bβ for the wavelets centered at the individual spectral peak in the alpha (8-12Hz)

and the beta (16-24 Hz) frequency domain, the ERD feature of the kth single trial,

observed until time s is calculated as:

erdk·|s =
(
erdk1|s, . . . , erd

k
s|s

)
,

where

erdkt|s =



∣∣∣(C3k·|s ∗ bα)[t]
∣∣∣∣∣∣(C4k·|s ∗ bα)[t]
∣∣∣∣∣∣(C3k·|s ∗ bβ)[t]
∣∣∣∣∣∣(C4k·|s ∗ bβ)[t]
∣∣∣


. (6.12)

Moreover, we define the single trial feature for the MRP by convolution with a moving

average filter of length n ∈ N, denoted as bnMA.

mrpk·|s =
(
mrpk1|s, . . . ,mrpks|s

)
,

where

mrpkt|s =

 (
C3k·|s ∗ bnMA

)
[t](

C4k·|s ∗ bnMA

)
[t]

 . (6.13)

In the final application the hyperparameters are subject to a model selection procedure,

i.e., the center frequencies of the Morlet-wavelets in the alpha and beta band and the

length of the moving average filter are selected by means of cross-validation.
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6.2.2 Weak instantaneous classifiers

On the basis of the extracted single trial features, we model the class conditional

distributions of each feature and at any time instance as a multivariate Gaussian dis-

tribution. So we have to estimate the class conditional means and covariance matrices

of the features. In case of the ERD feature {erdkt }Kk=1 the moments of the multivariate

Gaussian distributions at time t are estimated as:

µ
(y)
t =

1∣∣Y(y)
∣∣ ∑
k∈Y(y)

erdkt (6.14)

Σ(y)
t =

1∣∣Y(y)
∣∣ ∑
k∈Y(y)

(
erdkt − µ

(y)
t

)(
erdkt − µ

(y)
t

)>
, y ∈ {L,R}. (6.15)

For notational convenience we subsume the estimated parameters for the ERD feature

at time t in Θt :=
(
µt

(L),Σt
(L), µt

(R),Σt
(R)
)
. Accordingly Ξt :=

(
ηt

(L),Γt(L) ηt
(R),Γt(R)

)
denotes the estimated class conditional means and covariance matrices of the MRP

features {mrpkt }Kk=1.

Given an arbitrary observation from each domain, and applying Bayes formula as

introduced in (6.1), yields class posterior probability for each individual feature:

p
(
y
∣∣erd,Θt

)
, erd ∈ R4 (6.16)

p
(
y
∣∣mrp,Ξt

)
, mrp ∈ R2. (6.17)

Additionally, on the basis of the estimated class conditional distributions and according

to (6.11), we obtain estimates of the instantaneous discriminative power (wt)t∈T and

(vt)t∈T of the ERD and the MRP feature, respectively.

6.2.3 Combining classifiers across time

In order to obtain a classification of the kth unlabeled single trial at a specific time

s ∈ T , we incorporate knowledge from all preceding observations t ≤ s, i.e., we combine

the information derived from the causally extracted features: erdk·|s and mrpk·|s. To this

end, we first evaluate the class posteriors p(y |erdkt|s,Θt) and p(y |mrpkt|s,Ξt) for all t ≤ s.

Secondly we combine the obtained class posteriors with one another and across time by

taking the weighted average with respect to the discriminative power w·|s and v·|s. In
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particular, for y ∈ {L,R} we define

cks(y) :=
1∥∥w·|s∥∥1
+
∥∥v·|s∥∥1

∑
t≤s

 wt|s

vt|s

> p
(
y
∣∣erdkt|s,Θt

)
p
(
y
∣∣mrpt|s,Ξt

)
 (6.18)

=
∑
t≤s

wt · p
(
y
∣∣erdkt|s,Θt

)
+ vt · p

(
y
∣∣mrpt|s,Ξt

)∑
l≤swl + vl

. (6.19)

Strictly speaking (6.19) gives the expectation value that the kth single trial, observed

until time s, is generated by either of the class models (L or R). This yields an evidence

accumulation across time about the instantaneous decision process.

However, due to the competition requirements the final decision at time s was

calculated as

dks = 1− 2 · cks(L), (6.20)

where a positive or negative sign refers to right or left movement, while the magnitude

indicates the degree of confidence into the decision on a scale between 0 and 1.

6.3 Application

The competition data set for each subject consists of a training set and a testing

set, each with an equal number of left and right hand trials (for further details please

refer to paragraph 6.1.1).

On the basis of the labeled training data the ERD and MRP feature were ex-

tracted and the corresponding class conditional distributions along with the discrimina-

tive power were estimated. The weak classifiers (6.16) and (6.17) were then evaluated on

the instantaneous (causally derived) ERD and MRP features of the unlabeled test trials.

Finally, the probabilistic outputs of these classifiers were combined according to (6.19).

For the kth unlabeled test trial this yields a sequence of instantaneous probabilistic

decisions (dkt )t∈T .

Remember, that the feature extraction relies on a few hyperparameters, i.e., the

center frequencies of the wavelets, and the length of the MA filter. The optimal choice of

these parameters was determined by a model selection procedure using a leave-one-out

cross-validation scheme of the classification performance on the labeled training data.

The optimal center frequencies were individually obtained at 11.5, 12.5, and 12 Hz in
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the alpha band, and identically at 23 Hz in the beta band. The optimal length of the

moving average filter was found at n = 11 samples, which corresponds to 86 ms.

After the closing deadline of the competition the true labels of the previously un-

labeled trials (test set) were disclosed. Based on this label information yk ∈ {L,R} the

ongoing probabilistic decisions {(dkt )t∈T }Kk=1 for all test trials were evaluated in terms

of the time course of the mutual information (MI)[87] that is defined as

MI[t] =
1
2

log2

(
SNR[t] + 1

)
(6.21)

SNR[t] =

(
E[Ct |Y = L]− E[Ct |Y = R]

)2

2
(
Var [Ct |Y = L] + Var [Ct |Y = R]

) . (6.22)

As usual, the conditional expectations are replaced by their empirical estimates (aver-

ages over trials). Moreover, as the overall objective of the competition was to obtain a

classification as fast and as accurately as possible, the maximum steepness of the MI

was considered as the final evaluation criterion, i.e.,

max
t≥3.5s

MI[t]
t− 3s

. (6.23)

Note that the denominator adjusts for the 3s preparation period at the beginning of

each trial, such that only the time after presenting the cue is considered.

6.3.1 Results

Disclosure of the test labels revealed our method to be superior to the competing

algorithms with a MI steepness of 0.17, 0.44 and 0.35 for the three subjects O3, S4,

and X11. Table 6.1 provides a comprehensive comparison of all submissions for data set

IIIb of the BCI-competition in 2005. Basically this evaluation reveals that our proposed

algorithm outperforms all competing approaches in terms of the achieved maximum

binary classification error, the maximum MI, and the maximum steepness of MI.

The individual time courses of the MI and the steepness of the MI for the three

subjects are presented in the right panel of Fig. 6.1. For all subjects the classification

during the first 3.5 seconds is rather by chance. Immediately after 3.5 seconds (500 ms

after the presentation of the cue signal) a steep ascent in the classification accuracy,

reflected by a raising MI, can be observed for subject S4 and X11. For both subjects

the maximum steepness of the MI is also obtained quite early, i.e., between 3.6−3.8s. In
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min. error rate[%] max. MI [bit] max. MI/t [bit/s]
O3 S4 X11 O3 S4 X11 O3 S4 X11

1. 10.69 11.48 16.67 0.603 0.608 0.486 0.170 0.438 0.349
2. 14.47 22.96 22.22 0.447 0.232 0.307 0.163 0.417 0.172
3. 13.21 17.59 16.48 0.551 0.375 0.467 0.203 0.094 0.117
4. 23.90 24.44 24.07 0.218 0.239 0.217 0.115 0.122 0.118
5. 11.95 21.48 18.70 0.432 0.350 0.385 0.104 0.149 0.095
6. 10.69 13.52 25.19 0.597 0.567 0.244 0.118 0.152 0.061
7. 34.28 38.52 28.70 0.043 0.046 0.157 0.070 0.023 0.049

Table 6.1: Overall ranked performances of all competing algorithms (first row corre-
sponds to the proposed method). For three different subjects (O3, S4 and X11) the table
states different evaluation criteria, where the steepness of the MI was used as the final
objective in the competition. For a description of the algorithm 2.–7. please refer to [86].

contrast to subject O3, here the maximum is achieved after 4.9 seconds, yielding a low

steepness value. However, a low value is consistently achieved by all other competitors.

Nevertheless, the MI constantly increases up to 0.64 bit per trial at 7 seconds. This

may serve as an indicator of a delayed performance of subject O3.

Fig. 6.1-left provides the weights wt and vt respectively, which correspond to the

instantaneous discriminative power according to (6.11). For subject S4 a switch in the

regime between the ERD and the MRP feature at approximately 5 seconds is clearly

observable by the crossing of the two sequences. This enables us to relate the steep

increase in MI between 3 and 5 seconds mainly to the MRP feature. In contrast the

continuing increase of the MI is primarily due to the ERD feature. Subject O3 provides

Figure 6.1: The left panel presents the estimated instantaneous discriminative power
of the two different features sequences (ERD - light blue; MRP - red). The right panel
depicts the time courses of the mutual information (green) and the competition criterion,
i.e, the steepness of mutual information (red)
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almost no discriminative MRP feature such that the classification is solely based on

the ERD feature. Subject X11 exhibits a sequence of constantly low discriminative

power of the class-conditional distributions. Nevertheless Fig. 6.1 depicts a MI that is

continuously increasing and furthermore reports a surprisingly high steepness value of

the MI. This observation clearly emphasizes the advantages of the evidence accumulation

across time.

Summary

In this final chapter we proposed a general Bayesian classification framework for

combining sequences of features across time. Although the method was originally in-

tended for the real-time classification of imaginary hand movements, the general al-

gorithm is applicable to binary decision processes on the basis of noisy multivariate

feature sequences and is therefore applicable to any kind of sequential data posing a

binary classification problems.

However, given a sequence of features and in order to provide an instantaneous

classification at every time instance our method gathered information from the distinct

features across time. To this end, we suggested training of a corresponding sequence of

weak classifiers (one per feature and time instance). Afterwards these classifiers were

combined in a sophisticated probabilistic manner across time. In particular we suggested

a strictly causal weighting scheme that reflects the discriminative power of each feature

at each time instance. Here we associated the discriminative power with the generaliza-

tion error of the individual classifier. In the particular scenario of the BCI competition

we used classifiers based on quadratic discriminant analysis, where the class-conditional

distributions were modelled as multivariate Gaussian distributions with different co-

variance matrices. For this particular setting we derive the generalization error of the

individual classifiers directly from the class-conditional distributions by means of the

Bayes error of misclassification. However, due to the distinct covariance matrices we

further approximated the Bayes error misclassification by the corresponding Chernoff

bound. Integrating the information, provided by the distinct features, across time the

method accumulates evidence about the binary decision.

It is worth noting that the framework does not rely on a specific choice of the

classifiers and can be easily extended to arbitrary binary classifiers and arbitrary class-
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conditional distributions respectively. To this end, the generalization error of the various

classifiers has to be assessed implicitly, e.g., by resampling techniques such as cross-

validation. Moreover, in the case of class-conditional distributions that differ from

Gaussian distributions, the Bayes error of misclassification can be derived by Monte

Carlo methods.

The effectiveness of this procedure was verified by its successful application to data

from the BCI competitions in 2003 and 2005. In both competitions, the disclosure of

the true labels of testing data after the competition deadline revealed our approach to

be superior to all other competing algorithm.



Synopsis

In this thesis, we have presented novel methods for the analysis of macroscopically

recorded brain signals. Here the focus was put on improved feature extraction methods,

the single trial detection of mental states, and the analysis of the variability of brain

responses.

After outlining the necessary mathematics in chapter 2, the third chapter intro-

duced a novel framework of conditional event-related (de-)synchronization (cERD) that

permits the analysis of dependencies of the ERD characteristic on external or internal

explanatory variables. To this end, we generalized the conventional ERD framework

with respect to the reference condition. In particular we substituted the conventionally

used static reference value by a dynamic reference. Based on this generalization, we

derived two novel measures for the quantification of the averaged and conditional ERD.

A comparative analysis with artificially generated data of known genuine truth exposed

the limitations of the conventional ERD framework and exposed the superior abilities

of the novel measures with respect to the retrieval of an underlying functional relation-

ship of the ERD characteristic on explanatory variables. Moreover, we investigated the

dependencies of µ-rhythm ERD on the basis of data from one subject. Here the analysis

of EEG data from a median nerve stimulation paradigm demonstrated the potential of

the proposed framework. In particular we applied the novel cERD estimator in order

to analyze the µ-rhythm ERD and its dependency on the magnitude of its own pre-

stimulus activity, the magnitude of the occipital α-activity and the magnitude of the

ERS in response to the preceding stimulus.

The fourth chapter presented a new feature extraction method termed Common

Spatio-Spectral Pattern (CSSP) algorithm that extended the well known common-

spatial-pattern (CSP) algorithm. In particular we transferred the CSP optimization

109
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problem to the state space by means of the method of time delay embedding. A math-

ematical analysis of the obtained solution revealed that in addition to the optimization

of discriminative spatial filters, CSSP optimizes simple frequency filters. By virtue of

these optimal finite impulse response filters CSSP is able to adapt to the individual

characteristics of the power spectrum and thus yields an improved feature extraction.

The efficiency of the proposed method was demonstrated by its application in an off-line

study for the classification of imaginary limb movements on a broad set of BCI experi-

ments. Here we found the CSSP algorithm superior to the standard CSP algorithm in

terms of an improved classification accuracy.

In the fifth chapter we developed a method that uses prior information about the

phase-locked property of event-related potentials (ERP) in a regularization framework

to bias a blind source separation algorithm towards an improved extraction of single-

trial phase-locked responses in terms of an increased signal-to-noise ratio. In particular,

we suggested a transformation of the data that redirects the focus of source separation

methods onto the subspace of the ERP components. The practical benefit with respect

to an improved separation of single trial ERP components from the ongoing background

activity and extraneous noise was first illustrated on artificially generated data and

finally verified in a real-world application of extracting single-trial somatosensory evoked

potentials from multichannel EEG-recordings.

The sixth and last chapter introduced a Bayesian classification framework that

adaptively combines sequences of features efficiently across time. For the classification

task of single trials of unilateral imaginary hand movements, we particularly combined

the temporally differently accentuated features of µ-rhythm ERD and movement-related

potentials. The effectiveness of this approach was proven by its successful application

to data from the international BCI competitions in 2003 and 2005.
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[106] G. Wübbeler, A. Ziehe, B.-M. Mackert, K.-R. Müller, L. Trahms, and G. Curio. Indepen-
dent component analysis of non-invasively recorded cortical magnetic DC-fields in humans.
IEEE Transactions on Biomedical Engineering, 47(5):594–599, 2000.

[107] A. Yeredor. Non-orthogonal joint diagonalization in the least-squares sense with applica-
tion in blind source. IEEE Trans on Sig Proc, 50, 2002.

[108] M. Zibulevsky and B. Pearlmutter. Blind source separation by sparse decomposition in a
signal dictionary. Neural Computation, 13(4), 2001.

[109] A. Ziehe, P. Laskov, G. Nolte, and K.-R. Müller. A fast algorithm for joint diagonaliza-
tion with non-orthogonal transformations and its application to blind source separation.
Journal of Machine Learning Research, 5:777–800, Jul 2004.



118 Bibliography

[110] A. Ziehe and K.-R. Müller. TDSEP – an efficient algorithm for blind separation using
time structure. In L. Niklasson, M. Bodén, and T. Ziemke, editors, Proceedings of the
8th International Conference on Artificial Neural Networks, ICANN’98, Perspectives in
Neural Computing, pages 675 – 680, Berlin, 1998. Springer Verlag.

[111] A. Ziehe, K.-R. Müller, G. Nolte, B.-M. Mackert, and G. Curio. Artifact reduction in mag-
netoneurography based on time-delayed second-order correlations. IEEE Trans Biomed
Eng, 47(1):75–87, January 2000.


	Abstract
	Zusammenfassung
	Citations to Previously Published Work
	Acknowledgments
	Notation
	Introduction
	Data acquisition
	Electroencephalogram

	Neurophysiological background
	Event-related (de-)synchronization
	Brain computer interfacing

	Preliminaries
	Random variables and stochastic processes
	Conditional expectations
	Estimating conditional expectations
	Kernel density estimation
	Nadaraya Watson estimator
	Examples


	Conditional ERD
	Preliminaries
	Stochastic model for single trial data

	Conventional ERD framework
	Averaged ERD
	Conditional ERD

	Generalized ERD framework
	Generalized averaged ERD
	Generalized conditional ERD

	Application
	Artificial data
	Median nerve stimulation data


	Spatio-spectral filters
	Common spatial pattern
	Single trial features

	Spatio-spectral methods
	Sparse spectral spatial pattern
	Common spatio-spectral pattern
	Online applicability

	Classification of imaginary movements
	Experimental design
	Classification and validation
	Results


	Improving the signal-to-noise ratio of ERPs
	Introduction
	Independent component analysis
	Application to EEG data

	Incorporating physiological prior knowledge
	Mathematical preliminaries
	Temporal transformation

	Experiments
	Artificial data
	Somatosensory evoked potentials


	Temporal evidence accumulation
	Preliminaries
	Competition data and objectives
	Neurophysiological features
	Bayes decision theory

	The probabilistic model
	Feature extraction
	Weak instantaneous classifiers
	Combining classifiers across time

	Application
	Results


	Synopsis
	Bibliography

