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Abstract

Brain-Computer Interface (BCI) research aims at the automatic transldtioeucal com-
mands into control signals. These can then be used to control applicaticnsas text
input programs, electrical wheelchairs or neuroprostheses. A Bff#¢rsycan, e.g., serve as
a communication option for severely disabled patients or as an additional nanama
interaction channel for healthy users. In the classical “operantittomicig” approach,
subjects had to undergo weeks or months of training to adjust their braialsignthe
use of the system. The Berlin Brain-Computer Interface project (BB&d)developed an
Electroencephalogram-(EEG-)based system which overcomes thdanesgbrant condi-
tioning with advanced machine learning methods. By adapting classifiers tdghly h
subject-specific brain signals, even subjects with no prior experienc€lirc&n achieve
high information transfer rates from their first session.

However, after an initial calibration, the brain signals are rarely so statidhat the first
classifier can be reused in the next experimental session. Even if tisffietagas fitted
to the subject on data from the same day, we sometimes encountered lordg ériow
performances. These drawbacks can clearly impede the continuooksthgesystem, which
is particularly important for disabled people.

The reason for this flaw is the nonstationarity in the EEG data. Due to chamgjes
characteristic properties of the data, classification can often be cairupte

In this work, | will present a new framework for nonstationary data asig]ywhich en-
compasses methods for the quantification and visualization of nonstaticagspes. The
analysis of data acquired in BCI experiments will be used to exemplify the mpofibe
methods. In particular, | show some neurophysiological evidence fauinees of the non-
stationarity. Once the underlying reasons for the nonstationarity arerkradassification
can be adaptively enhanced; | will present some surprisingly simple mettiadally, |
will construct classifiers that are largely robust against the chamgesdne experimental
session to the next. This novel type of classifiers can be applied without gatibration
and has the potential to drastically improve the applicability of BCI devicesdily dse.

While the BCI scenario was used as a testbed for the framework, it cappbiedato
a wide range of problems. Nonstationarity can occur in any field of machareiiw,
whenever the measured systems under observation change theitipsopesr time.
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Zusammenfassung

Ein Brain-Computer Interface (BCI, “Gehirn-Computer-Schnittstelle”eist System, das
neuronale Kommandos in Steuersignale umsetzt. Diese kdnnen genutzowardAnwen-
dungen wie Texteingabeprogramme, elektrische Rollstiihle oder Nethiepem zu steuern.
Ein BCI kann beispielsweise Schwerstbehinderten zur Kommunikationlfemheder auch
gesunden Benutzern einen zusatzlichen Kanal zur Mensch-Madciémaktion bieten. Im
klassischen Ansatz, der “operanten Konditionierung”, mussten Banuteénem wochen-
bis monatelangen Training ihre Gehirnstrommuster an die Wirkungsweiseydes s an-
passen. Das Berliner Brain-Computer Interface (BBCI) hingegeeihaiuf dem Elektroen-
zephalogramm (EEG) basierendes System entwickelt, das durch detzRios neuartigen
Methoden des maschinellen Lernens keine Konditionierung mehr bendétigheHpgassen
sich Klassifikatoren automatisch an die Daten an, die zwischen den Benwofzestark
variieren. So konnen selbst Benutzer, die zum ersten Mal mit einem BElten, hohe
Informationstransferraten erzielen.

Nach der anféanglichen Kalibrierung sind die Gehirnstréme jedoch selstatsonar, dass
der Klassifikator der ersten Sitzung auch spater erfolgreich angewanden kann. Selbst
bei Klassifikatoren vom gleichen Tag kénnen manchmal langere Absclaitteeten, in
denen die Ubertragungsraten sehr niedrig sind. Durch diese Probliethéer permanente
Gebrauch des Systems beeintrachtigt, der gerade flur Behindertelbesainchtig ist.

Der Grund dafir ist die Nicht-Stationaritdt in EEG-Signalen. Durch \@e&mg der
charakteristischen Eigenschaften der Daten wird die Klassifikation oftifleifenschaft
gezogen.

In dieser Dissertation werde ich eine Theorie fur die Analyse nicht-stagoiéaten ent-
wickeln, die Methoden fiir die Quantifizierung und Visualisierung nicht-statemProzesse
beinhaltet. Anhand der Analyse von Daten aus BCI-Experimenten wend#ed=ffizienz
dieser Methoden veranschaulichen. Insbesondere werde ichphgaiologische Anhalts-
punkte fir Quellen der Nicht-Stationaritat aufzeigen. Sind die Prozesisanhbt, die der
Nicht-Stationaritéat zugrunde liegen, kann man die Klassifikation durch tatlap verbes-
sern. Hierzu werde ich einige erstaunlich einfache Methoden entwickddschliessend
werde ich Klassifikatoren konstruieren, die gegentber Veranderumgn einer experi-
mentellen Sitzung zur ndchsten weitgehend robust sind. Diese neuartiggokia von
Klassifikatoren kann ohne anfangliche Kalibrierung angewandt weude hat daher das
Potential, die tagliche Benutzbarkeit von BCI-Systemen zu ermdglichen.

Obwohl ausschliesslich BCI-Daten zur Auswertung herangezogedenukonnen die
Methoden auf eine Vielzahl von Problemen angewandt werden. Nichibi&atat kann
in jedem Bereich des maschinellen Lernens auftreten, sobald sich diesEigéten der
beobachteten Systeme zeitabhangig verandern.
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1. Introduction

“There is nothing so stable as change”
(Bob Dylan)

Nonstationarity is an ubiquitous problem in signal processing and machimélgavhen
dynamical systems change their properties over time. It appears in applitatitnwhere
the estimation of the state of a process relies on “real-world” data, typicadjyit@d by
(multiple) sensors. In some prominent research areas such as autoroegisgimg of audio
and video data and problems like speech recognition, image recognitioreatudegdetec-
tion, nonstationarity has been recognized as an important challenge . thesdl fields, the
application of automatized algorithms at different points in time has to be perdowitk
special care. Problems can particularly arise if the algorithms rely on didibvi@data or the
estimation of parameters on small fractions of the available data.

This thesis will address this problem with a new framework for nonstationantachine
learning applications; it encompasses methods for the analysis and visaalemad quan-
tification of data. In particular, | will add a new perspective to data analpsisegarding
the parameters of machine learning algorithms as input for my methods. Thsepgave
allows for abandoning the simplistic view of machine learning methods as “btackslys-
tems; the methods carry valuable information — incorporated in their parameibmit the
problems they are applied to.

Brain-Computer Interface research aims at the automatic translation @fl searmands
into control signals. These signals can then be used to control applicationss text input
programs, wheelchairs or neuroprostheses. A BCI system can, enge, & a commu-
nication option for severely disabled patients or as an additional man-maakénaction
channel for healthy users. In the classical “operant conditioningfaach, subjects had to
undergo weeks or months of training to adjust their brain signals to the ubke sf/stem.
The Berlin Brain-Computer Interface project (BBCI), of which | am a membas devel-
oped an Electroencephalogram-(EEG-)based system which overtoenesed for operant
conditioning with advanced machine learning methods. By adapting classifiges highly
subject-specific brain signals, even subjects with no prior experienc€lrc&n achieve
high information transfer rates from their first session.

However, after an initial calibration, the brain signals are rarely so statidhat the
first classifier can be reused in the next experimental session. Evea ddbsifier was
fitted to the subject on data from the same day, we sometimes encounterec tmts of
low performances. These drawbacks can clearly impede the continseus the system,
which is particularly important for disabled people. This makes Brain-Comjbuiterface
research a particularly difficult and inspiring application area with rdgpewmnstationarity.
The reasons for the changes in the dynamics are among the following:

e The physical properties of the sensors (such as electrodes and aatiplifianits)
change over time. This can be due to drying of the conductive electrdde/igieh
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depends on the room temperature and the gel consistency) or electetindighds
of nearby power lines.

¢ Neurophysiological conditions (e.g., awakeness), even in a singlecsutga display
a large variability. This can also affect mental strategies for the communicatibn
the devices.

e Psychological parameters, such as attention, task involvement and maotjzad@lso
variable over time.

¢ Finally, BCl always requires two interacting “systems”, namely the usett@dom-
puter, whose internal states depend on each other.

This list already gives an impression of the various disciplines involved inrB&zarch.
More specifically, some preliminary knowledge in each of them is requirdtiéosuccessful
construction of BCI devices:

e Metrology: It is a highly challenging task for, e.g., electrical engineers to develop
new devices for the measurement of brain activity. For a suitable implementation
of a BCI, the preparation times as well as weight and size of the devicesthde
reduced, while providing convenient use and high resolution in frezyuand space.

e Neurophysiology: For the localization of neuronal processes and the development
of paradigms, neurophysiological experience is required. In anptrepective, BCI
devices can serve to get insight into specific brain functions.

e Psychology:This research field is required for developing models for the interaction
of the user with a machine.

e Computer Sciencewith subdisciplines:

— Signal ProcessingData of brain activity, such as EEG data, are high-dimensional
time series with a low signal-to-noise ratio. Therefore, advanced sigoet gs-
ing has to be applied to reveal the relevant part of the signals.

— Machine Learning: Brain signals are highly subject-specific and display a large
variability. Therefore, if the application should be adapted to the useria bra
signals, it is required to adjust specific settings by automated machine learning
methods.

— Software Engineering: For online BCI experiments, it is necessary to bring
together realtime data acquisition, data analysis and the display for the user
(typically graphical feedback). The developed applications have tafeeasnd
comprehensible for the user and need to incorporate all the specifichtioms
the above-mentioned research fields.

1.1. Outline of this work

My work in the BBCI project, as well as the work presented in this thesisbbas mainly
in the domain of computer science. In a highly interdisciplinary researehsareh as BCI
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research, there are some prerequisites to understanding and commgrichediss There-
fore, | will introduce some basic facts about measurement techniquasptgsiology and
paradigms in Section 2.1. | will then summarize some methods of signal progesgin
machine learning in Section 2.2, and will report on the state of the art in tHan BCI
(BBCI) in Section 2.3. Then, | will introduce a notion of nonstationarity inptea 3, as
required for modeling machine learning processes.

In chapters 4-6, | will describe the main achievements of my\%ork

e Analysis of Nonstationary Signals:| developed methods for the quantification and
visualization of the changes of these signals over time. Applying these mdthods
BCI data, | discovered that a commonly encountered source of nonstatyois the
influence of a particular frequency modulation in the visual cortex. | wdkpnt these
findings and show how much the features of the EEG are affected bydhgehl will
also show how much the classification performance is impaired by the nonatégon
(see chapters 4 and 5).

o Adaptive Classification: If the reasons for the nonstationarity are known, it is possi-
ble to find remedies. One option is the development of adaptive classifiershif
purpose, it is crucial to assess the appropriate update frequendapemanount of
data required for the first update, since an adaptation with too few sangpldsar to
a bad estimation of the adaptation parameters, and consequently to a degeasde
sifier. Considering that for many subjects the standard classifiers yaea#t quite
well, I will also analyze how much of the classifier’s structure should begrued. As
a result, | found a surprisingly simple, but effective adaptation methothécourse
of a single session (see Chapter 5).

o Classifiers for Session-to-Session transfefThe changes in the brain signals from
one session to the next can also be regarded as nonstationary. pdelelvamework
in which the classifiers across sessions can be compared. This compagisma new
method for training a classifier which works without lengthy calibration messant.
This reduces the preparation time for BCI experiments drastically. In Ohéydteill
show the feasibility of this method with online BCI feedback experiments.

Iparts of this thesis are based on work published in Krauledat et al. §B&pef 4), Shenoy et al. [126]
(Section 5.1), Krauledat et al. [71] (Section 5.2) and Krauledalt §I@] (section 6.2).
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2. Basic BCI Ingredients

2.1. Brain-Computer Interface (BCI)

Brain-Computer Interfaces are systems which allow for direct contrad.gf, a computer
application or a neuroprosthesis, solely by human intentions as reflectmadthple brain
signals ([150]). The usual motor output pathways and periphera¢aere bypassed in this

EEG-Signal —® Control signal

Preprocessing Classification Control Theory

Classifier decision

—> ‘ Features ‘ —

Feedback < F

! |

User

Figure 2.1.: In this figure, the classical feedback-loop of a Brain-Caoenpnterface is de-
picted: the user’s brain signals are acquired, and by different medidelature
extraction, classification and control logic, a feedback is generategm@md
sented to the user.

approach. Itis this independence which makes the development of auBlChs important
and realistic choice for the construction of prostheses for severetlideaped people, such
as patients suffering from tetraplegia or late stages of Amyotrophic L&elatosis (ALS).
These patients can have a strongly reduced communication ability due to tlgsicgih
condition; in the case of ALS, it can even lead to a state where they are fetalydocked
in”, which means that they have no control over any muscle. For thespg)af patients,
a BCI can also be a useful option as a communication device. Besides tloa®kige for
the severely disabled, other applications such as the development of gathesconstant
monitoring of attentional states in working environments with high risks aresieatale.

The development of such a device is a highly interdisciplinary researab, tapich
brings together scientists from many different fields, such as psychotegirophysiol-
ogy, physics, engineering, mathematics and computer science. Tleerdfigrwork will,
although mainly focused on the data analysis and computer science p&t,al®ays try
to point into the related topics and fields.
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In this first chapter, | will report on different options for BCls in ternfaneeasurement
techniques for neural activity. Specifically for the EEG measurement, dedtribe some
of the most prominent neural correlates of brain functions for the aisaly&EG data, and
then some of the methods for the extraction and classification of the condiagdeatures.
Finally, I will report on the methods commonly used in the Berlin Brain-Compuiteriace
(BBCI) project, which I will analyze throughout this work.

2.1.1. Measurement Techniques

This section summarizes some of the most common brain-imaging methods. | wigliscu
the usefulness in a BCI setting for each of the methods below, accordingdotanpparam-
eters like the degree of invasivity, the portability of the system, but also thealsig-noise
ratio, time-frequency— and the spatial resolution.

Microelectrodes

Microelectrodes can be bundles of wire electrodes or silicon-basettoglecarrays, ar-
ranged in a dense grid. The size of these electrodes depends on tlzs tyed as on the
material used; the width usually ranges from 5 to around @60 After inserting them
deep in the tissue of the cortex, they can be used to record action poterdralsihgle
neurons as well as signals from larger neuron populations. Microetkxsrare also used
for the electrical stimulation of specific brain regions. Due to the high riskfettions and
tissue damage, BCI research with these electrodes was restricted to animat®likeys,
where features like the firing rates of neurons can be translated int@ksigimals. In recent
experiments, see [57], it was shown that this type of feedback can alperformed by a
human user who is willing to undergo surgery for the implantation of the electrddee
to the small recording sensors, the integration of these devices into alpd@@bsystem
is quite realistic. Some groups reported high information transfer ratesrdime @ontrol
of motor prostheses with this recording technique (see [26, 104, 32). 138wever, the
longterm signal stability still remains an issue to be resolved (see e.g. [8343]), since
the movement of the electrode relative to the cortex, as well as the scardogsp in the
tissue deteriorate the signal quality over time. This drawback makes the insafrtiticro-
electrodes impossible for the longterm use.

Electrocorticography (ECoG)

Electrocorticography (ECoG) signals are acquired with a set of elexdrpthced directly
on the brain. The electrode grid, a flexible foil or strip with imprinted electrodassually
located subdurally (i.e., under the dura mater, a thick membrane inside the bktiljn
epidural (i.e., above the dura mater) location is also possible. With this teehitigunot
possible to record activity of single neurons, but compared to extriattaBG recordings
(see below), the signal is less attenuated and less exposed to spatiahgrbgahe skull
and tissue layers. Therefore, the signal has a higher signal-to-mdis@nd higher spatial
and temporal resolution. The influence of muscle artifacts, which is quitefbigirdinary
EEG, has also been reported to be reduced. Since ECoG is often ufiadifa the locus of
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epileptic seizures, some BCI research has been conducted with patient&wd/implanted
electrode grids while they were under medical surveillance (see e.g/381,

Positron Emission Tomography (PET)

For the preparation of Positron Emission Tomography scans, radiotreibez isotopes with
a short decay period are incorporated into metabolically active molecutgs gagar). If
these molecules are injected into the blood flow, the decay can be meaqeedibgat po-
sitions where high metabolic activity is performed ([115]). In neuropHgsioal research,
this measurement can be performed to determine regions of high neuctiaiy.aA long
list of drawbacks includes the long time lag due to the metabolic and hemodynapooses
as well as the risks connected to the dose of ionizing radiation. Also theesxcaeeded to
detect the isotope decay is quite big, such that it can not be part of dlestestem for BCI
use.

functional Magnetic Response Imaging (fMRI)

Changes in the blood flow and in the blood oxygenation in the brain are rétatieel neural
activity, since nerve cells consume oxygen in an active state. fMRIdewgs are performed
by applying a strong magnetic resonance pulse and measuring the egpdms atoms in
the body. Since oxygenated hemoglobin, the oxygen carrier protein indbd,thas differ-
ent magnetic properties than deoxygenated hemoglobin, it is possible tmaeter Blood
Oxygenation Level Dependent (BOLD) change. While the spatial résnlof this method

is very high, the temporal resolution is low due to the hemodynamic time lag. Significa
BOLD changes can only be encountered after some seconds of aetival. The signal is

an indirect measure for brain activity, since it does not measure the coication between
cells, but rather the energy household of cell populations.

Moreover, fMRI devices are large and stationary, due to the parts ¢ém&rgte the mag-
netic field. Lightweight and portable devices can not be constructed iraigtsfiorward
way. Despite these limitations, fMRI signals have recently been used for&ehrch,
e.g. [54, 147, 103, 128].

Near-Infrared Spectroscopy (NIRS)

Similar to the functioning principle of fMRI, the near-infrared spectrogcagies on the
physical differences between oxygenated and deoxygenated hdsimoglkhe differences
can be found in a modified light absorption in the near-infrared light ##aqu band. There-
fore, neural activity can be measured according to the hemodynamansespThe sensors
are typically placed on the head, accompanied by infrared light emitting e®aimed at
the scalp surface. The light in this band penetrates the scalp to a suftiefghtas to allow
for acquiring the vascular activity of the cerebral cortex. Being bawna similarly low
temporal resolution as the fMRI, the NIRS setup can be made sufficiently sntalhstruct
a portable system for BCI use (see [79, 129]).
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Magnetoencephalography (MEG)

MEG recordings measure the magnetic field which is induced by the ioniontsiftewing

in the dendrites of neurons in the brain. Note that due to the orthogonalitygrietia field

and electrical current, only large neuron populations with dendritesteddangentially to
the scalp surface can be recorded in the MEG. With its high spatial and taihngsolution,
it is a very promising recording technique which has already been usedof@f-concept
BCl experiments ([3, 75, 87]). Unfortunately, the possible applicatioasery limited due
to the size of the recording device and to the necessity of a shielded roam esien small
electrical devices induce noise which superimposes the signal of interest.

Electroencephalography (EEG)

The recording technique that | will be focusing on for the rest of thisishéise EEG, is
a non-invasive, small sized recording device. When the impedance aifagles on the
scalp surface is lowered sufficiently by applying conductive gel, the BE@als, which
rely on the ionic current of neural activity, can be acquired at highiapand temporal
accuracy. The signal of interest is a modulation of the electrical scalpfitat a particular
electrode position (see figure 2.2) with respect to one or more refeedaateodes. If a large
neuronal population is orthogonally oriented with respect to the scalpcgyrits induced
potentials are large enough to be acquired at the electrodes outside theltelae EEG
setup of the BBCI, the reference electrode is attached to the nose, empneuscle activity
to deteriorate the signal.

Although most BCI research with human subjects is conducted with the EEGH(6
113, 11]), the applicability suffers from the long preparation time for thaliegtion of
the electrodes on the head. Currently, a lot of effort is put into the denedat of “dry
electrodes” to overcome this restriction (see e.g. [117]). The interpligtadf the EEG
signals as neuronal activity of particular regions of the brain is restriocyethe spatial
smearing induced by the layers of tissue, skull and hair which separasetisers from
the cortex. Furthermore, EEG recordings are often distorted by noisevarious sources.
This topic will be discussed in detail in Section 4.1.

2.1.2. Neural Features of the EEG

This section is intended as an overview of the features of scalp EEG éaioest frequently
used for BCI purposes. [41] provides a broader and more complgeswe

Many of the features described here are event-related potentials,(ERR¥s of neural
signals that large populations of neurons emit phase-locked to some &lassical ERP
phenomena are evoked potentials, P300, the error potentials and thalizatkReadiness
Potential (LRP), which I will introduce below. The common method for the aisyf ERPs
is to average the time course over many independently recorded trials] koctkes stimulus
or response event. By the independence assumption, the signal-taat@msenproves as
the number of trials is increased, such that the underlying ERP is visible wiftbiestly
many recorded trials. Note that it is a crucial requirement for BCI rebethiat the signals
are classified in single trial analysis; therefore methods are needed eldislify the signals
without the necessity to average over many recorded trials beforehaadseStion 4.1 for
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(b)

Figure 2.2.: Part (a) of this figure shows the arrangement of EEG edestraccording to
an extension of the so-called “10-20" syste}nﬁ [60]. In this figure, jushas
all similar plots that follow, the head is projected as viewed from above, the
small triangle on top of the circle marks the nose. The colors are encoding
the scalp region these electrodes are assigned to: frontal (whiteglgghie),
parietal (yellow), occipital (red) and temporal (green) electrodepicy ref-
erence electrodes are attached to the nasion or to mastoids. Alternatedgty, s
electrodes such as Cz or Fz can be used for referencing. — Pafttkig figure
shows the major lobes of the brain, as viewed from the temporal perspectiv
inside the head. The color coding has been synchronized with the electrod

montage. Adapted from [51]. 9
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methods for robustifying the averaging process, such that fewer tralequired.

Other correlates of neural activity are oscillatory features such astna-Related (De-)
Synchronization. For most of this work, | will be focusing on the ERD/ER&glex, which
will be explained below.

Steady State Visually Evoked potentials (SSVEP)

Attended visual stimuli, presented at a fixed frequency between 6 Hz 4R, 2elicit a
rhythm in the posterior visual areas with the same fundamental frequistyeven re-
ports significant rhythm modulations up to a frequency of 100 Hz. Thkesl/cesponse is
relatively stable and easy to detect in many subjects and has therefordeéte used for
BCI purposes, see e.g. [88, 101, 99]. The basic setup of theseargsrfonsists of several
targets that are highlighted at a different frequency. By measuringrtéie tesponse and
comparing the elicited frequency to the stimulus frequencies, it can thencimedevhich
target the subject is focusing on. Note that for this visual attention, it isgsaey that the
users have control over their eye movements and are not otherwis#iyisyzaired. For
some patients, e.g. those suffering from an advanced stage of ALSethisement is not
met.

Recently, a tactile variant, the so-called Steady-State SomatosensorydERotantial
(SSSEP), has been explorediin [100]. It has been shown that {henses in the EEG to
attention shifts of healthy subjects to either of their index fingers which aterwonstant
tactile stimulation, can be classified at accuracies between 70 and 80%.

P300

The P300 component of the EEG is a positive potential that occurs in thextaf the

“oddball paradigm”, where a series of standard stimuli is randomly intextéaxith non-

standard stimuli, termed “deviants”, see [135]. After the presentationadf daviant, the
large positive potential, which occurs with a relative latency of appro@n3®to the stim-
ulus, is called P300 (or P3). This positive component, which is not préséime standard
trials, is predominantly found in parietal electrodes. Amplitude and shapéasoédimpo-

nent are known to be influenced by various factors, such as the tiéwtatandard ratio, the
presentation modality (e.g. visual, auditorial or tactile), attendance anddiastamce.

The first use of the P300 in the BCI context has been demonstrated injd5B4],
where a matrix with 6 rows and 6 columns contained all 26 letters of the alphatddhe
10 digits. While the subject was instructed to attend to a single letter, the roncomdns
were highlighted randomly. The correct letter was decoded by averagerghe rows and
columns separately and by selecting the row/column pair to which the subjpcineed
with the largest P300 component.

A variant of this approach, relying on auditory stimuli, has been presém{d®], where
proof-of-concept experiments were reported.

Although P300 speller feedback systems are studied extensively by resegrchers
(e.g. [74, 86, 125]), it can still a quite exhausting experience for thesysince the concen-
tration on the flickering symbols (or is often reported as annoying.

10
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Auditory Evoked Potentials

In [56], the time-locked response to auditory stimuli was used for clagsificaConcurring

sequences of auditory stimuli were presented separately to both eagssobjlect. The shift
of the subjects’ attentional focus on either of the two sequences ch#mgaduroelectrical
responses to the stimuli such that binary BCI decisions were possible.

Error Potentials

During the evaluation of the correctness of an event, the so-calledpartenmtials modulate
in amplitude between an “error” event and a “correct” event. The enadated response
can be divided in two different responses, namely a slow negative titesave (termed
error negativity) and the following positive potential (error positivitygeg44]. While the
negative wave is present in both correct and wrong trials and onlygelsa¢he amplitude, the
error positivity can only be seen in error trials and is out of these two the discriminating
feature.

While it is hard to imagine a paradigm where a Brain-Computer Interface ik sae-
trolled with error potential features, some research has been conductesing it as an
add-on to existing BCI systems, see e.qg. [46, 110, 15, 120]. If a clnaisdeen taken by
the user, the BCI can perform a check for the error negativity anelatethe last decision
in case of a positive outcome of this check. If the last choice was emsnéus repetition
gives the user the option to select the correct choice. On the other &éfadse positive”
error potential detection can lead to a much longer decision process, iwhbtiously not
desirable. [34] shows some considerations on the required err@ction accuracy, which
should be reached as a minimum for successful error correction.

Slow Cortical Potentials

In [6], a brain-computer interface for paralyzed patients was demaoegirawo subjects
suffering from advanced amyotrophic lateral sclerosis (ALS) weiadadaover the period
of 4 years to voluntarily produce a slow negative shift of the scalp EE®y Tould then use
this ability to control a spelling device. Although the training was first intendgataduce
a negative shift according to [5], it was found that a positive variatiaa more reliable and
more responsive to training with imagery strategies. The signals that wederuthis series
of experiments were termed “slow cortical potentials” (SCP).

Lateralized Readiness Potentials (LRP)

According to the model known as homunculus, for each part of the huotnthere is a re-
spective region in the motor and somatosensory area of the neocoreimapping’ from
the body to the respective brain areas preserves topography, i.ehnbogigy parts of the
body are represented in neighboring parts of the cortex. While the regjtbe feet is at the
center of the vertex, the left hand is represented lateralized on the gghsphere and the
right hand on the left hemisphere. In the preparation of hand movemealsas keystrokes
with the fingers, a slow negative potential is building up in the corresponidigigns of the
brain. This process is called “Lateralized Readiness Potential” or “Behaiftspotential”.

11
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Motor Cortex Somatic Sensory Cortex
(pre-central gyruis) (post-central gyrus)

Figure 2.3.: This figure shows two sections of the central area of the {@tainvn in blue
in figure| 2.2), viewed from a dorsal perspective. The motor cortesysion
the left, is located in the precentral gyrus (i.e., anterior to the central 3ulcus
while the somatic sensory cortex, shown in the right part of the figure, lies in
the post-central gyrus (i.e., posterior to the central sulcus). The siteeof
body parts displayed on top of the cortex is shown according to the size of
the cortex regions that are representing them. This reveals a slightlyediffer
topography for motor cortex and somatic sensory cortex. Note that onlgfthe
half of the motor and the right half of the somato-sensory cortex are dexgblay
for simplicity. From [72].

The analysis of multi-channel EEG recordings has shown that the invbheéal areas con-
tribute to this shift with different intensity ([29, 76]). The focus is in thenfi@l lobe of the
corresponding motor cortex, i.e., contralateral to the performing haeditgee 2.4). The
laterality of an upcoming hand movement can be classified with high accuaaeglon the
spatial distribution of this EEG signal, more than 100 ms prior to the actual eaeaf the
movement, see [15, 66, 67].

Phase Synchronization

Phase synchronization is a phenomenon that occurs in many naturahsy$id 6]), and
it is also a measure that is used to quantify the interaction between diffengntes in the
brain. There are many different methods how a phase synchronizatiohecassessed,
e.g. by estimating the difference between instantaneous phases

wheret is a point in time. The instantaneous phase can be obtained by Hilbert trarmfo
wavelet analysis.

The pitfall in this kind of analysis is the fact that EEG recordings nevaessmnt signals
of the actual sources of brain activity, but only their superpositionss d&n induce high
values of synchronization between different electrodes, even if asitygge signal is mixed
into both electrodes. In [85, 105, 106], various methods were prdptseounter this

12



2.1. Brain-Computer Interface (BClI)

10F » w P

— : WA A . /
E - N
10k = left [
right
1

1
-1500 -1000 -500 0 500

left
"L

[wv]

@ - 0
T % . g L e u . 2 > -5

-10

Figure 2.4.: EEG data during the execution of keypresses with left or litgatfinger re-
veal an early onset of a slow negativity on central electrodes. Whiledhk p
of this process can be found on the left hemisphere for a right harutéssy,
it is on the right hemisphere for a left hand keypress. The first rowstibe
timecourse of the EEG at right-hemisphere electrode C2, averaged otrér 80
als per movement type. For the left hand, the curve is clearly below the right
hand curve. For each of the marked intervals, scalp topographief@na s
separately for left and right hand movement. Electrode C2 is marked with a “+
on these scalp maps.

problem. They involve the unmixing of the sources beforehand by meamsieghendent
Component Analysis (ICA) and then calculating the synchronization index.

In [23], it was demonstrated that even without avoiding the above pitfalineBCl
control can be established. The drawback of this method is the limited intebititgtaf
these results.

Amplitude Modulation of the Sensorimotor Rhythm (SMR)

Some of the event-related changes of the EEG consist either of dexiwasereases of
the power in given frequency bands. This can be accounted to aadecoe an increase
in synchrony of the measured neuronal populations. These phena@retermed “Event-
Related Desynchronization” (ERD) and “Event-Related SynchroniZai€RS) and can be
found in EEG and MEG recordings during the execution of a variety of rhetdges and
mental tasks, such as sensory-semantic processing, memory and motaskent

Some brain states are characterized by the intensity of specific freqbandg over spe-
cific brain areas. A very predominant frequency for the EEG is irathmnd, ranging from
approx. 7Hz to 13 Hz. This frequency band is very strong in the padetloccipital re-

13
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Figure 2.5.: The timecourse of the bandpower from 11-15Hz, in two sdlettetrodes
over the author’'s motor region. During imagination of a left hand movement,
the bandpower in CP4 (on the right, i.e. contralateral hemisphere) isegduc
During the imagination of a right hand movement, the same holds for electrode
CP3 (on the left hemisphere). The bars below denote the discriminability of the
curves at every point in time, in terms f-values (see Section 3.1.2). Higher
values correspond to a better discriminability.

gion of the cortex, but due to volume conduction, it can also be measuesdnore frontal
electrodes. This rhythm is known to modulate according to visual progedsitigue and
attentional state, see [4, 127].

During executed or imagined hand or foot movementsptiieythm in the corresponding
motor area can be observed to be attenuated ([114, 113]). This is digmaravhich can
easily be used for BCI purposes, since motor imagery can be perforragthepously and
without previous training. Thg-band is at a similar frequency as theband, but the spatial
distribution of the ERD of motor tasks is centered at the corresponding motbces.
As an example for ERD, figure 2.5 shows the author’'s bandpower owesélected EEG
electrodes (CP3 and CP4), during imagination of left and right hand mousm@fter
bandpass filtering the data between 11-15 Hz, a sliding window of 200 ni$ lelag used
to estimate the power in these two electrodes. fHmnd, at frequencies from 15-30 Hz, is
known to undergo similar (de-)synchronization effects.

y-band (30-80 Hz) oscillations as well as higher frequencies have ato ieported to
encode information about intended movements; even above this frequemgsy, informa-
tion is encoded. [50] presented motor-related amplitude modulations aefrei@s up to
200 Hz, which were termed “Very High Frequency Oscillations” (VHF®).al study on
12 healthy subjects, the laterality of upcoming hand movements could be pdedidtagh
accuracy.

In this work, | will focus on the modulation of frequenciesin and 3-band ([4, 127,
112]).

2.2. Signal Processing and Machine Learning

For the classification of brain signals, there are two important steps: gigoe¢ssing
(which corresponds to the “feature extraction” process in machineitgaterms) and the

14
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application of a classifier. For both steps a large variety of options is ysdifferent BCI

groups; this is due to the fact that the neural signals of interest (s¢i@r82cl.2) exhibit
such a diversity. This, in turn, entails a large variability of the signal ptagee On the BCI
Meeting 2005, many researchers tried in a joint effort to find a taxononall shethods
used for BCI ([82]), but even this list was by no means exhaustivecanttl only provide a
selection of the methods used by some of the workshop participants. Anletfadied, but
still not complete, list of methods is given in [41]. In this section, | will brieflyraduce
some methods most of which will be applied later in this work.

2.2.1. Feature Extraction

Feature extraction is a process which is intended to reduce the dimensiondliikewise
the complexity of a dataset to a few dimensions with the largest information ¢orfen
the application in BCI framewaorks, it is an important prerequisite that theggsois com-
putationally efficient, robust against noise influences, and only reliegtmsamples from
the past.

While some of the feature extraction methods are generally applicable in the&kG
text (such as the frequency filters) or were derived from much diffiefields of application
(such as Independent Component Analysis (ICA)), some of thempafigally taylored
to the signals of interest. While, for example, the Common Spatial Patterns @IgrR)
rithm was originally introduced as a fairly general method ([48]), thahébits way into the
BCI research community ([118]), its spatio-temporal extensions ([80138, 140]) were
developed with the goal to improve the feature extraction process for Bilications.

Frequency Filters

In some cases it is advisable to reduce the frequency content of the igE& ® some
frequency band of interest; this can be indicated if neurophysiologicdefesuggest that
the signal is mainly located at a specific frequency.

Since, for example, the ERD/ERS-complex (see Section|2.1.2) can be poeddmi-
nantly in theu- and 3-band, it is advisable to apply a frequency filter with this particu-
lar bandpass to the signals before extracting bandpower features. Wittofrtbe time-
frequency representations, such as Fast Fourier Transformaadin @F Wavelet Transfor-
mations, it is even possible to use the frequency coefficients directly as &stifoa the
frequency content.

Digital Filters A digital Infinite Impulse Response (IIR) filter consists of two finite se-
quences € R"™ andb € R™, which are chosen according to specific filter design criteria
(see[108]). By convolution with these two sequences, the sigisdiltered to the signay

as follows:

Zlb X(t—i—1
—; y(t—i+1)
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forall t.

A special case of lIR filters, a Finite Impulse Response Filter (FIR) is obdidiry choos-
ing n, = 1 anda(1) = 1, which makes the second term in the above equation vanish. Note
that these filters introduce a time delay into the signal.

FFT-based Filters The Fast Fourier Transformation (FFT) is a mapping of the signal from
the time domain to its frequency domain representation ([108]). A filter carbtened
with this mapping by selecting the frequency bins of interest and applyingtteese Fast
Fourier Transformation (IFFT). Since both FFT and IFFT are linear nusthihvey can be
implemented in a computationally efficient way.

Wavelet-based Filters As a further method of translating signals into their frequency
representation, wavelets [30], orthonormal bases of finite time series veipledafic fre-
quency content, can be applied. By scaling and translating a prototypicdher wavelet”,
the resulting “daughter wavelets” can approximate the signal efficientlginAdpy restric-
tion of this representation on wavelets within a specific frequency rangesighal can be
filtered.

Spatial Filters

If X € RT*C is the matrix representation of EEG data, wh&res the number of samples
in time andC is the number of channels, a spatial filter ¥%is anyw € R®. The spatially
filtered signalS< R"*1 is then defined by

S=X-w

Since every EEG electrode only measures a superposition of signaisdisdm various
sources in the brain, it is a difficult task to find the signal that originatesspeaific scalp
location. Spatial Filters are tools for the extraction of specific sourceéshby can also be
used to alleviate the influence of non-cerebral signals such as eye @lihkad movements.

For most neurophysiological analyses, predefined filters which tapgestific brain re-
gions are defined, e.g. Bipolar filters, Laplace filters and the Common gedraference
method, which itself can be understood as a spatial filter. Although applyéngetly same
filter to different datasets makes the resulting findings more comparablesitrad account
for the individual differences between the recordings. Anotheraar are data-derived
filters, obtained from methods like PCA, ICA or CSP. All these methods tefledtain
properties of the EEG and the optimal parameters can therefore agaigardee as fea-
tures of the data. Note that although the inter-subject comparability within étweréespace
is not granted, the beauty of these methods lies in the duality of the filters: ondfeand, a
filter is computed which can be used to derive a signal from a particulacesauthe brain,
on the other hand, a “pattern” that corresponds to the spatial distribdtibe same source
on the head.

This view is derived from the general framework in which all these metleadse for-
mulated: the measured signl,c R" <€, is a mixture of other (source) signaBge R <€,
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Bipolar Filter Laplace Filter Common Average Reference Filter

Figure 2.6.: Three commonly used spatial filters in EEG research: the bijdtdarsub-
tracts the signals of two electrodes (in this case C3 and FC3) and the Laplace
Filter subtracts the surrounding neighbor electrodes. For the Commoag®ser
Reference, the average signal of all electrodes is subtracted fremrp gngle
electrode. In all three pictures, electrode C3 is marked with a black cross.

with an invertible mixing matrixA € RC<C,

X = S-A and
S = X-W, withw=A"1

In the context of EEG analysis, this means the following: the first equation isnihia row
number of the “mixing matrix” (i.e., patterm) denotes the influence of source numben
each electrode. The second equation shows that column nuwkibe “de-mixing matrix”

A1 (i.e., filter number) denotes the factor with which each electrode must be scaled in
order to receive the source signal in columof S. Both the filters and the patterns can be
displayed with their spatial distribution on the scalp.

Bipolar Filter A very simple method of spatial filtering is the differential signal between
two (usually neighboring) electrodes. The signals from very distantcesuare superim-
posed over both electrodes with approximately the same intensity. The sigdntican then
minimize the influence of these other sources. The signal is then simply catcaitel-
lows:

$SIP—5 —s,.
This corresponds to a filter with the coefficients
17 J = il
Wit =q-1, j=i
0, otherwise.
Bipolar measurements are usually not regarded as an actual filter, styaothit require
to apply more than two electrodes. But even this minimal setup is often usecefer E

analysis in the BCI context, see e.g. [144]. Figure 2.6 shows a typicaldifiber between
electrode C3 and FC3.
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Laplace Filter Again with the idea of removing signal content which does not originate
from near the recording electrode, a Laplace filter subtracts the sifjgatrounding elec-
trodes. More specifically, & is the signal recorded at electrodend ifs,,...,s, are then
electrodes from a neighborhood of electrodiéhen

AP 1g
sWi=s-23% 5
=1
is the laplace-filtered signal at electrodeélhe parameten depends on the electrode mon-
tage used for recording. The filter has the following coefficients:

1, j=i
WAP = &L e i)

0, otherwise.

Common Average Reference Although the Common Average Reference is a re-refe-
rencing method rather than a filter method, it can still be formulated as a spi&sial For
each electrode, the mean signal over all electrodes is subtracted, i.e.,

CAR 18
SESTE Z Si
=1
is the CAR-signal at electrode This corresponds to the following filter:

1-3&, j=i
AR _ (o
WJC - 1 h ;
—&,  otherwise.

This method can be applied if, for example, the reference electrode iogsdiwme noise
into the data. Since it often subtracts very distant channels, some of tid sgsolution of
the signals is lost after this transformation.

Principal Component Analysis (PCA) The k principal components of a set of data
pointsxi, ..., X, € R™Mare the solutiongs;.. ., Yk € R™ of the optimization problem

n k
miny,..yca 3 (%= (4 3 ay)llz
i= =1

where u is the empirical mean of the data. In other words, PCA components span the
k-dimensional affine subspaceRf" that describes the data with minimal error.

A simple calculation shows (see [42]) that the principal components canrbputed as
the eigenvectors of the scatter matkix= S ;(x — 4)(x — i) " corresponding to th&
largest eigenvalues. The principal components correspond to théahewith the largest
variance. This method is therefore often used for dimensionality reducfibis sort of
analysis is useful for the analysis and quantification of unlabeled ddta dmes not neces-
sarily reflect the directions with the best discriminability.

PCA has been extended to its non-linear version “kernel PCA” (kP{®8], This algo-
rithm can describe the data in a higher-dimensional space and is theref@earanteed to
reduce the dimensionality of the data.
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Independent Component Analysis (ICA) Instead of representing the data in a least-
squares sense, ICA tries to find directions in the data which are most mdkstdrom each
other. This goal of ICA can be understood in the framework of Blind S@@8eparation
(BSS) as in the beginning of this section:
Suppose the measured sigiak R" < with T samples an€ dimensions is actually a
linear mixture of sources, i.e.,
X=S-A

whereA € R€<C is an unknown mixing matrix anfic RT*C is the source signal.

In order to recover the source signal, a further requirement, namelyatigtisal inde-
pendence of the sources, is necessary. If we now try to find a de-nmaitigx W such that
the de-mixed signalS= X -W are spatially as independent as possible, the original source
signals can be recovered.

Depending on the specific assumptions on the underlying sources, ménemlifap-
proaches have been proposed ([25, 59, 2, 153]). In this workll bpply FastICA (see
[59]) for the identification of outlier trials (section 4.1) and IBICA (see,[88]) for finding
inlier points in a set of parameters (section 5.1).

Common Spatial Patterns The Common Spatial Pattern (CSP) algorithm is very useful
in calculating spatial filters for detecting ERD/ERS effects ([63]) and campplied to
ERD-based BCls, see [118]. It has been extended to multi-class prsle[36], and a
robustified version has been proposed for making it invariant to infesehg other signals,
such as changes in the visualbandpower.

Given two distributions in a high-dimensional space, the (supervisedpg®Rthm finds
directions (i.e., spatial filters) that maximize variance for one class and sirealtaly min-
imize variance for the other class. After having band-pass filtered the $igffals to the
rhythms of interest, high variance reflects a strong rhythm and low varmneak (or atten-
uated) rhythm. Let us take the example of discriminating left hand vs. rigid magery.
The filtered signal corresponding to the desynchronization of the lefl haotor cortex is
characterized by a strong motor rhythm during imagination of right hand mewres (left
hand is in idle state), and by an attenuated motor rhythm during left hand intiagin@his
criterion is exactly what the CSP algorithm optimizes: maximizing variance forléss of
right hand trials and at the same time minimizing variance for left hand trials. d¢rantire
the CSP algorithm calculates the dual filter that will focus on the area of thé mand.
It will even calculate several filters for both optimizations by consideringrémeaining
orthogonal subspaces.

Let 2; be the covariance matrix of the trial-concatenated matrix of dimension [concate-
nated time-pointsc channels] belonging to the respective cliasg1,2}. The CSP analysis
consists of calculating a matri¥ and diagonal matrifo with elements irff0, 1] such that

W'sw=D and W'Z,W=1-D.

This can be solved as a generalized eigenvalue problem. The projectios dgingen by
thei-th column of matrixV has a relative variance df (i-th element oD) for trials of class
1 and relative variance-1 d; for trials of class 2. Ifd; is near 1, the filter given by thieth
column of W maximizes variance for class 1, and since d; is near 0, the same column
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CSP Filter 05 CSP Pattern

-0.5

Figure 2.7.: The author’s CSP filter and pattern for the detection of ERIDglimagination
of a right hand movement. The filter (the left part of this figure) is the first
row of the de-mixing matrixV, the pattern (the right part of the figure) is the
first column of the mixing matrisvV—1. In contrast to the filters displayed in
figure 2.6, both CSP filter and pattern can be checked for neurophgisialo
validity. In this case, they exhibit a strong focus on the central area déthe
hemisphere, which is the motor cortex associated to the right hand.

minimizes variance for class 2. Typically one would obtain projections qooreting to the
three highest eigenvaluel i.e., CSP filters for class 1, and projections corresponding to
the three lowest eigenvalues, i.e., CSP filters for class 2. Figure 2.7 sheviker and the
dual pattern corresponding to the minimization of the bandpower ipthand from 11 Hz
to 15Hz, for the imagined movement of the right hand. EEG data were retahdring
the imagination of left hand and right hand movement imagery in 70 trials pes. diagh
filter and pattern are focussed over the left motor area, i.e. contraltidied performing
hand. Figure 2.8 shows the spectra for the signal projected by this filbeig avith the
spectra of the filters shown in Fig. 2.6. While a desynchronization cancogméezed for all
filtered signals as a difference between the red and green graph, EhprGjgction clearly
optimizes this difference. For this comparison, see also the argument in [41]

A very concise tutorial on CSP is given in [22].

Spatio-temporal Filters Although the classification of bandpower estimates on the spa-
tially filtered data by means of the CSP algorithm is very effective, the probfehe correct
choice of the temporal (i.e., frequency) filter remains. It is not actuallyphblpm which can

be optimized independently from the spatial filter, since for differentuesgies, different
spatial filters are optimal and vice versa. Therefore, a simultaneous optonizd both
filters is highly desirable.

In [80], a new method (termed “Common Spatio-Spectral Patterns” (CS&#))ntro-
duced to optimize both filters by simply performing the CSP calculation on the spral,
catenated with a time-delayed version of itself. The resulting filters can berdplifre-
quency filter and spatial filter. Depending on the time delay, this method caificagtly
increase the classification accuracy as compared to the usual CSRappro

Another method, “Common Sparse Spectral Spatial Patterns” (CSSSPBBERf expands

20



2.2. Signal Processing and Machine Learning

Classes: left/right, N=70/69, [5 35] Hz [1 26] dB
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Figure 2.8.: For the filters shown in Figure 2.6 and 2.7, these are the spéttteprojected
signals. The spectra are given for left (red) and right hand imaginégi@en)
separately. The gray shaded area denotes the frequency bandRh@dt&S
were calculated on. Below the spectra, the color intensity denotes thexsepar
bility of the frequency bins, in terms of the bi-serial correlation coeffic{sat
Section 3). The best class separability is achieved by the CSP filter.

the range of possible frequency filters, by explicit simultaneous optimizafitroth the
parameters of the digital FIR filter and the spatial filter. The performandeitasto the
performance of CSSP.

There are many other approaches to the joint optimization of spatial anttaditers,
e.g. [139, 140], where the optimization is performed in the spectral domain.

2.2.2. Classification

According to [42], a classifier on a given feature sp&e_ R" can be defined as a set
¢ :={0:2Z —R|i=1,...,C},

whereC is the number of classes. The classifier assigns the featurg” to a class if

ge(X) > gi(x) for alli # c.
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Intuitively speaking, this characterizes a decision functign 2" — {1,...,C}, which
assigns a class label to each point in the feature space, by defining

' i thi . .
fp(x) = {argmaxe{lwc}g. (x), if this maximum exists

0 otherwise.

A classifier partitions the feature space into decision regi@ns. ., Zc, which consist
of all the points of the feature space that the classifier assigns to thetiesprass label.
If the functionsg; constituting the classifier are sufficiently simple (e.g. continuous), it can
be interesting to analyze the decision boundaries, i.e. th@sef ; %,). It corresponds
to the points where the largegthave the same function value.

In this work, | will focus on a simple case where the classifier only compare8 classes
(such a classifier is also called “dichotomizer” or “binary classifier”)thie case of a binary
classifier an&’ := {g1,9-1}, the decision function can be reduced to the form

fer (X) == sgng1(X) — g-1(x)).

It is common practice to inspect the “graded” classifier output (which istthetion value
of (g1(x) —9-1(x)) before applying the sgn-function) as well as the classifier decision.

I will also only consider classifiers whose classification function and theesponding
decision boundaries will be linear (these classifiers are called “line&ffider some as-
sumptions on the distributions of the underlying classes in the feature sawely known
normal distributions with equal covariances, a linear classifier is the optinoéde in the
sense that it minimizes the probability for misclassification (“Bayes-optimal”).

The decision for linear classifiers is not simple, but one of the most impatgatnents
is the small number of parameters which have to be estimated on the training data. W
the extension to richer function classes can enhance the training agdabhiexe is always a
considerable risk of overfitting: with a sufficiently large function class toosle the classi-
fier from, any finite amount of training data can be classified perfectlyheugeneralization
ability of the classifier is not always guaranteed. Therefore, | will idgtryself to the case
where most of the power of the classification process is actually perfoimibe feature
extraction: if the data in the feature space are linearly separable, thyeazasily classi-
fied. | will only present some methods that | will use later throughout thikwalso note
that other methods, such as regularization, will not be applied here. Fara detailed
discussion of linear and non-linear methods, see [93].

Linear Discriminant Analysis (LDA)

If X e R"andY < {1, -1} are random variables € N) with X|(Y =i) ~ N(pi, %) for some
i € R"andZ € R™" (i € {1,-1}), and if the class priors are equal
(i.e.,P(Y =1) = P(Y = —1)), then the decision function

F() = (= p-1)"Z X = 0.5(p — po1) 'Y (pa + poa)

is the Bayes-optimal classifier for this problem. Since in the general page.1 andX are
not known, they can be estimated by the class means

Hi = — Xj;
M je (k=)
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2.2. Signal Processing and Machine Learning

wherem; is the number of samples from clasé € {1,—1}), and the averaged classwise
scatter matrix

i = 05(21 + i_l)
1 “ n
= 05(— % ()0 —f)"
1 je{Ky=1}
1 n "
+— (Xj — 1) (x) — i) 7).
m-1 je{k\yzk:—l}

This classifier can easily be extended to the case where the class paaretaqual.
A further extension to the case of unequal class covariance matrices rekeecision
boundary{x € R"|f(x) = 0} non-linear. The method is then called Quadratic Discriminant
Analysis (QDA).

Least Squares Regression (LSR)

Using linear regression on the labels, another classifier can be intchdliceegression
problems, a relation between datac R, and function valueg; € R™ (fori € {1,...,N},
for somen,m,N € N) is described by choosing one function out of a function class which
minimizes the (squared) error between its function values and the targesyalu

In order to find the linear classifier whose classification values are as atogossible to
the labels, we can sat= 1 and choos& € R", b € R such that they minimize

ﬁlwwb_yi)z - i(({f)T(ﬁ)—yoz
- H(VJ)T(l_fl)—yﬂé.

The last term is minimized by setting

()= (50)

where “” denotes a pseudo-inverse operator. Note that this correspondsAonith a
modified scaling.

A nice property of the LSR classifier is that applying it to the class mearend 1
yields 1 and -1, respectively. This behavior is desirable if, like in the Bfitext, the
classification values should be finally translated into control signals. Timsata@an be
improved if the expected function values of the classifier for “typical” in@alties like the
class means is known beforehand.

Support Vector Machines (SVM)

The Support Vector Machine, introduced in [142], is based on the iflsepgarating the
training datax; € R" with labelsy; € {—1,1} (i € {1,...,N} for someN € N) by means of
a linear hyperplane, such that the minimal distance of each point from fferigine, the
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so-called “margin”, is maximized. In other words, the weight veetat R" and the offset
b € R can be determined by the optimization problem

argmirbeR,WeR" ’ ‘W‘ |§
st yiw'x+b)>1(i=1...,N).

Thex; for which the constraint is fulfilled with equality are called “Support Vectofshe
hyperplane, since they determine the location and angle of the hyperpldygemmetrically
interpreted, “support” the outer borderline of the margin. This redueesdmplexity of the
problem, even in high dimensions, to a few support vectors.

Since the data need not necessarily to be separable, such a hypeigpdsneot always
exist. For this case, the optimization criterion can be relaxed by introduciok) \&aiables
& eR(i=1,...,N)and aregularization parameter> 0 in the following way:

argmirbeR,weR”,EeRN HW‘|%+CZi’\I:1 fiz
st yiw'x+b)>1-&2(i=1,...,N).

The regularization paramet€rcontrols the tradeoff between two objectives: a smaller
will result in a larger margin around the hyperplane, but might result in laeigrror on the
training data. Large€s decrease the training error, but possibly reduce the generalization
error by enlarging the margin.

Support Vector Machines can easily be extended to non-linear cagés.afid a more
detailed overview of Support Vector Machines can be found in [24128].

2.3. The Berlin Brain-Computer Interface (BBCI)

For the presentation of the BBCI, | will first give a very general oimmof the past and
ongoing projects. Then | will report the most commonly used methods folingaaclas-
sifier on data from mental imagery, and how the resulting classifiers capptiedto drive
feedback applications such as the 1-dimensional control of a compusarcu

2.3.1. Overview and History

In the year 2000, the Berlin Brain-Computer Interface project was initiasealcooperation
between the Fraunhofer Institute FIRST and the Department of Neurofotihye Charité
Berlin. Recently, the Technische Universitat Berlin also became involvédisrongoing
research process.

Before the BBCI entered the field, the majority of BCI research was pagad by long
training periods for the users of BClIs (e.g. [150, 6]). This training e months or
even years, until a reasonable communication performance can be éstdblduided by
the motto “Let the machines learn!”, the focus of the BBCI is to shift the maimldyur
of learning away from the user onto the analyzing and classifying comptites can be
done by combining knowledge from different ends of this interdisciplirfealgl, namely
neurophysiology and machine learning techniques.

The BBCI has covered a wide range of BCI paradigms; it has for exadgmenstrated
how upcoming keypress movements with left or right index finger could tssiilked with a
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2.3. The Berlin Brain-Computer Interface (BBClI)

high accuracy, even 120 ms before the actual movement was perfd8néd,(66]). Further
works have shown how error potentials can be usefully integrated intoap@lications,
[15, 21].

Much work in the BBCI has been performed on the ERD/ERS paradigm in nmoégery
data (e.g. [12, 9]). We could show that it is possible to provide BCI faekiito completely
untrained subjects, after a short calibration period of approx. 20—30tesn The focus of
my work in this project is to even reduce this short amount of calibration tolkelate
minimum, by thorough analysis of the feedback experiments and the beh&vie clas-
sifiers throughout the experiment. | will in the following mainly exemplify my methods
ERD features and the used classifiers.

An important ingredient to a Brain-Computer interface is a rich feedbapkcapion.
Therefore, we developed various games and text input devices amehdrated how they
can successfully be operated. These applications include a BCl-bedt@ursor (e.g. [12,
9], see also chapter 5.1), text input devices like a binary speller @nt]the “Hex-O-Spell”
interface ([13]). Among the implemented games are “Brain-pong”, a Viargathne 1970s
arcade game “PONG”, for one or two players, and more recently theatafia real-world
Pinball machine. Since this list is by no means a full report of the possiblecappns, |
refer to [65, 96] for a more complete overview.

The basis for this success is the application of machine learning on high<lonah
EEG-data. The BBCI has shaped this concept in the BCl community by ianggrBCI
classification competitions ([20, 19, 119]), where the participating rekees all over the
world could benchmark their own algorithms on data from BCI experimenthditer com-
parison and to avoid overfitting, the results were only released at thef #mel@mpetition,
when the labels of the test set were published.

In the following sections, | will give a short overview of the standardcpdures applied
for BCI motor imagery feedback sessions in the BBCI. Most of the expatisneported
here followed this procedure, until | introduced a new method (see Sectipn

2.3.2. Measurement

All the experiments conducted for this work have been performed withim@sive scalp
EEG. For each subject, brain activity was recorded by means of 64A428Cl elec-
trodes, attached to an EEG cap. The data were mostly recorded simuligneittusurface
EMG (electromyogram) of the right foot and both forearms, as well as E€)é&troocu-
logram). This was exclusively to make sure that the subjects performedahdimb or
eye movements correlated with the mental tasks that could directly (artifagtsjicectly
(re-afferent feedback from muscles and joint receptors) be tefléc the EEG and thus be
detected by the classifier, which operated on the EEG signals only. Ampdifidnseecording
software from the company “Brain Products GmbH” were used, and tiaexte recorded
at a rate of 1000 Hz.

2.3.3. Calibration

The subjects were sitting in front of a computer screen, with the hands lax@deposition
on armrests. Every 5.5H40.25) seconds one of three different visual stimuli (see[Fig. 2.9
for an example) indicated for 3.5 seconds which mental task the subjedtsietomplish
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HIT: 3 MISS: 0

Figure 2.9.: The left part of the figure shows the computer screen dihengalibration
measurement. For a duration of 3.5 seconds, a letter indicates the mental task
the subjects have to fulfill. In the right part of the figure, a “Cursor cai¥r
feedback is depicted. See text for details.

during that period. The investigated mental tasks were imagined movements iafftth

hand (), the right hand R), and the right foot ). Between 70 and 200 repetitions for
each class were recorded. In this work | investigate only binary claasifits, but the same

classification setup can be used in the multi-class case, [36, 37].

2.3.4. Feature Extraction and Classification

After the calibration measurement, a classifier was trained on the two bestnilisble
classes. There are several parameters in this feature extraction ssifiadtion procedure
that can be specifically chosen for each subject to obtain optimal resuitthe lonline
experiments this is done semiautomatically by combining machine learning, exjerkk
edge and visual inspection of some characteristic curves such asaspedtERD curves,
see [10], so the following parameters can be slightly adjusted by the expeeirse

After choosing all channels except the EOG and EMG and a few outmasinels of
the cap, a causal band-pass filter from 7-30Hz is applied, which ermss®p both the
U- and theB-rhythm. The data we extract are from the windows 750-3500 ms after the
presented visual stimulus, since in this period discriminative brain patteengresent in
most subjects. Afterwards we apply the CSP algorithm (see Section 2.2.8)datén This
decreases the number of channels by suitable linear spatial filters wkitdaaned on the
training trials. We typically use 3 filters per class, which leads to 6 remainingnets,
chosen by the magnitude of the corresponding eigenvalues and by ivispettion; a more
refined method of automatic selection of the best channels is presented.inf22hen
calculate the logarithm of the variances of for these channels. The rgsigéture vectors
are a measure of the amplitude in the specified frequency band.

After the presented preprocessing usually between 70 and 200 sixgionahfeature
vectors for each class remain. Since the data have in most cases a Gdisislaution, we
apply alinear classifier such as LDA or LSR.
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2.3. The Berlin Brain-Computer Interface (BBClI)

2.3.5. Feedback

In the BCI context, a “feedback” is the output of the system to the inputciives when
measuring the neuronal activity. Feedback applications can haveediffentput modalities
(such as visual, tactile or auditory) and can differ in the timing of the retumagpear-
ance of the stimuli and many other properties of the presentation. As typaalptes for
feedback applications, | will explain the setup for some variants of thes@uzontrol”

feedback (see Fig. 2.9), where the subjects can control the horipmsiibn of a cursor on
the screen.

Cursor Control Feedback

During the feedback period, the EEG data were acquired from thediagocomputer and
classified (almost) in realtime. Due to recording and digitizing restrictions, tte ate
acquired every 40 ms, and then the last, e.g., 1000 ms of EEG data are takacciount for
the classification.

The data are spatially filtered with the pre-computed CSP filters. Then thepdaad
in these signals is estimated by applying the frequency bandpass-filteakuthting the
logarithm of the variance. The resulting features are then fed into thefdass

In the “Cursor control’-feedback, two rectangular targets are platéide left and right
side of the screen. At the beginning of each trial, one of the targets is Hitgdigand the
subject attempts to navigate the cursor into the target, using the two imagined nmbveme
types. The graded output from the classifier is then used to move ther @ittser in a
position-controlled, or in a rate-controlled manner. This means that thedscialssifier
output is either used to move the cursor by a small amount to the chosen direcii®
mapped directly to a horizontal position on the screen. Each “trial” lasts uetisubject
hits one of the two targets, and as a result the trials are of variable lengtHock of
(typically 25—-100) feedback trials, not interrupted by a break, is calléglealback run”.

Mental Typewriter Feedback

There are various ways in which a one-dimensional continuous outauB6i can be used
to enter text (e.g. [13, 91, 6, 152, 107]). The basis for the mental tygewn this example is
a continuous movement of the cursor in the horizontal direction. A “rateaited” scenario
was used, i.e., at the beginning of each trial, the cursor is placed in awdedtmode in
the middle of the screen. Every 40 ms, the current classifier output isladdiee position
of the cursor, thus moving it left or right. The feedback enables the sistije type letter
by letter on the basis of binary choices. The alphabet is divided into twiigcmus sets of
letters with approximately equal probability of occurence in the german lgegdde first
and last letter of each division appear in a rectangle on the left and rigrdfédhe computer
screen, see Fig. 2.10. By moving the cursor into one of the targets, tjeesutan choose
the set of letters containing the one they wish to type. The chosen set isitiaaddnto
smaller sets, until a single letter is selected. For correction purposesjrtimerfsymbol (<),
for deleting one letter, is added to the alphabet. In case of failing to hit theatdetter, the
subject can then try to select this delete-symbol to erase the erroneoud\ettethat after
an error of only one binary choice, it is impossible for the subject to retutime node of the
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‘ BBC

Figure 2.10.: The figure on the left is a screenshot of the feedbackvimgiven to the
subjects. The position of the cross is controlled by the classification output
of the current EEG signal. By moving the cross into the right or left box, the
respective set of letters is selected. For completing the acronym “BBi@d”,
subject would try to select the left box, since the letter “I” is associated to it. A
unique series of decisions (right—left—left—right) leads to the selection of this
letter; this corresponds to the binary decision tree shown in the right figure

decision tree containing the correct letter. Thus, a wrong letter will betseleegardless
of the next decisions. In our studies, subjects often used this periothtoarestretch. This
period of the experiment, however, should be excluded from any ofiliradysis schemes,
since it does not contain useful information about the intended task.

Fixed Duration Cursor Control

For specific analysis of the feedback data, it can be problematic that thsedfithe con-
ventional Cursor Control Feedback application can have significanfigrelift length. A
modification of this setup can facilitate the analysis: instead of ending the trizth wWie
cursor hits any of the two targets, the “fixed duration cursor contrallfaek” lets the sub-
ject control the cursor for a predetermined amount of time (typically 3.5s)0Just like
in the regular case, the graded classifier output is used to control ther ¢garhorizontal
direction in a rate-controlled fashion. After 3.5 seconds, the cursorad fagain and the
outcome of the trial is determined by the horizontal position of the cursore iftinsor is on
the correct side of the screen, the trial is counted as “hit”, and as “niistleerwise. The
target box is then colored according to the trial outcome in green (for@essful trial) or
red (in the other case). After a short intertrial break of 1 second tkiganget is presented.

Feedback of Results

Another variant of the “Cursor Control” feedback concerns the visildlityhe cursor. In our
studies, we frequently encountered subjects who were distracted bgrieeant feedback
given to them in form of the horizontal position of the cursor. This led to tebpment of

a paradigm where the only difference to the standard scenario is thatrdwe s no longer
visible. Subjects only receive feedback at the end of each trial, by theafdhe previously

ordered target: “green” for success and “red” for failure.
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CSP Filters

Sessjon 1 Sessjon 2 Sessijon 3
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Figure 2.11.: The author’s optimal CSP filters across sessions. Forseasion, the CSP
filters were calculated on the calibration measurement, for the discrimination
of left hand and right foot imagery. Only the filter corresponding to theekiw
eigenvalue (i.e., for the minimal bandpower during left hand imagery) is dis-
played. The focus is mostly on electrode C4 (sessions 1, 2, 4, 6 andC®4r
(sessions 3, 10, 11) or on surrounding electrodes (session Bsdioa 8, it is
even on the ipsilateral (left) hemisphere.

This feedback type can also be used to force different levels of vigteition, since it
can be quite fatiguing to focus on a screen with almost no change of the scre (see
Section6.1).

2.3.6. Problems in this Approach

Although this approach works well for a large number of untrained stg{see [11]), there
were still some issues to be resolved:

o After training the classifier, the control could often only be established aftding a
fixed real value to the classification output (“bias term”). Since the classibeked
well on the data from the calibration measurement, it was unclear why thisegasn
sary. Also, the need for this manual adjustment is an unpleasant detaibithtravise
highly individualized and fine-tuned system.

e During the presentation of the feedback, there were sometimes periodshensub-
jects completely lost the ability to control the BCI system. It was an open isgte bo
how to re-adapt the classifier parameters and how to do it online and in realtime

e For longterm BCI users such as severely disabled people, a daily ¢albpeeriod
would be tiresome and annoying. The straight-forward approach teadhe first
classifier ever set up for a subject will clearly fail, as figure 2.11 shoWse CSP
filters for a single subject display a large variability, such that it is not exidew a
particularly robust filter can be found from the training data of previogegments.
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| will address all of these topics in the upcoming chapters, and | will show $ame of
them can be solved by the aid of advanced machine learning techniques.
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3. Introduction to Nonstationarity

In the BCI context, we usually have labeled time series with a large variabilig/sdbrces
for the variability include the following categories:

o Measurement artifacts and measurement noise

Physiological artifacts

Influences of other, not task-related neurophysiological prosesse

Changes in the feedback setup (stimulus modality, stimulus appearance,...)

Changes in psychological parameters

Since so many different factors are contributing to the variability of the kwigimals, it is
hard to quantify and describe the nature of their influence. Some of thgmnanease
the noise level, but are relatively stable over time, such as the 50 Hz-ndiseeith by the
alternating current of european power lines, which can be assumed nntergo a large
variation over the course of a BCI session.

If the performance of BCI classifiers changes over time, this is oftenregf¢o as “non-
stationarity”. This term is not limited to the application to BCI, and in the literature yman
definitions and concepts, often tailored to the specific field of applicatiore baen pro-
posed (e.g. [62, 111, 102, 109, 121, 136, 133]). In the BCI field, af particular interest
to find remedies against nonstationary behaviour of classifiers, to maingséility of the
user to control the system. In this chapter, | will first go one step backwmdiuce the con-
cept of nonstationarity (see the following definitions) and then discusdetywaf methods
that can be applied for the characterization and the quantification of tionstg time se-
ries (Sections 3.1, 3.2 and 3.3). These methods can be applied to getauedgrstanding
of the underlying processes that are inducing the nonstationarity.

Definition LetP = (Q,.#,P) be a probability space,c N andl C R.
A set of the form
S={Rltel},

where eaclk is a random variable ovef with values inR" is calledStochastic Process
with state spac&".

Mathematical properties and methods for stochastical processes aruhtfeptof random
variables can be found in [64] and [33]. In the following, | will also mefe stochastic
processes as multivariate time series. This view puts more emphasis on the tirse, cou
but it should nevertheless be clear that the chosen probability spaceripartance for the
following definitions.
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Definition Let (X )tci be a multivariate time series, whdre R is an index set. The(X;)
is called(strict-sense-) stationary time serjéfthe probability distribution does not change
over time, i.e.,

P, = Px,

forall tj,t; € I.
A time series is calledonstationaryif it is not stationary.

In classification problems on time series, we are usually given a time seri¢sgogath
a series of labels. For this setting, the above definition is not yet apprqmiiate the labels
will have to be modeled in the probability distribution. If the labeled data arerdeda
as a time serie§X, Y;)ie1 0n some index sdt C R, where the label¥; are also random
variables, the definition of stationarity would entail that the joint distribution efléiels
and the data is unaltered over the whole index set. For the purpose of dstigations
presented here, the main focus of attention will only be the evaluation of thditiomal
probability distributionR,y,, not on the entire joint distributioRy, ;.

Therefore, a modification of the above definition for the special case ofd#ries with
labels will make this explicit:

Definition Let (X, Y;)ter be a labeled multivariate time series, whére R is an index
set andY; € ¥ C R for all t. Then(X,Y;) is calledstationary labeled time serie# the
probability distribution for each class does not change over time, i.e.,

By = P v,

forall tj,t; € I.

This implies: (X, Yt )t is stationary iff for all classese ¢’ the time serie$X )ie sciy.—c}
is stationary.

A labeled time series is calletbnstationaryif it is not stationary.

Now the question arises how it can be shown that a labeled time series istitmasta
According to the definition, it is only required to find two points in time where theibdis
tions are different. On the other hand, there is always the problem dficenily accurate
estimation of the probability density at a given point in time. If a stationary timesesie
generated from a normal distribution with a large covariance matrix (e.gseddwy mea-
surement noise), it is not trivial to decide from the data whether the timessmiees from
the same distribution. In order to identify a nonstationary process, it is impdHhat tests
for the change of underlying parameters can be done at a reasoglifieance level.

If it is safe to assume a parametric model for the distribution of the time series, it is
sufficient to demonstrate that the parameters of the model are changintinoee For the
case of a multivariate normal distribution, this corresponds to investigatinoéas and
covariance of the data and how they change ove@ime

The usual setup of the BBCI uses bandpower features for the clatisificThis requires
the measurement of EEG over a time window of 100-1000 ms. In order to |diftaeent

1The concept of stationarity, which only requires the first and secoder anoments to not vary over time,
is commonly refered to awide-sense stationarityNote that “(strict-sense) stationarity” implies “wide-
sense stationarity”, and therefore “wide-sense nonstationarity” implésct-sense) nonstationarity”. The
investigation that | am conducting are, in this notion, testing for wide-semsstationarity.
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samples be independent, a property that is required for the correct #stinmhmean and
covariance of a normal distribution, | have to ensure that the windowthé&bandpower
estimation do not overlap. In the following, | will use the data of differentgriaeither in
the calibration or in the feedback setup as described in Section 2.3.3 and a88samples,
i.e.,t €l is the number of a particular trial anq is some feature derived from the EEG
recording of this trial.

3.1. Probability Distribution Comparison

According to the definition of nonstationarity in labeled time series, the cheakoiosta-
tionarity involves the comparison of estimates of the distribution of two clas$e® gliven
points in time. There are various methods to compare the distribution of twormawald-
ables, | will introduce the most prominent ones and show how they aredelate

3.1.1. Kullback-Leibler Divergence

Definition The Kullback-Leibler Divergence (sometimes refered to as “Kullbadkike
Distance”, although this is mathematically not quite accurate, as the consideragtow
will demonstrate) of the probability distributiof’sandQ with respective probability densi-
tiesp andq s defined by

KL(P.Q):= / p(x)log (%) dx.

For two n-dimensional random variable§, Xy with X; ~ N(p1,%1) and Xz ~ N(L,Z2),
this amounts to

KL(Rq.Be) = —[100(1Za%; )+ E( — )y 10— )
—E(X— i)' T3 (X — )]
— _% [log(|Z13, 1) + traceE(Xy — p1) (X — p1)'Z1 1)
—trace(E (Xy — ) (X — p)'Z5 ) — (M2 — pa)' S5 (2 — )]
- _% [log(|21%; ) + tracel — 2135%) — (M2 — pa) T (2 — pa)].

wherel denotes th@-dimensional identity matrix.

Note that the Kullback-Leibler Divergence is non-negative, i.e.(Q) > 0 for all P, Q.
The equality holds if and only iP = Q. However, the Kullback-Leibler Divergence does
not define a metric in the mathematical sense, because it is not symmetric. iteifothe
sometimes used in a symmetric version by defining

KI—sym(P, Q) =KL (Pa Q) +KL (Q7 P)-

A simple example shows that the Kullback-Leibler Divergence does alssatisty the
triangle inequality. Suppose we have three Bernoulli Distributins B(d), P, = B(0.5)
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Figure 3.1.: This figure shows the effect of varying the parameter oé tBernoulli dis-
tributions on the associated Kullback-Leibler divergence values. Thegtea
inequality is only satisfied for a single choice of parameters.

andP; = B(1—d) for somed €]0, 1|. The corresponding Kullback-Leibler divergence terms
KL (P1,P;) and KL(P;,P.) + KL (P2, Ps) are shown in Fig. 3.1.1. The triangle inequality
only holds (trivially) ford = 0.5; this can be shown with straightforward calculus. Note
that the symmetric version of the Kullback-Leibler Divergence still doedixdhe triangle
inequality. The KL divergence is a very general tool, such that it candeel to express
some information-theoretic concepts, as shown below.

Shannon Entropy

If X is a discrete random variable with probability mass functx) = pi(i = 1,...,n),
the Shannon Entropy of is defined as

H(X):= 5 ploglp).

In information theory, the Shannon entropy is a measure for the uncertssogciated to
the transmission of an information.
The Shannon entropy can be expressed with the KL divergence inlteifay way:

H(X) = log(n) — KL (P, Ry);

whereU is a uniformly distributed variable. In other words, the less information is con-
tained inX (i.e., the closekK is to a uniform distribution), the larger the associated Shannon
entropy.

In BCI research, the Shannon entropy is often used to evaluate th@rparfce of a
particular setup, see e.g. [34, 73]. The bitrate is the expected numbés ¢t can be
(“almost surely”) transferred over a particular channel in a spedifiount of time.
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3.1. Probability Distribution Comparison

Mutual Information

If X andY are random variables with probability density functig{g) and p(y) and joint
density functionp(x,y), the mutual information oK andy is defined as

1(X,Y) ::/X/Yp(x,y)log(p?)((;(l’;g))dxdy

In information theory, the mutual information is a measure of the dependetaednX
andY, with 1 (X,Y) = 0 iff X andY are independent.
Expressed with the Kullback-Leibler divergence,

I(X,Y) = KL (P, %Ry),

which means that it denotes the distance between the joint distribution andothecpof
the two distributions. From this expression, the above property is direatyated.

3.1.2. Bi-serial Correlation Coefficient (r-value)

The (point-)bi-serial correlation coefficientmeasures how much information one feature
dimension (of the data € RY) provides about the labels. For each dimensiof x, it is
computed in the following way:

(ML — p2) \/ niny

g (nl—l—nz)(nl—l—nz—l)’

r =

wherey; is the class-specific empirical mean of dimensi@f x, o the sample standard
deviation of dimensiomof x , andn; denotes the number of samples for class{1,2}.

This value describes the separability of the data in one dimension by scalidgfdre
ence of the empirical means with the inverse of the sample standard devidtisroften
used in the squared version, where higtvalues correspond to high discriminability of the
respective feature dimension. The sigméeialue (sgrir) - (r?)) additionally preserves the
information which class has the higher mean.

3.1.3. Area Under the Curve (AUC)

The Area Under the Curve (AUC) is a feature of the Receiver Oper&imgracteristic
(ROC) curve.

If the discrimination threshold of a binary classifier is varied, the ROC dsragraphical
plot of the sensitivity of the classifier (“True Positive Rate”) againssgécificity) (“False
Positive Rate”).

Let X be a real-valued random variable, modeling the graded output of a ¢jassifier.
Suppose the values ¥fcan be interpreted as detector for the eent1, whereY € {1, —1}
is a random variable. Then the quantities mentioned above are defined atlthérfg way
for a given discrimination threshokdt:

True Positive Rate: P(X > x*|Y =1)
False Positive Rate: P(X > x*|Y = —1).

The ROC curve is then drawn by varying the decision threshold in the ihtereg 4.

If the classifier discriminates well between the two classes, the ROC-cufaefrem the
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3. Introduction to Nonstationarity

diagonal line (which corresponds to no separability at all), thereforardeebelow the curve
(calculated as the integral from 0 to 1) gives an impression of the discriminaliitity of
the classifier. AUC values can range from 0 to 1, where 1 means pediatability. Note
that all values below 0.5 can mean that the detection problem should be ftethuldh a
reversed sign.

The AUC value has the advantage that it works just as well for discriminatioiblems
with different class priors. Also note that for a given classifier, thertfignation is assessed
independently from any additive bias term.

3.1.4. Classification Error

While both ther?-values and the AUC-values can be applied independently from a given
classifier, the classification error just denotes the percentage o$ ¢hiatrsome classifier
committed on a test data set. This measure obviously does not give a gemmesdsion
on the separability of the test data, since the classifier might just be sub-bp¥etathis
value can be used to assess a change in the feature distributions frgroiohin time to
the other: by adjusting the classifier parameters on a “training” data setpgohging it to
“test” data, the performance on the test data is high if training and test degalvesvn from
similar distributions.

In usual machine learning applications, a robust prediction for the clzsiin error
on unseen data is often computed by training the classifier on all data égcepsingle
point and then applying it to this point. By repeating this procedure for pagit in the
dataset, the number of errors can be counted and be divided by theuntbénof points.
This fraction is then called the “(leave-one-out-) cross validation errtr'chapter 5, the
classification error with varying training and test sets will be used to chexkttbility of
the features in a given feature space.

The classification error, although highly relevant for the analysis of @€iormance, is
a very complex measure, which does not necessarily give insights ondeelying differ-
ences between distributions. However, it is sensitive to the change asthbutions, if this
shift is relevant to the discriminability of the data. This is exemplified in the nesticse

3.2. Pairwise Probability Density Comparison

If the performance of a classification-based Brain-Computer Intedaes not meet the
performance as predicted from the training data, some relevant chang@amesccured.
In other words, the distributions of the data in parts of the feedback sedsinot resemble
the distribution on the calibration data. Regardless of the neurophysidlaegidgpsycho-

logical factors, this change can easily be documented in the featuretsppcst inspecting

the relation of class means and covariances to the classification bourkdgry8.2 gives

some examples for schematic differences between training and test seimpiigant to

note that these examples can not only be applied to the particular setting wittatafib
and feedback data, but they can also serve as a comparison betweesndiparts of the
feedback period, or between different sessions. In Section 3.3, fusiier comment on
why this might be useful in the BCI context.
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3.2. Pairwise Probability Density Comparison
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Figure 3.2.: Some changes that can occur in the binary classification tédetivee series.
The solid shapes depict the classwise standard deviation of the trainin@tiata
timet;) around the class means. For the test data (t¥ne¢he standard devia-
tions are given in dashed lines. The optimal decision boundary conmdsjp
to a linear classifier, is depicted with the dashed line.

For the sake of simplicity, the examples given here are restricted to two dimenbiat
it is obvious that the same argument holds for any finite-dimensional fegpaee. The
examples of Fig. 3.2 contain in detail:

1 While the covariance does not change for either of the classes, teerdass are shifted
considerably. Although the separability is unaltered at tisgnéhe decision boundary is
not useful for the discrimination of the classes, such that the classifietionwill be at
chance level.

2 Only the class mean of class 2 is shifted at timeThe discriminability is drastically
reduced, such that the classification error will be at chance level.

3 Again, both class means are shifted by the same amount. In contrast tetleadimple,
the shift has occured along the decision boundary, such that thebdipaof the classes
is not changed and the classification error at tigmorresponds to the error at tirtye

Comparing the first two examples, it turns out that the classification enrani® particular
classifier can not reflect the overall separability of the data. In ordemgoove the classifi-
cation rate by adjusting the classifier to the new data, it would be useful to ikiloe new
class distributions can be discriminated at all, and which actions must be tat@iagly.
Moreover, as the third example shows, the classification error doegoessarily reflect all
the changes that are relevant to the data. This is not exactly a problemtlsgriaformation
transfer rate of the interface is not affected by a change of this sarbneushould keep in
mind that a stable classification performance does not necessarily metrethkass distri-
butions are stable over the whole time. It is, on the contrary, highly interestingserve
what kind of change a particular classifier can be invariant against.

These examples show that the classification error alone can nevereggufittient in-
sight into the changes within a given feature space. It is thereforessageto include
other means of quantifying the degree of alteration of the involved classels,as binary
comparisons between some of the four associated class distributions. Stragossible
comparisons are illustrated in Fig. 3.3.

| The first distance of interest is the between-class distance atiintethe classifica-
tion problem has equal class priors and if equal distributions are asqaséar LDA
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3. Introduction to Nonstationarity

Figure 3.3.: This figure shows some of the binary comparisons of distrilstiwolved in a
labeled time series. The distributions of the two claggeandC; are depicted
with red and green circles, respectively. At time painthe class distributions
are shown with solid circles, and at time potpt with dashed circles. The
overall distribution at timéy andt, is shown in a solid and a dashed black line,
respectively.

classification), a symmetric measure should be used.
Il The between-class distance at titae

Il The shift of classC; from t; to to. This distance is not required to be symmetric, since
we often have a comparison of a “ground truth” distribution (e.g., fromliéregion
measurement) that a new distribution (e.g., from a feedback experimenppissad to
be compared against.

IV The shift of clas<C, fromt; to to.

V The shift of the overall distributions from timg to t,. Note that this unit can be
estimated without the knowledge of the class labels, if equal class pricassuened.

Since there are many other possible combinations that compare two difidaiestdis-
tributions, | will exemplify the power and the shortcomings of these binary esisgns.
Some examples are given in Fig. 3.4.

1 Both classes are shifted by the same amount. Although the common distributiandV
the classwise distributions (Il and 1V) will change considerably, thescéeparability (I
and 1) is not affected.

2 In this example, the classes are only flipped. In contrast to the first éxathe overall
distribution of the samples (V) will not notice this change.

3 The class separability decreases drastically due to larger classwmgaoces. If the
overall distribution is estimated only by assessing the mean and the poolethnoear
this change will again go unnoticed by measure V.
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6o &0

Figure 3.4.: This figure shows some examples of distribution changes thatccar in la-
beled time series. The presented distance measures I-V (see Fig. p@)des
quite differently to these changes.

4 The class separability is increased in this example (I vs. Il), but onlyagbensl class
distribution is changing. This change can be observed by checking thacksmeasures
I, IV and V.

5 Although measures lll, IV and V are affected in a similar way as in theipus\example,
the class separability (I vs. 1) is drastically reduced. These exampims 8tat the
class separability always needs to be regarded in addition to the ovemaljeh of the
distributions.

In Chapters 5 and 6, the comparisons will be performed mainly for one-diovead dis-
tributions: if the bandpower features are calculated for each scalpaecteparately, the
distance between the distributions generates a scalp topography whithecabe inter-
preted neurophysiologically. A first example is given in figure 3.5.

3.3. Possible Choices of Time Windows

In BCI research, the time series we are inspecting originate from onlimbdek experi-
ments or from the preceding calibration measurements. If we regard tHe exymeriment

as a time series, there is only one single instance of this time series for etgggtshis
means that it is impossible to assess the data distribution at a given point in ticeettsm
would require multiple repetitions of the same time series with the same nonstati@iary b
havior. For the goal of this work, namely to improve the classification pewoce of BCI
systems, it is inevitable that the necessary actions all rely on the curssidis@nd can be
performed without repetitions, i.e., in an online fashion.
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3. Introduction to Nonstationarity

Therefore, | will restrict myself in this work to the comparison of distinct timedeiws
taken from the same time series. In a completely stationary time series, any teencho
windows in time contain samples which are drawn from the same distribution. fimwe
ther assume Gaussian distributions and conditional independence ofrthkesgwhich is
the case if we only take one sample per trial of the recording), we can estineaseffi-
cient statistics (sample mean and sample covariance) of the distribution withimveatow
separately. This estimate converges to the underlying mean and covaiiaheaevindow
sizes are sufficiently large. Using the estimates for both windows sepasaiglgpplying
the distance measures introduced in Section 3.1, it can then be decidednhitaw the
distributions are. If they differ significantly, this proves that the time seriastistationary.

In the following chapters, | will apply a variety of different measures tdipalar choices
of time windows to assess their degree of nonstationarity. These choitgdenc

1. Comparison of calibration measurement vs. feedback measuremese(t®ns 5.1
and 5.2)

2. Comparison of entire sessions (see sections 6.2 and 6.3)
3. Within-session comparison (see sections[5.1, 5.2 and 6.1)

To illustrate the variability over these different time periods, the changeseodligtrim-
inability of the author’s brain signals are depicted as scalp topographieg.ir3.5. For
these figures, the discriminability of calibration (panel (a) and (c)) aedidack data (panel
(a) and (b)) has been analyzed. Each panel exhibits a considegaialbilty of the region
with maximal discriminability as well as of the magnitude of tRevalues.

Note that important sources of variability in neurophysiological data, asdhter-subject
differences, are not covered in this work. Although the methods piesddere can clearly
be applied to that scenario, it would be beyond the scope. For more detdileosubject
variability, see e.g. [124].

Among the most important comparisons are the time windows from a single selSsion
the BCI-context, stationarity over this period would also imply a stable perfoceaf a
static classifier over the whole session. Unfortunately, this stationaryscasely observed.
It is nevertheless important to identify the reasons for nonstationarity withghessessions
and to use this knowledge to design remedies.

3.4. Adaptation

A frequently encountered problem in using EEG-based Brain-Computenfdoes is that
the performance decreases when going from offline training sessiandit@ operation
of the BCI. One could suspect this to be caused by bad model selectitegssawhich
could in principle choose overly complex classification models that overfIEE® data.
Yet | will show in the following chapters that the nonstationarities in the EEG 8tatisan
actually account for this failure. If the subject’s brain processes ddegadback cause the
distributions to wander astray on a sometimes very local timescale, countauresehave
to be applied which alleviate the effect of the nonstationarity.

Various approaches were suggested to cope with nonstationary bebBEBG signals.
In the BCI context, the large variety of methods that are used for clagkificalso enable
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Figure 3.5.: This figure shows scalp topographies of the discriminability @futier’s brain
activity during the imagination of left hand and right foot movement. For each
scalp map, EEG data in each electrode has been bandpass filtered tgthefran
10-25Hz, and the log bandpower was calculated by calculating the logarithm
the variance in each trial, 1000—3000 ms after the presentation of the stimulus.
Finally, the signed?-value has been calculated for each electrode in order to
find regions with the largest between-class differences.
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3. Introduction to Nonstationarity

the experimenter to adapt different parameters of the algorithm in the rtive afession;
moreover, the success of the adaptation algorithm used might depend cimoden BCI
scenario.

In [151], a visual BCI feedback was described in which the user Wwésta control a
computer cursor in two dimensions, trying to hit one of eight possible targéis.classi-
fication algorithm used two distinct bandpower features acquired frame#l subset of 64
scalp electrodes. Several scaling factors were used to translated¢hase$ into positions
on the screen, four of which were successively adapted to the indivicher during the
session.

Similarly, [89] demonstrated that in a classification of four classes, the estimwtinean
and covariance matrix for each of the classes can be iteratively updatesihiulated online
scenario; based on these parameters, the predicted online perforfoativese subjects
improved considerably. In this case, several channels from centgdacalp regions were
used for the feature extraction.

In another offline study, this finding was backed by [145]; here, tharpaters of a
quadratic classifier (QDA) were adapted after each trial of a curssement task. Af-
ter a careful update parameter selection, the resulting classification perssuo the static
classifier that was used from the start.

In each of these studies, the used method of adaptivity differs slightly asdhérd to
transfer these results to other classification approaches, since thdyinglehanges in
the models might differ. In [90], a broader selection of adaptive systerosrigasted,
encompassing

1. Bias and LDA adaptation in a CSP-based BCI system

2. Discontinuous and continuous LDA adaptation on bandpower feanesdaptive
Autoregressive Parameter (AAR) features

3. Stochastic Meta Descent for a multiclass Statistical Gaussian classifiandpdaver
features.

| will present the first of these adaptation strategies in sections 5/1 anatege | will ana-
lyze its performance in an offline evaluation, but also discuss the feasililityscapproach
in online experiments.

As a more general question in the context of the evaluation of adaptive dsethas
always important to consider the problem of the choice of an appropriagthlef the adap-
tation time window, which has an influence on the adaptation rate. If this windolosen
too large, the classifier responds very slowly to ongoing changesea$arshort time win-
dow can result in poor estimation of the classifier parameters and thenefasiboptimal
classifier. This problem will be discussed in detail in Section 5.2.
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4. Nonstationarity — or just Outliers?

It is often hard to determine the degree of nonstationarity that the brainsigmeaaffected
by, since the correct estimation of the underlying distribution is often preddnte large
variability due to outliers. As a simple example, Fig. 4.1 shows how the estimatidassf c
specific parameters, such as class mean and class covariance, d¢arhfaipresence of
outlier samples.

In this chapter, a general concept of outliers will be introduced. Basettlis concept,
methods will be developed to alleviate their effect on the data. If this treatnamd will
remove any detrimental influence of the large variability of the data, the lyimtpdata can
further be assumed to be stationary. Yet, | will demonstrate that outliertiedwan not be
the only answer to this problem, because the data still prove to be inherentliationary
after outlier elimination.

4.1. The Outlier Concept

Biomedical signals such as EEG are typically contaminated by measuremeattaytifut-

liers and non-standard noise sources. | will propose to use techrifgnesobust statistics
and machine learning to reduce the influence of such distortions. Twocslsevapplica-
tion scenarios are studied: (a) Lateralized Readiness Potential (LRFs&nwhere | can
show that a robust treatment of the EEG allows to reduce the necessalbgnaf trials for

averaging and the detrimental influence of e.g. ocular artifacts and @i ¢nmal classifi-

cation in the context of Brain-Computer Interfacing, where outlier rempr@tedures can
strongly enhance the classification performance.

4.1.1. Introduction

Identifying outlier points in a dataset can enhance our understanding data. By remov-
ing outliers, it is possible to improve the estimation of intrinsic properties such as ore
covariance matrix, and to analyze the data in single trial analysis. Varidu#ioas of the
outlier concept have been suggested, e.g. [1, 58, 52, 7, 122, BT will in the following
introduce some model assumptions about the EEG data, and by outliers sifaptp those
points not fulfilling these assumptions. | will show how this concept can ed tgsrobustify
the analysis of motor-related EEG data.

Typically EEG signals are distorted by artifacts and noise. If the few traisargples
that are measured within the ’calibration’ time are contaminated by such artifastgo-
optimal or even highly distorted classifier can be the consequence [Bigfe Smple clas-
sifiers like Linear Discriminant Analysis (LDA), Regularized Discriminaniadysis (RDA)
or Quadratic Discriminant Analysis (QDA) assume Gaussian distributionsedflt#sses in
feature space, every deviation from this assumption can result in pdormpance of the

43



4. Nonstationarity — or just Outliers?
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Figure 4.1.: Part (a) of this figure shows five randomly drawn samplelas$€; and five
samples of clasS,. The ellipsoid shapes denote the sample covariances around
the sample means. The classes are easily separable. Part (b) sholad¢hedn
of outliers: by just adding a single point per class, which is no typical el@mp
for the class distribution, the parameter estimation is corrupted.

discrimination method. | will show that outliers can transform the data to a aossign
distribution. Therefore it is important to strive for robust machine learaimg) signal pro-
cessing methods that are as immune as possible against such distortions.

4.1.2. Robustification Approaches for EEG analysis

The literature points out various methods of how to identify outliers [1, 5875222, 137,
77]. In Section 4.2, | will use the delta-method ([53], see Section A fooat shtroduction)
to identify outliers. This method does not rely on the estimation of parametdrasunean
or covariance matrix of the data in feature space, but rather uses ttiverdlatances of each
data point to itk nearest neighbors. In Section 4.3, | will use the Mahalanobis distance
[1, 130], which requires to estimate both mean and covariance matrix of thesdmple
to find points with the largest deviance from the class mean. Points with highchsta
to all others are really different from the usual data ensemble and stimrgfore not be
considered representative. Furthermore a decision has to be made orahy trials should
be removed based on the outlierness curve. Tests to automatize the cuhpbistcurve
did not result in significant changes. Thus, for the purpose of thik Wamesent only results
where the 10 %-worst trials were removed.

Apart from the general issue of choosing an outlier detection method]stisa inherent
problem of EEG data that the dimensions of the feature space may havemifgalities:
usually, data points are given with a certain number of repetitions (triald)theay contain
channel informations and the temporal evolution of the signal. A naturabapp is to
specifically use this information to find outliers within a certain dimension, i.e., rargov
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Figure 4.2.: This figure shows the Lateralized Readiness Potential duiitgeamovement
for one subject. The timecourse for electrode C2, averaged over nzor&ad
trials, is shown above; the spatial distribution corresponding to the timepoints
in the gray shaded areas is visible from the three scalp plots below.

channels with an increased noise level (due to high impedances at tlicsglectrode) or
removing trials which are contaminated by artifacts from muscular or oculigitecThese
approaches will be explained in detail in Section 4.3.

4.2. Outliers in LRP Features

This section will serve as an introduction to the nature of outliers in neusiplogical data.
I will demonstrate exemplarily how outliers can disrupt the estimation of the diisibof
certain features of the EEG, which suggests that removing those outlierctialead to a
more robust estimation of the original LRP signal.

4.2.1. Experimental Setup

EEG data were acquired in 34 experiments from 17 different subjectsin Bctivity was
recorded from the scalp with multi-channel EEG amplifiers using 32-128nelts, at a
sampling rate of 1000 Hz. The subjects pressed buttons of a keyboardheithindex
fingers in a (selfpaced) rhythm of approximately 0.5 Hz, in a selfchossmom order.
Each experiment consisted of 500—-1000 repetitions of these movemeiatis{J1iThe data
were then stored for training classifiers for online BCI feedback éxysts. In the course
of these experiments, a cross-shaped cursor was presented to jgessoh the screen,
indicating the estimated laterality of the keypress. The results obtained dwinigpgy and
feedback experiments are presented in previous publications, [16/E6 will now use the
same feature extraction as it was applied for classification purposesdntordemonstrate
qualitative differences between in- and outlier trials.
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Figure 4.3.: In the left part of this figure, the differences between oudler inlier trials
are presented in terms of the Wilcoxon ranking score, averaged cwzefrden
17 subjects (see text for details). The right part shows the EEG sifjraleo
subject at electrode C2, averaged over more than 500 trials of repetiadex
finger keypresses. One trial that has been identified as an outlier tdah an
typical inlier trial are shown in the same plot. The gray area depicts the sthnda
deviation of the inlier trials.

Feature Extraction

First, up to 20 central channels are selected that cover the areaspomding to the motor
cortices of the fingers. The data are then bandpass-filtered to 0.8a8#ihe last 150 ms
preceding the keypress are subsampled to 20 Hz, such that only thmpkesaer channel
remain. The samples are then concatenated over all channels. Thesarstegplained in
detail in [15].

Outlier identification

According to the delta-score (see Chapter A; a more detailed versiones gi\ﬁ]) ob-
tained by each trial, those 10% of the trials with the highest scores are ladmtmdliers.
Figure 4.3 shows the difference in the power between outlier- and inlier-tniagésms of
thew-scoresw,y of the average bandpowerfin the frequency band from 0.8 to 5 Hz. The
w-score is used in the Wilcoxon test for the comparison of two random sarfqgulegual
distribution. It is computed in the following way:

RC ~__ Nin(Nin+Nout+1)
hi 2

WCh = )
NinNout(Nin +Nout+1)
12

whereni,, oyt are the respective numbers of in- and outliers, and

Nin

Rehin = ; R(fveni)
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Figure 4.4.: The left part of this figure shows a scatterplot of two norntalizs of linear
projections of the feature space in one subject. The cross-shape pflatis-
veals a hon-gaussian structure of the data. The gray circles mark thevtrials
are identified as outliers. In the right plot, one of the corresponding pgijec
matrices is shown. The spatial distribution suggests that the distribution of this
projection is caused by vertical eye movements (such as eyeblinks).

is the sum of the ranks of all inlier trials in the combined sample of in- and outlids.tria
A low w-value indicates that the variance of the outlier trials in this channel is higher th
the variance of the inlier trials. The figure shows the spatial distribution s&tddferences
after averaging over all subjects. Since thealues of all channels are negative, the trials
that have been identified by the outlier method have higher variances indigeficy band.
By the spatial distribution, it is also apparent that this variance is causegdayovements,
since the influence of eye movements is maximal in the electrodes near thexdyalsaoff
with increasing distance, see e.g. [28]. In the right part of figure 4e3tithecourse of the
trials with lowest and highest delta-score (i.e., of an in- and an outlier) etretke C2 are
shown for one subject. This also illustrates the high variance of the outlik: tria

Figure 4.4 shows a two-dimensional linear projection of the feature spiélceh& most
“non-gaussian” components. These projections are found by applyitegppendent Com-
ponent Analysis to the feature space for one subject. It has beemshdd5] that the
applied preprocessing converts the data into a feature space wher&é ie assume gaus-
sian distributions for the data. Under this assumption, every projection d¢dlhere space
should be normally distributed again, but this figure shows that there istia &wng “non-
gaussianity” due to the outliers. The gray circles indicate the trials which ke method
would identify as outliers. After the removal of 10% outlier trials, the projectiare no
longer significantly different from normal distributions.
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Results

In this section | have illustrated that eye movements are a common source ridagieg
influences on the EEG signal when dealing with slow cortical potentials.riexq@eriments,
there is a significant correlation between eye movements and the identifichtlentdals
as outliers. Note that these trials may also be removed from the data ensersiniplaeye
artifact-rejection; however, this rejection method assumes that only theasyssurces of
signal deterioration, while outlier detection methods also capture other tjreffuences,
such as muscular activity or movement artifacts.

It has also been shown that outliers in EEG recordings can deterioradatdoén such a
way that basic assumptions about the underlying distribution, e.g. gaiixgsésa not met
and hence a robust estimation of the parameters can not be guarangreadvify outlier
trials from the recording can help to remove this detrimental effect of the mutlie

4.3. Outliers in Bandpower Features

So far, possible effects of outlier identification and outlier removal haea ldemonstrated
only by their effect on the distribution in the EEG feature space. Now | wiirgilly this
effect by applying the presented methods in a single trial classificationxtaomith band-
power features.

In this section | investigate data from 22 EEG experiments with 8 differenéstish All
experiments included calibration sessions in which the subjects performedlmetor
imagery tasks according to visual stimuli, as explained in Section|2.3.3. Tisifigleswere
CSP-based, see Section 2.2.1, and subject-specifically trained to cHEUERD/ERS-
complex connected to the motor imagery task.

There are a number of factors that could degrade the performance @SR method:
(1) outlier trials where the subject either produces artifacts or doesenfairp the required
mental task, (2) unreliable channels, that are partly noisy due to measurgroblems. In
this section | investigate two methods that would compensate for (1) in diffes@ys and
one method that tries to compensate for (2). The expectation in this study atasls-
tifying methods could only improve performance in few experiments becaadeaad well
controlled EEG measurements on subjects that were highly motivated for ireraents
such that they would canonically try to avoid to produce artifacts.

4.3.1. Feature Extraction, Classification and Validation

There are several parameters in this feature extraction procedushthatl be specifically
chosen for each subject to obtain optimal results. In our online experirtieats done
semiautomatically by combining machine learning, expert knowledge and uisypaction
of some characteristic curves such as spectra and ERD curvesQ&ea fthis comparative
offline analysis, absolute performance does not matter, so there is edestxup for all
subjects.

After choosing all channels except the EOG and EMG and a few outmasinels of
the cap, a causal band-pass filter from 7—30Hz is applied to the datd) etmbompasses
both theu- and theB-band. The extracted trials are the windows 750-3500 ms after the
presented visual stimulus, since in this period discriminative brain patteengresent in
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4.3. Outliers in Bandpower Features

most subjects. Afterwards the CSP algorithm (see Section 2.2.1) is appliezldatthsuch
that the number of channels is decreased by suitable linear spatial filiersavl learned on
the training trials. In this example, 3 patterns per class are used, whichiée@adsmaining

channels. As a measure of the amplitude in the specified frequency batcllate the
logarithm of the variances of the remaining channels as feature vect@A. classifiers

were used for classification.

To explore the performance of an algorithm, ax@-fold cross-validation is applied to
the feature vectors. This means that the data set is randomly split into terpagisaleach
of which is used once as a test set while training is done on the other 9@nperthis
procedure is repeated ten times to get 100 test errors.

Since the CSP algorithm and other techniques presented later on explbinfabma-
tion, these techniques have to be used only on the training set within theveldaizion
procedure. Otherwise the cross-validation error could underestimatetiezalization er-
ror.

To maintain comparability between algorithms, the chosen divisions into trainthgeah
sets are stored, such that all algorithms are applied to the same divisions.

4.3.2. Outlier Removal
Channel Removal

Instead of calculating the covariances, the evaluation of the correlatésfiodents gives the
opportunity to estimate the certainty for each channel. Here | take the dified the lower
bound and upper bound of the 95 % confidence interval for the estimdtibe oorrelation
coefficients. Using this as a measure of the goodness resp. badmedishle channels can
be removed by a simple threshold criterion.

Outlier-trial removal

As a simple and reliable approach I will show here only one way, whictopadd reason-
ably well in our studies. For the validation of the presented algorithms outliers anly
removed considering the training set, but for the test set all trials withocagrezing their
outlierness were used. However, the information that a trial is an outlier migihbe used
in feedback situations, e.g. by freezing the cursor instead of providengetiular feedback.
This option would greatly enhance the range of possible application, thisagudy is only
considering calibration data, | will forgo this option.

The presented outlier removal approach is based on the idea to use th&aMdiis dis-
tance of the variance of each trial and channel as measurement otlieen@ss of the trials
(cf. [1, 130]).

Robustification by normalization

For the robust estimation of covariance matrices, many different algoritauesieen pro-
posed. Other feasible variants include approximating covariances viand,-median abso-
lute deviation (MAD) or using the least informative distribution approach[&]).

The method | am going to present in this category is to normalize each time poimt in th
filtered EEG signal to have euclidean norm 1 over the channels. With this ewbdifinal,
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4. Nonstationarity — or just Outliers?

the covariances and the CSPs are calculated and applied to the normataedttahe
same processing as before. Different strategies like applying this diediaio the original
filtered but unnormalized data or normalizing the whole window trialwise r@sgitmilar
performance. Normalizing the EEG data in this way deletes the absolute amplittite o
signals and retains only the relative amplitudes in their spatial configuratios isTenough
information to detect ERD features, and additionally has the effect that rsutieere less
influence in estimating covariances (of the normalized signals).

4.3.3. Results

As reported in many publications (e.g. [11, 18, 35, 36, 37]), one canhse the usual CSP
algorithm often performs quite well. Nevertheless, there are some expésimeavhich one
or more of the robustification approaches can greatly improve classificatidortunately,
the same new methods can also deteriorate the results in other instances. ditsstinad
for the application in BCI feedback experiments, a meta-decision aboubhlstification
method has to be taken, based on the data of the training session for bgett. skor the
validation of such a procedure on our offline data, two schemes wetiedpwhich used
different partitions of each data set.

In thechronapproach, the data were split into their (chronological) first and selcalfid
On the first half | calculated the cross-validation error for each of thepeting algorithms
as described in Section 4.3.1. | will call the results here the “expectedrpehce” or
“expected error” of the algorithm. Based on the expected perform#meenost promising
algorithm is chosen for the application on the test data. For this decisionifférexce be-
tween the expected error of our baseline CSP approach and the ekpeoteof each of the
algorithms presented in Section 4,3.2 is calculated. Only if this differenceds@ecertain
switching threshold, the alternative algorithm is chosen instead of the G8Baamh for the
evaluation of the test set. Once the decision is taken for one of the methedtashifier is
trained on this first half and applied to the other half of the data (“test padioce”). This
evaluation mode closely resembles an actual feedback situation; a fixetfietds trained
using only data from a preceding training session, and is applied to the iofjdeedback
data. Note, however, that this evaluation is prone to be affected by tionsiy behaviour
of the EEG data, which is often encountered in this type of experiments.

The nonchronapproach, the second evaluation method, is to a large extent invariant to
these local changes in the EEG; here the training set consists of eegryrial and the test
set of every odd trial, such that slow trends are always present irtfairting and test data.
The evaluation then proceeds as in theonmethod.

Figure 4.5 compares this test performance gain in different switchinghthicssfor each
of the algorithms and for the best of all of them. Furthermore the perceafayperiments
is shown where a switch to a robustification algorithm took place. Obvioustyptrtion
decreases with increasing thresholds, i.e., if we choose a more cdisesteategy. On
the other hand the mean performance gain increases (i.e., the classificstidifféeence
decreases) with increasing threshold, until only few or no false desisionleft. Never-
theless, there are very few experiments where the decision to changeraragas seen in
the figure, but the cases where a change improves the classificatioa@coutweigh the
others. Between the algorithms no substantial difference is visible, bueimstitcess lies
in different experiments, further improvement by combination strategiebeanpected.
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Figure 4.5.: The decision threshold varies between 0% and 10 % oxakis. For each
experiment, the expected performance of each robustification algorittomis ¢
pared to the expected performance of ordinary CSP. If the perfoengaic
exceeds the threshold, the actual test error is evaluated on the tesiQildta.
of all these experiments, where switching to the robustification method seems
to be recommendable, the mean of the test error gain on the chosen algorithm
against CSP is plotted as a black line. The range of all these values is \éslaliz
by the gray shaded area. Below zero, the change to the robustified nvedisod
successful: the lower the solid line, the higher the improvement. The dashed
line shows the portion of experiments where the robustified method was cho-
sen. In the first three columns each single robustification approach isatechp
to CSP whereas in the last column the best of all three robustified methods was
used respectivelychron (for chronological order) denotes an evaluation mode
where the expected error is estimated by cross-validation on the firstfiaé o
data and the test error is determined on the second halfndhehronmode
splits the data into even and odd trials.

In total thechron andnonchronevaluation strategy lead to similar interpretations. One
important difference is that the gray area above the zero line is thinner inaifehron
case. That means that in tihron evaluation there are several cases in which the result
of the chosen robustification method is worse than the baseline CSP resilst,inwthe
nonchroncase there are less severe failures. This gives a clue for the refasenfailure:
nonstationarity in the data. If all datapoints were drawn from the same distribihen
nonchronand chron evaluation should result in similar classification accuracies, but this
finding shows that the distributions are undergoing changes throutifetiine.

In the end, the figure shows that it can be profitable in some cases to swacutt@mble
outlier algorithm for enhancing performance.
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4. Nonstationarity — or just Outliers?

4.4. Discussion

EEG data recorded in motor-related tasks are highly challenging to evaluat® aoise,
nonstationarity and diverse artifacts, specifically from eye movementsorand jaw mus-
cles. Thus BCI provides an excellent testbed for testing the quality ariccapifity of
robust machine learning methods (cf. [41, 19]). In this study the effbetsoutlier trials
may have on the distribution of the features were analyzed. It was shawveyh move-
ments are a common source for the outlierness of trials in slow cortical potdatiglthe
result we encountered was a shift of the data towards a non-gausstigoution, where the
removal of outliers may help to restore the model property of gaussianitistassumed for
linear classification. Finally, it was exemplified how outlier removal methodsroanove
the classification accuracy in the discrimination between different motor action

As our BCI system has so far mainly relied on dimension reduction techniig@eSSP,
this study has explored directions of their robustification against outlieraerer in a BCI
training protocol it is essential to decide whether to apply one of the raliieshatives or
to stick with the conventional baseline algorithm, that obtains better results in casas.
As shown, this meta-decision, if exercised sufficiently conservatively, oy after an
expected gain of more than 5%, can yield significant performance improvemé&hese
encouraging results should nevertheless be carefully put into pév&pdd no overall best
robustification strategy can be observed and (ii) individualized choieed b be made
for each subject. Furthermore the more conservative our strategy,sthéilely it is to
switch and also the less likely it is to have erroneously switched. Part oktds®n, why
the selected algorithm occasionally performs suboptimal is the intrinsic nomstatioin a
BCI experiment. Obviously BCI users are subject to variations in attentidmentivation.
Finally, this section has shown that using only outlier reduction techniquesataaccount
for nonstationary behaviour of the data. In order to address this pnolidas first to be
investigated how the nonstationarity in the data is generated and to whiclphgsi@ogical
changes it corresponds. Also, since the classification approachds settion are quite
indirect measures of the changes in the distributions of the data, | will inteoslome new
approaches in the next section, where the feature space will be mavadihty investigated.

From the above findings it follows that in order to further improve informatransfer
rates in BCI, methods have to be found which counter the effects of swgtclyinamics.
Some methods in this spirit will be proposed in the following.
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5.1. Nonstationarity and Adaptation

Although | have provided evidence that nonstationarity in EEG signalstaftbe classifi-
cation accuracy perceptibly, the question remains where the nonstaticorégityates and
consequently, which psychological or neurophysiological prosemseinvolved. This sec-
tion is intended to shed some further light on this question. | will presentmaph which
is based on a fixed feature space, such that only few parameters valtdnbe estimated.

A systematic quantitative study of data for multiple subjects recorded durfligecdind
online sessions is presented. The methods for analysis of the data aalizeison thereof
are generally applicable and give a closer insight into the structure ofdghlabal and local
— change of the data quality. | will demonstrate the change in distributionsosEahEEG
features, and provide evidence of changes both in the transition fritimedb online set-
tings, and in the course of a single online session. The former changesututo be shifts
of the data in feature space, due to the different background activityedsrain during the
online feedback task (see Section 5.1.5).

In the second part of the study, adaptive classification techniquessfasthin BCls with
CSP-(Common Spatial Patterns) based features are presented, itoogdar quantitative
understanding of these changes, and consequently remedial sclwgrmeprbving online
BCI performance are proposed. When applying adaptive technigquasariety of datasets
collected during online task performance (Section 5.1.7), these results\diate that in-
stabilities of the BCI control can be encountered throughout the experilmgrthe major
detrimental influence on the classification performance is caused by the shifiafrom
training to the test scenario. Hence, simple techniques that relearn ohbf tae classifier
can account for this change, and significantly improve BCI control.

This study focuses on a feature space that is a low-dimensional proje€ti@8-channel
EEG data computed by the CSP algorithm, see Section' 2.2.1. However, the sethod
analysis, measurement and visualization, as well as the questions rggaddiptivity ad-
dressed in this section are widely applicable and should serve as us#fulrtstudying
nonstationarity in the BCI context.

5.1.1. Experimental Protocol

| will investigate data from a BCI study consisting of experiments with 6 subjécisone
subject no effective separation of brain pattern distributions could bievaad. Thus no
feedback sessions were recorded and the data set is left out in thssigawen. For the
recording of EEG data during motor imagery of left hand, right hand ant talibration
and feedback experiments were conducted as presented in Section 2Bt Withials for
each class.
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Figure 5.1.: In the feedback run, sliding windows were used for claasdit. For adapta-
tion and evaluation, the windows (here colored red) between releasiogréee
and the end of the trial are selected. See text for details.

The data were then used to train a classifier for the two best discriminabées|asing
the classification scheme presented in Section 2.2. Subsequently, twaledrfeedback
runs were recorded, in the “Cursor Control” feedback scenarie Gaxtion2.3/5). A 1-
second window of data was used to estimate the features, which were ethssifiverlap-
ping windows every 40 ms, see Fig. 5.1. The continuous output from thsifiéa was then
used to move the cursor either in a position-controlled (i.e., classifier outpg digectly
to horizontal position on the screen), or in a rate-controlled fashion (celed classifier
output was used to move the cursor by a small amount in the chosen direEtioing each
trial, one of the targets was highlighted and the subject was trying to navigattkor
into the target. At the end of the experimental session, a third run of dateesasled for
purposes of studying long-term performance of the trained classifidrdbthe 5 subjects.
This run included the same targets as the feedback session, but no visgde ((Feedback
of Results”, see 2.3.5).

5.1.2. Analyzing Data from Feedback Sessions

Since the online sessions were controlled (i.e., the subject was directedcatodritin tar-
get), | will use this information to label the data collected during an online @dldack)
session. In a realistic BCI application, the labels of ongoing trials may natyahve avail-
able, and any adaptive schemes we may propose will have to take this int;adeor this
section, | use the data labels in an offline analysis to provide greater imnsighihe data.

For labeling the data from a feedback run, | take the signals from thecdtesch trial
until its successful completion, and process the signals in a manner similar ¢mlthe
scenario; i.e., compute features on overlapping windows of the same sizevariap as
used in the online protocol. These data points are labeled according tqtfopagate target
class. When using the recorded data for testing various classificatiemssh | always
assign samples coming from one trial either all to the training or all to the test set.
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5.1.3. Changes in the Data Distributions

In this section, | will examine the changes in performance of the subjectg asiariety of
measures and visualizations that help us to characterize the type ane dfeghanges seen
in EEG features used for BCI classification. These findings are alsalitokgossible neu-
rophysiological changes that may cause these observed changedat@rare visualized in
two different manners: (1) by fitting a gaussian distribLEion the data over an entire ses-
sion (or over short term windows), and (2) by examining the optimal s¢iparhyperplane
computed using an LDA classifier on the chosen data.

5.1.4. Differences from Calibration to Feedback

Fig. 5.2 shows a comparison between training data collected offline (in theataib
phase), and the test data recorded during a subsequent feedbaitins The figure shows,
for two subjects, the hyperplanes of the classifiers computed on the tranthtest data
respectively, along with the means and covariances of the data pointefamclass. For
ease of visualization, the data are projected onto two carefully chosensionsitontaining
maximal information.

The x-axis shows the projection of the data on normal vegtgrof the original classifier
as obtained from the training session. The other dimension is chosen amtilyto wrg,
such thatwgg (the normal vector of the optimal separating hyperplane for the feedback
data) is contained in this two-dimensional subspace. The black and graydemete the
intersections of the decision boundaries of the classifiers with the subgach is shown
here. Itis a property of this display mode that the relative location of theluisityns to the
hyperplane can be seen by orthogonal projection, while the angles ofitheal space are
preserved.

It appears in this figure that for subjemy, the test data distributions look very different
from the training data, and in fact, the original classifier would perforitequoorly in the
online scenario. This is not always the case, though—for example, jecsaly, while the
test distributions are different from the training data, the impact of thisgdham online
performance is less severe.

In order to examine this change more closely across all online datasetsnaider the
following two possibilities for modifying the training classifier hyperplane: ¢h)ft the
original classifier's hyperplane parallel to it<eifi order to get the best performance in the
online setting, and (2) in addition, rotate the hyperplane to further imprayerpgnce on
the online data. We call these two methd®=BIAS andRETRAIN. Tab.[5.1 summarizes
the shift and angle required for optimal performance on each onlineedatBise required
bias shift alone does not give a quantitative sense of the severity ofrdlddem, and so
Tab. 5.1-(a) shows this shift as a fraction of the training data’s class dist@mce from the
training classifier’s hyperplane. Note that in some cases, the optimal sbaftriparable to
the distance of one class mean to the decision boundary. This shows thddtation of
the bias would be necessary for correct classification. Tab. 5. h@iwssthe angle between
training and test classifiers’ hyperplanes on each dataset. In most thseangle does

10n the plausibility of the assumption of Gaussian distributions in EEG data,gdé® and also the discus-
sion in [93].
2This can be implemented, e.g., by simply addirtgjasto the classifier output.
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Figure 5.2.: Changes in the optimal classifier from calibration to feedbatie fijure
shows, for subjectav anday, the optimal hyperplane separating the training
data classes (offline), and the test data classes (online). Also shevithear
mean and covariance of the respective data distributions. In the casigj@ftsu
av (figure (a)), the original classifier would perform very poorly, wéees for
subjectay, as indicated in figure (b), the change is less severe.

(@)
Subject | al | aw | av | ay | aa |

0.11| 0.80| 0.83 | 0.07 | 0.26

Shift/Distance 0.12 | 094 | 0.56 | 0.09 | 0.26
0.01|082| 061 0.04| 0.60

(b)
Subject | al | aw | av | ay | aa |
132 | 266 | 151 | 151 | 95
Angles ¢) 97 | 206 | 287|177 67

362|454 | 42 | 405 | 133

Table 5.1.: Measuring the changes in the optimal classifier for offline alileotistribu-
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tions. These are the changes necessary for the classifier to penbirmaldy

on feedback data, for every experiment in this study. Part (a) shaveatio
between the optimal shift for correcting the bias and the distance betwesn cla
means. Part (b) shows the angle between the old hyperplane (calcutatetthé
offline data) and the optimal hyperplane for the feedback data.
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@)

Subject | al | aw | av | ay | aa |
093 | 0.79| 0.67 | 1.00 | 0.97
REBIAS/ORIG 089|074 | 0.75| 0.95 | 0.93

1.00| 0.75| 0.80 | 0.99 | 0.82

(b)
Subject | al | aw | av | ay | aa |
0.98 | 099 | 0.99 | 0.98 | 0.98
098|099 094 | 0.71| 0.98
0.72| 087|100 | 0.73 | 0.97

RETRAIN/REBIAS

Table 5.2.: Estimating the expected gain in classification when adapting thasepas
calculated from the offline distributions to the online distributions. Any linear
decision boundary between two normally distributed random variables misclas
sifies a certain quantile of both distributions. Here we compared the expected
error quantiles for the optimal decision boundary for the training set to¢he d
cision boundary for the feedback sessions, when applied to the estinistied d
butions of the feedback data. Part (a) reflects the gain when onlyargtiag the
bias, and part (b) shows the improvement when the complete decisiondgund
is recalculated.

not change substantially. Tab. 5.2 provides a an interpretation of thesi#fielachanges in
terms of their impact on classifier performance.

It shows the ratios of estimated error quantiles for the training decisiondaoynthe
bias-adapted decision boundary and the readapted decision baulidagvident that the
adaptation of the bias results in a significant lower error quantile estimateh(wbidirms
the findings in Tab. 5/1, whereas an additional adaptation of the angle iwal/aycompar-
atively small gain.

5.1.5. Explaining the Shift in Data Distributions

Fig.'5.2 and Tab. 5.1 together indicate that the primary difference betweenfftine and
online situation is ashift of the data distributions for both classes in feature space, while
not significantly changing their orientation. To clarify this aspect, | will digptee spatial
distributions of the band power on the scalp for the training and feedhiaecitisns.

As mentioned in Section 2.2.1, the CSP algorithm is used for feature extraatiotha
classifiers are trained on these features under the assumption thatttakdsg@ibution of
these activation patterns remain fairly stable during feedback.

This assumption can be verified in Fig. 5.3 which displays task specific bagtgrps dur-
ing offline vs. online session for one representative subject. Thessa4tlp red resp. blue
circles show band power during left hand resp. right foot motor imagedgulated from
offline (upper row) and online (middle row) session. In the plots of thénefffession no
systematic difference between the mental states can be seen, since thearpainated
by a strong parietat rhythm. Nevertheless the maprofalues (see appendix) reveals a dif-
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Figure 5.3.: This figure shows the task specific brain patterns and hovdiffierybetween
offline and online sessions. The upper let2matrix of scalps displays topo-
graphic scalp maps of band power (broad band 7-30 Hz as useddulatimg
the CSP features in this subject). Maps are calculated from the offlinesess
(upper row) resp. online session (middle row) separately for motor imajer
the left hand (left column) resp. of the right foot (middle column). Maps @ th
right column show the values of the difference between the tasks, maps in the
lower row showr values of the difference between offline and online session.
While there is a huge and systematic difference between brain activity during
offline and online sessions, the significant difference between the staks
fairly stable when going from offline to online operation (comparertialue
maps in the right column).
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Figure 5.4.: This figure shows the spectra in the frequency range &fl3zboth in training
and feedback, for the two classes separately. The amplitudes are img¢jgeafa
22-54 dB.

ference focused over sensorimotor cortices. The paethlthm is much less pronounced
during the online session (middle row), resulting in a very strong differémtween offline
and online topographies, segalue maps in the lower row. In spite of this strong difference,
the relevant difference between the tasks is qualitatively very similar in tlvesodind online
settings (see the value maps in the right column). The topography of the difference be-
tween offline and online situation suggests that in the former case a stnoetja rhythm
(idle rhythm of the visual cortex) is present due to the decreased vigualduring the cal-
ibration measurement, while that rhythm activity is decreased in online operhteto the
increased demand for visual processing. The power spectra (se€eHigf electrodes in
the corresponding regions corroborate this assumption, since thexarapp be an increase
in the power of the lower alpha band (just below 10 Hz).

Thus there is a difference mackground activityf the brain in offline and online settings.
This difference also strongly influences the CSP features chosela$sification.

5.1.6. Changes in EEG Features During Online Sessions

I will now present the performance of subjects in the course of a sindjieecsession. At
each point of an online session, | will consider a window for each clasgming all data
points from the last 10 trials of that class. These data points can be used &dogal
estimatefor the density of each class at that point in time. A gaussian distribution is then
fitted to these local windows of data, as well as to the entire online sessiobtaim @n
overall density estimate.

Fig./5.6 shows the Kullback-Leibler-divergence (see Section 3.1) dbta density es-
timate for each class from the overall density estimate of that class, over titrey, are
obtained by averaging over the last 10 trials per class and over the wéialeet, respec-
tively. Since these curves alone do not provide information about ckstitfi of the data,
the figure also shows sample visualizations of data from certain time interlaig} &ith
the classifier hyperplane. It turns out that the data distribution for thecfass changes over
the course of the experiment, and the KL-divergence curve refleds tianges.

The subject’s overall performance was not very good, and the phddd of time where
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Figure 5.5.: The single plots in this figure represent the development ofaleré distribu-
tions for subjecavthroughout one feedback experiment, windows representing
each run (consisting of 28 trials each). The data are projected on thedea
subspace spanned by the optimal hyperplane and the largest PCA acarhpon

the KL-divergence for the foot class is very high corresponds toregevhen the sub-
ject gained better control over the BCI. This can also be inferred frarcdnmresponding
visualizations.

A point to be noted here is that the subject took short breaks at varmogsmuring
the experiment. Although the data acquired during these intervals weredegditom the
analysis, the breaks may potentially influence performance. For examplef time breaks
coincided with the end of the phase with good performance—it is likely that vgguming
the experiment the subject was unable to regain the control acquired irethieys phase.

The lower part of figure 5.6 shows local estimates of the distributions of tladses
during one feedback session. We first calculated the classifier whichtirmal for the
feedback session and the largest PCA compongah of the features. In this way, the
projection shows the dimension with the largest variance. The x-axis shewsojection
of the data on normal vecterg of that hyperplane of the feature space corresponding to the
decision boundary of the classifier. The other dimension is chosen ornhlbygtowgg, such
thatwpca is contained in this two-dimensional subspace. Just like in Fig. 5.2, the ponjec
preserves angles.

For a closer look, Fig. 5.5 shows the data distributions from each uniptedtuun. While
the distributions are qualitatively different, it is not clear whether there is@dtinuity at
each break. A further study consisting of new long-term experimentshieasfore been
performed to separate the gradual changes from the sudden chashgesdiby the breaks.
It is presented in Section 5.2. It is, however, clear that the user'sipesfce over a short
period of time (about 30 minutes) can show considerable changes.

A new physiological interpretation cannot be given at this point sinceatienmns encoun-
tered in occasional lapses of performance are highly individual; furtbes, the recorded
sessions were not sufficiently long to find trends in the EEG that correititgperformance.
See sections 5.2 and 6.1 for experiments including longer sessions oEB@a.u
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Figure 5.6.: This figure shows the change of the Kullback-Leibler Demcg during the
feedback session. The corresponding feature distributions areydidbelow

for the shaded intervals. The data is projected on the plane spanned by the

normal vector of the optimal separating hyperplane for the feedbackhaend
largest PCA-component of the feedback data.

5.1.7. Adaptive Classification

I have shown qualitative and quantitative evidence indicating nonstationarttye BCI
classification problem; however, two questions remain unanswered: {a) ¥/the impact
of this nonstationary behavior on performance in a feedback settingWiga} remedial
measures can we use to address the nonstationary behavior of EEg8&-fetdures? In this
section, | will propose a range of techniques that aim to quantify the natdémpact of
nonstationarity on performance, and thereby suggest adaptive méthadgroving online
control. Accordingly, | will define and compare a broad range of classifind the rationale
behind each choice, and subsequently discuss their applicability in an eoénario.

Adaptive methods. The adaptive classification methods investigated are:

ORIG: This is the unmodified classifier trained on data from the offline scenaricsemves
as a baseline.

REBIAS: The continuous output of the unmodified classif&njftedby an amount that
would minimize the error on the labeled feedback data.

RETRAIN: The features are computed as determined by the offline scenario, bubthe L
classifier is retrained to choose the hyperplane that minimizes the erroradeddbedback
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5. Observations in a Fixed Feature Space

data.
RECSP: The offline training data are completely ignored, and the CSP feature salaotio
classification are trained solely on the feedback data.

The schemes are listed in increasing order of change to the classifiecoeredpond
to different assumptions on the degree of difference between offlideoalne data. In
addition, there is the option of usirgl the labeled online data up to the current point
(temporal), only a window over the immediate past (moving), or only an initial @ind
of data from each session (initial). Each choice corresponds to diffassumptions of
the volatility of the online classification problem. The adaptation schemes aefdter
C—REBIAéE, C-RETRAIN and C-RECSP, W-REBIAS, W-RETRAIN andW-RECSP, andl-
REBIAS, I-RETRAIN andI-RECSP respectively for the three cases considered.

Performance against Non-Adaptive Classifiers.Fig. 5.7-(a) compares the classification
error of each adaptive method with the nonadapfi®G classifier. The adaptive classifiers
were trained on a window of 60 seconds length. That was also the s{ogedirst) window

of the temporal classifiers.

An inspection of the subplots reveals that the scheREBIAS and RETRAIN clearly
outperform theORIG classifier, since most of the classification errors on the feedback data
decrease.RECSP, on the other hand, does not improve performance. A possible reason
for this is the small training sample size, a question which will be revisited in Sestin
Further, when examining each row, it can be seen that-threethods perform better than
the W- andC- methods, indicating that the methods are more stable than theandWw-
methods.

Also, thel-REBIAS method is comparable to the other algorithms—this is a very useful
result because theREBIAS method is a lightweight adjustment that only requireshart
initial calibration period, and is thus relatively nonintrusive. Thus Fig.|5.7-(a) shows that
adaptive methods can indeed improve performance, even with simple adsgiiemes.

5.1.8. Performance against Best-Case Baseline

I will now address the central question regarding the online BCI sceftari@ nonstationary
is the data distribution within the online sessions? For each method, we defoteatined
baseline scenario where the method can access the data and labels cidt@thdfuture
from an online session. We then compare the temﬂdmﬁbld crossvalidation error of the
method in this baseline scenario to the method trained only on data from thepastlie
previous experiment).

This choice of baseline is aimed at examining whether each method sufferd&ving
“too much” training data, or too little data. For example, if the classification problere
highly nonstationary, the windowed methods can be expected to outpeitierbaseline,
since they can adapt to local changes. If the data are stationary atrasgine session,
then the baseline would be the best possible choice, since it has more tdaténg

Fig. 5.7-(b) shows the results of this comparison. The following can ber@dfdrom
the figure: Firstly, the baseline is better in almost all cases, indicating thadtyziee

3C- denotes cumulative/V- denotes fixed window size$; denotes use of only the initial segment of the
session.
4i.e., the data is divided into k contiguous blocks in order to prevent tiegfi
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Figure 5.7.: Comparison of various adaptive classification methods onetadeded from
online sessions. Each subplot is a scatter plot, with the error rate ofranmeée
method on the/-axis and the error rate of the method of investigation on the
x-axis. The performance of the latter is better for those data points that lie
over the diagonal. Error rates are given in %. (a) All the proposegtaga
methods (excepRECSP) clearly outperform the unmodified classifer trained
on the offline data. (b) The adaptive methods are compared againstetitedo
baseline that uses labels of future data points in the online session. St text
more details.

methods have insufficient data. This is especially true forRBEESP algorithms, and is
clearly because of the very high-dimensional data they deal with REBAS methods on
the other hand do not benefit very much by the addition of more data, aneRERIAS
error is comparable to the temporal k-fold errorREBIAS.

Note that these results do not necessarily mean that there are no dynamgeshin
the data; in fact, in Section 5.1.6 it is shown that the data distributions do in fagt mo
considerably. Instead, these results indicate that within the constraines didlsen feature
space and the adaptive algorithm, more training data will not help. The mosasult from
this experiment is that the best-performRBBIAS-algorithms, which only rely on an initial
window of data, are comparable to the best possible error froREBAS algorithm.

5.1.9. Increasing Available Training Data

The choice of feature space is an important factor in the performanaer @lassification
algorithm. Figl 5.8 shows the error averaged across subjects for gaamit version of the
adaptive algorithms (i.e., the and thew- methods), as a function of the data window used
for training. The figure confirms that ttRECSP methods indeed improve on addition of
training data; however, they are still considerably worse than the besiapéng algorithm.

63
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©- C-REBIAS

0.361 —<— W-REBIAS
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The experiments were not sufficiently long to examine whether, with sufficiata, the
RECSP- algorithms can be competitive. Note, however, that the algorithm is already to
heavy-weight in terms of data and computation to be viable as an adaptivihatgon
short time scales. The question how much dataRBESP- algorithm actually needs will

be addressed in Section 5.2, where a study with considerably longeiregpes will be
analyzed.

5.1.10. Discussion

These results show that an important factor affecting online BCI perfucenare the neu-
rophysiological changes to the mental state of the subjects (as descriBedtian 5.1.6)
between the offline and online settings. These changes do not ren@& @features found
on the training data unusable, but require only a slight modification of theifitagion step.
This is mainly attributed to the effectiveness of the applied offline featuretsmiescheme,
and the fact that the basic neurophysiological processes usedftolcare similar in both
scenarios. Our proposed madification can in fact be implemented in prastiaeshort
calibration phasan the initial part of a session involving online BCI use.

While changes in performance and feature distributions do occur duningesessions
(see Section 5.1.6), the classification results indicate that on averagejaheyt have a
significant effect on performance. It is unclear at this point whethesdlthanges can be
affected by a different choice of feature space, or the use of addlitieatures; however, a
complete relearning of the feature selection is impractical due to higher caopalaosts
and scarcity of data. Studies of longer-term BCI operation will be pteden Section 5.2
and Chapter 6 to shed further light on the exact nature of the changesg @un online
setting, and to suggest ways of addressing these changes.

The problem we frequently encountered with our Brain-Computer Irterfystem is
that the performance decreases when going from offline training sessicnline oper-
ation of the BCI. One could suspect this to be caused by bad model selstiabegies
which could in principle choose overly complex classification models that oveefiEEG
data. The evidence presented in this section has clearly shown that aratalereason
for failure should also be considered: nonstationarities in the EEG statitiessubject’s
brain processes during feedback can cause the distributions to wath@gran a very local
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timescale. This observation could in principle make simple learning methods hateless
and one would have to refer to special statistical modelling that takes into@ccovari-
ance shifts [133, 134] or even more sophisticated techniques suclmsguctive inference
[143]. However, the successful adaptive methods investigated in thig giat are guided
by a better understanding of the possible neurophysiological causesmsifationarity turn
out surprisingly simple: a bias adaptation in combination with an offline featleetson
scheme significantly increases BCI performance. It was clearly dematedtihat a strong
source of nonstationarity stems from the difference between trainingesadbéck session,
whereas during the feedback session the statistics seems rather staldescaléhof up to
an hour (depending on the subject). So a practical outcome of this stutytésdorrect for
the bias between training and feedback session and (2) to furthermorpanate every half
hour one short 2-3 minute controlled feedback session into the nelgiofiyical paradigm
under investigation and retrain or adapt the bias only when changessifitistics, say due
to fatigue, are observed.

5.2. How Much Data Are Required?

In the last section, it was demonstrated that it can be useful to adapt Bwfiels in a
fixed feature space, where the feature projections are predeternyirsedne training data.
However, the question still remained if it would further improve the BCI penénce if the
feature space, i.e., the CSP filters, would continuously be adapted to tbimgisgnal of a
feedback session which is not interrupted by breaks between theAlsts.we have seen
that the adaptation of the feature spaRECSP, shows a suboptimal performance. Up to
this point, it is not clear if this is just an effect of the small size of the adaptatiodow.
In order to address these questions, | will examine data recorded fremdhbjects using a
BBClI-based free text spelling experiment in which the labels for the datdeastimated
post hoc from the words spelled out by the subjects, and can then denlsee to adapt
the classifiers used by the BBCI. | will revise some of the adaptive clessifitschemes
from the last section that can use the estimated labels and | will present adivig
performance study of these schemes.

I will show that even in cases where a static classifier already perforite well, on-
line adaptation of the classifiers does not degrade the classificatiomrparfoe. Only the
RECSP-method does still not provide a stable BCI performance if retrained onhod s
data windows.

5.2.1. Experimental Setup

This section relies on data from 3 subjects, of which one subject wasva B&il user
and the other two subjects had some previous experience. The experouesisted of
two different parts: a calibration measurement and a feedback peritidr the calibra-
tion measurement, which proceeded as explained in Section 2.3.3, the pasaoidte

subject-specific translation algorithm were estimated (semi-automatically)tiselettwo

of the three imagery classes and frequency bands showing best disdilibyn CSP anal-
ysis (see Section 2.2.1) and selection of CSP-filters; calculating a lineanasiep between
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Figure 5.9.: This figure shows the shift in the power of the selected fregu®and, in terms
of r-values in one subject. Positive values indicate increased bandpower in th
selected frequency band in the calibration measurement compared todhe fee
back session.

bandpower values in the surrogate CSP-channels of the two selecteelsdigsLinear Dis-
criminant Analysis (LDA).

In the feedback session, the classifier output of the ongoing EEG wealstosnove a
cursor horizontally on the screen, as in the “Cursor Control” scensei® 2.3.5).

5.2.2. Differences from Calibration to Feedback

In many earlier BBCI feedback experiments (as presented in SectioraSfrng shift in
the features from training to feedback sessions was encountered msjihredetrimental
influence on the performance of the classifier. Accordingly | introdweddaptation of
the classifier's bias as a standard tool in our system. To investigate the ahilss shift
in data distributions, | compared the brain activity during calibration measuneraefeed-
back situation using the bi-serial correlation coefficientashich was calculated between
bandpower values of each channel. The topography of one repaiige subject shown in
Fig.|5.9 suggests that in the former case a strong padethithm (idle rhythm of the vi-
sual cortex) is present due to the decreased visual input duringltheatian measurement,
while this rhythmic activity is decreased in online operation due to the incredsmdnd
for visual processing, which supports the findings from Section 5.1.

5.2.3. Mental Typewriter Feedback

Since the mental engagement with an application is one additional possibbe sduron-
stationarity, the investigation of nonstationarity issues is most interesting dhergpntrol
of real applications. Therefore | chose a mental typewriter applicatiaohwkas used for
free spelling by the subjects. Furthermore this application has the benéeéutrain a free
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operation mode it is possible to assign labels (i.e., subject had intended to reauasor
left or right) to ongoing EEG in an a-posteriori fashion: after the carcempletion of a
word, one can decide for preceding trials the direction in which the subjgsttrying to
move the cursor. This also applies if the intended word is not known to theriexgnter
beforehand. A detailed description of this type of feedback is given i82.3

Labeling Data From Online Feedback

The subjects were instructed to use the mental typewriter interface to witefere sen-
tences over a period of 30 minutes. After the recording of the data, laleetsagsigned a
posteriori to the binary choices (“trials”), depending on the desirecooutoof the letter.

Since the feedback was presented in asynchronous mode (i.e., startisgdapdint of
each trial were not given at a fixed rate by the application, but weredbsslely on the
output of the classifier), the lengths of the trials range from less thanemoed up to tens
of seconds. For this analysis | take only the last 750 ms before the compiétibe trial
into account.

5.2.4. Adaptation Algorithms

The adaptive classification methods investigated are the same as in Sedtion 5.1:

ORIG: This is the unmodified classifier trained on data from the calibration sessidn, a
serves as a baseline.

REBIAS: The continuous output of the unmodified classifier is ushiffedby an amount
that would minimize the error on the labeled feedback data.

RETRAIN: The features are used as chosen from the offline scenario, but thelaBsifier

is re-trained to choose the hyperplane that minimizes the error on labetizhfdedata.
RECSP:The offline training data are completely ignored, and CSP feature selectibn a
classification training are performed solely on the feedback data.

In the study previously presented here (Section 5.1), these methodbdaveshown to
have a low computational complexity and a very straightforward applicability iardine
scenario. As only th@ECSP-method did not improve the classification performance, it is
the purpose of this investigation to enquire the reason for this failure. Withch tauger
amount of training data, | will observe if the adaptation quality can be furtieeeased for
this method in particular.

In all adaptive methods a trade-off must be made: taking more training safoples
training gives more stable estimates, but on the other hand it makes the methadptve,
i.e., the policy should be to take as little training samples for re-training as possible
enough to allow estimations with reasonable stability. Here the number of trasmmgles
necessary for re-training is estimated separately for each method dndudgect.

5.2.5. Results

For validation of the proposed classification schemes, | select for gatfram the feed-
back experiment a preceding window of specified size for re-trainisgidthe CSP filters
and the classifier from the calibration measurement and these new trainlaglttipdate
the classifier and apply it to the current test trial -RBCSP training data are essentially
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Figure 5.10.: The solid lines show the dependency of each algorithm oniiean of train-
ing samples. For each subject, a sliding window containing the indicated
amount of training samples per class (x-axis) was used for adaptation in the
recording of the feedback session, and the resulting classifier wéiedpp
the current sample. The average classification error on the test samples is
shown on the y-axis in %, and the position of the optimal adaptation window
is marked with a cross. The dashed horizontal lines indicate the respective
errors of theORIG-classifier, applied to all samples of the feedback session.

ignored. Then the predicted laterality is compared with the actual labels. Nutallthali-
dations only take into account labels of past trials as it would happen inlare daedback
experiment. This procedure corresponds to \Wenethods from Section 5.1. Fig. 5.10
shows the influence of the number of training trials on the accuracy of adaptation
method. In all methods under investigation, the error rate decreases witsedeamount

of training data. Th&RECSP-method, however, does not produce satisfactory results when
used with less than 20 training samples per class. With more samples, the talilizes

at a low error rate for one subject, while remaining far above the basdli@RtG for

the other two subjects. Metho®EBIAS andRETRAIN perform more stably, producing a
reliable estimation with only a few adaptation trials.

Tablel 5.3 shows the classification errors of all presented adaptation rmethaduated
for a window size that is optimal in the sense that window sizes of up to 10 tealslass
more will not decrease the classification error. This window size is alsatelgin the table.
For subjectl all suggested adaptation methods show an improvement over the perfermanc
of the original classifier, where the gain is increasing with the complexity chdagptation.
However none of these improvements reach the level of significancg(MsiNemar’s test,
with a confidence level off = 5%, see| [47] for details). For subjeaiv the opposite effect
can be observed. For the last subjREBIAS andRETRAIN again show some improvement
while RECSP performs poorly. Taking into account that in this analysis the window size fo
adaptation was chosen a posteriori to fit optimally to the test (i.e., the evaluabi@sesd in
favor of the adaptive methods), one has to concludeithtitis datathe original classifier
can hardly be outperformed by any re-learning method.
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\ ORIG \ REBIAS ] RETRAIN \ RECSP

al 49 |44 (15)| 3.9 (40)| 3.6 (40)
aw 6.2 | 6.6 (35| 7.0 (30)] 9.7 (25
Zj 76 | 6.0 (25)|6.6 (20)| 16.7 (40)
mean| 6.2 | 5.7 5.8 10.0

Table 5.3.: Validation errors for different adaptation methods, evaluaitbdavsliding win-
dow with an individually chosen number of training trials. The error rates ar
given in %. The number in brackets denotes the optimal window size (trials per
class) for each subject under each method. Only the two numbers prirdeldlin
differ significantly from theORIG-classifier.

5.2.6. Discussion

This study shows the tradeoff between the various adaptive methodsexkplthe light-
weight adaptive methods such as readjusting bias and angle of the LDgifielagsing
feedback data can help to improve the performance of the classifier, tHeyedo not re-
sult in significant increases of the performance. Note that this does bhyeans indicate
that nonstationarities were absent in #€G signals but it indicates that the BBCI classi-
fier successfully extracted relevant information from sensorimotosavdale filtering out
contributions from sources of nonstationary characteristics like the lvisutex. In fact
Fig./5.9 which shows an enormous difference between the brain activitygdealibration
measurement and feedback operation was calculated from one of thenespts of this
study.

Based on the results presented here one could conjecture that in theedeaise, fea-
ture extraction and classification can be successful in extracting a tsiginal that is not
affected by the nonstationarities in the EEG. In fact, classification resuttseatiata inves-
tigated in this study could hardly be outperformed by any of the adaptive ohetiNever-
theless experience with other data (such as the study presented in Set}ibasshown
that the change of mental state when turning from the calibration measuré&mamine
operation sometimes needs to be compensated by a lightweight adaptive methad the
manual adaptation of the bias, see [9] or Section 5.1.

In summary, this study has shown that adaptive methods are not genecgiised for the
continuous operation of a BCI. In fact, if robust feature extractioncaskification methods
are used that manage to eliminate most sources of nonstationarity, the adagtinods can
no longer improve the classification performance. However, even in thé tae straight-
forward methods of bias and LDA adaptation have shown to have a véualg starformance
and do, in particular, not compromise the classification performance as oeunwathe
static classifier. These methods can therefore be readily applied in B&iiegmts.

Note that all these methods still operate in a fixed feature space, which &ibjeict
to adaptation over the course of the experiment. Due to the nonstationarite ofath
(exemplified by Fig. 5.9), one can expect a much larger performanceifgdia feature
space is also either adapted or robustified against the changes in théJd&eunately,
the most straightforward meth@®ECSP performs suboptimally, even when adapting on
very large time windows. This failure can certainly be accounted to the highhdiomality
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of the estimated parameters: for the CSP estimation, the covariance matricegen$ion

C x C (C being the number of electrodes) have to be estimated, which is difficult with only
a few data points. The next chapter is dedicated to exploring the nonstétiarfahese
covariance matrices and the associated CSP filters. With more knowledge oatthe of

the nonstationarity, it will be easier to find ways to make the feature spaacstrafainst
these influences.
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6.1. A Novel Method for the Quantification of Changes in EEG
Data

For the classification of Event-Related Desynchronization (ERD), the egimf the sig-
nal covariance matrices is of central interest. In the calculation of CSR filtet patterns,
the classwise calculated sample covariance matkigesd2, are calculated on bandpass-
filtered, epoched training data for the classes 1 and 2. The calculatiqtiwfad CSP filters
then involves a simultaneous diagonalization of these matrices, as descr@eadion 2.2.1.
In other words, a CSP projection of the EEG can be described as a funttize covariance
matrices of the EEG. If the covariance matrices are changing over time, tardisability

of the CSP features is also jeopardized.

In [141], a simple method for the decomposition of these matrices was invedltiigate
adapting the spatial filters across sessions. | will present a slightlyatitfapproach, which
does not focus on the algebraic properties, but rather on the datautistibf the matrices:
if it is possible to describe the change of the covariance matrices, a methdxd ckefined
to adapt the spatial filters as well. As a first step towards this goal, | will n@semt a
new view on the covariance matrix space, in order to learn more how thengtma from
different sessions are connected.

Note that these matrices are very high-dimensional features of the EEG:tiie number
of electrodes, the matrices ha®&entries, but due to their symmetry, only the upper triangle
matrix (with @ entries) has to be estimated. For the remainder of this section, | will
regard the sample covariance matrices as features of the EEG, and willtlséiioa low-
dimensional description for the shift of the covariance matrices is possibladst of the
subjects under study. This description in simple terms can be helpful to iddmifgasons
for the shift and can point to remedies against its influence on the classifipgrformance.

6.1.1. Experimental Setup

The estimation of such a large number of parameters (i.e., quadratic in the mofnchan-
nels) is only possible with a sufficient number of observations. Thexefowill report
results from a series of experiments with 6 subjects, where 11 BCI fekdbas were
conducted per experiment.

The feedback runs were conducted with a “Cursor Control” feedbaitk a fixed du-
ration of 3.5 seconds for each trial (see Section2.3.5 for details). Gubigl¢ioe previous
experience with nonstationary bias (see Section 5.1), there were twodaipg#ton peri-
ods per run. In the beginning, for a period of 20 seconds, a curasmnesented rotating
clockwise at constant speed. Based on these 20 seconds of EE@hdateerage classifier
output was calculated and then the current bias was determined. This metbdctended
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Subject zg ay zp al aw zk
Classes| LR LR LR FR LF LR

Table 6.1.: The classes of mental imagery which the subjects used for tEatte L and
R denote left and right hand, and F denotes foot imagery.

to prevent the control signal from being shifted exclusively to eitheitigesor negative
values.

Then, the subject controlled the cursor for 20 trials (10 per class, otorarorder), and
the bias was fine-tuned at the end of this period. With the adjusted bias, djeetscon-
trolled the cursor for the following 100 trials (50 per class, in randommrddie procedure
corresponds to the initial calibration of the bias, as it was found to be adjumde in offline
studies, see [126].

In each trial of the feedback, one of the two boxes on either side of thersgvas high-
lighted to indicate a new target. After being fixed in the middle for 750 ms, th@cwas
released. The subjects were instructed to now imagine the associatedrHantlmove-
ment (see table 6.1), in order to hit the target with the cursor. The claszifient was used
to control the cursor in horizontal direction in a rate-controlled fashiditer/8.5 seconds,
the cursor was fixed again and the outcome of the trial was determined bgriherital po-
sition of the cursor. If the cursor was on the correct side of the sctieertrial was counted
as “hit”, and as “missed” otherwise. The target box was then colorezhdfer a successful
trial) or red (in the other case), and after a break of 1 second, thearget was presented.

Only in runs number 6, 7, 10 and 11, the cursor was not visible to the sspgech that
they only performed their movement imagination and received a feedbable @luccess-
fulness of the trial by the color code of the target box at the end of the frlak type of
feedback will be called “feedback of results”. It hast been chosender to generate differ-
ent levels of visual input for the subjects during the experiment. This enabl® supervise
the influence of the visual scene on the band power in the visual cortere dédails on the
setup of the experiment can be found in Section 6.3.

6.1.2. Methods

After bandpass-filtering the EEG, epochs were extracted in the intexal 500 ms to
4500 ms after the presentation of the target stimulus. The frequency fikex Batterworth-
filter of order 5, in the frequency band of [9 25 ]Hz.

By considering the class labels for each trial, | calculated the class-wisgles&ovari-
ances

i =XXi,]

for classi € {1,2} and runj € {1,...,11}, whereX; j is the (#samples} (#electrodes)-
matrix which results from the concatenation of all trials of cliaigsrun j; by the preceding
bandpass-filter, | can assume tha} has mean O over time. The class-averaged sample
covariance matrix is then computed as

2= 0.5(217]' +Zz’j)
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6.1. A Novel Method for the Quantification of Changes in EEG Data

forrunj € {1,...,11}, if an equal number of trials for both classes has been recorded.
For the comparison of different elements of the vector sfiecé’, an appropriate metric
has to be used.
In this example, | therefore used the metric resulting from the Frobenius, rdefined
by

for all A€ R®*C. This is equivalent to using the canonical isomorphism
": RCXC N RCZ

which maps a matrix to the concatenation of its columns, and applying the eudlidean
i.e.,
[|Al[e = [|A]]2.

While this metric ignores most of the properties of a matrix, it is neverthelesgiserio
changes such as scaling. The metric regards the maklices, >, as if they were vectors
Zl, 211, drawn from aC2-dimensional normal distribution.

Then mean and covariance of fB&dimensional vectors can be estimated as usual with
sample mean and sample covariance. This is depicted in Fig. 6.1, where thellgudioid
line denotes the standard deviation of the sample covarl‘a(rmiazl, le around the
sample meary. Discriminant theory (see [42]) now tells us that the elgenveﬁtasso—
ciated to the largest eigenvalue\éfis the best direction for a linear approximation of the
pointsij (j=1,...,11).Alis called the first principal componentgfand can therefore be
regarded as the direction of the shift, in the spREZe

After calculatings andA, the sample covariance matrices can be approximated by pro-
jecting their vectorial representations on the line= {$o+r-A|r € R}. In other words, the
approximation& j are defined as

ij = Zo+rj -A,

where L
(2j—20)'A

AR
for j =1,...,11. Ther;j can be interpreted as the factor by which the influence of the shift
direction is imposed on the EEG data. Fig. 6.2 shows the approximated vatliteasizes
of the approximation errors for the previous example. In order to aisesgiality of the
approximation, | will calculate the average error, normalized by the agatesgance of the
point from the mean, i.e.,

I'j =

fYL1Z - &)1
T2 lZ = ZollF

for every subject. Note that the closer this value to 1, the more orthogcmﬁ] a 3 and
i,- — 5, on average, which suggests a bad approximation.

a.=
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S
2

i10
Figure 6.1.: This sketch shows how the sample covariance maﬁ;cejs: 1,...,11) are
approximated linearly by principal componentAanaIysis (PCA). For this pur
pose, the sample mean (of the sample covarianEgsand the eigenvectdy of

the sample covariance matrix (of the sample covarianéegssociated to the
largest eigenvalue &f, are estimated. These parameters are depicted in red.

Figure 6.2.: This figure shows the linear approximation of the points in Fig. G:& lehgth
of the orthogonal projection &; on the lineL = {>g+r -A|r € R} depicts the
approximation error.
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Subject zq ay zZp al aw zk
a ]0.45 0.06 0.08 0.10 0.28 0.03

Table 6.2.: This table shows the average error of the approximation northblzbe aver-
age distance to the meag. The error is smaller than 0.5 for all subjects, which
shows that a considerable part of theis explained by the linear interpolation.

6.1.3. Results

The approximation quality is shown in table 6.2. In all subjects, the valisebelow 0.5,
which corresponds to an average angle of at mostt&ween(3; — 2o) and (2; — 5o).
For subjectsay, zp, alandzk the angle is even below gwhich corresponds to almost per-
fect linear interpolation. This finding can be supported by visual inspeciidhe original
matricesz; and their approximation counterpaft§ as in the example in Fig. 6.3. The ap-
proximation error is very low, since the typical structure of the covariamatices is almost
completely reproduced by the approximation.

Since it is now possible to identify the shift of the covariance matrix from ameto
the next one, | can now try to give an interpretation by analyzing the matriXhe first
observation is that it has one large positive eigenvalue, some more pasgmsevalues
(approximately 10% of the number of channels), whereas all other eifyerssare close to
0. Hence, ifA is regarded as a positive semidefinite matrix, the shift can be interpreted as
follows:

SupposéX; )iel, (Zt)ier are independent time series for some index sit(X;) ~ N(0,X)
and (Z;) ~ N(0,cA) for all t and for somec > 0, then(X +Z) ~ N(0,Z+ cA). In other
words,A can be interpreted as the covariance matrix of another process, ingepdrom
the one under observation.

The main source of power of the new process can now be inspected bggaeans of
principal component analysis. Fig. 6.4 shows the eigenvettaccording to the largest
eigenvalue ofA for every subject. This eigenvector can be interpreted as the southe of
main variance of the time seri€Z; )ic;. In all subjects, thi® exhibits a strong focus on
parieto-occipital regions of the scalp. This indicates that differencesia#band activity
of the visual cortex are responsible for a shift in the sample covarianteeasfrom run to
run.

For a closer investigation of this conjecture, | will give an analysis of twawslase ex-
amples, subjectsy andzk These are the subjects with the best approximation performance,
which supports the view af as the main difference between runs.

During the experiments, subjects were asked to write down an estimate of¢lepingss,
ranging from 1 (awake, not sleepy) to 10 (struggling to keep the eyes, @yowsy) after
the completion of each run. Fig. 6.5 plots this “drowsiness index” (on thdmtal axis)
against the approximation factoy for each runj. The numbers in the plot denote the
numbers of the run. Although the drowsiness index was only denoted iretisteps (i.e.,
integer numbers), a positive correlation is evident. The closer the sukgecto falling

1c can be forced to be non-negative in every run, by settjng- rj — mingry andz := 2o — mingry - A. Then
the resulting matriceE; are exactly of the fornx +c;j - A.
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Figure 6.3.: The first row of this figure shows scaled images of the cowvarimatrices for
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each run foay. After calculating the meaky and the first principal component
A, these matrices can be approximated by the tétms Z; +rA, as shown in
the second row. If the approximation is successful, the remainder (asmsho
row 3) is close to 0.
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Figure 6.4.: The first principal componedtof the first principal componerik for all six
subjects under study. In all subjects, a strong focus on parieto-o¢cggians
can be noticed. The absolute scale of the components is irrelevant, sigice the
are normalized. Only the relative distribution and topology are of interest.

asleep in runj, the higher the “covariance shift” index. This finding is similar in five
of the six subjects, for whom the correlation betweenrthand the drowsiness index is
significant f < 0.1).

For subjecizk the shift index is correlated with the modality of displaying the feedback.
Fig./6.6 shows the shift factay; for each blockj. The runs where the cursor was invisible
to the subject (“feedback of results”) are shaded in gray; in thes&dltre shift factor is
much higher than in the other blocks. This correlation was only found in siie

The presented examples support the interpretation of the covarianttastofr as the
activation strength of the associated principal compogerithe bandpower in the-band
exhibits a large variability from run to run.

6.1.4. Application to Classification Problems

This method can not only be used for analysis of the data, but also footisraction of
spatial filters which are robust against the presented trend in the datadroto run and
provide a good discriminability between classes. For this purpose, | will dmok to the
classification problem associated to a labeled time series.

Fori e {1,2} andj € {1,...,11}, let Z; j denote the sample covariance matrix of all
the trials of class in run j. | have shown that the common class covariance matyix
(51, +22) for run j can be approximated by

ij =2o+TrjA.

In the light of the previous section, the main contribution of the differendeden runs
appears to be due to different activation levels of the visual cortex,hniBinot class-
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Subject ay

6.8.

Self-assigned Drowsiness Index
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Figure 6.5.: The drowsiness index which the subjects denoted after @aehea positively
correlated with the covariance matrix shift coefficient. This plot showsaine c
relation for subjecay.
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Figure 6.6.: For subjeak this plot shows the covariance shift factor in each run. The gray
shaded areas indicate the blocks where only “feedback of resultsjivers.
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dependent; we may therefore assume that one can also approXimate
ii,j =2Zjo+rjA

for the same real-valued scalafss defined in the previous section, whEyg:= %1 zjlil Zij
is the mean of the class-wise sample covariance matrices foriclass

Note that theA is the same principal component as it has been calculated in the previous
section, since | only want to consider a common shift for both classes.

With this approximation, it is possible to re-formulate the optimal CSP solution in the
following way, as it is derived in [22]:

w'(21)— %))W

W (Zyj+ 22 j)W

arama WT(ZLo-I-I’jA—Zz,o— riA)w
9 X\'ERCWT(ZLO-H’J'A—F Zz"o-l—l’jA)W

W' (Z10—Z20)W

w’ (Z10+ 220+ 2rA)wW
WT(ZLO — Zzo)W

wl (Zl,o +220+ cO)w

Wesp = argmaXycgc

Q

= argmax,cgc

= argmaXcgc

The right hand side (witle := 2rj and© := Aﬁ is similar to the formulation of “invariant
CSP” (iCSP), see [16], whel@ is the covariance matrix of a process which does not pro-
vide discriminative information about the class labels. By adding it to the alessged
covariance sample matrizi o+ >2), the resulting filters are more and more invariant to
the process with the covariance mat@xthe higher the scalar values chosen. This, on
the other hand, can make them less responsive to the actual classddiere

This calculation gives a new perspective on how to compute optimal CSP fdtezach
block: by approximating the class covariances by their estinfagesthe calculation results
in the iICSP filters which are invariant to the shift defined by the “covarialireztion” A.
The furtherZ; is from the mean covariancg), the higher the invariance factoe= 2r;.

In this manner, the approximation of class covariances can be used foaltheation
of robust classifiers. However, | will not follow this approach, sinde thethod has some
shortcomings for the parameter estimatwithin sessions

1. In order to estimate the direction of the shift the recording of several blocks of data
is required, possibly under different levels of attention and sleepifi@ssnumber of
parameters to estimate is the product of the number of recorded blocke¥ antiere
C is the number of electrodes. Therefore, a large number of trials in eack islo
required.

2. The estimation of the shift factaris only possible if the directiod is known. If
transferred to a real-world BCI scenario, this would correspond tocearaely long
calibration measurement.

2Following a similar argument as in the previous section, it can be assuittealiMoss of generality thatis
non-negative.
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Subject zq ay zp al aw zk

aclass1 | 0.49 0.15 0.52 0.20 0.44 0.07
aclass2 | 0.63 0.14 0.16 0.21 0.41 0.08

Table 6.3.: This table shows, similar to table|6.2, the error of the approximatiatefsses
1 and 2 separately. See text for details.

3. The above calculation can only be accurate, if the approximation error
1Y% 2l

11212 IZi — ol

is very small. Table 6.3 shows the approximation qualifpss 1andacjass 2for each
class and for each subject. If this table is compared to table 6.2, it showthéhat

magnitude of the approximation error for both classes is considerablyrhiugrethe
error of the averaged sample covariance matriaes,

AClass i-=

However, for the estimation of parametersoss sessionshe first two aspects do not re-
strict the applicability of the method, since each single session providegledata for the
robust estimation of high-dimensional parameters such as channel-w@oce matrices.

6.1.5. Discussion

At the beginning of this section, some model assumptions were taken whiclearky not
valid in a global setting.

For example, it is a common procedure in probability theory that the sample nsatrice
>; are modeled by a Wishart distribution, i.&;,~ Wc(Z,100- 400), where the degree of
freedom (here: 40000) is the product of the number of samples in oharidahe number
of trials used for estimation, arklis the unknown underlying covariance matrix. Unfortu-
nately, this distribution does not give rise to an appropriate metriRotY; due to this lack
of direct applicability, | opted for the Frobenius norm.

Furthermore, the sample covariance matrices can not have a Gaussibutibstr since
this would also imply that an indefinite or even negative definite matrix couldrogith
non-zero probability. Yet | have demonstrated thatIhean belocally approximated by
linear parametrization. These model simplifications resulted in a surprisinglyate ap-
proximation for the sample covariance matrices of most of the subjects undgr s

It is surprising that the main direction of change between the diffeXgns a matrix
which is again positive semidefinite except for very small negative eiigewaThis is not
evident, as the following simple example shows:

Suppose
10
5=(o o

00
e (09,

and
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Then both are positive semidefinite, but the straight line connecting thenaiaatbrized
by the direction of
. (1 0
A= (0 _1> ,
which is indefinite.

Since theA for the approximation of the covariances of all our subjects is alwayglfne
positive semidefinite, the difference can be interpreted by means of atioadtneuro-
physiological component that is only modulated in strength throughout fheriexent. For
all subjects, the principal source of the component can be localized iratieqgzoccipital
region of the scalp, and in most cases, the activation imd=a be correlated to the level
of tiredness that was estimated by the subjects after each run. As showationSs.1,
the activation of the visual cortex can have a serious impact on the sigaakr¢hused for
bandpower feature classification. Here | have presented a complefeledtfapproach for
the localization of the main source of this activation.

In this section, | have presented a new method for the comparison betveesamtiple co-
variance matrices of bandpass-filtered EEG signals between diffementAs an example,
the data of long experiments (with 11 runs per subject) were presentedsurprising re-
sult is that for most subjects the change from session to session casilgeand accurately
parametrized by linear interpolation. Both the shift directtoand the shift factor can be
related to neurophysiological and psychological parameters, like tharséss of a subject
or the activity of the parieto-occipital cortex regions. Therefore it isva ard useful tool
for neurophysiological data analysis.

The proposed method can readily be used for classification and is cletsgd to the
iICSP method demonstrated in [16]. Since the application for classificatiofepmsisuffers
from some drawbacks, mainly related to the amount of data needed for estirobsioatial
filters, | will present a different approach in the next section, wheedridining data from
the same experiment day will be reduced to a minimum.

6.2. Choosing a Robust Feature Space — and Omitting the
Calibration

So far, the timescale in which | analyzed nonstationarity was limited to the colassrmle
session. There also exists a strong variability for a single subject wimeparong data from
one session to the next. This challenges a stable operation of Brain-Corhpietéace
(BCI) systems. In our studies, we tried exemplarily to re-use the classiier & previous
session for another online BCI experiment — an attempt which failed dueitméicant
change of the brain signals. This does not only provide evidence fandhstationarity
between sessionBut it leads to a very practical and relevant problem:

To present, the use of machine learning based EEG-BCI systems involoesnter
consuming preparational steps at the beginning of every new sesskanfir$t one, the
montage of an EEG cap, has been largely alleviated by recent advarts€sesn[117] and
the discussion Section 6.3.5 in this chapter). The second step is the regoofrdadibration
data, which | will address with this study. As the signals vary between sessign for
the same user, machine learning based BCI systems rely on the calibrati@adym® as a
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requirement for optimal performance (machine training). Even subjedtsitba@xperts in
the use of machine learning based BCI systems still have to undergo thatalitgession
of about 20-30 min. From this data their (movement) intentions are so faedhfer

Especially for patients with impaired concentration ability, this initial calibratiomced
the valuable remaining time for controlling a device or computer software in ticelksm
feedback application phase, but also for healthy users, it can benagiag procedure.

The present contribution studies to what extent onearaitthis brief calibration period.
In other words, is it possible to successfully transfer information froior BCl sessions of
the same subject that may have taken place days or even weeks ago? Wijileghisn is
of high practical importance to the BCI field, it has so far only been addces [124] in
the context of transfering channel selection results from subject fectuln contrast to this
prior approach, | will focus on the more general question of trangjesinole classifiers,
resp. individualized representations between sessions. Note that&te@p typically vary
strongly from one session to another, due to different psychologieat@nditions of the
subject (see e.g. Fig. 3.5). A subject might for example show diffetatessof fatigue and
attention, or use diverse strategies for movement imagination across segs&uccessful
session-to-session transfer should thus capture generic 'invarisoitidinative features of
the BCI task.

For this | first transform the EEG feature set from each prior sesstonairistandard’
format (Section 6.2/1) and normalize it. This allows to define a consistent nectat
can quantify the distance between representations. | use CSP-bassitlerka (see Sec-
tion/2.2.1) for the discrimination of brain states; note that the line of thougkepted here
can also be pursued for other feature sets resp. for other classtigrs a distance function
(Section 6.2.2) is established in CSP filter space, one can cluster existinfijt€Smn order
to obtain the most salient prototypical CSP-type filters for a subject asesssons. To this
end, | apply the IBICA algorithm [83, 84] for computing prototypes by laust ICA decom-
position (see Section 6.2.2). | will show that these new CSP prototypehgsofmgically
meaningful and furthermore are highly robust representations whidiess easily distorted
by noise artifacts.

6.2.1. Experimental Setup

The BCI sessions under study were performed with Event-RelatedSipeehronization
(ERD/ERS) phenomena (see Section 2.1.2) in EEG signals related to hafubaindagery
as classes for control. | investigate data from experiments with 6 healtlgcssitaw (13
sessions)al (8 sessions)em (4 sessions)zp (4 sessions)ay (5 sessions) andq (4 ses-
sions). These are all the subjects that participated in at least 4 BB@rs®sEach session
started with the recording of calibration data, followed by a machine learrfinggpand a
feedback phase of varying duration. All following retrospective asedywere performed
on the calibration data only.

The calibration period for these experiments were performed with the sthsdtup,
see Section2.3.3. The randomized and balanced motor imagery tasks iredstigaall
subjects excepay were left handj, right hand €), and right foot {). Subjectay only
performed left- and right hand tasks. Between 120 and 200 trials wefamped during the
calibration phase of one session for each motor imagery class.
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Figure 6.7.Left: Non-euclidean distance matrix for 78 CSP filters of imagined left hand

and foot movement.Right: Scatterplot of the first vs. second dimension of
CSP filters after Multi-Dimensional Scaling (MDS). Filters that minimize the
variance for the imagined left hand are plotted as red crosses, footrmeove
imagery filters are shown as blue dots. Cluster centers detected by IBEKCA a
marked with magenta circles. Both figures show data fabm

Data preprocessing and Classification

The time series data of each trial was windowed from 0.5 seconds after Gusettonds
after cue. The data of the remaining interval was band pass filtered reeither 9 Hz —
25 Hz or 10 Hz — 25 Hz, depending on the signal characteristics of thectubn any case
the chosen spectral interval comprised the subject specific freqioamgs that contained
motor-related activity.

For each subject a subset of EEG channels was determined that mactbesled for all
of the subject’s sessions. These subsets typically contained 40 to 4Betharhich were
densely located (according to the international 10-20 system) over thecerotral areas of
the scalp (see scalp maps in following sections). The EEG channels ofehjtt were
reduced to the determined subset before proceeding with the calculaGamohon Spatial
Patterns (CSP) for different (subject specific) binary classificatisksta

After projection on the CSP filters, the log-bandpower was estimated by ttiergga-
rithm of the variance over time. Finally, a linear discriminant analysis (LDA3sifeer was
applied to the best discriminable two-class combination.

6.2.2. A Closer Look at the CSP Parameter Space

The CSP filters are not just randomly drawn points flRfm(whereC is the number of elec-
trodes), but instead represent subject-specific neurophysiole@giceditions, which suggests
that, for a given subject, similar filters should be found across all sessdionll first define
a meaningful notion of similarity in this space and then use this relation to exploeptte.
It can be expected that the regions with a high density of CSP filters coxtampes for

83



6. How to Adjust the Feature Space

filters which are particularly stable across sessions. | will call thesenreadusters”, and |
will introduce a method how to sample prototypical filters from the clustersgusimotion
of “inlier” points which have a low distance to their nearest neighbors.

Comparison of CSP filters

CSP filters are obtained as solutions of a generalized eigenvalue probtera.eS8ery mul-

tiple of an eigenvector is again a solution to the eigenvalue problem evenyipdire space

of CSP filters R®) on the line through a CSP filter point and the origin form an equivalence
class (except for the origin itself). More precisely, it is sufficient tosider only normal-

ized CSP vectors on tH€ — 1)-dimensional hypersphere. This suggests that the CSP space
is inherently non-euclidean. As a more appropriate metric between two pejirdaadw-,
(column vectors of a CSP filter matri%) in this space, | calculate the angle between the
two lines corresponding to these points:

s ( |W1>I<W2| > ‘Wl*W2| > )
m(w,wy) = min| arcco§ —————— | ,m—arccoy ———— | .
[l [ |zl [wa [ |zl

When applying this measure to a set of CSP fil{gvgi<n, one can generate the distance
matrix
D = (m(wi,Wj))i,j<n,

which can then be used to find prototypical examples of CSP filters. Fig.héwssan
example of a distance matrix for 78 CSP filters for the discrimination of the \@&iduaring
imagined left hand movement and foot movement. Based on the left handssitimae
CSP filters showing the lowest eigenvalues were chosen for each oBthessions. The
same number of & 13 filters were chosen for the foot signals. The filters are arranged in
groups according to their relative magnitude of the eigenvalues, i.e., filtdrghe largest
eigenvalues are grouped together, then filters with the second largesvaliges etc.

The distance matrix in Fig. 6.7 shows a block structure which reveals thaitdrs Hf
each group have low distances amongst each other as compared to theedistemembers
of other groups. This is especially true for filters for the minimization of vaudaim left
hand trials.

Finding Clusters in CSP space

The idea to find CSP filters that recur in the processing of differenicgessf a single
subject is very appealing, since these filters can be re-used for effidassification of
unseen data. As an example of clustered parameters, Fig. 6.8 showaraehi@l clustering
tree (see| [42]) of CSP filters of different sessions for subgdctSingle branches of the
tree form distinct clusters, which are also clearly visible in a projection ofitkeMulti-
Dimensional Scaling-Components in Fig.|6.7 (for MDS, see [27]).

Once a suitable distance function is established, it can be used to findgegitve data
space consisting of CSP filters, which are more densely sampled than Ethesters’).
In particular, by identifiying points located in the middle of clusters, it is possthelect
them as typical CSP filters.

The proposed metric of Section 6.2.2 coincides with the metric used for IndisedBIn-
dependent Component Analysis (IBICA, see [83, 84]). This methadasiginally intended
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Figure 6.8.: Dendrogram of a hierarchical cluster tree for the CSP fifdest hand move-
ment imagery (dashed red lines) and foot movement imagery (solid blue. lines)
Cluster centers detected by IBICA are used as CSP prototypes. eeagked
with magenta arrows.

to find estimators of the super-Gaussian source signals from a mixturenalsidy pro-
jecting the data onto the hypersphere and using the angle distance, iemaddmeonstrated
that the correct source signals can be found even in high-dimensiateal dhe key in-
gredient of this method is the robust identification of inlier points as it can e @ath
the y-index (see [53]), which is defined as follows: Lwetbe a point in CSP-space, and let
nm(w),...,nne(w) be thek = 5 nearest neighbors @i, according to the distanae. The
average distance &f to its neighbors is then called tlygindex ofw, i.e.

k
y(w) = %_me,nn(w)).

If w lies in a densely populated region of the hypersphere, then the avassgece to its
neighbors is small, whereas if it lies in a sparse region, the average @isshigh. The
data points with the smallestare good candidates for prototypical CSP filters since they
are similar to other filters in the comparison set. This suggests that these fitegoa
solutions in a number of experiments and are therefore robust agaargjehin the data
such as outliers, variations in background noise etc. (see also sectjorOfaly the CSP
filter with the lowesty-index can clearly be regarded as “inlier’-point of a cluster. In otder
find other regions of the filter space which are also densely populateahplied a heuristic
which is presented in the next paragraph.

Finding Cluster Prototypes

We first calculated thg-index of each filter to obtain a ranking according to the distance
function explained above. The lowgstndex indicates that the corresponding filter is inside
a region with many other filter examples and should therefore be choséuster @roto-
type. The same applies to the second-to-lowestdex, but in this case it would not be
recommendable to select this filter, since it is highly probable that the filtenistiie same
region as the first one. To ensure that we also sample prototypes fremabdisters, an
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Figure 6.9.: Overview of the presented training and testing modes for tmepéxaf four
available sessions. The left part shows a comparison of ordinary @Bkhvee
methods that do not require calibration. The validation scheme in the right par
compares CSP with three adaptive methods. See text for details.

incremental procedure of choosing and re-weighting was applied tanieter predefined
number of cluster prototype filters.

The search starts with one prototype only, that is chosen as the filter with th@ahin
overall y-index. The chosen filter point is removed from the set of all filter pointerTthe
average distance of each remaining filter to its neighbors is re-weightecebgvierse of
the distance to the removed point, as explained in [83]. Due to this re-weightinmpints
in the vicinity of the chosen cluster prototype receive a lajgerdex. The re-weighting is
driven by the assumption that these neighboring points belong to the sartez alitk high
probability. Due to their increasedindex, they are less likely chosen as prototypes in the
next iteration. The iterative procedure ends, when a predefined mahdaster prototypes
has been determined.

6.2.3. Competing Analysis Methods: How Much Calibration Is Needed?

Fig./6.9 shows an overview of the validation methods used for the algorithdes study.
The left part shows validation methods which mimick the following BCl scenaioew
session starts and no data has been collected yet. The top row repdegamtall sessions
in original order. Later rows describe different data splits for the trgimithe CSP filters
and LDA (both depicted in blue solid lines) and for the testing of the traineditigos on
unseen data (green dashed lines). The ordinary CSP method doekenahyahistorical
data from prior sessions into account (second row). It uses traigitegahly from the first
half of the current session. This serves as a baseline to show thabguality of the data,
since half of the session data is generally enough to train a classifier thatliadapted
to the second half of the session. Note that this evaluation only correspordreal BCI
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scenario where many calibration trials of the same day are available.

Zero training methods

This is contrasted to the following rows, which show the exclusive use tdriddata in
order to calculate LDA and one single set of CSP filters from the collectedadall prior
sessions (third row), or calculate one set of CSP filters for each hisesigion and derive
prototypical filters from this collection as described in Section 6.2.2 (fowuntl),ror use a
combination of row three and four that results in a concatenation of CSR filtel derived
CSP prototypes (fifth row). Feature concatenation is an effective mdtiatichas been
shown to improve CSP-based classifiers considerably (see [35]).

Adaptive training methods

The right part of Fig. 6.9 expands the training sets for rows three,dodrfive for the first
10, 20 or 30 trials per class of the data of the new session. In the methoals dfand 5,
only LDA profits from the new data, whereas CSP prototypes are calduatdusively on
historic data as before. This approach is compared against the ordi&approach that
now only uses the same small amount of training data from the new session.

This scheme, as well as the one presented in the previous paragrapbedracross-
validated such that each available session was used as a test sessamhdhgte last one.

6.2.4. Results

The underlying question of this work is how strongly the distributions of EEG dre
affected by changes that occur between experimental sessions.réstiagd consequence,
the question arises whether information gathered from previous expéahsessions can
prove its value in a new session. In an ideal case existing CSP filters aActlaBsifiers
could be used to start the feedback phase of the new session immediatedytwlhig need
to collect new calibration data.

I checked for the validity of this scenario based on the data describec:tin®®.2.1.
Tablel 6.4 shows the classification results for the different classificationoaetmder the
Zero-training validation scheme. For subjegtsay andzq the classification error acfON-
CAT is of the same magnitude as the ordinary (training-based) CSP-appraadhe®ther
three subjects;ONCAT outperforms the methodiSTandPROTO. Although the ideal case
is not reached for every subject, the table shows that our proposeddseifovide a decent
step towards the goal of Zero-training for BCI.

Another way to at least reduce the necessary preparation time for axpasireental
session is to record only very few new trials and combine them with data fremiops
sessions in order to get a quicker start. | simulate this strategy by allowingthenethods
HIST, PROTO and CONCAT to take a look also on the first 10, 20 or 30 trials per class of
the new session. The baseline to compare their performance would besy&ér trained
only on these initial trials. In Fig. 6.10, this comparison is depicted. Here theeimie
of the number of initial training trials becomes visible. If no new data is availahk,
ordinary classification approach of course can not produce anytyuthereas the history-
based methods, e. GONCAT already generates a stable estimation of the class labels. All
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Subjects aw | al | cm | zp | ay | zq
Classes LF |RF| LF | LR | LR | LR
Ordinary CSP|| 5.0 | 2.7 11.8| 16.2| 11.7| 6.2
HIST 10.1| 29| 23.0| 26.0| 13.3| 6.9
PROTO 99 |3.1|215|26.2|10.0| 114
CONCAT 89 | 27195 237|124 | 7.4
Sessions 13 7 4 4 5 4

Table 6.4.: Results of Zero-Training modes. All classification errors amengn %. While
the ordinary CSP method uses half of the new session for training, thentietbe
0dsHIST, PROTO andCONCAT exclusively use historic data for the calculation
of CSP filters and LDA. (as described on the left side of Fig. 6.9). Amibngs
them,CONCAT performs best in four of the six subjects. For subjedtsly and
Zqits result is even comparable to that of ordinary CSP.

methods gain performance in terms of smaller test errors as more and morargiatided.
Only after training on at least 30 trials per class, ordinary CSP reachedahsification
level thatCONCAT had already shown without any training data of the current session.

Fig. 6.11 shows some prototypical CSP filters as detected by IBICA clugterisubject
al and left hand vs. foot motor imagery. All filters have small support (i.e. yneatries are
close to 0), and the few large entries are located on neurophysiologicalbyrtimmp areas:
Filters 1-2 and 4—6 cover the motor cortices corresponding to imaginedrheveiments,
while filter 3 focuses on the central foot area. This shows that the clostters are spa-
tial filters that meet the neurophysiological expectations, since they lrdécabapture the
frequency power modulations over relevant electrodes, while maskingnomportant or
noisy channels.

6.2.5. Discussion

This work shows that experienced BCI subjects do not necessaritiytoggerform a new
calibration period in a new experiment. By analyzing the CSP parameter, $jzacedd re-
veal an appropriate characterization of CSP filters. Finding clusterSBfgarameters for
old sessions, novel prototypical CSP filters can be derived, for whi&heurophysiological
validity could be shown exemplarily. The concatenation of these prototypres filieh some
CSP filters trained on the same amount of data results in a classifier thatiypeoiorms
comparable to the presented ordinary CSP approach (trained on arflawgatsof data from
the same session) in half of the subjects, but also outperforms ordind&yc@$iderably
when only few data points are at hand. This means that experiencedtsidije predictable
to an extent that they do not require calibration anymore. The preseatadldarly show
that the distributions of the CSP filters are changing from session to seggiah corre-
sponds to nonstationary time series on a long timescale. However, the newlyuiced
perspective of data miningn the parameterbas led to a method for the extraction of very
robust features which can also be expected to work on a new, unatesed.

Advanced BCI systems (e.g. BBCI) have the ability to dispense with extessivject
training and now allow to infer a blueprint of the subject’s volition from a slkatibration
session of approximately 30 min. This became possible through the use ofrmmodehine
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Figure 6.10.: Incorporating more and more data from the current sg4€lpR0 or 30 trials
per class), the classification error decreases for all of the four mettied
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Figure 6.11.: First six CSP prototype filters determined by IBICAdior
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learning technology. The next step along this line to make BCI more practicastigve for
zero calibration time. Certainly it will not be realistic to achieve this goal foitemty BCI
novices, rather in this study | have concentrated on experienced B& (vgith 4 and more
sessions) and discussed algorithms to re-use their classifiers fronsgsgons.

As all the data presented in this section was analyzed offline, it is still an quoestion
how well the results will transfer to the online scenario. Therefore, | vV put the meth-
ods covered here into action and will present the results obtained byliae erperiment
with the CONCAT-classifier in the next section.

6.3. Towards Zero Training for Brain-Computer Interfacing

In the previous Sectidn 6.2, | have presented a method for the compafidiffier@nt spatial
filters. This led to the identification of particularly stable CSP filters which caexpected
to perform well on future sessions. This development opens up a nkvfdiefurther
investigations: In the case of long-term BCI users, who repeatedlyrpel&| sessions
with the same mental tasks, rich datasets of previous sessions are decegdilile the
standard machine learning approach only focuses on the currerthégyrevious section
has demonstrated in an offline analysis, that also data from other sefworthe current
one can be used to set up a classifier with a high performance right feostettt. As a proof
of concept, the offline analysis has shown that@@NCAT method is even superior to the
standard CSP approach with up to 30 trials of calibration data.

The transfer of these results to an online application can be jeopardizedryydifferent
factors. Although the classification setup will be exactly as in the offline simulatie
subjects can now be influenced by the feedback, which might put them idiffegent
psychological state. Motivation and task involvement as well as frustratigeriods of
low performance can hardly be simulated in offline measurements.

A further problem for the transfer of theONCAT classifier to an online environment
might be the fact thaCONCAT is only trained on calibration data, while it has been shown
that there can be a substantial shift of the features when going fromednlioffline data.
Therefore, one can expect that a bias adaptation will be necessaynfie of the subjects,
as it was suggested in Section 5.1.

The superior method from the last secti@@NCAT, is now tested against the standard
approach where spatial filters and classifiers are trained anew onlittan data of a
new session.

The study is presented in the following order: In Section 6.3.2, | introdacexaeri-
mental setting that allows for the comparison of QBNCAT approach and the ordinary
approach including calibration. In Section 6/3.4, | show the results of thigpadson, dis-
cuss our findings (Section 6.3.5) and put them into perspective.

6.3.1. Features and Classification

The online experiments will be performed analogously to the methods prdsengzc-
tion 6.2. Therefore, the classification will rely on the discrimination of imagirettdrand
foot movements, and spatial filters will be required to extract the most dis@iivirsignals
from the EEG signal. Here | will describe generally, how spatial filtersiaesl to calculate
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Figure 6.12.: Scheme of th@ONCAT training procedure. Session 1 to session n shows a
standard BCI procedure: spatial filter and classifiers are learned famm a
calibration recording (e.g. with CSP and LDA) before they are applieshgur
a feedback application at the same day. The G&MNCAT method eliminates
the calibration recording: spatial filters and a classifer are predeterrbaed
fore sessiom+ 1 starts. The spatial filters for session+- 1 are extracted
from old spatial filters (blue), the classifier for sessipAl is calculated from
old calibration recordings (red). The feedback application of sessiofi is
preceded by a bias adaptation (yellow).

features for classification, and how the ongoing EEG is translated intatetsignal. This
method applies to both classical CSP and the proposed method.

The EEG signals of the calibration measurement are band-pass filtelgecfsspecific
frequency band, see Section 6.3.2 and Table 6.5) and spatially filtered evgbldcted CSP
filters. From these signals the log-variance is calculated in each trial oatiteation data
(interval is selected subject-specfically, typically 750 to 3500 ms relativestprissentation
of the visual cue). This procedure results in a feature vector with dimesigtp equal to
the number of selected CSP filters (which was in this study 6 for classicab@&R2 for
the proposed method, see Section 6.3.3). For classification least scpgnession (LSR)
was used.

For online operation, features are calculated in the same way every 40mmshe most
recent segment of EEG (sliding windows of 1000 ms width). CSP filters ledlifrom
the initial calibration measurement are not adapted during online operatevrertNeless,
the system allows stable performance even for several hours ([94, Bt for optimal
feedback the bias of the classifier might need to be adjusted for feedbimtle the mental
state of the user is very much different during the feedback phase cedipehe calibration
phase, also the non-task-related brain activity differs. For a thorowgstigation of this
issue cf. [71, 126, 69], or see Section 5.1 of this work. With regard testhidy, the issue is
discussed in Section 6.3.2.
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#chan- #past  #train Frequency band Interval

Subject nels sessions trials ClassesCSP) (CONCAT) (CSP) (CONCAT)

zq 46 7 845 LR [914] [9 25] [810 4460] [500 3000]
ay 46 4 324 LR [8 22] [9 25] [710 2650] [500 3000]
zp 46 5 704 LR [1025] [925] [27505000] [500 3000]
al 44 9 684 FR [1125] [925] [1600 4690] [500 3000]
aw 44 13 1075 LF [1117] [10 25] [1500 4500] [500 3000]
zk 46 7 240 LR [8 31] [9 25] [920 4390] [500 3000]

Table 6.5.: Subject-specific parameters. The first until third column reperumber of
sensors and sessions, as well as the number of trials per class whehwads
able in total from these previous sessions. The fourth column indicates ¢he tw
motor imagery classes that have been used (L: left hand, R: right Ranight
foot). The frequency band for CSP analysis was chosen for e&gcsindivid-
ually. For original CSP (column 5) it was chosen on data of the actuabsess
For CONCAT (column 6) it was chosen on previously available sessions. The
same holds for the time window used for the training of the classifier, denoted in
milliseconds after stimulus presentation: for CSP (column 7), the window was
optimized on the training data, while f@GONCAT, a fixed window was used for
all subjects.

6.3.2. Experimental Setup

To demonstrate the feasibility of tt@ONCAT approach, a BCI feedback study was de-
signed to compare the proposed approach with the classical CSP dpproaens of feed-
back performance. The specific construction of the two classificatiopsetulescribed in
Section 6.3.3.

The BCI experiments were performed with 6 healthy subjects, 5 male anccora,
aged 26-41. These were all the subjects who had performed at led3t geBsions be-
fore with the Berlin Brain-Computer Interface (BBCI). The large amounpast experi-
mental data is a prerequisite for the extraction of prototypical CSP filteresmided in
Section 6.2.2, since the cluster density in the CSP filter space can only be edtimtata
sufficient number of sample points.

The feedback consisted of the visual presentation of a computer auingcht was con-
trolled by the output of one of two different classifiers. The first themddback runs were
done with the pre-compute@ONCAT-classifier, see Section 6.3.3. After the completion of
the third run, an ordinary CSP classifier was trained as described in $€c83, and in
the next 8 runs, either theONCAT or the ordinary CSP classifier was used for feedback;
the order was randomly chosen and unknown to the subject. Due to the hightithat
a modulation of the oscillatory activity in the visual cortex can have on theifitadin
of bandpower-based classifiers (see Chapter 5), | enforcedeaetitfe in the visual work-
load by switching from ordinary “Fixed-Duration” cursor control (btscl-Il and 1V) to
“Fixed-Duration” Feedback of Results (blocks Il and V), where thesor was invisible
(see Section 2.3.5 for details).

The EEG data were bandpass-filtered to a subject-specific frequandy$ee Table 6.5),
and spatial filters, as described in Section 6.2.2 and Section 2.2.1, wéiedlapinally, the
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Figure 6.13.: This figure shows a schematic overview of the applied panaday each run
of the feedback session. Block I, Il and IV were conducted with regbia-
sor Control feedback (with a fixed duration), whereas the cursoiwasble
during blocks Il and V. In block I, the predefined classifier was ajpplénd
the sequential order of the classifiers (either regdi@aP or CONCAT) was
randomized for block II-VCSP was trained using the data of block I.

v

band power of the spatially and temporally filtered signals was estimated byataiguhe
logarithm of the squared sum of the filter outputs. These features weratte a linear
classifier. | used least squares regression (LSR), in order to fieecelasswise mean of the
linear classifier output to be +1 and -1, respectively. Details on LSRifirs are given in
Section 2.2.2.

At a rate of 25Hz, graded classifier outputs were calculated for the @ rhs, and
averaged over 8 samples. A scalar factor was multiplied to the result, atigt &nzal-
valued bias term was added.

Guided by our experience with nonstationary bias, a bias adaptation \wasnped at
the beginning of every run. Therefore, the subject controlled thevctws 20 trials (10 per
class), and the bias was adapted at the end of this period. The precediesponds to the
initial calibration of the bias as presented in Section 5.1. In the following 108 {68 per
class), the subject received feedback in a “Cursor Control” feddapplication.

6.3.3. Construction of Classifiers

Here | will describe the determination of the spatial filters and classifier fopthposed
approach and the calculation of filters and classifier for the classicab@@®ach on data
recorded at the beginning of the session. The feedback perforrofiimese two approaches
is compared using the experimental design described in Section 6.3.2 altslaes reported
in Section 6.3.4. Most of these settings are chosen as straightforwasdopmnces from
the offline analysis presented in Section 6.2.

The Zero-Training Filters and Classifier

The clustering approach for prototypical CSP filters relies on the samencistanction

and training procedure as presented in Section 6.2: spatial filters aterellisccording
to their non-euclidean distance in the parameter space, and cluster @stetsosen as
representatives for especially stable filters.
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For each subject, data from a number of past sessions (past dat®drmaavailable (see
Table 6.5). Based on this data, a set of spatial filters an@@NCAT classifier was con-
structed individually for each subject. This preparation could take plage defore the
planned feedback experiment, as only historic data is involved for théraotien of CON-
CAT. For every subject, | performed the following:

| first calculated for each class the three filters with the three largestvailyes for each
historic session of the subject using the CSP algorithm from Section 2.20seThp three
filters of both classes and all past sessions of that subject, amounting ato6y/pe filters
(Section 6.2.2), constituted the first 6 dimensions of the feature spacdditiva to these
prototypical filters, | also pooled all the data from past experiments ofghbjgect and
calculated ordinary CSP filters on this collection of historic data sets. Thé#ingsfilters
(3 per class) were appended to the 6 prototype filters. Filtering the EE®figia pooled
data set (all past sessions of the subject) resulted in a 12-dimensianakfepace. Finally,
a linear classifier was calculated on the features using Least Squayes§len (LSR).

The Ordinary CSP Filters and Classifier

For each subject, | also built a set of ordinary CSP filters and a camegpy classifier.
In contrast to theCONCAT solution, this setup can not be prepared beforehand. The con-
struction is done on the fly during a new experimental session and do@svohte data
from past sessions. This corresponds to the standard classificatioariscas presented in
Section 2.3, and will be refered to @sP in the following.

For the training of this regular CSP classifier, | first recorded thres ofifeedback data
(with feedback provided by the output of tit®@NCAT-classifier), totalling to more than 150
trials per class. According to the cross-validation error on this data, timadrequency
band was selected, as well as some additional parameters like length aimg) $taint of
the training time interval for estimating the band power. The Common Spatial Rattera
computed on this data and two spatial filters were chosen for each classe parameters
were chosen as described in Section 2.3. Then a linear classifier (L&Rrained using
filtered data from the first three runs.

6.3.4. Results
Feedback Performance

The first three runs of feedback showed that all subjects under stady able to operate
the BCI with the pre-computed classifier at a high accuracy, where ontgial® per class
from the current day were required to update the classification scerfigo6.15 shows,
for each subject, the percentage of successful (“hit”) trials fronm ean. After the third
run, the subjects could not know in advance, which one of the two classifies used for
the generation of the feedback.

For subjectzq al andzk theCsP feedback performed better than ttONCAT feedback.
In ay andaw, the feedback performance on the four blocks is very similar with both clas-
sifiers, whereas in subjegp the CONCAT feedback even outperformed tBsP feedback.
Note that if the initial three runs are further taken into account for a mazetestimation
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Figure 6.14.: The discriminability of the calibration data for each previousiae{N —
7,...,N—1) as calculated by the cross-validation error of the CSP algorithm.
Frequency band and time window were specifically optimized for each sessio
and each subject. The cross-validation error on sedsiisncalculated on the
three runs from block I, with the settings from table 6.5.

of the feedback performance 6ONCAT, Subjectzdgs performance wittCONCAT can no
longer be found to be inferior to the performance wWitbP.

The performance over all subjects is shown in Fig. 6.16, where thedekgierformance
in each run of the four blocks is collected in a single boxplot for eachifierssThe CSP
performance is slightly higher on average, although this difference isigatficant: a
Wilcoxon ranking test was performed, at a significance leved ©f0.05.

Adaptation of Classifier Bias

The bias was updated at the beginning of every run. | can now checlsitiiiate was
necessary for the accuracy of the classifiers. Foii amd classifiefj and movement class
k, let bjjx be the mean of the classifier output of the corresponding 50 trials. Thealthes

bij == szbl"uijl relates the optimal bias; for runi and classifiej with the actual distance
between the class means. A value of 1 would correspond to shifting theéctelosundary

by the entire inter-means distance. The results of this calculation are shdvig. i6.17.

For most subjects, the required shift is moder&tp{ 0.5), but for subjectgpandzk the
CONCAT classifier requires a strong update of the bias, since the absolute vabeesid.
TheCSP classifier, trained on data from the same day, is hot as susceptible toiftias tie
CONCAT classifier, since the change is comparatively small also for these two subjacs
finding supports the hypothesis from Section 5.1 that a bias-shift is eehfdr classifiers
that are trained on calibration data without visual feedback (such &INEAT-classifier),
whereas the shifvithin the session is comparatively smaller. The latter is the case for the

CSP-classifier which is trained on online BCI data with visual feedback.
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Figure 6.15.: The feedback results for each of the six subjects. Thédek accuracy is
denoted for the 100 trials of each run. The initial three runs, here maked
“I”, were done with theCONCAT classifier, and in the following the order of
the classifiers was randomly permuted in each block of two runs, her¢edeno
as “lI-V”. The shift of the blue curve relative to the green curve withia th
shaded areas indicates the order of the classifiers within the block.
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Figure 6.16.: This figure shows the feedback performance @ #feand theCONCAT clas-
sifier over all subjects. The median of tasP feedback accuracy is slightly
higher. This difference is not significant (Wilcoxon ranking tgst; 0.05).
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Figure 6.17.: At the beginning of each run, the bias for the classifier wapted using

10 trials per movement imagination class. The plot shows the optimal bias
update, as calculated on the following 100 trials. This value is hormalized by
the difference between the classifier output class means. The solid lim&s sh
the optimal bias forICSP (green) andCONCAT (blue) classifier separately.
The dashed lines indicate the bias, as it was actually calculated on the initial
20 trials by the adaptation procedure during the feedback.

Besides the check for necessity of the bias update| Fig. 6.17 also mavicemparison
of the “optimal” bias with the actual bias, both calculated with the same normaliztien.
dashed lines indicate the bias, as it was computed on the initial 20 trials durifegtimack.
From this figure, it is evident that the estimated and the optimal bias coincidevagiite
Although the estimation error is sometimes not neglectable (as for subj@eadzK),the
dashed and the corresponding solid lines are highly correlated. If thsifea would not
have been adapted (corresponding to setting the bias to 0 in Fig. 6.17jraheveuld be
larger in nearly all runs than with the proposed adaptation strategy. Ténepthat the
update procedure is in fact stable and useful in combination witG@MNCAT-classifier.

Fig. 6.18 exemplifies the effect of the bias shift for subjgetin the left part, the classi-
fiers are calculated for each of the 1100 trials of the feedback, witldnling any bias term.
While CSP classification (on the x-axis) shows a good separability of the data intoyaositi
and negative values (for right hand and left hand movement, resplggtithe CONCAT
classifier assigns negative values to almost every point, resulting in Zlassification rate
(near 50%, corresponding to chance level accuracy). This eféecbe alleviated by esti-
mating the bias on the 20 initial trials that were performed previous to everyTheright
part of the figure shows the result: batlsP andCONCAT classification rate now are com-
parable. Note that an improvement of classification accuracy by biasatidapwvas highly
significant for two subjects.
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Figure 6.18.: This figure shows the effect of the bias estimation for subpedn the left
part of the figure, botlCONCAT and theCSP classifier are computed on the
1100 trials of the feedback session, without adding a bias term. While the CSP
method performs already quite well, the outputGE®INCAT (on the y-axis)
is negative for almost all samples, which would correspond to a classificatio
error near 50%. The right part of the figure shows the output on the sgals,
after an initial bias adaptation on the 20 initial trials per run. ForQis®
classification, the bias is not changing the result significantly,G@fCAT
clearly profits from the bias update.

Discriminabilty owed to Each Prototype Filter

Here | investigate each prototype CSP filter with respect to the discriminabiliheaforre-
sponding log variance feature and relate it tojiimdex, see Section 6.2.2. For the evalua-
tion of the discriminability of each features, | use as measure the areathedRr©C-curve
(AUC, see e.g. [42] and Section 3.1). This value is 0.5 for features thatreorrelated with
the class affiliation and 1 for features that are perfectly separablgatded the/-index,
calculated on the previous sessions, as a quality prediction for the parioe of the feature
in the online application of the classifier. Fig. 6.19 confirms this hypothesibdyiag that
there is in fact a strong negative correlation betweenythelex and the AUC-value of the
features. The higher the density of the CSP filters, accumulated over ressiprss, at a
particular point, the higher the discriminability of the corresponding log vaedeature in
the current online session. Note that beloywwzalue of 0.7, only features of the three sub-
jects with the overall highest feedback performances (subjéctsjandaw) can be found.
These features, on the other hand, have the highest AUC-values.
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Figure 6.19.: This figure compares tlr@gndex of a prototypical CSP filter, as calculated
on previous sessions, with the discriminability of this feature in the feedback
session. The filters with the lowggtindex have the highest performance. This
correlation is highly significanty < 0.01).
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6.3.5. Discussion

The final validation of BCI algorithms can only be provided in online experisiddowever,
in contrast to offline evaluation, only one classifier can be applied to the dataset. This
makes a comparison especially hard, since the differences betweenrtiffata sets (high
inter-subject and inter-session variability) add to the variability of the pewdoce. It is
therefore required to record all data sets under similar conditions. Allfdatame subject
was recorded on the same day, which clearly limits the possible number afhatnsould
be performed. | evaluated the performance of this new classifier with thdasth CSP
method that is used for the classification of band power features in imagimargments
([18]). In order to keep the subjects equally motivated under both condjttbey were not
informed which classifier was used for which part of the experiment astduicted them
to keep trying to hit the ordered targets on the screen, irrespective pbtsgbly degraded
performance of the current classifier.

The aim of this study was to construct and evaluate a classification methaathia¢ ap-
plied without a lengthy calibration measurement. While the features | chogsephaven to
be quite discriminative for the classification task at hand, the bias adapta®mdispens-
able for two of the six subjects (and did not degrade the performantedather subjects).
Possible explanations for the shift of the bias from one session to ariathete the differ-
ences in electrode impedances as well as physiological effects likarappsed occipital
a-rhythm, see Chapter 5 and [126, 71, 69]. The number of trials per ttlasare initially
used for the adaptation period has to be chosen according to a trautvaéen the total du-
ration of the adaptation period and the precision of the estimation. After prelyroffaine
evaluations | found 10 trials per class to be a quite balanced choice. Notaithaumber
might as well be adjusted according to the predicted feedback accaratyefsubject. Bias
parameter estimation is clearly expected to degrade with a more variable dketiberim-
inability during the adaptation period, and the presented findings supeexpectation.
Therefore, if a low feedback performance for a subject can bectxgeone could easily
increase the number of trials used for adaptation. It is on the other hairdlale to keep
the total duration of the adaptation period very short, since the goal is tatepeal-world
BCI applications right from the start, where knowledge of class labelstiavailable and
even the equality of class distributions are not always reasonable assusnp

In this study, the training data for tl&SP-classifier are different from the usual calibra-
tion data: in the normal case, no feedback is given during the presentéstimuli. Also,
the visual scene now resembles more closely the feedback setup ($ee 3€), i.e., the
targets are on the left and right side of the screen and change the coididate the next
movement task. Although one might suspect that this could degrade thificdiosn per-
formance of theCSP classifier due to the higher complexity of the mental task, this is not
the case. Fig. 6.14 shows the development of the cross-validation eeothevprevious
experiments for each subject. Parameters like the frequency band andetieterval were
subject-specifically optimized in each session. The last point (selS3idaenotes the exper-
iment from this study, where the first three runs were taken into accobig.cérresponds
to the data on which th€SP classifier was trained. The cross-validation performance for
this session is of the same magnitude as the previous performance andlbescet reveal
a systematic disadvantage for ta8P method. On the contrary, the following application
of the classifier might even benefit from the fact that the task differbateeen the training
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data and the test data is relatively small.

For the training of theCONCAT classifier, some of the parameters were not specifically
optimized, such as the frequency band, the training window for paranstieation on the
previous sessions, and the movement type combination used for the dkedba settings
that were applied here were fixed beforehand. It has been shownéentrpublications [38,
22], that the optimization of spatial and temporal parameters can result ificagtly better
classification accuracy. Therefore, selecting these highly subjeenndept parameters on
the same day'’s training data for tlxsP classifier may have resulted in a slight advantage
for this method, but | decided for the optimization in order to have the besitpeslassifier
as a comparison.

Only in subjecizk theCSP classifier clearly outperforms tl@ONCAT classifier. The rea-
son might be due to the amount of training data which was present fronopsesessions:
while the training sessions for all other subjects contained more than 100piatdass,
only 35 trials per class and session were recorded for sutieste also table 6.5. This led
to a higher variability in the collection of CSP filters; it also explains the yenvdex for all
features of subjeatk, see Fig. 6.19.

For subjecizk the y-values for theCONCAT-features are slightly higher than for subject
zp. From the feedback performance in Fig. 6.15, one can even see a c#itivep trend
for the CONCAT classifier throughout the day. The trend in the performance focgr
classifier, on the other hand, is degrading over time. Subeaported that she was trying
to control the feedback with different strategies over time, always swidiairthe mental
imagery that seemed most reliable at each point in time. This variability in the mental
strategies, induced by the feedback presentation, is reflected in theslyadts. Figl. 6.20
shows the evolution of the scalp topographies related to the discriminability dfcthe
power features in each electrode. | calculated the band power fe&dutbe 100 feedback
trials in each run and calculated tifevalues between left and right hand imagery class, as
a measure of linear discriminability. The figure shows that towards the etigk gfession,
the features on the right motor cortex are more discriminative than the feadtitially
on the left motor cortex. The feedback performance of@ls® classifier appears to be
more susceptible to this shift, while tt@ONCAT classifier is based on a broader basis
of spatial filters, which can account for the variability in the signals. A jpbssemedy
for the degrading performance is the adaptive estimation of the linear gigperof the
classifiers, [71, 146]. Using an adaptation period as short as 10 tdalslass, however,
the adaptation of the hyperplane fOONCAT fails for almost every subject, as an offline
evaluation on the given shows. This is mainly due to the fact that for a lirlassifier,
the number of parameters to be estimated grows quadratically with the humeatwfef
dimensions. Since theONCAT feature space has 12 dimensions (6 “prototype” filters and
6 “CSP" filters), 20 trials are too little data. Similar results have been showndticBes.2
(see also [71]) for classical CSP; the suggested bias update requiyethe estimation of
one single parameter and is therefore more robust. If, however, thedatiscrimination
performance is changing over time like in subjegtthis bias update might not be sufficient
any more. Other options, like a continuous adaptation of the bias througleiadatiback
run, require at least the a posteriori knowledge of all the labels of thiswbich can not be
granted in all feedback applications. Moreover, in Chapter 5 (see26d)[ this adaptation
scheme did not prove to be superior to the initial adaptation of the bias.
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Figure 6.20.: For each feedback run of the session, this figure shevgsalp topographies
of class discriminability on band power features for subggectAfter bandpass
filtering to the frequency band of 10-25Hz, the log-bandpower wasicalc
lated for each electrode in the window 500-3000 ms after the presentation of
the stimulus. Finally, signecf-values were calculated as a measure of class
discriminability.

Fig./6.19 suggests a good prediction accuracy for prototypical CSP filiién a low y-
index. However, since the features of some subjects t&andzp) appear to form distinct
clusters for each class, one should consider some reasonable notioralostween these
values. Therindex, as formulated above, depends mainly on the number of dimensidns an
on the number of samples, since if the number of dimensions (in this case: rtimenof
electrodes) is fixed, the maximally possilpiéndex is a monotonic decreasing function in
the number of samples. Not only the maximal, but also the expected migimdéx under
randomly drawn samples will differ. Therefore, | estimated this value by alation: the
number of dimensions and samples were chosen for every subjectlimccto Table 6.5.
The minimaly-value was calculated and averaged over 1000 repetitions. The results a
displayed in Table 6.6. Since the values range from 1.12 for suayett 1.22 for subject
ay, the correlation found in Fig. 6.19 is not influenced if egetalue is normalized by the
expected minimaj-value. Note that for subjecizk anday, some of they-values are close
to 1 after normalization; this corresponds to a “cluster” density which isaggdo occur
even in random samples. These features, in turn, have very low All@s/a

With respect to the cumbersome electrode preparation great advancemedise achie-
ved in the meantime. In [117], a novel dry EEG recording technology wesepted which
does not need preparation with conductive gel. In the reported studgeathBCl subjects,
feedback performance was comparable to the approach with convériiB@acaps for
most subjects. Note that this system only uses 6 electrodes and can thusdiarinad to
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Subject| Expected Minimaly

Zq 1.17+0.02
ay 1.22+ 0.02
zp 1.20+ 0.02
al 1.15+ 0.02
aw 1.12+£ 0.02
zk 1.17+0.02

Table 6.6.: This table shows the minimaindex for a collection of randomly drawn points,
together with the standard deviation. For this calculation, the same dimensional-
ity (corresponding to the number of electrodes) and the same number ¢f poin
(corresponding to three times the number of experiments) was used.

run with a tiny EEG amplifier and a pocket PC.

This study has successfully transfered the results obtained in Section € émline
scenario. For the majority of subjects, the new classifier performed with a sexitaracy
like the standard machine learning approach which was trained on threefrigedback
data from the same day. The theoretical considerations concerning thecgisneasure in
the space of spatial filters were justified with this promising result. By analyk@mgmount
of variability from session to session, | have introduced a new method vaoicipletely
overcomes the tedious calibration period. Especially in the case of padalyzempletely
locked-in patients, who rely on communication devices on a daily basis, this dhetho
particularly appealing, since it lets the subjects initiate the communication right away

The study also revealed that for some of the subjects, the bias had tgarsddstantial
adaptation. This was not surprising, since the findings of Chapter dglsemgested that
the output of classifiers trained on calibration data often needs a shiffigdine feedback
period. The method of an initial bias adaptation, which was also developedtinhhpter,
proved to be extremely effective, since it decreased the error folidlsesbbstantially.

After the analysis of the degree of nonstationarity across sessionsegenged approach
is the successful combination of methods which account for this nonstatibehaviour.
The result is a single method, which not only shows a stable performarmegtiout an
entire session, but also requires minimal calibration time for the next session.
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7. Conclusion and Outlook

In this work, | have presented a new framework for the assessmepnefationarity. The
concept of time series with probability distributions which change over time edound
in many research fields where data are measured with sensors (suctii@siad video
data analysis, speech recognition, biomedical or meteorological datdl)chn also occur
in more abstract processes such as stock market rates or network dredfi/sis. In all
these cases, nonstationarity can lead to serious problems if methods farmigeessing
or classification are applied to the data under the hypothesis of stationaipudiens. |
have applied the presented framework to the field of EEG data. In thisrszehaould
demonstrate the power of these methods by visualizing and interpreting the data

A variety of visualization tools was introduced in Chapters 3/and 5 for therdifices
between the brain signals of two distinct time intervals. These tools have tbeidvay
into the BCI research community: they were first presented in [126] andddtgpted in
[144]. By application to data from online BCI feedback experiments, Iccshow that a
source for nonstationarity on many timescales is the modulation of occipital dipirey
different states of visual input (see Chapter 5 and Section 6.1). This imprecedented
discovery with the methods of applied machine learning and points out the iropHut
shift on the classification performance. In this sense, | have exemplifiethid analysis of
nonstationarity in a machine learning context can also lead to neurophysalloggights.

Once the reasons for the change of the distributions over time are knawakés sense
to consider remedies against their influence on the classification perfoembahave sug-
gested various methods for adapting the classifiers over the courseegpariment, and
have shown that they can be readily applied in online experiments. The gadiant, a
bias adaptation, is a very robust method and also turned out to be an intpweeguisite
for the transfer of classifiers across sessions. However, the digcthat bandpower fea-
tures can actually undergo a shift within a single experimental sessionchasdeseries of
publications which suggest other means of adaptation for this scena3iy (33, 16]).

With the same approach, namely with an analysis of the variability of the optimatpar
eters, | developed and implemented a new method which reduces the calilpetiod of
usually 20—40 minutes substantially (see Chapter 6). After attaching theoelesfisubjects
can immediately receive feedback and use BCI applications at high infonm@asiosfer
rates. In the same spirit as [117], where a method is presented to ovetitemeed for
transductive gel for EEG measurements (“dry electrode cap”), this miethables longterm
BCI users to start BCI sessions with almost no preparation time. For dailicafgns, this
is a crucial requirement and will help in the realization of BCI devices feessy disabled
users. The development of this novel approach has paved the wagwvébdutionizing mod-
ern rehabilitation for the disabled. The applicability of devices of this kind mdtkalso
attractive for healthy users to use BCls as additional input channeldarmachine interac-
tion. Computer games and the direct control of machines can only be asefapplicable,
if the calibration time of the devices is reduced to a minimum, while preserving maximal
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precision. Combined with a “dry” cap, my development is a large step towhisigoal.

This achievement as well as other work (see [9, 10, 11, 12, 13, 14839, 38, 41, 61,

65, 66, 67, 68, 69, 70, 90, 95, 96, 97, 126, 132, 133]), hasiboted to the BBCI's in-
ternational success. Note that the method is by no means limited to its application,in BC
despite the potential it shows in this field. It can be regarded as a géoer&r machine
learning and signal processing.

Future research will have to transfer the tools provided in this thesis to stkeearios,
such as the transfer of classifier parameters from subject to subjeaughtihe variability
across subjects can easily be regarded within the same framework agittlitsafrom
session to session, it is out of the scope of this work. However, with thiaph, BCI
research can be conceivable for a wider range of applications,dugirg the calibration
time for naive subjects, such as it has been introduced in this work fordondClI users.
It is, moreover, not only a straight-forward, but also highly promisingitteapply these
methods to other neurophysiological paradigms or multi-class applications.

Apart from the question of robustification for BCI, it is a task with high ptisdro
apply these methods to other areas where machine learning methods aetedalffe the
nonstationarity in the data. Future research should strive for the robastfi of general
time series, in order to make machine learning applications more usable.
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A.1. Delta

The é-index of a point in a given data set is a measure for its outlierness, as tiveal in
Section 4.1.

f

e
e

d0(a)=2.6 4(a)=0.8

Figure A.1.. In the left exampla is an outlier an thus it® index is large. In the right
example it is part of a larger group so idsindex is small. Both examples
assume = 5.

Considem data pointgxy, . ..,x,} € RY in d-dimensional space with the euclidean norm
IX|| = VX" x. We denote thé& nearest neighbors afc RY among the given set by

nng(X),...,NN(X) € {X1,...,%} C RY.

The outlier indexd(x) is defined to be the length of the mean of the vectors pointing fom
to itsk nearest neighbors, i.e.,

k
Zx nn; (X

As shown in Figure A.19 is large if the neighbors are all in the same direction, which is
usually the case for outliers.

XIH

A.2. Gamma

If the data under study are taken from an arbitrary metric space, it israategl that an
addition operation is defined for this space. This means that an outlier irmsherat be
defined according to the definition &f since this requires subtraction, addition and scalar
multiplication to be defined. In the following definition of tikgndex, this problem is solved
by applying the averagingfter the application of the metric.

107



A. Appendix

Letw € (., m) be a point in an arbitrary metric spacé, and let na(w), ..., nn¢(w) be
the k nearest neighbors af, according to the metrim. The average distance wof to its
neighbors is then called theindex ofw, i.e.

k
yw) = 5 miv i w)

In this form, they index was applied to the space of CSP filters, which has an inherently
non-euclidean metric (see Section 6.2).

A.3. Adaptation: Implementation details

A.3.1. The BBCI software package

The Berlin Brain-Computer Interface is an inter-coordinated packapardfivare and soft-
ware solutions, designed to meet a large variety of requirements for dwaiputer inter-
facing. Its implementation is specifically tailored for modularity, i.e., the comporantbe
modified and replaced without losing functionality. | will give an overview ia tbllowing,
but for a more detailed description, see [34].

Most of the BBCI online toolbox is written in MATLAB [92], since this allows farfast
and intuitive modification of the signal processing and classification routimek/gd. This
requirement is crucial for the ongoing experimental research in the BBg#ct. Since,
on the other hand, the graphical output of MATLAB is not optimized foltie& applica-
tions, the online toolbox was divided into several parts which communicateevigetfvork-
protocols TCP [148] and UDP [149], to distribute the workload on difiepeocessors. This
modular setup even makes it possible to distribute the components to differemnesmc
connected over local area network or internet.

The single parts of the toolbox can be grouped into mainly four components:

1. Acquisition: The EEG data are recorded with a BrainVision Recordgjreed from
the company Brain Products GmbH. The included software also providesPa T
server, which makes the data available at a rate of 25 Hz, i.e., in blocks wfs40
length. The data are given with the associated channel labels and witmbiabkrs
to avoid loss of data.

2. Signal processing and classification: This unit is the core of the BBilldaa®, Since
it encompasses the routines which can be implemented using machine learhing tec
niques. The data are first fetched from the TCP server (as desetfitoe®), convo-
luted with spatial and temporal filters and then written into a buffer of apmtapr
length. The following feature extraction as well as the classification methoehde
strongly on the applied BCI paradigm and the pre-defined parametdes. ajplica-
tion of the classifier, simple post-processing steps, such as the applichtiatalar
factor or a real-valued bias term, can be performed. The resulting owgtludt is sent
to the graphical feedback unit via UDP.

3. Graphical output: Again, the type of the presented feedback applicdgioends on
the BCI paradigm. In any case, the feedback unit will transform the ifizgfon
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Figure A.2.: The figure shows an overview of the BBCI framework. Téok part denotes
modifications which were required for the implementation of adaptive classi-
fiers.

User

values it receives into graphical events on a computer screen. Indkeota rate-
controlled “cursor’-feedback, the incoming values are used to manipulatedti-

zontal position of a cursor on the screen; a positive value will move trsocto the
right, a negative value will move it to the left side of the screen.

4. Operator interaction: All parts of the feedback loop can be controleanbopera-
tor. A graphical user interface (GUI) is provided which enables theatpeto send
control parameters to the classification unit and to the graphical unit.

A.3.2. The Adaptation unit

Figure A.2 demonstrates the interaction of the adaptation unit with the varioers tts
of the BBCI online toolbox. The demands for the adaptation unit were asv&illo

1. Access to parameters, i.e., single parts of the classifier.
2. Possibility to exchange the entire classifier.

3. Receive control signals from feedback applications, e.g. begiramdgnd of adap-
tation periods.

4. Receive control signals from the GUI.

5. Display the exchanged parts of the classifier on the GUI, for contnggses on
behalf of the experimenter.

Since one of the crucial requirements is the access to all classifier parsnisteadaptation
was integrated into the classification unit of the BBCI online toolbox. In thikifes the
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adaptation unit has full access to the entire MATLAB workspace which deduhe loaded
variables and the classification parameters.

In the same framewaork, the adaptation routine can read out the featiaklgamlas well as
the classification output values in the ongoing feedback presentationnaiysis of these
values can result in a reasonable update of the parameters. By listeningker signals
which are accessible on the TCP server of the acquisition device, theatidapoutine is
responsive to specific start and end triggers sent by the feedbatitke o

For the communication with the GUI, a new UDP communication channel is established
enabling the adaptation routine to send control signals to the GUI, which cdifynsome
of the values stored here. The GUI, on the other hand, is now equipitled wew thread
which regularly checks for communication packets originating from thetatiap unit.
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