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Abstract

Brain-Computer Interface (BCI) research aims at the automatic translation of neural com-
mands into control signals. These can then be used to control applications such as text
input programs, electrical wheelchairs or neuroprostheses. A BCI system can, e.g., serve as
a communication option for severely disabled patients or as an additional man-machine
interaction channel for healthy users. In the classical “operant conditioning” approach,
subjects had to undergo weeks or months of training to adjust their brain signals to the
use of the system. The Berlin Brain-Computer Interface project (BBCI) has developed an
Electroencephalogram-(EEG-)based system which overcomes the needfor operant condi-
tioning with advanced machine learning methods. By adapting classifiers to the highly
subject-specific brain signals, even subjects with no prior experience in BCI can achieve
high information transfer rates from their first session.

However, after an initial calibration, the brain signals are rarely so stationary that the first
classifier can be reused in the next experimental session. Even if the classifier was fitted
to the subject on data from the same day, we sometimes encountered long periods of low
performances. These drawbacks can clearly impede the continuous useof the system, which
is particularly important for disabled people.

The reason for this flaw is the nonstationarity in the EEG data. Due to changesin the
characteristic properties of the data, classification can often be corrupted.

In this work, I will present a new framework for nonstationary data analysis, which en-
compasses methods for the quantification and visualization of nonstationary processes. The
analysis of data acquired in BCI experiments will be used to exemplify the power of the
methods. In particular, I show some neurophysiological evidence for thesources of the non-
stationarity. Once the underlying reasons for the nonstationarity are known, classification
can be adaptively enhanced; I will present some surprisingly simple methods. Finally, I
will construct classifiers that are largely robust against the changes from one experimental
session to the next. This novel type of classifiers can be applied without initial calibration
and has the potential to drastically improve the applicability of BCI devices for daily use.

While the BCI scenario was used as a testbed for the framework, it can be applied to
a wide range of problems. Nonstationarity can occur in any field of machine learning,
whenever the measured systems under observation change their properties over time.
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Zusammenfassung

Ein Brain-Computer Interface (BCI, “Gehirn-Computer-Schnittstelle”) istein System, das
neuronale Kommandos in Steuersignale umsetzt. Diese können genutzt werden, um Anwen-
dungen wie Texteingabeprogramme, elektrische Rollstühle oder Neuroprothesen zu steuern.
Ein BCI kann beispielsweise Schwerstbehinderten zur Kommunikation verhelfen, oder auch
gesunden Benutzern einen zusätzlichen Kanal zur Mensch-Maschine-Interaktion bieten. Im
klassischen Ansatz, der “operanten Konditionierung”, mussten Benutzer in einem wochen-
bis monatelangen Training ihre Gehirnstrommuster an die Wirkungsweise des Systems an-
passen. Das Berliner Brain-Computer Interface (BBCI) hingegen hatein auf dem Elektroen-
zephalogramm (EEG) basierendes System entwickelt, das durch den Einsatz von neuartigen
Methoden des maschinellen Lernens keine Konditionierung mehr benötigt. Hierbei passen
sich Klassifikatoren automatisch an die Daten an, die zwischen den Benutzern oft stark
variieren. So können selbst Benutzer, die zum ersten Mal mit einem BCI arbeiten, hohe
Informationstransferraten erzielen.

Nach der anfänglichen Kalibrierung sind die Gehirnströme jedoch selten sostationär, dass
der Klassifikator der ersten Sitzung auch später erfolgreich angewandt werden kann. Selbst
bei Klassifikatoren vom gleichen Tag können manchmal längere Abschnitteauftreten, in
denen die Übertragungsraten sehr niedrig sind. Durch diese Probleme wird der permanente
Gebrauch des Systems beeinträchtigt, der gerade für Behinderte besonders wichtig ist.

Der Grund dafür ist die Nicht-Stationarität in EEG-Signalen. Durch Veränderung der
charakteristischen Eigenschaften der Daten wird die Klassifikation oft in Mitleidenschaft
gezogen.

In dieser Dissertation werde ich eine Theorie für die Analyse nicht-stationärer Daten ent-
wickeln, die Methoden für die Quantifizierung und Visualisierung nicht-stationärer Prozesse
beinhaltet. Anhand der Analyse von Daten aus BCI-Experimenten werde ich die Effizienz
dieser Methoden veranschaulichen. Insbesondere werde ich neurophysiologische Anhalts-
punkte für Quellen der Nicht-Stationarität aufzeigen. Sind die Prozesse bekannt, die der
Nicht-Stationarität zugrunde liegen, kann man die Klassifikation durch Adaptation verbes-
sern. Hierzu werde ich einige erstaunlich einfache Methoden entwickeln.Abschliessend
werde ich Klassifikatoren konstruieren, die gegenüber Veränderungen von einer experi-
mentellen Sitzung zur nächsten weitgehend robust sind. Diese neuartige Kategorie von
Klassifikatoren kann ohne anfängliche Kalibrierung angewandt werden und hat daher das
Potential, die tägliche Benutzbarkeit von BCI-Systemen zu ermöglichen.

Obwohl ausschliesslich BCI-Daten zur Auswertung herangezogen wurden, können die
Methoden auf eine Vielzahl von Problemen angewandt werden. Nicht-Stationarität kann
in jedem Bereich des maschinellen Lernens auftreten, sobald sich die Eigenschaften der
beobachteten Systeme zeitabhängig verändern.
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1. Introduction

“There is nothing so stable as change”
(Bob Dylan)

Nonstationarity is an ubiquitous problem in signal processing and machine learning, when
dynamical systems change their properties over time. It appears in applicationfields where
the estimation of the state of a process relies on “real-world” data, typically acquired by
(multiple) sensors. In some prominent research areas such as automatic processing of audio
and video data and problems like speech recognition, image recognition and gesture detec-
tion, nonstationarity has been recognized as an important challenge. In allthese fields, the
application of automatized algorithms at different points in time has to be performed with
special care. Problems can particularly arise if the algorithms rely on calibration data or the
estimation of parameters on small fractions of the available data.

This thesis will address this problem with a new framework for nonstationarityin machine
learning applications; it encompasses methods for the analysis and visualization and quan-
tification of data. In particular, I will add a new perspective to data analysis, by regarding
the parameters of machine learning algorithms as input for my methods. This perspective
allows for abandoning the simplistic view of machine learning methods as “black box” sys-
tems; the methods carry valuable information – incorporated in their parameters– about the
problems they are applied to.

Brain-Computer Interface research aims at the automatic translation of neural commands
into control signals. These signals can then be used to control applicationssuch as text input
programs, wheelchairs or neuroprostheses. A BCI system can, e.g., serve as a commu-
nication option for severely disabled patients or as an additional man-machineinteraction
channel for healthy users. In the classical “operant conditioning” approach, subjects had to
undergo weeks or months of training to adjust their brain signals to the use ofthe system.
The Berlin Brain-Computer Interface project (BBCI), of which I am a member, has devel-
oped an Electroencephalogram-(EEG-)based system which overcomesthe need for operant
conditioning with advanced machine learning methods. By adapting classifiersto the highly
subject-specific brain signals, even subjects with no prior experience in BCI can achieve
high information transfer rates from their first session.

However, after an initial calibration, the brain signals are rarely so stationary that the
first classifier can be reused in the next experimental session. Even if the classifier was
fitted to the subject on data from the same day, we sometimes encountered long periods of
low performances. These drawbacks can clearly impede the continuous use of the system,
which is particularly important for disabled people. This makes Brain-Computer Interface
research a particularly difficult and inspiring application area with respect to nonstationarity.
The reasons for the changes in the dynamics are among the following:

• The physical properties of the sensors (such as electrodes and amplification units)
change over time. This can be due to drying of the conductive electrode gel (which

1



1. Introduction

depends on the room temperature and the gel consistency) or electromagnetic fields
of nearby power lines.

• Neurophysiological conditions (e.g., awakeness), even in a single subject, can display
a large variability. This can also affect mental strategies for the communicationwith
the devices.

• Psychological parameters, such as attention, task involvement and motivation, are also
variable over time.

• Finally, BCI always requires two interacting “systems”, namely the user andthe com-
puter, whose internal states depend on each other.

This list already gives an impression of the various disciplines involved in BCI research.
More specifically, some preliminary knowledge in each of them is required for the successful
construction of BCI devices:

• Metrology: It is a highly challenging task for, e.g., electrical engineers to develop
new devices for the measurement of brain activity. For a suitable implementation
of a BCI, the preparation times as well as weight and size of the devices have to be
reduced, while providing convenient use and high resolution in frequency and space.

• Neurophysiology: For the localization of neuronal processes and the development
of paradigms, neurophysiological experience is required. In anotherperspective, BCI
devices can serve to get insight into specific brain functions.

• Psychology:This research field is required for developing models for the interaction
of the user with a machine.

• Computer Sciencewith subdisciplines:

– Signal Processing:Data of brain activity, such as EEG data, are high-dimensional
time series with a low signal-to-noise ratio. Therefore, advanced signal process-
ing has to be applied to reveal the relevant part of the signals.

– Machine Learning: Brain signals are highly subject-specific and display a large
variability. Therefore, if the application should be adapted to the user’s brain
signals, it is required to adjust specific settings by automated machine learning
methods.

– Software Engineering: For online BCI experiments, it is necessary to bring
together realtime data acquisition, data analysis and the display for the user
(typically graphical feedback). The developed applications have to be safe and
comprehensible for the user and need to incorporate all the specificationsfrom
the above-mentioned research fields.

1.1. Outline of this work

My work in the BBCI project, as well as the work presented in this thesis, hasbeen mainly
in the domain of computer science. In a highly interdisciplinary research area such as BCI

2



1.1. Outline of this work

research, there are some prerequisites to understanding and communicating ideas. There-
fore, I will introduce some basic facts about measurement techniques, neurophysiology and
paradigms in Section 2.1. I will then summarize some methods of signal processing and
machine learning in Section 2.2, and will report on the state of the art in the Berlin BCI
(BBCI) in Section 2.3. Then, I will introduce a notion of nonstationarity in chapter 3, as
required for modeling machine learning processes.

In chapters 4–6, I will describe the main achievements of my work1.

• Analysis of Nonstationary Signals:I developed methods for the quantification and
visualization of the changes of these signals over time. Applying these methodsto
BCI data, I discovered that a commonly encountered source of nonstationarity is the
influence of a particular frequency modulation in the visual cortex. I will present these
findings and show how much the features of the EEG are affected by the change. I will
also show how much the classification performance is impaired by the nonstationarity
(see chapters 4 and 5).

• Adaptive Classification: If the reasons for the nonstationarity are known, it is possi-
ble to find remedies. One option is the development of adaptive classifiers. For this
purpose, it is crucial to assess the appropriate update frequency andthe amount of
data required for the first update, since an adaptation with too few samples can lead to
a bad estimation of the adaptation parameters, and consequently to a degraded clas-
sifier. Considering that for many subjects the standard classifiers already work quite
well, I will also analyze how much of the classifier’s structure should be preserved. As
a result, I found a surprisingly simple, but effective adaptation method forthe course
of a single session (see Chapter 5).

• Classifiers for Session-to-Session transfer:The changes in the brain signals from
one session to the next can also be regarded as nonstationary. I developed a framework
in which the classifiers across sessions can be compared. This comparison led to a new
method for training a classifier which works without lengthy calibration measurement.
This reduces the preparation time for BCI experiments drastically. In Chapter 6, I will
show the feasibility of this method with online BCI feedback experiments.

1Parts of this thesis are based on work published in Krauledat et al. [68] (chapter 4), Shenoy et al. [126]
(Section 5.1), Krauledat et al. [71] (Section 5.2) and Krauledat et al. [70] (section 6.2).
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2. Basic BCI Ingredients

2.1. Brain-Computer Interface (BCI)

Brain-Computer Interfaces are systems which allow for direct control of, e.g., a computer
application or a neuroprosthesis, solely by human intentions as reflected bysuitable brain
signals ([150]). The usual motor output pathways and peripheral nerves are bypassed in this

Features Control signalClassifier decisionEEG−Signal

ClassificationPreprocessing Control Theory

Feedback

User

Figure 2.1.: In this figure, the classical feedback-loop of a Brain-Computer Interface is de-
picted: the user’s brain signals are acquired, and by different methodsof feature
extraction, classification and control logic, a feedback is generated andpre-
sented to the user.

approach. It is this independence which makes the development of a BCI such an important
and realistic choice for the construction of prostheses for severely handicapped people, such
as patients suffering from tetraplegia or late stages of Amyotrophic LateralSclerosis (ALS).
These patients can have a strongly reduced communication ability due to their physical
condition; in the case of ALS, it can even lead to a state where they are “completely locked
in”, which means that they have no control over any muscle. For these groups of patients,
a BCI can also be a useful option as a communication device. Besides the obvious use for
the severely disabled, other applications such as the development of gamesor the constant
monitoring of attentional states in working environments with high risks are conceivable.

The development of such a device is a highly interdisciplinary research topic, which
brings together scientists from many different fields, such as psychology, neurophysiol-
ogy, physics, engineering, mathematics and computer science. Therefore, this work will,
although mainly focused on the data analysis and computer science part of BCI, always try
to point into the related topics and fields.

5



2. Basic BCI Ingredients

In this first chapter, I will report on different options for BCIs in terms of measurement
techniques for neural activity. Specifically for the EEG measurement, I willdescribe some
of the most prominent neural correlates of brain functions for the analysis of EEG data, and
then some of the methods for the extraction and classification of the corresponding features.
Finally, I will report on the methods commonly used in the Berlin Brain-Computer Interface
(BBCI) project, which I will analyze throughout this work.

2.1.1. Measurement Techniques

This section summarizes some of the most common brain-imaging methods. I will discuss
the usefulness in a BCI setting for each of the methods below, according to important param-
eters like the degree of invasivity, the portability of the system, but also the signal-to-noise
ratio, time-frequency– and the spatial resolution.

Microelectrodes

Microelectrodes can be bundles of wire electrodes or silicon-based electrode arrays, ar-
ranged in a dense grid. The size of these electrodes depends on the typeas well as on the
material used; the width usually ranges from 5 to around 100µm. After inserting them
deep in the tissue of the cortex, they can be used to record action potentials from single
neurons as well as signals from larger neuron populations. Microelectrodes are also used
for the electrical stimulation of specific brain regions. Due to the high risk of infections and
tissue damage, BCI research with these electrodes was restricted to animals like monkeys,
where features like the firing rates of neurons can be translated into control signals. In recent
experiments, see [57], it was shown that this type of feedback can also be performed by a
human user who is willing to undergo surgery for the implantation of the electrodes. Due
to the small recording sensors, the integration of these devices into a portable BCI system
is quite realistic. Some groups reported high information transfer rates and online control
of motor prostheses with this recording technique (see [26, 104, 32, 138]). However, the
longterm signal stability still remains an issue to be resolved (see e.g. [131, 78, 43]), since
the movement of the electrode relative to the cortex, as well as the scarring process in the
tissue deteriorate the signal quality over time. This drawback makes the insertion of micro-
electrodes impossible for the longterm use.

Electrocorticography (ECoG)

Electrocorticography (ECoG) signals are acquired with a set of electrodes placed directly
on the brain. The electrode grid, a flexible foil or strip with imprinted electrodes, is usually
located subdurally (i.e., under the dura mater, a thick membrane inside the skull), but an
epidural (i.e., above the dura mater) location is also possible. With this technique it is not
possible to record activity of single neurons, but compared to extracranial EEG recordings
(see below), the signal is less attenuated and less exposed to spatial smearing by the skull
and tissue layers. Therefore, the signal has a higher signal-to-noise ratio and higher spatial
and temporal resolution. The influence of muscle artifacts, which is quite highfor ordinary
EEG, has also been reported to be reduced. Since ECoG is often used for finding the locus of
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2.1. Brain-Computer Interface (BCI)

epileptic seizures, some BCI research has been conducted with patients who had implanted
electrode grids while they were under medical surveillance (see e.g. [81,75]).

Positron Emission Tomography (PET)

For the preparation of Positron Emission Tomography scans, radioactivetracer isotopes with
a short decay period are incorporated into metabolically active molecules (e.g., sugar). If
these molecules are injected into the blood flow, the decay can be measured especially at po-
sitions where high metabolic activity is performed ([115]). In neurophysiological research,
this measurement can be performed to determine regions of high neuronal activity. A long
list of drawbacks includes the long time lag due to the metabolic and hemodynamic response
as well as the risks connected to the dose of ionizing radiation. Also the scanner needed to
detect the isotope decay is quite big, such that it can not be part of a portable system for BCI
use.

functional Magnetic Response Imaging (fMRI)

Changes in the blood flow and in the blood oxygenation in the brain are relatedto the neural
activity, since nerve cells consume oxygen in an active state. fMRI recordings are performed
by applying a strong magnetic resonance pulse and measuring the response of the atoms in
the body. Since oxygenated hemoglobin, the oxygen carrier protein in the blood, has differ-
ent magnetic properties than deoxygenated hemoglobin, it is possible to determine a Blood
Oxygenation Level Dependent (BOLD) change. While the spatial resolution of this method
is very high, the temporal resolution is low due to the hemodynamic time lag. Significant
BOLD changes can only be encountered after some seconds of neuralactivity. The signal is
an indirect measure for brain activity, since it does not measure the communication between
cells, but rather the energy household of cell populations.

Moreover, fMRI devices are large and stationary, due to the parts that generate the mag-
netic field. Lightweight and portable devices can not be constructed in a straightforward
way. Despite these limitations, fMRI signals have recently been used for BCIresearch,
e.g. [54, 147, 103, 128].

Near-Infrared Spectroscopy (NIRS)

Similar to the functioning principle of fMRI, the near-infrared spectroscopy relies on the
physical differences between oxygenated and deoxygenated hemoglobin. The differences
can be found in a modified light absorption in the near-infrared light frequency band. There-
fore, neural activity can be measured according to the hemodynamic response. The sensors
are typically placed on the head, accompanied by infrared light emitting sources aimed at
the scalp surface. The light in this band penetrates the scalp to a sufficientdepth as to allow
for acquiring the vascular activity of the cerebral cortex. Being boundto a similarly low
temporal resolution as the fMRI, the NIRS setup can be made sufficiently smallto construct
a portable system for BCI use (see [79, 129]).
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Magnetoencephalography (MEG)

MEG recordings measure the magnetic field which is induced by the ionic currents flowing
in the dendrites of neurons in the brain. Note that due to the orthogonality of magnetic field
and electrical current, only large neuron populations with dendrites oriented tangentially to
the scalp surface can be recorded in the MEG. With its high spatial and temporal resolution,
it is a very promising recording technique which has already been used in proof-of-concept
BCI experiments ([3, 75, 87]). Unfortunately, the possible applications are very limited due
to the size of the recording device and to the necessity of a shielded room, since even small
electrical devices induce noise which superimposes the signal of interest.

Electroencephalography (EEG)

The recording technique that I will be focusing on for the rest of this thesis, the EEG, is
a non-invasive, small sized recording device. When the impedance of electrodes on the
scalp surface is lowered sufficiently by applying conductive gel, the EEGsignals, which
rely on the ionic current of neural activity, can be acquired at high spatial and temporal
accuracy. The signal of interest is a modulation of the electrical scalp potential at a particular
electrode position (see figure 2.2) with respect to one or more referenceelectrodes. If a large
neuronal population is orthogonally oriented with respect to the scalp surface, its induced
potentials are large enough to be acquired at the electrodes outside the head. In the EEG
setup of the BBCI, the reference electrode is attached to the nose, to prevent muscle activity
to deteriorate the signal.

Although most BCI research with human subjects is conducted with the EEG ([6, 150,
113, 11]), the applicability suffers from the long preparation time for the application of
the electrodes on the head. Currently, a lot of effort is put into the development of “dry
electrodes” to overcome this restriction (see e.g. [117]). The interpretability of the EEG
signals as neuronal activity of particular regions of the brain is restrictedby the spatial
smearing induced by the layers of tissue, skull and hair which separate thesensors from
the cortex. Furthermore, EEG recordings are often distorted by noise from various sources.
This topic will be discussed in detail in Section 4.1.

2.1.2. Neural Features of the EEG

This section is intended as an overview of the features of scalp EEG that are most frequently
used for BCI purposes. [41] provides a broader and more complete review.

Many of the features described here are event-related potentials (ERP), a class of neural
signals that large populations of neurons emit phase-locked to some event.Classical ERP
phenomena are evoked potentials, P300, the error potentials and the Lateralized Readiness
Potential (LRP), which I will introduce below. The common method for the analysis of ERPs
is to average the time course over many independently recorded trials, locked to the stimulus
or response event. By the independence assumption, the signal-to-noiseratio improves as
the number of trials is increased, such that the underlying ERP is visible with sufficiently
many recorded trials. Note that it is a crucial requirement for BCI research that the signals
are classified in single trial analysis; therefore methods are needed whichclassify the signals
without the necessity to average over many recorded trials beforehand. See section 4.1 for
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Figure 2.2.: Part (a) of this figure shows the arrangement of EEG electrodes according to
an extension of the so-called “10-20” system, [60]. In this figure, just asin
all similar plots that follow, the head is projected as viewed from above, the
small triangle on top of the circle marks the nose. The colors are encoding
the scalp region these electrodes are assigned to: frontal (white), central (blue),
parietal (yellow), occipital (red) and temporal (green) electrodes. Typical ref-
erence electrodes are attached to the nasion or to mastoids. Alternatively, scalp
electrodes such as Cz or Fz can be used for referencing. – Part (b)of this figure
shows the major lobes of the brain, as viewed from the temporal perspective,
inside the head. The color coding has been synchronized with the electrode
montage. Adapted from [51].
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methods for robustifying the averaging process, such that fewer trials are required.
Other correlates of neural activity are oscillatory features such as the Event-Related (De-)

Synchronization. For most of this work, I will be focusing on the ERD/ERS complex, which
will be explained below.

Steady State Visually Evoked potentials (SSVEP)

Attended visual stimuli, presented at a fixed frequency between 6 Hz and 24 Hz, elicit a
rhythm in the posterior visual areas with the same fundamental frequency;[55] even re-
ports significant rhythm modulations up to a frequency of 100 Hz. The evoked response is
relatively stable and easy to detect in many subjects and has therefore often been used for
BCI purposes, see e.g. [88, 101, 99]. The basic setup of these interfaces consists of several
targets that are highlighted at a different frequency. By measuring the brain response and
comparing the elicited frequency to the stimulus frequencies, it can then be decided which
target the subject is focusing on. Note that for this visual attention, it is necessary that the
users have control over their eye movements and are not otherwise visually impaired. For
some patients, e.g. those suffering from an advanced stage of ALS, this requirement is not
met.

Recently, a tactile variant, the so-called Steady-State Somatosensory Evoked Potential
(SSSEP), has been explored in [100]. It has been shown that the responses in the EEG to
attention shifts of healthy subjects to either of their index fingers which are under constant
tactile stimulation, can be classified at accuracies between 70 and 80%.

P300

The P300 component of the EEG is a positive potential that occurs in the context of the
“oddball paradigm”, where a series of standard stimuli is randomly interleaved with non-
standard stimuli, termed “deviants”, see [135]. After the presentation of each deviant, the
large positive potential, which occurs with a relative latency of approx. 300 ms to the stim-
ulus, is called P300 (or P3). This positive component, which is not present in the standard
trials, is predominantly found in parietal electrodes. Amplitude and shape of this compo-
nent are known to be influenced by various factors, such as the deviant-to-standard ratio, the
presentation modality (e.g. visual, auditorial or tactile), attendance and task relevance.

The first use of the P300 in the BCI context has been demonstrated in [45] and [31],
where a matrix with 6 rows and 6 columns contained all 26 letters of the alphabetand the
10 digits. While the subject was instructed to attend to a single letter, the rows andcolumns
were highlighted randomly. The correct letter was decoded by averagingover the rows and
columns separately and by selecting the row/column pair to which the subject responded
with the largest P300 component.

A variant of this approach, relying on auditory stimuli, has been presentedin [49], where
proof-of-concept experiments were reported.

Although P300 speller feedback systems are studied extensively by many researchers
(e.g. [74, 86, 125]), it can still a quite exhausting experience for the users, since the concen-
tration on the flickering symbols (or is often reported as annoying.
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2.1. Brain-Computer Interface (BCI)

Auditory Evoked Potentials

In [56], the time-locked response to auditory stimuli was used for classification. Concurring
sequences of auditory stimuli were presented separately to both ears of the subject. The shift
of the subjects’ attentional focus on either of the two sequences changedthe neuroelectrical
responses to the stimuli such that binary BCI decisions were possible.

Error Potentials

During the evaluation of the correctness of an event, the so-called errorpotentials modulate
in amplitude between an “error” event and a “correct” event. The event-related response
can be divided in two different responses, namely a slow negative potential wave (termed
error negativity) and the following positive potential (error positivity), see [44]. While the
negative wave is present in both correct and wrong trials and only changes the amplitude, the
error positivity can only be seen in error trials and is out of these two the more discriminating
feature.

While it is hard to imagine a paradigm where a Brain-Computer Interface is solely con-
trolled with error potential features, some research has been conductedon using it as an
add-on to existing BCI systems, see e.g. [46, 110, 15, 120]. If a choicehas been taken by
the user, the BCI can perform a check for the error negativity and repeat the last decision
in case of a positive outcome of this check. If the last choice was erroneous, this repetition
gives the user the option to select the correct choice. On the other hand,a “false positive”
error potential detection can lead to a much longer decision process, whichis obviously not
desirable. [34] shows some considerations on the required error correction accuracy, which
should be reached as a minimum for successful error correction.

Slow Cortical Potentials

In [6], a brain-computer interface for paralyzed patients was demonstrated; two subjects
suffering from advanced amyotrophic lateral sclerosis (ALS) were trained over the period
of 4 years to voluntarily produce a slow negative shift of the scalp EEG. They could then use
this ability to control a spelling device. Although the training was first intended toproduce
a negative shift according to [5], it was found that a positive variation was more reliable and
more responsive to training with imagery strategies. The signals that were used in this series
of experiments were termed “slow cortical potentials” (SCP).

Lateralized Readiness Potentials (LRP)

According to the model known as homunculus, for each part of the human body there is a re-
spective region in the motor and somatosensory area of the neocortex. The ’mapping’ from
the body to the respective brain areas preserves topography, i.e., neighboring parts of the
body are represented in neighboring parts of the cortex. While the regionof the feet is at the
center of the vertex, the left hand is represented lateralized on the right hemisphere and the
right hand on the left hemisphere. In the preparation of hand movements, such as keystrokes
with the fingers, a slow negative potential is building up in the correspondingregions of the
brain. This process is called “Lateralized Readiness Potential” or “Bereitschaftspotential”.
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Figure 2.3.: This figure shows two sections of the central area of the brain(shown in blue
in figure 2.2), viewed from a dorsal perspective. The motor cortex, shown on
the left, is located in the precentral gyrus (i.e., anterior to the central sulcus),
while the somatic sensory cortex, shown in the right part of the figure, lies in
the post-central gyrus (i.e., posterior to the central sulcus). The size ofthe
body parts displayed on top of the cortex is shown according to the size of
the cortex regions that are representing them. This reveals a slightly different
topography for motor cortex and somatic sensory cortex. Note that only theleft
half of the motor and the right half of the somato-sensory cortex are displayed
for simplicity. From [72].

The analysis of multi-channel EEG recordings has shown that the involvedbrain areas con-
tribute to this shift with different intensity ([29, 76]). The focus is in the frontal lobe of the
corresponding motor cortex, i.e., contralateral to the performing hand (see figure 2.4). The
laterality of an upcoming hand movement can be classified with high accuracy based on the
spatial distribution of this EEG signal, more than 100 ms prior to the actual execution of the
movement, see [15, 66, 67].

Phase Synchronization

Phase synchronization is a phenomenon that occurs in many natural systems ([116]), and
it is also a measure that is used to quantify the interaction between different sources in the
brain. There are many different methods how a phase synchronization can be assessed,
e.g. by estimating the difference between instantaneous phases

∆φ(t) := φ1(t)−φ2(t),

wheret is a point in time. The instantaneous phase can be obtained by Hilbert transform or
wavelet analysis.

The pitfall in this kind of analysis is the fact that EEG recordings never represent signals
of the actual sources of brain activity, but only their superpositions. This can induce high
values of synchronization between different electrodes, even if only asingle signal is mixed
into both electrodes. In [85, 105, 106], various methods were proposed to counter this
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Figure 2.4.: EEG data during the execution of keypresses with left or rightlittle finger re-
veal an early onset of a slow negativity on central electrodes. While the peak
of this process can be found on the left hemisphere for a right hand keypress,
it is on the right hemisphere for a left hand keypress. The first row shows the
timecourse of the EEG at right-hemisphere electrode C2, averaged over 80tri-
als per movement type. For the left hand, the curve is clearly below the right
hand curve. For each of the marked intervals, scalp topographies are shown
separately for left and right hand movement. Electrode C2 is marked with a “+”
on these scalp maps.

problem. They involve the unmixing of the sources beforehand by means ofIndependent
Component Analysis (ICA) and then calculating the synchronization index.

In [23], it was demonstrated that even without avoiding the above pitfall, online BCI
control can be established. The drawback of this method is the limited interpretability of
these results.

Amplitude Modulation of the Sensorimotor Rhythm (SMR)

Some of the event-related changes of the EEG consist either of decreases or increases of
the power in given frequency bands. This can be accounted to a decrease or an increase
in synchrony of the measured neuronal populations. These phenomenaare termed “Event-
Related Desynchronization” (ERD) and “Event-Related Synchronization” (ERS) and can be
found in EEG and MEG recordings during the execution of a variety of mental states and
mental tasks, such as sensory-semantic processing, memory and movementtasks.

Some brain states are characterized by the intensity of specific frequencybands over spe-
cific brain areas. A very predominant frequency for the EEG is in theα-band, ranging from
approx. 7 Hz to 13 Hz. This frequency band is very strong in the parietaland occipital re-
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Figure 2.5.: The timecourse of the bandpower from 11–15 Hz, in two selected electrodes
over the author’s motor region. During imagination of a left hand movement,
the bandpower in CP4 (on the right, i.e. contralateral hemisphere) is reduced.
During the imagination of a right hand movement, the same holds for electrode
CP3 (on the left hemisphere). The bars below denote the discriminability of the
curves at every point in time, in terms ofr2-values (see Section 3.1.2). Higher
values correspond to a better discriminability.

gion of the cortex, but due to volume conduction, it can also be measured over more frontal
electrodes. This rhythm is known to modulate according to visual processing, fatigue and
attentional state, see [4, 127].

During executed or imagined hand or foot movements, theµ-rhythm in the corresponding
motor area can be observed to be attenuated ([114, 113]). This is a paradigm which can
easily be used for BCI purposes, since motor imagery can be performed spontaneously and
without previous training. Theµ-band is at a similar frequency as theα-band, but the spatial
distribution of the ERD of motor tasks is centered at the corresponding motor cortices.
As an example for ERD, figure 2.5 shows the author’s bandpower over two selected EEG
electrodes (CP3 and CP4), during imagination of left and right hand movements. After
bandpass filtering the data between 11–15 Hz, a sliding window of 200 ms length was used
to estimate the power in these two electrodes. Theβ -band, at frequencies from 15–30 Hz, is
known to undergo similar (de-)synchronization effects.

γ-band (30–80 Hz) oscillations as well as higher frequencies have also been reported to
encode information about intended movements; even above this frequencyrange, informa-
tion is encoded. [50] presented motor-related amplitude modulations at frequencies up to
200 Hz, which were termed “Very High Frequency Oscillations” (VHFO). In a study on
12 healthy subjects, the laterality of upcoming hand movements could be predicted at high
accuracy.

In this work, I will focus on the modulation of frequencies inµ- andβ -band ([4, 127,
112]).

2.2. Signal Processing and Machine Learning

For the classification of brain signals, there are two important steps: signalprocessing
(which corresponds to the “feature extraction” process in machine learning terms) and the
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application of a classifier. For both steps a large variety of options is used by different BCI
groups; this is due to the fact that the neural signals of interest (see Section 2.1.2) exhibit
such a diversity. This, in turn, entails a large variability of the signal properties. On the BCI
Meeting 2005, many researchers tried in a joint effort to find a taxonomy ofall methods
used for BCI ([82]), but even this list was by no means exhaustive andcould only provide a
selection of the methods used by some of the workshop participants. Anotherdetailed, but
still not complete, list of methods is given in [41]. In this section, I will briefly introduce
some methods most of which will be applied later in this work.

2.2.1. Feature Extraction

Feature extraction is a process which is intended to reduce the dimensionality and likewise
the complexity of a dataset to a few dimensions with the largest information content. For
the application in BCI frameworks, it is an important prerequisite that the process is com-
putationally efficient, robust against noise influences, and only relies ondata samples from
the past.

While some of the feature extraction methods are generally applicable in the EEGcon-
text (such as the frequency filters) or were derived from much different fields of application
(such as Independent Component Analysis (ICA)), some of them are specifically taylored
to the signals of interest. While, for example, the Common Spatial Patterns (CSP)algo-
rithm was originally introduced as a fairly general method ([48]), that found its way into the
BCI research community ([118]), its spatio-temporal extensions ([80, 38, 139, 140]) were
developed with the goal to improve the feature extraction process for BCI applications.

Frequency Filters

In some cases it is advisable to reduce the frequency content of the EEG signal to some
frequency band of interest; this can be indicated if neurophysiological models suggest that
the signal is mainly located at a specific frequency.

Since, for example, the ERD/ERS-complex (see Section 2.1.2) can be foundpredomi-
nantly in theµ- andβ -band, it is advisable to apply a frequency filter with this particu-
lar bandpass to the signals before extracting bandpower features. With most of the time-
frequency representations, such as Fast Fourier Transformation (FFT) or Wavelet Transfor-
mations, it is even possible to use the frequency coefficients directly as estimates for the
frequency content.

Digital Filters A digital Infinite Impulse Response (IIR) filter consists of two finite se-
quencesa ∈ R

na andb ∈ R
nb, which are chosen according to specific filter design criteria

(see [108]). By convolution with these two sequences, the signalx is filtered to the signaly
as follows:

a(1)y(t) =
nb

∑
i=1

b(i)x(t − i−1)

−
na

∑
i=2

a(i)y(t − i +1)
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for all t.
A special case of IIR filters, a Finite Impulse Response Filter (FIR) is obtained by choos-

ing na = 1 anda(1) = 1, which makes the second term in the above equation vanish. Note
that these filters introduce a time delay into the signal.

FFT-based Filters The Fast Fourier Transformation (FFT) is a mapping of the signal from
the time domain to its frequency domain representation ([108]). A filter can be obtained
with this mapping by selecting the frequency bins of interest and applying the Inverse Fast
Fourier Transformation (IFFT). Since both FFT and IFFT are linear methods, they can be
implemented in a computationally efficient way.

Wavelet-based Filters As a further method of translating signals into their frequency
representation, wavelets [30], orthonormal bases of finite time series with aspecific fre-
quency content, can be applied. By scaling and translating a prototypical “mother wavelet”,
the resulting “daughter wavelets” can approximate the signal efficiently. Again, by restric-
tion of this representation on wavelets within a specific frequency range, the signal can be
filtered.

Spatial Filters

If X ∈ R
T×C is the matrix representation of EEG data, whereT is the number of samples

in time andC is the number of channels, a spatial filter forX is anyw∈ R
C. The spatially

filtered signalS∈ R
T×1 is then defined by

S= X ·w.

Since every EEG electrode only measures a superposition of signals derived from various
sources in the brain, it is a difficult task to find the signal that originates at aspecific scalp
location. Spatial Filters are tools for the extraction of specific sources, but they can also be
used to alleviate the influence of non-cerebral signals such as eye blinksor head movements.

For most neurophysiological analyses, predefined filters which targetspecific brain re-
gions are defined, e.g. Bipolar filters, Laplace filters and the Common Average Reference
method, which itself can be understood as a spatial filter. Although applying the very same
filter to different datasets makes the resulting findings more comparable, it does not account
for the individual differences between the recordings. Another approach are data-derived
filters, obtained from methods like PCA, ICA or CSP. All these methods reflect certain
properties of the EEG and the optimal parameters can therefore again be regarded as fea-
tures of the data. Note that although the inter-subject comparability within the feature space
is not granted, the beauty of these methods lies in the duality of the filters: on theone hand, a
filter is computed which can be used to derive a signal from a particular source in the brain,
on the other hand, a “pattern” that corresponds to the spatial distribution of the same source
on the head.

This view is derived from the general framework in which all these methodscan be for-
mulated: the measured signal,X ∈ R

T×C, is a mixture of other (source) signals,S∈ R
T×C,
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Figure 2.6.: Three commonly used spatial filters in EEG research: the bipolarfilter sub-
tracts the signals of two electrodes (in this case C3 and FC3) and the Laplace
Filter subtracts the surrounding neighbor electrodes. For the Common Average
Reference, the average signal of all electrodes is subtracted from every single
electrode. In all three pictures, electrode C3 is marked with a black cross.

with an invertible mixing matrixA∈ R
C×C.

X = S·A and

S = X ·W, with W = A−1
.

In the context of EEG analysis, this means the following: the first equation implies that row
numberi of the “mixing matrix” (i.e., patterni) denotes the influence of source numberi on
each electrode. The second equation shows that column numberi of the “de-mixing matrix”
A−1 (i.e., filter numberi) denotes the factor with which each electrode must be scaled in
order to receive the source signal in columni of S. Both the filters and the patterns can be
displayed with their spatial distribution on the scalp.

Bipolar Filter A very simple method of spatial filtering is the differential signal between
two (usually neighboring) electrodes. The signals from very distant sources are superim-
posed over both electrodes with approximately the same intensity. The subtraction can then
minimize the influence of these other sources. The signal is then simply calculated as fol-
lows:

sBIP := si1 −si2.

This corresponds to a filter with the coefficients

wBIP
j =











1, j = i1
−1, j = i2
0, otherwise.

Bipolar measurements are usually not regarded as an actual filter, since they don’t require
to apply more than two electrodes. But even this minimal setup is often used for EEG
analysis in the BCI context, see e.g. [144]. Figure 2.6 shows a typical Bipolar filter between
electrode C3 and FC3.
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Laplace Filter Again with the idea of removing signal content which does not originate
from near the recording electrode, a Laplace filter subtracts the signal of surrounding elec-
trodes. More specifically, ifsi is the signal recorded at electrodei, and ifsi1, . . . ,sin are then
electrodes from a neighborhood of electrodei, then

sLAP := si −
1
n

n

∑
j=1

si j

is the laplace-filtered signal at electrodei. The parametern depends on the electrode mon-
tage used for recording. The filter has the following coefficients:

wLAP
j =











1, j = i

−1
n, j ∈ {i1, . . . , in}

0, otherwise.

Common Average Reference Although the Common Average Reference is a re-refe-
rencing method rather than a filter method, it can still be formulated as a spatial filter. For
each electrode, the mean signal over all electrodes is subtracted, i.e.,

sCAR
i := si −

1
C

C

∑
j=1

sj

is the CAR-signal at electrodei. This corresponds to the following filter:

wCAR
j =

{

1− 1
C , j = i

− 1
C , otherwise.

This method can be applied if, for example, the reference electrode introduces some noise
into the data. Since it often subtracts very distant channels, some of the spatial resolution of
the signals is lost after this transformation.

Principal Component Analysis (PCA) The k principal components of a set of data
pointsx1, . . . ,xn ∈ R

m are the solutions ˆy1, . . . , ŷk ∈ R
m of the optimization problem

miny1,...,yk,a

n

∑
i=1

||xi − (µ +
k

∑
j=1

ai, jy j)||2,

where µ is the empirical mean of the data. In other words, PCA components span the
k-dimensional affine subspace ofR

m that describes the data with minimal error.
A simple calculation shows (see [42]) that the principal components can be computed as

the eigenvectors of the scatter matrixΣ := ∑n
i=1(xi − µ)(xi − µ)> corresponding to thek

largest eigenvalues. The principal components correspond to the directions with the largest
variance. This method is therefore often used for dimensionality reduction.This sort of
analysis is useful for the analysis and quantification of unlabeled data, but it does not neces-
sarily reflect the directions with the best discriminability.

PCA has been extended to its non-linear version “kernel PCA” (kPCA),[98]. This algo-
rithm can describe the data in a higher-dimensional space and is thereforenot guaranteed to
reduce the dimensionality of the data.
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Independent Component Analysis (ICA) Instead of representing the data in a least-
squares sense, ICA tries to find directions in the data which are most independent from each
other. This goal of ICA can be understood in the framework of Blind Source Separation
(BSS) as in the beginning of this section:

Suppose the measured signalX ∈ R
T×C with T samples andC dimensions is actually a

linear mixture of sources, i.e.,
X = S·A,

whereA∈ R
C×C is an unknown mixing matrix andS∈ R

T×C is the source signal.
In order to recover the source signal, a further requirement, namely the statistical inde-

pendence of the sources, is necessary. If we now try to find a de-mixingmatrixW such that
the de-mixed signalsS= X ·W are spatially as independent as possible, the original source
signals can be recovered.

Depending on the specific assumptions on the underlying sources, many different ap-
proaches have been proposed ([25, 59, 2, 153]). In this work, I will apply FastICA (see
[59]) for the identification of outlier trials (section 4.1) and IBICA (see [83, 84]) for finding
inlier points in a set of parameters (section 5.1).

Common Spatial Patterns The Common Spatial Pattern (CSP) algorithm is very useful
in calculating spatial filters for detecting ERD/ERS effects ([63]) and can be applied to
ERD-based BCIs, see [118]. It has been extended to multi-class problems in [36], and a
robustified version has been proposed for making it invariant to influences by other signals,
such as changes in the visualα-bandpower.

Given two distributions in a high-dimensional space, the (supervised) CSPalgorithm finds
directions (i.e., spatial filters) that maximize variance for one class and simultaneously min-
imize variance for the other class. After having band-pass filtered the EEGsignals to the
rhythms of interest, high variance reflects a strong rhythm and low variance a weak (or atten-
uated) rhythm. Let us take the example of discriminating left hand vs. right hand imagery.
The filtered signal corresponding to the desynchronization of the left hand motor cortex is
characterized by a strong motor rhythm during imagination of right hand movements (left
hand is in idle state), and by an attenuated motor rhythm during left hand imagination. This
criterion is exactly what the CSP algorithm optimizes: maximizing variance for the class of
right hand trials and at the same time minimizing variance for left hand trials. Furthermore
the CSP algorithm calculates the dual filter that will focus on the area of the right hand.
It will even calculate several filters for both optimizations by considering theremaining
orthogonal subspaces.

Let Σi be the covariance matrix of the trial-concatenated matrix of dimension [concate-
nated time-points× channels] belonging to the respective classi ∈ {1,2}. The CSP analysis
consists of calculating a matrixW and diagonal matrixD with elements in[0,1] such that

W>Σ1W = D and W>Σ2W = I −D.

This can be solved as a generalized eigenvalue problem. The projection that is given by
thei-th column of matrixW has a relative variance ofdi (i-th element ofD) for trials of class
1 and relative variance 1−di for trials of class 2. Ifdi is near 1, the filter given by thei-th
column ofW maximizes variance for class 1, and since 1−di is near 0, the same column
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Figure 2.7.: The author’s CSP filter and pattern for the detection of ERD during imagination
of a right hand movement. The filter (the left part of this figure) is the first
row of the de-mixing matrixW, the pattern (the right part of the figure) is the
first column of the mixing matrixW−1. In contrast to the filters displayed in
figure 2.6, both CSP filter and pattern can be checked for neurophysiological
validity. In this case, they exhibit a strong focus on the central area of theleft
hemisphere, which is the motor cortex associated to the right hand.

minimizes variance for class 2. Typically one would obtain projections corresponding to the
three highest eigenvaluesdi , i.e., CSP filters for class 1, and projections corresponding to
the three lowest eigenvalues, i.e., CSP filters for class 2. Figure 2.7 showsthe filter and the
dual pattern corresponding to the minimization of the bandpower in theµ-band from 11 Hz
to 15 Hz, for the imagined movement of the right hand. EEG data were recorded during
the imagination of left hand and right hand movement imagery in 70 trials per class. Both
filter and pattern are focussed over the left motor area, i.e. contralateralto the performing
hand. Figure 2.8 shows the spectra for the signal projected by this filter, along with the
spectra of the filters shown in Fig. 2.6. While a desynchronization can be recognized for all
filtered signals as a difference between the red and green graph, the CSP projection clearly
optimizes this difference. For this comparison, see also the argument in [41].

A very concise tutorial on CSP is given in [22].

Spatio-temporal Filters Although the classification of bandpower estimates on the spa-
tially filtered data by means of the CSP algorithm is very effective, the problemof the correct
choice of the temporal (i.e., frequency) filter remains. It is not actually a problem which can
be optimized independently from the spatial filter, since for different frequencies, different
spatial filters are optimal and vice versa. Therefore, a simultaneous optimization of both
filters is highly desirable.

In [80], a new method (termed “Common Spatio-Spectral Patterns” (CSSP))was intro-
duced to optimize both filters by simply performing the CSP calculation on the signal,con-
catenated with a time-delayed version of itself. The resulting filters can be splitinto fre-
quency filter and spatial filter. Depending on the time delay, this method can significantly
increase the classification accuracy as compared to the usual CSP approach.

Another method, “Common Sparse Spectral Spatial Patterns” (CSSSP) (cf. [38]), expands
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Figure 2.8.: For the filters shown in Figure 2.6 and 2.7, these are the spectraof the projected
signals. The spectra are given for left (red) and right hand imagination(green)
separately. The gray shaded area denotes the frequency band the CSP filters
were calculated on. Below the spectra, the color intensity denotes the separa-
bility of the frequency bins, in terms of the bi-serial correlation coefficient(see
Section 3). The best class separability is achieved by the CSP filter.

the range of possible frequency filters, by explicit simultaneous optimization of both the
parameters of the digital FIR filter and the spatial filter. The performance is similar to the
performance of CSSP.

There are many other approaches to the joint optimization of spatial and spectral filters,
e.g. [139, 140], where the optimization is performed in the spectral domain.

2.2.2. Classification

According to [42], a classifier on a given feature spaceX ⊂ R
n can be defined as a set

C := {gi : X −→ R|i = 1, . . . ,C},

whereC is the number of classes. The classifier assigns the featurex∈ X to a classc if

gc(x) > gi(x) for all i 6= c.
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Intuitively speaking, this characterizes a decision functionfC : X −→ {1, . . . ,C}, which
assigns a class label to each point in the feature space, by defining

fC (x) :=

{

argmaxi∈{1,...,C}gi(x), if this maximum exists

0 otherwise.

A classifier partitions the feature space into decision regionsR1, . . . ,RC, which consist
of all the points of the feature space that the classifier assigns to the respective class label.
If the functionsgi constituting the classifier are sufficiently simple (e.g. continuous), it can
be interesting to analyze the decision boundaries, i.e. the setX \ (

⋃C
i=1Ri). It corresponds

to the points where the largestgi have the same function value.
In this work, I will focus on a simple case where the classifier only comparesC= 2 classes

(such a classifier is also called “dichotomizer” or “binary classifier”). Inthe case of a binary
classifier andC := {g1,g−1}, the decision function can be reduced to the form

fC (x) := sgn(g1(x)−g−1(x)).

It is common practice to inspect the “graded” classifier output (which is the function value
of (g1(x)−g−1(x)) before applying the sgn-function) as well as the classifier decision.

I will also only consider classifiers whose classification function and the corresponding
decision boundaries will be linear (these classifiers are called “linear”).Under some as-
sumptions on the distributions of the underlying classes in the feature space,namely known
normal distributions with equal covariances, a linear classifier is the optimal choice in the
sense that it minimizes the probability for misclassification (“Bayes-optimal”).

The decision for linear classifiers is not simple, but one of the most importantarguments
is the small number of parameters which have to be estimated on the training data. While
the extension to richer function classes can enhance the training accuracy, there is always a
considerable risk of overfitting: with a sufficiently large function class to choose the classi-
fier from, any finite amount of training data can be classified perfectly, butthe generalization
ability of the classifier is not always guaranteed. Therefore, I will restrict myself to the case
where most of the power of the classification process is actually performedin the feature
extraction: if the data in the feature space are linearly separable, they canbe easily classi-
fied. I will only present some methods that I will use later throughout this work. Also note
that other methods, such as regularization, will not be applied here. For amore detailed
discussion of linear and non-linear methods, see [93].

Linear Discriminant Analysis (LDA)

If X ∈R
n andY ∈ {1,−1} are random variables (n∈N) with X|(Y = i)∼ N(µi ,Σ) for some

µi ∈ R
n andΣ ∈ R

n×n (i ∈ {1,−1}), and if the class priors are equal
(i.e.,P(Y = 1) = P(Y = −1)), then the decision function

f (x) = (µ1−µ−1)
>Σ−1x−0.5(µ1−µ−1)

>Σ−1(µ1 + µ−1)

is the Bayes-optimal classifier for this problem. Since in the general case,µ1,µ−1 andΣ are
not known, they can be estimated by the class means

µ̂i :=
1
mi

∑
j∈{k|yk=i}

x j ,
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wheremi is the number of samples from classi (i ∈ {1,−1}), and the averaged classwise
scatter matrix

Σ̂ := 0.5(Σ̂1 + Σ̂−1)

= 0.5(
1

m1
∑

j∈{k|yk=1}
(x j − µ̂1)(x j − µ̂1)

>

+
1

m−1
∑

j∈{k|yk=−1}
(x j − µ̂−1)(x j − µ̂−1)

>).

This classifier can easily be extended to the case where the class priors are not equal.
A further extension to the case of unequal class covariance matrices makes the decision
boundary{x∈ R

n| f (x) = 0} non-linear. The method is then called Quadratic Discriminant
Analysis (QDA).

Least Squares Regression (LSR)

Using linear regression on the labels, another classifier can be introduced. In regression
problems, a relation between dataxi ∈ Rn and function valuesyi ∈ R

m (for i ∈ {1, . . . ,N},
for somen,m,N ∈ N) is described by choosing one function out of a function class which
minimizes the (squared) error between its function values and the target valuesyi .

In order to find the linear classifier whose classification values are as close as possible to
the labels, we can setm= 1 and choosew∈ R

n, b∈ R such that they minimize

N

∑
i=1

(w>xi +b−yi)
2 =

N

∑
i=1

(

(

w
b

)>(

xi

1

)

−yi)
2

= ||
(

w
b

)>(

x
1. . .1

)

−y>||22.

The last term is minimized by setting

(

w
b

)

:=

(

x
1. . .1

)+>
y,

where “+” denotes a pseudo-inverse operator. Note that this corresponds to LDA with a
modified scaling.

A nice property of the LSR classifier is that applying it to the class meansµ1 andµ−1

yields 1 and -1, respectively. This behavior is desirable if, like in the BCI context, the
classification values should be finally translated into control signals. This control can be
improved if the expected function values of the classifier for “typical” inputvalues like the
class means is known beforehand.

Support Vector Machines (SVM)

The Support Vector Machine, introduced in [142], is based on the idea of separating the
training dataxi ∈ R

n with labelsyi ∈ {−1,1} (i ∈ {1, . . . ,N} for someN ∈ N) by means of
a linear hyperplane, such that the minimal distance of each point from the hyperplane, the
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so-called “margin”, is maximized. In other words, the weight vectorw∈ R
n and the offset

b∈ R can be determined by the optimization problem

argminb∈R,w∈Rn ||w||22
s.t. yi(w>xi +b) ≥ 1,(i = 1, . . . ,N).

Thexi for which the constraint is fulfilled with equality are called “Support Vectors” of the
hyperplane, since they determine the location and angle of the hyperplane and, geometrically
interpreted, “support” the outer borderline of the margin. This reduces the complexity of the
problem, even in high dimensions, to a few support vectors.

Since the data need not necessarily to be separable, such a hyperplanedoes not always
exist. For this case, the optimization criterion can be relaxed by introducing slack variables
ξi ∈ R (i = 1, . . . ,N) and a regularization parameterC > 0 in the following way:

argminb∈R,w∈Rn,ξ∈RN ||w||22 +C∑N
i=1 ξ 2

i

s.t. yi(w>xi +b) ≥ 1−ξ 2
i ,(i = 1, . . . ,N).

The regularization parameterC controls the tradeoff between two objectives: a smallerC
will result in a larger margin around the hyperplane, but might result in a higher error on the
training data. LargerCs decrease the training error, but possibly reduce the generalization
error by enlarging the margin.

Support Vector Machines can easily be extended to non-linear cases. This and a more
detailed overview of Support Vector Machines can be found in [24, 98,123].

2.3. The Berlin Brain-Computer Interface (BBCI)

For the presentation of the BBCI, I will first give a very general overview of the past and
ongoing projects. Then I will report the most commonly used methods for training a clas-
sifier on data from mental imagery, and how the resulting classifiers can be applied to drive
feedback applications such as the 1-dimensional control of a computer cursor.

2.3.1. Overview and History

In the year 2000, the Berlin Brain-Computer Interface project was initiatedas a cooperation
between the Fraunhofer Institute FIRST and the Department of Neurologyof the Charité
Berlin. Recently, the Technische Universität Berlin also became involved inthis ongoing
research process.

Before the BBCI entered the field, the majority of BCI research was performed by long
training periods for the users of BCIs (e.g. [150, 6]). This training cantake months or
even years, until a reasonable communication performance can be established. Guided by
the motto “Let the machines learn!”, the focus of the BBCI is to shift the main burden
of learning away from the user onto the analyzing and classifying computer. This can be
done by combining knowledge from different ends of this interdisciplinaryfield, namely
neurophysiology and machine learning techniques.

The BBCI has covered a wide range of BCI paradigms; it has for exampledemonstrated
how upcoming keypress movements with left or right index finger could be classified with a
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2.3. The Berlin Brain-Computer Interface (BBCI)

high accuracy, even 120 ms before the actual movement was performed ([8, 67, 66]). Further
works have shown how error potentials can be usefully integrated into BCIapplications,
[15, 21].

Much work in the BBCI has been performed on the ERD/ERS paradigm in motorimagery
data (e.g. [12, 9]). We could show that it is possible to provide BCI feedback to completely
untrained subjects, after a short calibration period of approx. 20–30 minutes. The focus of
my work in this project is to even reduce this short amount of calibration to the absolute
minimum, by thorough analysis of the feedback experiments and the behavior of the clas-
sifiers throughout the experiment. I will in the following mainly exemplify my methodson
ERD features and the used classifiers.

An important ingredient to a Brain-Computer interface is a rich feedback application.
Therefore, we developed various games and text input devices and demonstrated how they
can successfully be operated. These applications include a BCI-controlled Cursor (e.g. [12,
9], see also chapter 5.1), text input devices like a binary speller ([71])and the “Hex-O-Spell”
interface ([13]). Among the implemented games are “Brain-pong”, a variant to the 1970s
arcade game “PONG”, for one or two players, and more recently the control of a real-world
Pinball machine. Since this list is by no means a full report of the possible applications, I
refer to [65, 96] for a more complete overview.

The basis for this success is the application of machine learning on high-dimensional
EEG-data. The BBCI has shaped this concept in the BCI community by organizing BCI
classification competitions ([20, 19, 119]), where the participating researchers all over the
world could benchmark their own algorithms on data from BCI experiments. For better com-
parison and to avoid overfitting, the results were only released at the end of the competition,
when the labels of the test set were published.

In the following sections, I will give a short overview of the standard procedures applied
for BCI motor imagery feedback sessions in the BBCI. Most of the experiments reported
here followed this procedure, until I introduced a new method (see Section5.1).

2.3.2. Measurement

All the experiments conducted for this work have been performed with non-invasive scalp
EEG. For each subject, brain activity was recorded by means of 64–128Ag/AgCl elec-
trodes, attached to an EEG cap. The data were mostly recorded simultaneously with surface
EMG (electromyogram) of the right foot and both forearms, as well as EOG(electroocu-
logram). This was exclusively to make sure that the subjects performed no real limb or
eye movements correlated with the mental tasks that could directly (artifacts) orindirectly
(re-afferent feedback from muscles and joint receptors) be reflected in the EEG and thus be
detected by the classifier, which operated on the EEG signals only. Amplifiersand recording
software from the company “Brain Products GmbH” were used, and the data were recorded
at a rate of 1000 Hz.

2.3.3. Calibration

The subjects were sitting in front of a computer screen, with the hands in a relaxed position
on armrests. Every 5.5 (±0.25) seconds one of three different visual stimuli (see Fig. 2.9
for an example) indicated for 3.5 seconds which mental task the subject should accomplish
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L 

Figure 2.9.: The left part of the figure shows the computer screen duringthe calibration
measurement. For a duration of 3.5 seconds, a letter indicates the mental task
the subjects have to fulfill. In the right part of the figure, a “Cursor control”-
feedback is depicted. See text for details.

during that period. The investigated mental tasks were imagined movements of the left
hand (L), the right hand (R), and the right foot (F). Between 70 and 200 repetitions for
each class were recorded. In this work I investigate only binary classifications, but the same
classification setup can be used in the multi-class case, [36, 37].

2.3.4. Feature Extraction and Classification

After the calibration measurement, a classifier was trained on the two best discriminable
classes. There are several parameters in this feature extraction and classification procedure
that can be specifically chosen for each subject to obtain optimal results. In the online
experiments this is done semiautomatically by combining machine learning, expert knowl-
edge and visual inspection of some characteristic curves such as spectra and ERD curves,
see [10], so the following parameters can be slightly adjusted by the experimenters.

After choosing all channels except the EOG and EMG and a few outmost channels of
the cap, a causal band-pass filter from 7–30 Hz is applied, which encompasses both the
µ- and theβ -rhythm. The data we extract are from the windows 750–3500 ms after the
presented visual stimulus, since in this period discriminative brain patterns are present in
most subjects. Afterwards we apply the CSP algorithm (see Section 2.2.1) to the data. This
decreases the number of channels by suitable linear spatial filters which are learned on the
training trials. We typically use 3 filters per class, which leads to 6 remaining channels,
chosen by the magnitude of the corresponding eigenvalues and by visualinspection; a more
refined method of automatic selection of the best channels is presented in [22]. We then
calculate the logarithm of the variances of for these channels. The resulting feature vectors
are a measure of the amplitude in the specified frequency band.

After the presented preprocessing usually between 70 and 200 six-dimensional feature
vectors for each class remain. Since the data have in most cases a Gaussian distribution, we
apply a linear classifier such as LDA or LSR.
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2.3.5. Feedback

In the BCI context, a “feedback” is the output of the system to the input it receives when
measuring the neuronal activity. Feedback applications can have different output modalities
(such as visual, tactile or auditory) and can differ in the timing of the return, the appear-
ance of the stimuli and many other properties of the presentation. As typical examples for
feedback applications, I will explain the setup for some variants of the “Cursor control”
feedback (see Fig. 2.9), where the subjects can control the horizontalposition of a cursor on
the screen.

Cursor Control Feedback

During the feedback period, the EEG data were acquired from the recording computer and
classified (almost) in realtime. Due to recording and digitizing restrictions, the data are
acquired every 40 ms, and then the last, e.g., 1000 ms of EEG data are taken into account for
the classification.

The data are spatially filtered with the pre-computed CSP filters. Then the bandpower
in these signals is estimated by applying the frequency bandpass-filter and calculating the
logarithm of the variance. The resulting features are then fed into the classifier.

In the “Cursor control”-feedback, two rectangular targets are placedat the left and right
side of the screen. At the beginning of each trial, one of the targets is highlighted and the
subject attempts to navigate the cursor into the target, using the two imagined movement
types. The graded output from the classifier is then used to move the cursor either in a
position-controlled, or in a rate-controlled manner. This means that the scaled classifier
output is either used to move the cursor by a small amount to the chosen direction or is
mapped directly to a horizontal position on the screen. Each “trial” lasts until the subject
hits one of the two targets, and as a result the trials are of variable length. A block of
(typically 25–100) feedback trials, not interrupted by a break, is called a“feedback run”.

Mental Typewriter Feedback

There are various ways in which a one-dimensional continuous output ofa BCI can be used
to enter text (e.g. [13, 91, 6, 152, 107]). The basis for the mental typewriter in this example is
a continuous movement of the cursor in the horizontal direction. A “rate controlled” scenario
was used, i.e., at the beginning of each trial, the cursor is placed in a deactivated mode in
the middle of the screen. Every 40 ms, the current classifier output is added to the position
of the cursor, thus moving it left or right. The feedback enables the subjects to type letter
by letter on the basis of binary choices. The alphabet is divided into two contiguous sets of
letters with approximately equal probability of occurence in the german language. The first
and last letter of each division appear in a rectangle on the left and right end of the computer
screen, see Fig. 2.10. By moving the cursor into one of the targets, the subjects can choose
the set of letters containing the one they wish to type. The chosen set is then divided into
smaller sets, until a single letter is selected. For correction purposes, one further symbol (<),
for deleting one letter, is added to the alphabet. In case of failing to hit the correct letter, the
subject can then try to select this delete-symbol to erase the erroneous letter. Note that after
an error of only one binary choice, it is impossible for the subject to returnto the node of the
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Figure 2.10.: The figure on the left is a screenshot of the feedback thatwas given to the
subjects. The position of the cross is controlled by the classification output
of the current EEG signal. By moving the cross into the right or left box, the
respective set of letters is selected. For completing the acronym “BBCI”,the
subject would try to select the left box, since the letter “I” is associated to it. A
unique series of decisions (right–left–left–right) leads to the selection of this
letter; this corresponds to the binary decision tree shown in the right figure.

decision tree containing the correct letter. Thus, a wrong letter will be selected regardless
of the next decisions. In our studies, subjects often used this period to relax or stretch. This
period of the experiment, however, should be excluded from any offlineanalysis schemes,
since it does not contain useful information about the intended task.

Fixed Duration Cursor Control

For specific analysis of the feedback data, it can be problematic that the trials of the con-
ventional Cursor Control Feedback application can have significantly different length. A
modification of this setup can facilitate the analysis: instead of ending the trial when the
cursor hits any of the two targets, the “fixed duration cursor control feedback” lets the sub-
ject control the cursor for a predetermined amount of time (typically 3.5 seconds). Just like
in the regular case, the graded classifier output is used to control the cursor in horizontal
direction in a rate-controlled fashion. After 3.5 seconds, the cursor is fixed again and the
outcome of the trial is determined by the horizontal position of the cursor. If the cursor is on
the correct side of the screen, the trial is counted as “hit”, and as “missed” otherwise. The
target box is then colored according to the trial outcome in green (for a successful trial) or
red (in the other case). After a short intertrial break of 1 second the next target is presented.

Feedback of Results

Another variant of the “Cursor Control” feedback concerns the visibilityof the cursor. In our
studies, we frequently encountered subjects who were distracted by the constant feedback
given to them in form of the horizontal position of the cursor. This led to the development of
a paradigm where the only difference to the standard scenario is that the cursor is no longer
visible. Subjects only receive feedback at the end of each trial, by the color of the previously
ordered target: “green” for success and “red” for failure.
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Figure 2.11.: The author’s optimal CSP filters across sessions. For eachsession, the CSP
filters were calculated on the calibration measurement, for the discrimination
of left hand and right foot imagery. Only the filter corresponding to the lowest
eigenvalue (i.e., for the minimal bandpower during left hand imagery) is dis-
played. The focus is mostly on electrode C4 (sessions 1, 2, 4, 6 and 9) orCP4
(sessions 3, 10, 11) or on surrounding electrodes (session 5). In session 8, it is
even on the ipsilateral (left) hemisphere.

This feedback type can also be used to force different levels of visualattention, since it
can be quite fatiguing to focus on a screen with almost no change of the visual scene (see
Section6.1).

2.3.6. Problems in this Approach

Although this approach works well for a large number of untrained subjects (see [11]), there
were still some issues to be resolved:

• After training the classifier, the control could often only be established after adding a
fixed real value to the classification output (“bias term”). Since the classifier worked
well on the data from the calibration measurement, it was unclear why this was neces-
sary. Also, the need for this manual adjustment is an unpleasant detail in theotherwise
highly individualized and fine-tuned system.

• During the presentation of the feedback, there were sometimes periods when the sub-
jects completely lost the ability to control the BCI system. It was an open issue both
how to re-adapt the classifier parameters and how to do it online and in realtime.

• For longterm BCI users such as severely disabled people, a daily calibration period
would be tiresome and annoying. The straight-forward approach to re-use the first
classifier ever set up for a subject will clearly fail, as figure 2.11 shows. The CSP
filters for a single subject display a large variability, such that it is not evident how a
particularly robust filter can be found from the training data of previous experiments.

29



2. Basic BCI Ingredients

I will address all of these topics in the upcoming chapters, and I will show how some of
them can be solved by the aid of advanced machine learning techniques.
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In the BCI context, we usually have labeled time series with a large variability. The sources
for the variability include the following categories:

• Measurement artifacts and measurement noise

• Physiological artifacts

• Influences of other, not task-related neurophysiological processes

• Changes in the feedback setup (stimulus modality, stimulus appearance,...)

• Changes in psychological parameters

Since so many different factors are contributing to the variability of the brainsignals, it is
hard to quantify and describe the nature of their influence. Some of them only increase
the noise level, but are relatively stable over time, such as the 50 Hz-noise induced by the
alternating current of european power lines, which can be assumed notto undergo a large
variation over the course of a BCI session.

If the performance of BCI classifiers changes over time, this is often referred to as “non-
stationarity”. This term is not limited to the application to BCI, and in the literature, many
definitions and concepts, often tailored to the specific field of application, have been pro-
posed (e.g. [62, 111, 102, 109, 121, 136, 133]). In the BCI field, itis of particular interest
to find remedies against nonstationary behaviour of classifiers, to maintain the ability of the
user to control the system. In this chapter, I will first go one step back andintroduce the con-
cept of nonstationarity (see the following definitions) and then discuss a variety of methods
that can be applied for the characterization and the quantification of nonstationary time se-
ries (Sections 3.1, 3.2 and 3.3). These methods can be applied to get a deeper understanding
of the underlying processes that are inducing the nonstationarity.

Definition Let P = (Ω,F ,P) be a probability space,n∈ N andI ⊂ R.
A set of the form

S= {Ft |t ∈ I},

where eachFt is a random variable overP with values inR
n is calledStochastic Process

with state spaceRn.

Mathematical properties and methods for stochastical processes and the concept of random
variables can be found in [64] and [33]. In the following, I will also refer to stochastic
processes as multivariate time series. This view puts more emphasis on the time course,
but it should nevertheless be clear that the chosen probability space is ofimportance for the
following definitions.
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Definition Let (Xt)t∈I be a multivariate time series, whereI ⊂ R is an index set. Then(Xt)
is called(strict-sense-) stationary time series, if the probability distribution does not change
over time, i.e.,

PXti
= PXt j

for all ti , t j ∈ I .
A time series is callednonstationary, if it is not stationary.

In classification problems on time series, we are usually given a time series together with
a series of labels. For this setting, the above definition is not yet appropriate, since the labels
will have to be modeled in the probability distribution. If the labeled data are regarded
as a time series(Xt ,Yt)t∈I on some index setI ⊂ R, where the labelsYt are also random
variables, the definition of stationarity would entail that the joint distribution of the labels
and the data is unaltered over the whole index set. For the purpose of the investigations
presented here, the main focus of attention will only be the evaluation of the conditional
probability distributionPXt |Yt

, not on the entire joint distributionPXt ,Yt .
Therefore, a modification of the above definition for the special case of timeseries with

labels will make this explicit:

Definition Let (Xt ,Yt)t∈I be a labeled multivariate time series, whereI ⊂ R is an index
set andYt ∈ C ⊂ R for all t. Then(Xt ,Yt) is calledstationary labeled time series, if the
probability distribution for each class does not change over time, i.e.,

PXti |Yti
= PXt j |Yt j

for all ti , t j ∈ I .
This implies:(Xt ,Yt)t∈I is stationary iff for all classesc∈C the time series(Xt)t∈{s∈I |ys=c}

is stationary.
A labeled time series is callednonstationary, if it is not stationary.

Now the question arises how it can be shown that a labeled time series is nonstationary.
According to the definition, it is only required to find two points in time where the distribu-
tions are different. On the other hand, there is always the problem of a sufficiently accurate
estimation of the probability density at a given point in time. If a stationary time series is
generated from a normal distribution with a large covariance matrix (e.g., caused by mea-
surement noise), it is not trivial to decide from the data whether the time series comes from
the same distribution. In order to identify a nonstationary process, it is important that tests
for the change of underlying parameters can be done at a reasonable significance level.

If it is safe to assume a parametric model for the distribution of the time series, it is
sufficient to demonstrate that the parameters of the model are changing over time. For the
case of a multivariate normal distribution, this corresponds to investigating themean and
covariance of the data and how they change over time1.

The usual setup of the BBCI uses bandpower features for the classification. This requires
the measurement of EEG over a time window of 100–1000 ms. In order to let thedifferent

1The concept of stationarity, which only requires the first and second order moments to not vary over time,
is commonly refered to aswide-sense stationarity. Note that “(strict-sense) stationarity” implies “wide-
sense stationarity”, and therefore “wide-sense nonstationarity” implies “(strict-sense) nonstationarity”. The
investigation that I am conducting are, in this notion, testing for wide-sense nonstationarity.
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3.1. Probability Distribution Comparison

samples be independent, a property that is required for the correct estimation of mean and
covariance of a normal distribution, I have to ensure that the windows forthe bandpower
estimation do not overlap. In the following, I will use the data of different trials – either in
the calibration or in the feedback setup as described in Section 2.3.3 and 2.3.5– as samples,
i.e., t ∈ I is the number of a particular trial andXt is some feature derived from the EEG
recording of this trial.

3.1. Probability Distribution Comparison

According to the definition of nonstationarity in labeled time series, the check for nonsta-
tionarity involves the comparison of estimates of the distribution of two classes attwo given
points in time. There are various methods to compare the distribution of two random vari-
ables, I will introduce the most prominent ones and show how they are related.

3.1.1. Kullback-Leibler Divergence

Definition The Kullback-Leibler Divergence (sometimes refered to as “Kullback-Leibler
Distance”, although this is mathematically not quite accurate, as the considerations below
will demonstrate) of the probability distributionsP andQ with respective probability densi-
ties p andq is defined by

KL(P,Q) :=
∫

p(x) log

(

p(x)
q(x)

)

dx.

For two n-dimensional random variablesX1,X2 with X1 ∼ N(µ1,Σ1) andX2 ∼ N(µ2,Σ2),
this amounts to

KL(PX1,PX2) = −1
2

[

log(|Σ1Σ−1
2 |)+E(X1−µ1)

tΣ−1
1 (X1−µ1)

−E(X1−µ2)
tΣ−1

2 (X1−µ2)
]

= −1
2

[

log(|Σ1Σ−1
2 |)+ trace(E(X1−µ1)(X1−µ1)

tΣ−1
1 )

−trace(E(X1−µ1)(X1−µ1)
tΣ−1

2 )− (µ2−µ1)
tΣ−1

2 (µ2−µ1)
]

= −1
2

[

log(|Σ1Σ−1
2 |)+ trace(I −Σ1Σ−1

2 )− (µ2−µ1)
tΣ−1

2 (µ2−µ1)
]

,

whereI denotes then-dimensional identity matrix.
Note that the Kullback-Leibler Divergence is non-negative, i.e., KL(P,Q)≥ 0 for all P,Q.

The equality holds if and only ifP = Q. However, the Kullback-Leibler Divergence does
not define a metric in the mathematical sense, because it is not symmetric. It is therefore
sometimes used in a symmetric version by defining

KL sym(P,Q) := KL(P,Q)+KL(Q,P).

A simple example shows that the Kullback-Leibler Divergence does also notsatisfy the
triangle inequality. Suppose we have three Bernoulli DistributionsP1 = B(d), P2 = B(0.5)
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3. Introduction to Nonstationarity
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Figure 3.1.: This figure shows the effect of varying the parameter of three Bernoulli dis-
tributions on the associated Kullback-Leibler divergence values. The triangle
inequality is only satisfied for a single choice of parameters.

andP3 = B(1−d) for somed∈]0,1[. The corresponding Kullback-Leibler divergence terms
KL(P1,P3) and KL(P1,P2) + KL(P2,P3) are shown in Fig. 3.1.1. The triangle inequality
only holds (trivially) for d = 0.5; this can be shown with straightforward calculus. Note
that the symmetric version of the Kullback-Leibler Divergence still does notfix the triangle
inequality. The KL divergence is a very general tool, such that it can beused to express
some information-theoretic concepts, as shown below.

Shannon Entropy

If X is a discrete random variable with probability mass functionp(xi) = pi(i = 1, . . . ,n),
the Shannon Entropy ofX is defined as

H(X) := −
n

∑
i=1

pi log(pi).

In information theory, the Shannon entropy is a measure for the uncertaintyassociated to
the transmission of an information.

The Shannon entropy can be expressed with the KL divergence in the following way:

H(X) = log(n)−KL(PX,PU),

whereU is a uniformly distributed variable. In other words, the less information is con-
tained inX (i.e., the closerX is to a uniform distribution), the larger the associated Shannon
entropy.

In BCI research, the Shannon entropy is often used to evaluate the performance of a
particular setup, see e.g. [34, 73]. The bitrate is the expected number of bits that can be
(“almost surely”) transferred over a particular channel in a specific amount of time.
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3.1. Probability Distribution Comparison

Mutual Information

If X andY are random variables with probability density functionsp(x) andp(y) and joint
density functionp(x,y), the mutual information ofX andY is defined as

I(X,Y) :=
∫

X

∫

Y
p(x,y)log

( p(x,y)
p(x)p(y)

)

dxdy.

In information theory, the mutual information is a measure of the dependence betweenX
andY, with I(X,Y) = 0 iff X andY are independent.

Expressed with the Kullback-Leibler divergence,

I(X,Y) = KL(PX,Y,PXPY),

which means that it denotes the distance between the joint distribution and the product of
the two distributions. From this expression, the above property is directly deducted.

3.1.2. Bi-serial Correlation Coefficient (r-value)

The (point-)bi-serial correlation coefficientr measures how much information one feature
dimension (of the datax ∈ R

d) provides about the labels. For each dimensioni of x, it is
computed in the following way:

r i =
(µ1−µ2)

σ

√

n1n2

(n1 +n2)(n1 +n2−1)
,

whereµ j is the class-specific empirical mean of dimensioni of x, σ the sample standard
deviation of dimensioni of x , andn j denotes the number of samples for classj ∈ {1,2}.

This value describes the separability of the data in one dimension by scaling thediffer-
ence of the empirical means with the inverse of the sample standard deviation. It is often
used in the squared version, where highr2-values correspond to high discriminability of the
respective feature dimension. The signedr2-value (sgn(r) · (r2)) additionally preserves the
information which class has the higher mean.

3.1.3. Area Under the Curve (AUC)

The Area Under the Curve (AUC) is a feature of the Receiver OperatingCharacteristic
(ROC) curve.

If the discrimination threshold of a binary classifier is varied, the ROC curveis a graphical
plot of the sensitivity of the classifier (“True Positive Rate”) against (1-specificity) (“False
Positive Rate”).

Let X be a real-valued random variable, modeling the graded output of a givenclassifier.
Suppose the values ofX can be interpreted as detector for the eventY = 1, whereY∈{1,−1}
is a random variable. Then the quantities mentioned above are defined in the following way
for a given discrimination thresholdx∗:

True Positive Rate: P(X > x∗|Y = 1)
False Positive Rate: P(X > x∗|Y = −1).

The ROC curve is then drawn by varying the decision threshold in the interval [−∞,+∞].
If the classifier discriminates well between the two classes, the ROC-curve isfar from the
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3. Introduction to Nonstationarity

diagonal line (which corresponds to no separability at all), therefore thearea below the curve
(calculated as the integral from 0 to 1) gives an impression of the discrimination ability of
the classifier. AUC values can range from 0 to 1, where 1 means perfectseparability. Note
that all values below 0.5 can mean that the detection problem should be formulated with a
reversed sign.

The AUC value has the advantage that it works just as well for discriminationproblems
with different class priors. Also note that for a given classifier, the discrimination is assessed
independently from any additive bias term.

3.1.4. Classification Error

While both ther2-values and the AUC-values can be applied independently from a given
classifier, the classification error just denotes the percentage of errors that some classifier
committed on a test data set. This measure obviously does not give a generalimpression
on the separability of the test data, since the classifier might just be sub-optimal. Yet, this
value can be used to assess a change in the feature distributions from onepoint in time to
the other: by adjusting the classifier parameters on a “training” data set andapplying it to
“test” data, the performance on the test data is high if training and test data were drawn from
similar distributions.

In usual machine learning applications, a robust prediction for the classification error
on unseen data is often computed by training the classifier on all data exceptfor a single
point and then applying it to this point. By repeating this procedure for eachpoint in the
dataset, the number of errors can be counted and be divided by the total number of points.
This fraction is then called the “(leave-one-out-) cross validation error”. In chapter 5, the
classification error with varying training and test sets will be used to check the stability of
the features in a given feature space.

The classification error, although highly relevant for the analysis of BCIperformance, is
a very complex measure, which does not necessarily give insights on the underlying differ-
ences between distributions. However, it is sensitive to the change of the distributions, if this
shift is relevant to the discriminability of the data. This is exemplified in the next section.

3.2. Pairwise Probability Density Comparison

If the performance of a classification-based Brain-Computer Interfacedoes not meet the
performance as predicted from the training data, some relevant change must have occured.
In other words, the distributions of the data in parts of the feedback session do not resemble
the distribution on the calibration data. Regardless of the neurophysiological and psycho-
logical factors, this change can easily be documented in the feature spaceby just inspecting
the relation of class means and covariances to the classification boundary.Fig. 3.2 gives
some examples for schematic differences between training and test set. It isimportant to
note that these examples can not only be applied to the particular setting with calibration
and feedback data, but they can also serve as a comparison between different parts of the
feedback period, or between different sessions. In Section 3.3, I willfurther comment on
why this might be useful in the BCI context.
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3.2. Pairwise Probability Density Comparison
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Figure 3.2.: Some changes that can occur in the binary classification of labeled time series.
The solid shapes depict the classwise standard deviation of the training data(at
time t1) around the class means. For the test data (timet2), the standard devia-
tions are given in dashed lines. The optimal decision boundary corresponding
to a linear classifier, is depicted with the dashed line.

For the sake of simplicity, the examples given here are restricted to two dimensions, but
it is obvious that the same argument holds for any finite-dimensional featurespace. The
examples of Fig. 3.2 contain in detail:

1 While the covariance does not change for either of the classes, the class means are shifted
considerably. Although the separability is unaltered at timet2, the decision boundary is
not useful for the discrimination of the classes, such that the classificationerror will be at
chance level.

2 Only the class mean of class 2 is shifted at timet2. The discriminability is drastically
reduced, such that the classification error will be at chance level.

3 Again, both class means are shifted by the same amount. In contrast to the first example,
the shift has occured along the decision boundary, such that the separability of the classes
is not changed and the classification error at timet2 corresponds to the error at timet1.

Comparing the first two examples, it turns out that the classification error for one particular
classifier can not reflect the overall separability of the data. In order toimprove the classifi-
cation rate by adjusting the classifier to the new data, it would be useful to know if the new
class distributions can be discriminated at all, and which actions must be taken accordingly.
Moreover, as the third example shows, the classification error does not necessarily reflect all
the changes that are relevant to the data. This is not exactly a problem, since the information
transfer rate of the interface is not affected by a change of this sort, but one should keep in
mind that a stable classification performance does not necessarily mean thatthe class distri-
butions are stable over the whole time. It is, on the contrary, highly interestingto observe
what kind of change a particular classifier can be invariant against.

These examples show that the classification error alone can never provide sufficient in-
sight into the changes within a given feature space. It is therefore necessary to include
other means of quantifying the degree of alteration of the involved classes,such as binary
comparisons between some of the four associated class distributions. Some of the possible
comparisons are illustrated in Fig. 3.3.

I The first distance of interest is the between-class distance at timet1. If the classifica-
tion problem has equal class priors and if equal distributions are assumed(as for LDA
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Figure 3.3.: This figure shows some of the binary comparisons of distributions involved in a
labeled time series. The distributions of the two classesC1 andC2 are depicted
with red and green circles, respectively. At time pointt1, the class distributions
are shown with solid circles, and at time pointt2, with dashed circles. The
overall distribution at timet1 andt2 is shown in a solid and a dashed black line,
respectively.

classification), a symmetric measure should be used.

II The between-class distance at timet2.

III The shift of classC1 from t1 to t2. This distance is not required to be symmetric, since
we often have a comparison of a “ground truth” distribution (e.g., from a calibration
measurement) that a new distribution (e.g., from a feedback experiment) is supposed to
be compared against.

IV The shift of classC2 from t1 to t2.

V The shift of the overall distributions from timet1 to t2. Note that this unit can be
estimated without the knowledge of the class labels, if equal class priors areassumed.

Since there are many other possible combinations that compare two differentclass dis-
tributions, I will exemplify the power and the shortcomings of these binary comparisons.
Some examples are given in Fig. 3.4.

1 Both classes are shifted by the same amount. Although the common distribution (V) and
the classwise distributions (III and IV) will change considerably, the class separability (I
and II) is not affected.

2 In this example, the classes are only flipped. In contrast to the first example, the overall
distribution of the samples (V) will not notice this change.

3 The class separability decreases drastically due to larger classwise covariances. If the
overall distribution is estimated only by assessing the mean and the pooled covariance,
this change will again go unnoticed by measure V.
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Figure 3.4.: This figure shows some examples of distribution changes that can occur in la-
beled time series. The presented distance measures I-V (see Fig. 3.3) respond
quite differently to these changes.

4 The class separability is increased in this example (I vs. II), but only the second class
distribution is changing. This change can be observed by checking the distance measures
II, IV and V.

5 Although measures III, IV and V are affected in a similar way as in the previous example,
the class separability (I vs. II) is drastically reduced. These examples show that the
class separability always needs to be regarded in addition to the overall changes of the
distributions.

In Chapters 5 and 6, the comparisons will be performed mainly for one-dimensional dis-
tributions: if the bandpower features are calculated for each scalp electrode separately, the
distance between the distributions generates a scalp topography which canthen be inter-
preted neurophysiologically. A first example is given in figure 3.5.

3.3. Possible Choices of Time Windows

In BCI research, the time series we are inspecting originate from online feedback experi-
ments or from the preceding calibration measurements. If we regard the whole experiment
as a time series, there is only one single instance of this time series for every subject. This
means that it is impossible to assess the data distribution at a given point in time, since this
would require multiple repetitions of the same time series with the same nonstationary be-
havior. For the goal of this work, namely to improve the classification performance of BCI
systems, it is inevitable that the necessary actions all rely on the current session and can be
performed without repetitions, i.e., in an online fashion.
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3. Introduction to Nonstationarity

Therefore, I will restrict myself in this work to the comparison of distinct time windows
taken from the same time series. In a completely stationary time series, any two chosen
windows in time contain samples which are drawn from the same distribution. If wefur-
ther assume Gaussian distributions and conditional independence of the samples (which is
the case if we only take one sample per trial of the recording), we can estimatethe suffi-
cient statistics (sample mean and sample covariance) of the distribution within each window
separately. This estimate converges to the underlying mean and covariance, if the window
sizes are sufficiently large. Using the estimates for both windows separatelyand applying
the distance measures introduced in Section 3.1, it can then be decided how similar the
distributions are. If they differ significantly, this proves that the time series isnot stationary.

In the following chapters, I will apply a variety of different measures to particular choices
of time windows to assess their degree of nonstationarity. These choices include

1. Comparison of calibration measurement vs. feedback measurement (see sections 5.1
and 5.2)

2. Comparison of entire sessions (see sections 6.2 and 6.3)

3. Within-session comparison (see sections 5.1, 5.2 and 6.1)

To illustrate the variability over these different time periods, the changes of the discrim-
inability of the author’s brain signals are depicted as scalp topographies in Fig. 3.5. For
these figures, the discriminability of calibration (panel (a) and (c)) and feedback data (panel
(a) and (b)) has been analyzed. Each panel exhibits a considerable variability of the region
with maximal discriminability as well as of the magnitude of ther2-values.

Note that important sources of variability in neurophysiological data, suchas inter-subject
differences, are not covered in this work. Although the methods presented here can clearly
be applied to that scenario, it would be beyond the scope. For more details on inter-subject
variability, see e.g. [124].

Among the most important comparisons are the time windows from a single session. For
the BCI-context, stationarity over this period would also imply a stable performance of a
static classifier over the whole session. Unfortunately, this stationary caseis rarely observed.
It is nevertheless important to identify the reasons for nonstationarity within single sessions
and to use this knowledge to design remedies.

3.4. Adaptation

A frequently encountered problem in using EEG-based Brain-Computer Interfaces is that
the performance decreases when going from offline training sessions toonline operation
of the BCI. One could suspect this to be caused by bad model selection strategies which
could in principle choose overly complex classification models that overfit theEEG data.
Yet I will show in the following chapters that the nonstationarities in the EEG statistics can
actually account for this failure. If the subject’s brain processes during feedback cause the
distributions to wander astray on a sometimes very local timescale, counter measures have
to be applied which alleviate the effect of the nonstationarity.

Various approaches were suggested to cope with nonstationary behavior of EEG signals.
In the BCI context, the large variety of methods that are used for classification also enable
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Calibration Feedback

± 
r2 (L

,F
)

−0.2

0

0.2

(a)

Run 1 Run 2 Run 3 Run 4

Run 5 Run 6 Run 7 Run 8

Run 9 Run 10 Run 11

± 
r2 (L

,F
)

−0.2

0

0.2

(b)

Session 1 Session 2 Session 3 Session 4

Session 5 Session 6 Session 7 Session 8

Session 9 Session 10 Session 11

± 
r2 (L

,F
)

−0.2

0

0.2

(c)

Figure 3.5.: This figure shows scalp topographies of the discriminability of theauthor’s brain
activity during the imagination of left hand and right foot movement. For each
scalp map, EEG data in each electrode has been bandpass filtered to the range of
10–25 Hz, and the log bandpower was calculated by calculating the logarithmof
the variance in each trial, 1000–3000 ms after the presentation of the stimulus.
Finally, the signedr2-value has been calculated for each electrode in order to
find regions with the largest between-class differences.
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3. Introduction to Nonstationarity

the experimenter to adapt different parameters of the algorithm in the run ofthe session;
moreover, the success of the adaptation algorithm used might depend on thechosen BCI
scenario.

In [151], a visual BCI feedback was described in which the user was able to control a
computer cursor in two dimensions, trying to hit one of eight possible targets.The classi-
fication algorithm used two distinct bandpower features acquired from a small subset of 64
scalp electrodes. Several scaling factors were used to translate these features into positions
on the screen, four of which were successively adapted to the individual user during the
session.

Similarly, [89] demonstrated that in a classification of four classes, the estimation of mean
and covariance matrix for each of the classes can be iteratively updated ina simulated online
scenario; based on these parameters, the predicted online performancefor these subjects
improved considerably. In this case, several channels from centroparietal scalp regions were
used for the feature extraction.

In another offline study, this finding was backed by [145]; here, the parameters of a
quadratic classifier (QDA) were adapted after each trial of a cursor-movement task. Af-
ter a careful update parameter selection, the resulting classification was superior to the static
classifier that was used from the start.

In each of these studies, the used method of adaptivity differs slightly and itis hard to
transfer these results to other classification approaches, since the underlying changes in
the models might differ. In [90], a broader selection of adaptive systems iscontrasted,
encompassing

1. Bias and LDA adaptation in a CSP-based BCI system

2. Discontinuous and continuous LDA adaptation on bandpower featuresand Adaptive
Autoregressive Parameter (AAR) features

3. Stochastic Meta Descent for a multiclass Statistical Gaussian classifier on bandpower
features.

I will present the first of these adaptation strategies in sections 5.1 and 5.2,where I will ana-
lyze its performance in an offline evaluation, but also discuss the feasibility of this approach
in online experiments.

As a more general question in the context of the evaluation of adaptive methods, it is
always important to consider the problem of the choice of an appropriate length of the adap-
tation time window, which has an influence on the adaptation rate. If this window ischosen
too large, the classifier responds very slowly to ongoing changes, whereas a short time win-
dow can result in poor estimation of the classifier parameters and thereforein a suboptimal
classifier. This problem will be discussed in detail in Section 5.2.
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4. Nonstationarity – or just Outliers?

It is often hard to determine the degree of nonstationarity that the brain signals are affected
by, since the correct estimation of the underlying distribution is often prevented by a large
variability due to outliers. As a simple example, Fig. 4.1 shows how the estimation of class-
specific parameters, such as class mean and class covariance, can failin the presence of
outlier samples.

In this chapter, a general concept of outliers will be introduced. Basedon this concept,
methods will be developed to alleviate their effect on the data. If this treatment alone will
remove any detrimental influence of the large variability of the data, the underlying data can
further be assumed to be stationary. Yet, I will demonstrate that outlier reduction can not be
the only answer to this problem, because the data still prove to be inherently nonstationary
after outlier elimination.

4.1. The Outlier Concept

Biomedical signals such as EEG are typically contaminated by measurement artifacts, out-
liers and non-standard noise sources. I will propose to use techniquesfrom robust statistics
and machine learning to reduce the influence of such distortions. Two showcase applica-
tion scenarios are studied: (a) Lateralized Readiness Potential (LRP) analysis, where I can
show that a robust treatment of the EEG allows to reduce the necessary number of trials for
averaging and the detrimental influence of e.g. ocular artifacts and (b) single trial classifi-
cation in the context of Brain-Computer Interfacing, where outlier removalprocedures can
strongly enhance the classification performance.

4.1.1. Introduction

Identifying outlier points in a dataset can enhance our understanding of the data. By remov-
ing outliers, it is possible to improve the estimation of intrinsic properties such as mean or
covariance matrix, and to analyze the data in single trial analysis. Various definitions of the
outlier concept have been suggested, e.g. [1, 58, 52, 7, 122, 137, 77]. I will in the following
introduce some model assumptions about the EEG data, and by outliers simply refer to those
points not fulfilling these assumptions. I will show how this concept can be used to robustify
the analysis of motor-related EEG data.

Typically EEG signals are distorted by artifacts and noise. If the few trainingsamples
that are measured within the ’calibration’ time are contaminated by such artifacts, a sub-
optimal or even highly distorted classifier can be the consequence [93]. Since simple clas-
sifiers like Linear Discriminant Analysis (LDA), Regularized Discriminant Analysis (RDA)
or Quadratic Discriminant Analysis (QDA) assume Gaussian distributions of the classes in
feature space, every deviation from this assumption can result in poor performance of the
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Figure 4.1.: Part (a) of this figure shows five randomly drawn samples of classC1 and five
samples of classC2. The ellipsoid shapes denote the sample covariances around
the sample means. The classes are easily separable. Part (b) shows the influence
of outliers: by just adding a single point per class, which is no typical example
for the class distribution, the parameter estimation is corrupted.

discrimination method. I will show that outliers can transform the data to a non-gaussian
distribution. Therefore it is important to strive for robust machine learningand signal pro-
cessing methods that are as immune as possible against such distortions.

4.1.2. Robustification Approaches for EEG analysis

The literature points out various methods of how to identify outliers [1, 58, 52, 7, 122, 137,
77]. In Section 4.2, I will use the delta-method ([53], see Section A for a short introduction)
to identify outliers. This method does not rely on the estimation of parameters such as mean
or covariance matrix of the data in feature space, but rather uses the relative distances of each
data point to itsk nearest neighbors. In Section 4.3, I will use the Mahalanobis distance
[1, 130], which requires to estimate both mean and covariance matrix of the data sample
to find points with the largest deviance from the class mean. Points with high distances
to all others are really different from the usual data ensemble and shouldtherefore not be
considered representative. Furthermore a decision has to be made on how many trials should
be removed based on the outlierness curve. Tests to automatize the cut pointin this curve
did not result in significant changes. Thus, for the purpose of this work I present only results
where the 10 %-worst trials were removed.

Apart from the general issue of choosing an outlier detection method, it is also an inherent
problem of EEG data that the dimensions of the feature space may have different qualities:
usually, data points are given with a certain number of repetitions (trials), and they contain
channel informations and the temporal evolution of the signal. A natural approach is to
specifically use this information to find outliers within a certain dimension, i.e., removing
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Figure 4.2.: This figure shows the Lateralized Readiness Potential during afinger movement
for one subject. The timecourse for electrode C2, averaged over more than 500
trials, is shown above; the spatial distribution corresponding to the timepoints
in the gray shaded areas is visible from the three scalp plots below.

channels with an increased noise level (due to high impedances at the specific electrode) or
removing trials which are contaminated by artifacts from muscular or ocular activity. These
approaches will be explained in detail in Section 4.3.

4.2. Outliers in LRP Features

This section will serve as an introduction to the nature of outliers in neurophysiological data.
I will demonstrate exemplarily how outliers can disrupt the estimation of the distribution of
certain features of the EEG, which suggests that removing those outlier trialscan lead to a
more robust estimation of the original LRP signal.

4.2.1. Experimental Setup

EEG data were acquired in 34 experiments from 17 different subjects. Brain activity was
recorded from the scalp with multi-channel EEG amplifiers using 32–128 channels, at a
sampling rate of 1000 Hz. The subjects pressed buttons of a keyboard withtheir index
fingers in a (selfpaced) rhythm of approximately 0.5 Hz, in a selfchosen,random order.
Each experiment consisted of 500–1000 repetitions of these movements (“trials”). The data
were then stored for training classifiers for online BCI feedback experiments. In the course
of these experiments, a cross-shaped cursor was presented to the subjects on the screen,
indicating the estimated laterality of the keypress. The results obtained during training and
feedback experiments are presented in previous publications, [15, 66,67]. I will now use the
same feature extraction as it was applied for classification purposes in order to demonstrate
qualitative differences between in- and outlier trials.
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Figure 4.3.: In the left part of this figure, the differences between outlierand inlier trials
are presented in terms of the Wilcoxon ranking score, averaged over data from
17 subjects (see text for details). The right part shows the EEG signal of one
subject at electrode C2, averaged over more than 500 trials of repeatedleft index
finger keypresses. One trial that has been identified as an outlier trial and a
typical inlier trial are shown in the same plot. The gray area depicts the standard
deviation of the inlier trials.

Feature Extraction

First, up to 20 central channels are selected that cover the areas corresponding to the motor
cortices of the fingers. The data are then bandpass-filtered to 0.8–3 Hz,and the last 150 ms
preceding the keypress are subsampled to 20 Hz, such that only three samples per channel
remain. The samples are then concatenated over all channels. These steps are explained in
detail in [15].

Outlier identification

According to the delta-score (see Chapter A; a more detailed version is given in [53]) ob-
tained by each trial, those 10% of the trials with the highest scores are labeledas outliers.
Figure 4.3 shows the difference in the power between outlier- and inlier-trialsin terms of
thew-scoreswch of the average bandpower fvch in the frequency band from 0.8 to 5 Hz. The
w-score is used in the Wilcoxon test for the comparison of two random samplesfor equal
distribution. It is computed in the following way:

wch =
Rch,in − nin(nin+nout+1)

2
√

ninnout(nin+nout+1)
12

,

wherenin,nout are the respective numbers of in- and outliers, and

Rch,in =
nin

∑
i=1

R(fvch,i)
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Figure 4.4.: The left part of this figure shows a scatterplot of two normalizations of linear
projections of the feature space in one subject. The cross-shape of thisplot re-
veals a non-gaussian structure of the data. The gray circles mark the trialswhich
are identified as outliers. In the right plot, one of the corresponding projection
matrices is shown. The spatial distribution suggests that the distribution of this
projection is caused by vertical eye movements (such as eyeblinks).

is the sum of the ranks of all inlier trials in the combined sample of in- and outlier trials.
A low w-value indicates that the variance of the outlier trials in this channel is higher than
the variance of the inlier trials. The figure shows the spatial distribution of these differences
after averaging over all subjects. Since thew-values of all channels are negative, the trials
that have been identified by the outlier method have higher variances in this frequency band.
By the spatial distribution, it is also apparent that this variance is caused byeye movements,
since the influence of eye movements is maximal in the electrodes near the eyes and falls off
with increasing distance, see e.g. [28]. In the right part of figure 4.3, the timecourse of the
trials with lowest and highest delta-score (i.e., of an in- and an outlier) at electrode C2 are
shown for one subject. This also illustrates the high variance of the outlier trials.

Figure 4.4 shows a two-dimensional linear projection of the feature space with the most
“non-gaussian” components. These projections are found by applyingIndependent Com-
ponent Analysis to the feature space for one subject. It has been shown in [15] that the
applied preprocessing converts the data into a feature space where it is safe to assume gaus-
sian distributions for the data. Under this assumption, every projection of thefeature space
should be normally distributed again, but this figure shows that there is in fact a strong “non-
gaussianity” due to the outliers. The gray circles indicate the trials which the delta-method
would identify as outliers. After the removal of 10% outlier trials, the projections are no
longer significantly different from normal distributions.
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4. Nonstationarity – or just Outliers?

Results

In this section I have illustrated that eye movements are a common source of deteriorating
influences on the EEG signal when dealing with slow cortical potentials. In our experiments,
there is a significant correlation between eye movements and the identification of the trials
as outliers. Note that these trials may also be removed from the data ensemble bysimple eye
artifact-rejection; however, this rejection method assumes that only the eyesare sources of
signal deterioration, while outlier detection methods also capture other types of influences,
such as muscular activity or movement artifacts.

It has also been shown that outliers in EEG recordings can deteriorate thedata in such a
way that basic assumptions about the underlying distribution, e.g. gaussianity, are not met
and hence a robust estimation of the parameters can not be guaranteed. Removing outlier
trials from the recording can help to remove this detrimental effect of the outliers.

4.3. Outliers in Bandpower Features

So far, possible effects of outlier identification and outlier removal have been demonstrated
only by their effect on the distribution in the EEG feature space. Now I will quantify this
effect by applying the presented methods in a single trial classification context with band-
power features.

In this section I investigate data from 22 EEG experiments with 8 different subjects. All
experiments included calibration sessions in which the subjects performed mental motor
imagery tasks according to visual stimuli, as explained in Section 2.3.3. The classifiers were
CSP-based, see Section 2.2.1, and subject-specifically trained to capturethe ERD/ERS-
complex connected to the motor imagery task.

There are a number of factors that could degrade the performance of the CSP method:
(1) outlier trials where the subject either produces artifacts or does not perform the required
mental task, (2) unreliable channels, that are partly noisy due to measurement problems. In
this section I investigate two methods that would compensate for (1) in different ways and
one method that tries to compensate for (2). The expectation in this study was that robus-
tifying methods could only improve performance in few experiments because we had well
controlled EEG measurements on subjects that were highly motivated for the experiments
such that they would canonically try to avoid to produce artifacts.

4.3.1. Feature Extraction, Classification and Validation

There are several parameters in this feature extraction procedure thatshould be specifically
chosen for each subject to obtain optimal results. In our online experimentsthis is done
semiautomatically by combining machine learning, expert knowledge and visualinspection
of some characteristic curves such as spectra and ERD curves, see [10]. In this comparative
offline analysis, absolute performance does not matter, so there is one fixed setup for all
subjects.

After choosing all channels except the EOG and EMG and a few outmost channels of
the cap, a causal band-pass filter from 7–30 Hz is applied to the data, which encompasses
both theµ- and theβ -band. The extracted trials are the windows 750–3500 ms after the
presented visual stimulus, since in this period discriminative brain patterns are present in
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4.3. Outliers in Bandpower Features

most subjects. Afterwards the CSP algorithm (see Section 2.2.1) is applied to the data such
that the number of channels is decreased by suitable linear spatial filters which are learned on
the training trials. In this example, 3 patterns per class are used, which leadsto 6 remaining
channels. As a measure of the amplitude in the specified frequency band I calculate the
logarithm of the variances of the remaining channels as feature vectors. LDA classifiers
were used for classification.

To explore the performance of an algorithm, a 10×10-fold cross-validation is applied to
the feature vectors. This means that the data set is randomly split into ten equalparts, each
of which is used once as a test set while training is done on the other 90 percent. This
procedure is repeated ten times to get 100 test errors.

Since the CSP algorithm and other techniques presented later on exploit label informa-
tion, these techniques have to be used only on the training set within the cross-validation
procedure. Otherwise the cross-validation error could underestimate thegeneralization er-
ror.

To maintain comparability between algorithms, the chosen divisions into training and test
sets are stored, such that all algorithms are applied to the same divisions.

4.3.2. Outlier Removal

Channel Removal

Instead of calculating the covariances, the evaluation of the correlation coefficients gives the
opportunity to estimate the certainty for each channel. Here I take the difference of the lower
bound and upper bound of the 95 % confidence interval for the estimation of the correlation
coefficients. Using this as a measure of the goodness resp. badness, unreliable channels can
be removed by a simple threshold criterion.

Outlier-trial removal

As a simple and reliable approach I will show here only one way, which performed reason-
ably well in our studies. For the validation of the presented algorithms outliers were only
removed considering the training set, but for the test set all trials without recognizing their
outlierness were used. However, the information that a trial is an outlier mightalso be used
in feedback situations, e.g. by freezing the cursor instead of providing the regular feedback.
This option would greatly enhance the range of possible application, but asthis study is only
considering calibration data, I will forgo this option.

The presented outlier removal approach is based on the idea to use the Mahalanobis dis-
tance of the variance of each trial and channel as measurement of the outlierness of the trials
(cf. [1, 130]).

Robustification by normalization

For the robust estimation of covariance matrices, many different algorithms have been pro-
posed. Other feasible variants include approximating covariances via 1-norm, median abso-
lute deviation (MAD) or using the least informative distribution approach (cf. [58]).

The method I am going to present in this category is to normalize each time point in the
filtered EEG signal to have euclidean norm 1 over the channels. With this modified signal,
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4. Nonstationarity – or just Outliers?

the covariances and the CSPs are calculated and applied to the normalized data with the
same processing as before. Different strategies like applying this spatialfilter to the original
filtered but unnormalized data or normalizing the whole window trialwise resultin similar
performance. Normalizing the EEG data in this way deletes the absolute amplitude of the
signals and retains only the relative amplitudes in their spatial configuration. This is enough
information to detect ERD features, and additionally has the effect that outliers have less
influence in estimating covariances (of the normalized signals).

4.3.3. Results

As reported in many publications (e.g. [11, 18, 35, 36, 37]), one can see that the usual CSP
algorithm often performs quite well. Nevertheless, there are some experiments in which one
or more of the robustification approaches can greatly improve classification. Unfortunately,
the same new methods can also deteriorate the results in other instances. This means that
for the application in BCI feedback experiments, a meta-decision about the robustification
method has to be taken, based on the data of the training session for each subject. For the
validation of such a procedure on our offline data, two schemes were applied, which used
different partitions of each data set.

In thechronapproach, the data were split into their (chronological) first and secondhalf.
On the first half I calculated the cross-validation error for each of the competing algorithms
as described in Section 4.3.1. I will call the results here the “expected performance” or
“expected error” of the algorithm. Based on the expected performance,the most promising
algorithm is chosen for the application on the test data. For this decision, the difference be-
tween the expected error of our baseline CSP approach and the expected error of each of the
algorithms presented in Section 4.3.2 is calculated. Only if this difference exceeds a certain
switching threshold, the alternative algorithm is chosen instead of the CSP approach for the
evaluation of the test set. Once the decision is taken for one of the methods, the classifier is
trained on this first half and applied to the other half of the data (“test performance”). This
evaluation mode closely resembles an actual feedback situation; a fixed classifier is trained
using only data from a preceding training session, and is applied to the following feedback
data. Note, however, that this evaluation is prone to be affected by nonstationary behaviour
of the EEG data, which is often encountered in this type of experiments.

The nonchronapproach, the second evaluation method, is to a large extent invariant to
these local changes in the EEG; here the training set consists of every even trial and the test
set of every odd trial, such that slow trends are always present in bothtraining and test data.
The evaluation then proceeds as in thechronmethod.

Figure 4.5 compares this test performance gain in different switching thresholds for each
of the algorithms and for the best of all of them. Furthermore the percentageof experiments
is shown where a switch to a robustification algorithm took place. Obviously, this portion
decreases with increasing thresholds, i.e., if we choose a more conservative strategy. On
the other hand the mean performance gain increases (i.e., the classification test difference
decreases) with increasing threshold, until only few or no false decisions are left. Never-
theless, there are very few experiments where the decision to change waswrong as seen in
the figure, but the cases where a change improves the classification accuracy outweigh the
others. Between the algorithms no substantial difference is visible, but as their success lies
in different experiments, further improvement by combination strategies canbe expected.
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Figure 4.5.: The decision threshold varies between 0 % and 10 % on thex-axis. For each
experiment, the expected performance of each robustification algorithm is com-
pared to the expected performance of ordinary CSP. If the performance gain
exceeds the threshold, the actual test error is evaluated on the test data.Out
of all these experiments, where switching to the robustification method seems
to be recommendable, the mean of the test error gain on the chosen algorithm
against CSP is plotted as a black line. The range of all these values is visualized
by the gray shaded area. Below zero, the change to the robustified methodwas
successful: the lower the solid line, the higher the improvement. The dashed
line shows the portion of experiments where the robustified method was cho-
sen. In the first three columns each single robustification approach is compared
to CSP whereas in the last column the best of all three robustified methods was
used respectively.chron (for chronological order) denotes an evaluation mode
where the expected error is estimated by cross-validation on the first half of the
data and the test error is determined on the second half; thenonchronmode
splits the data into even and odd trials.

In total thechron andnonchronevaluation strategy lead to similar interpretations. One
important difference is that the gray area above the zero line is thinner in thenonchron
case. That means that in thechron evaluation there are several cases in which the result
of the chosen robustification method is worse than the baseline CSP result, while in the
nonchroncase there are less severe failures. This gives a clue for the reason of the failure:
nonstationarity in the data. If all datapoints were drawn from the same distribution, then
nonchronand chron evaluation should result in similar classification accuracies, but this
finding shows that the distributions are undergoing changes throughoutthe time.

In the end, the figure shows that it can be profitable in some cases to switch toa suitable
outlier algorithm for enhancing performance.
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4. Nonstationarity – or just Outliers?

4.4. Discussion

EEG data recorded in motor-related tasks are highly challenging to evaluate due to noise,
nonstationarity and diverse artifacts, specifically from eye movements or neck and jaw mus-
cles. Thus BCI provides an excellent testbed for testing the quality and applicability of
robust machine learning methods (cf. [41, 19]). In this study the effectsthat outlier trials
may have on the distribution of the features were analyzed. It was shown that eye move-
ments are a common source for the outlierness of trials in slow cortical potentialdata; the
result we encountered was a shift of the data towards a non-gaussian distribution, where the
removal of outliers may help to restore the model property of gaussianity thatis assumed for
linear classification. Finally, it was exemplified how outlier removal methods canimprove
the classification accuracy in the discrimination between different motor actions.

As our BCI system has so far mainly relied on dimension reduction techniqueslike CSP,
this study has explored directions of their robustification against outliers. However in a BCI
training protocol it is essential to decide whether to apply one of the robustalternatives or
to stick with the conventional baseline algorithm, that obtains better results in somecases.
As shown, this meta-decision, if exercised sufficiently conservatively, i.e., only after an
expected gain of more than 5 %, can yield significant performance improvements. These
encouraging results should nevertheless be carefully put into perspective: (i) no overall best
robustification strategy can be observed and (ii) individualized choices need to be made
for each subject. Furthermore the more conservative our strategy, the less likely it is to
switch and also the less likely it is to have erroneously switched. Part of the reason, why
the selected algorithm occasionally performs suboptimal is the intrinsic nonstationarity in a
BCI experiment. Obviously BCI users are subject to variations in attention and motivation.
Finally, this section has shown that using only outlier reduction techniques can not account
for nonstationary behaviour of the data. In order to address this problem, it has first to be
investigated how the nonstationarity in the data is generated and to which neurophysiological
changes it corresponds. Also, since the classification approaches in this section are quite
indirect measures of the changes in the distributions of the data, I will introduce some new
approaches in the next section, where the feature space will be more thoroughly investigated.

From the above findings it follows that in order to further improve informationtransfer
rates in BCI, methods have to be found which counter the effects of switching dynamics.
Some methods in this spirit will be proposed in the following.
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5.1. Nonstationarity and Adaptation

Although I have provided evidence that nonstationarity in EEG signals affects the classifi-
cation accuracy perceptibly, the question remains where the nonstationarityoriginates and
consequently, which psychological or neurophysiological processes are involved. This sec-
tion is intended to shed some further light on this question. I will present an approach which
is based on a fixed feature space, such that only few parameters will have to be estimated.

A systematic quantitative study of data for multiple subjects recorded during offline and
online sessions is presented. The methods for analysis of the data and visualization thereof
are generally applicable and give a closer insight into the structure of the –global and local
– change of the data quality. I will demonstrate the change in distributions of chosen EEG
features, and provide evidence of changes both in the transition from offline to online set-
tings, and in the course of a single online session. The former changes turn out to be shifts
of the data in feature space, due to the different background activity ofthe brain during the
online feedback task (see Section 5.1.5).

In the second part of the study, adaptive classification techniques for the use in BCIs with
CSP-(Common Spatial Patterns) based features are presented, in orderto gain quantitative
understanding of these changes, and consequently remedial schemes for improving online
BCI performance are proposed. When applying adaptive techniques on a variety of datasets
collected during online task performance (Section 5.1.7), these results demonstrate that in-
stabilities of the BCI control can be encountered throughout the experiment, but the major
detrimental influence on the classification performance is caused by the initialshift from
training to the test scenario. Hence, simple techniques that relearn only part of the classifier
can account for this change, and significantly improve BCI control.

This study focuses on a feature space that is a low-dimensional projectionof 128-channel
EEG data computed by the CSP algorithm, see Section 2.2.1. However, the methods of
analysis, measurement and visualization, as well as the questions regarding adaptivity ad-
dressed in this section are widely applicable and should serve as useful tools in studying
nonstationarity in the BCI context.

5.1.1. Experimental Protocol

I will investigate data from a BCI study consisting of experiments with 6 subjects. For one
subject no effective separation of brain pattern distributions could be achieved. Thus no
feedback sessions were recorded and the data set is left out in this investigation. For the
recording of EEG data during motor imagery of left hand, right hand and foot, calibration
and feedback experiments were conducted as presented in Section 2.3 with140 trials for
each class.

53



5. Observations in a Fixed Feature Space

0 500
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Figure 5.1.: In the feedback run, sliding windows were used for classification. For adapta-
tion and evaluation, the windows (here colored red) between releasing thecursor
and the end of the trial are selected. See text for details.

The data were then used to train a classifier for the two best discriminable classes, using
the classification scheme presented in Section 2.2. Subsequently, two controlled feedback
runs were recorded, in the “Cursor Control” feedback scenario (see Section2.3.5). A 1-
second window of data was used to estimate the features, which were classified in overlap-
ping windows every 40 ms, see Fig. 5.1. The continuous output from the classifier was then
used to move the cursor either in a position-controlled (i.e., classifier output maps directly
to horizontal position on the screen), or in a rate-controlled fashion (i.e., scaled classifier
output was used to move the cursor by a small amount in the chosen direction). During each
trial, one of the targets was highlighted and the subject was trying to navigate the cursor
into the target. At the end of the experimental session, a third run of data wasrecorded for
purposes of studying long-term performance of the trained classifier for 4 of the 5 subjects.
This run included the same targets as the feedback session, but no visible cursor (“Feedback
of Results”, see 2.3.5).

5.1.2. Analyzing Data from Feedback Sessions

Since the online sessions were controlled (i.e., the subject was directed to hita certain tar-
get), I will use this information to label the data collected during an online (or feedback)
session. In a realistic BCI application, the labels of ongoing trials may not always be avail-
able, and any adaptive schemes we may propose will have to take this into account. For this
section, I use the data labels in an offline analysis to provide greater insightinto the data.

For labeling the data from a feedback run, I take the signals from the startof each trial
until its successful completion, and process the signals in a manner similar to theonline
scenario; i.e., compute features on overlapping windows of the same size and overlap as
used in the online protocol. These data points are labeled according to the appropriate target
class. When using the recorded data for testing various classification schemes, I always
assign samples coming from one trial either all to the training or all to the test set.
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5.1.3. Changes in the Data Distributions

In this section, I will examine the changes in performance of the subjects using a variety of
measures and visualizations that help us to characterize the type and degree of changes seen
in EEG features used for BCI classification. These findings are also linked to possible neu-
rophysiological changes that may cause these observed changes. The data are visualized in
two different manners: (1) by fitting a gaussian distribution1 on the data over an entire ses-
sion (or over short term windows), and (2) by examining the optimal separating hyperplane
computed using an LDA classifier on the chosen data.

5.1.4. Differences from Calibration to Feedback

Fig. 5.2 shows a comparison between training data collected offline (in the calibration
phase), and the test data recorded during a subsequent feedback session. The figure shows,
for two subjects, the hyperplanes of the classifiers computed on the trainingand test data
respectively, along with the means and covariances of the data points fromeach class. For
ease of visualization, the data are projected onto two carefully chosen dimensions containing
maximal information.

The x-axis shows the projection of the data on normal vectorwTR of the original classifier
as obtained from the training session. The other dimension is chosen orthogonally towTR,
such thatwFB (the normal vector of the optimal separating hyperplane for the feedback
data) is contained in this two-dimensional subspace. The black and gray lines denote the
intersections of the decision boundaries of the classifiers with the subspace which is shown
here. It is a property of this display mode that the relative location of the distributions to the
hyperplane can be seen by orthogonal projection, while the angles of theoriginal space are
preserved.

It appears in this figure that for subjectav, the test data distributions look very different
from the training data, and in fact, the original classifier would perform quite poorly in the
online scenario. This is not always the case, though–for example, in subject ay, while the
test distributions are different from the training data, the impact of this change on online
performance is less severe.

In order to examine this change more closely across all online datasets, we consider the
following two possibilities for modifying the training classifier hyperplane: (1)shift the
original classifier’s hyperplane parallel to itself2 in order to get the best performance in the
online setting, and (2) in addition, rotate the hyperplane to further improve performance on
the online data. We call these two methodsREBIAS andRETRAIN. Tab. 5.1 summarizes
the shift and angle required for optimal performance on each online dataset. The required
bias shift alone does not give a quantitative sense of the severity of the problem, and so
Tab. 5.1-(a) shows this shift as a fraction of the training data’s class meandistance from the
training classifier’s hyperplane. Note that in some cases, the optimal shift iscomparable to
the distance of one class mean to the decision boundary. This shows that anadaptation of
the bias would be necessary for correct classification. Tab. 5.1-(b) shows the angle between
training and test classifiers’ hyperplanes on each dataset. In most cases, the angle does

1On the plausibility of the assumption of Gaussian distributions in EEG data, see e.g. [15] and also the discus-
sion in [93].

2This can be implemented, e.g., by simply adding abiasto the classifier output.
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Figure 5.2.: Changes in the optimal classifier from calibration to feedback: The figure
shows, for subjectsav anday, the optimal hyperplane separating the training
data classes (offline), and the test data classes (online). Also shown are the
mean and covariance of the respective data distributions. In the case of subject
av (figure (a)), the original classifier would perform very poorly, whereas for
subjectay, as indicated in figure (b), the change is less severe.

(a)

Subject al aw av ay aa

Shift/Distance
0.11 0.80 0.83 0.07 0.26
0.12 0.94 0.56 0.09 0.26
0.01 0.82 0.61 0.04 0.60

(b)

Subject al aw av ay aa

Angles (◦)
13.2 26.6 15.1 15.1 9.5
9.7 20.6 28.7 17.7 6.7
36.2 45.4 4.2 40.5 13.3

Table 5.1.: Measuring the changes in the optimal classifier for offline and online distribu-
tions. These are the changes necessary for the classifier to perform optimally
on feedback data, for every experiment in this study. Part (a) shows the ratio
between the optimal shift for correcting the bias and the distance between class
means. Part (b) shows the angle between the old hyperplane (calculated from the
offline data) and the optimal hyperplane for the feedback data.
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(a)

Subject al aw av ay aa

REBIAS/ORIG
0.93 0.79 0.67 1.00 0.97
0.89 0.74 0.75 0.95 0.93
1.00 0.75 0.80 0.99 0.82

(b)

Subject al aw av ay aa

RETRAIN/REBIAS
0.98 0.99 0.99 0.98 0.98
0.98 0.99 0.94 0.71 0.98
0.72 0.87 1.00 0.73 0.97

Table 5.2.: Estimating the expected gain in classification when adapting the separation as
calculated from the offline distributions to the online distributions. Any linear
decision boundary between two normally distributed random variables misclas-
sifies a certain quantile of both distributions. Here we compared the expected
error quantiles for the optimal decision boundary for the training set to the de-
cision boundary for the feedback sessions, when applied to the estimated distri-
butions of the feedback data. Part (a) reflects the gain when only re-adapting the
bias, and part (b) shows the improvement when the complete decision boundary
is recalculated.

not change substantially. Tab. 5.2 provides a an interpretation of these classifier changes in
terms of their impact on classifier performance.

It shows the ratios of estimated error quantiles for the training decision boundary, the
bias-adapted decision boundary and the readapted decision boundary. It is evident that the
adaptation of the bias results in a significant lower error quantile estimate (which confirms
the findings in Tab. 5.1, whereas an additional adaptation of the angle only gives a compar-
atively small gain.

5.1.5. Explaining the Shift in Data Distributions

Fig. 5.2 and Tab. 5.1 together indicate that the primary difference between the offline and
online situation is ashift of the data distributions for both classes in feature space, while
not significantly changing their orientation. To clarify this aspect, I will display the spatial
distributions of the band power on the scalp for the training and feedback situations.

As mentioned in Section 2.2.1, the CSP algorithm is used for feature extraction and the
classifiers are trained on these features under the assumption that the spatial distribution of
these activation patterns remain fairly stable during feedback.

This assumption can be verified in Fig. 5.3 which displays task specific brain patterns dur-
ing offline vs. online session for one representative subject. The scalps with red resp. blue
circles show band power during left hand resp. right foot motor imagery, calculated from
offline (upper row) and online (middle row) session. In the plots of the offline session no
systematic difference between the mental states can be seen, since the maps are dominated
by a strong parietalα rhythm. Nevertheless the map ofr values (see appendix) reveals a dif-

57



5. Observations in a Fixed Feature Space

ba
nd

 p
ow

er
 [d

B
]

3

4

5

r 
va

lu
es

−0.5

0

0.5

<left hand> <right foot>

of
fli

ne
 s

es
si

on
on

lin
e 

se
ss

io
n

r(
of

fli
ne

,o
nl

in
e)

r(left, foot)

Figure 5.3.: This figure shows the task specific brain patterns and how theydiffer between
offline and online sessions. The upper left 2×2 matrix of scalps displays topo-
graphic scalp maps of band power (broad band 7–30 Hz as used for calculating
the CSP features in this subject). Maps are calculated from the offline session
(upper row) resp. online session (middle row) separately for motor imagery of
the left hand (left column) resp. of the right foot (middle column). Maps in the
right column show ther values of the difference between the tasks, maps in the
lower row showr values of the difference between offline and online session.
While there is a huge and systematic difference between brain activity during
offline and online sessions, the significant difference between the tasksstays
fairly stable when going from offline to online operation (compare ther value
maps in the right column).
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Training left
Training right
Feedback left
Feedback right

CP5

Oz

CP4

Figure 5.4.: This figure shows the spectra in the frequency range of 5–25 Hz both in training
and feedback, for the two classes separately. The amplitudes are in the range of
22–54 dB.

ference focused over sensorimotor cortices. The parietalα rhythm is much less pronounced
during the online session (middle row), resulting in a very strong difference between offline
and online topographies, seer value maps in the lower row. In spite of this strong difference,
the relevant difference between the tasks is qualitatively very similar in the offline and online
settings (see ther value maps in the right column). The topography of the difference be-
tween offline and online situation suggests that in the former case a strong parietalα rhythm
(idle rhythm of the visual cortex) is present due to the decreased visualinput during the cal-
ibration measurement, while that rhythm activity is decreased in online operation due to the
increased demand for visual processing. The power spectra (see Fig. 5.4) of electrodes in
the corresponding regions corroborate this assumption, since there appears to be an increase
in the power of the lower alpha band (just below 10 Hz).

Thus there is a difference inbackground activityof the brain in offline and online settings.
This difference also strongly influences the CSP features chosen for classification.

5.1.6. Changes in EEG Features During Online Sessions

I will now present the performance of subjects in the course of a single online session. At
each point of an online session, I will consider a window for each class containing all data
points from the last 10 trials of that class. These data points can be used to get a local
estimatefor the density of each class at that point in time. A gaussian distribution is then
fitted to these local windows of data, as well as to the entire online session, to obtain an
overalldensity estimate.

Fig. 5.6 shows the Kullback-Leibler-divergence (see Section 3.1) of thelocal density es-
timate for each class from the overall density estimate of that class, over time. They are
obtained by averaging over the last 10 trials per class and over the whole dataset, respec-
tively. Since these curves alone do not provide information about classifiability of the data,
the figure also shows sample visualizations of data from certain time intervals, along with
the classifier hyperplane. It turns out that the data distribution for the foot class changes over
the course of the experiment, and the KL-divergence curve reflects these changes.

The subject’s overall performance was not very good, and the shortperiod of time where
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Figure 5.5.: The single plots in this figure represent the development of the feature distribu-
tions for subjectav throughout one feedback experiment, windows representing
each run (consisting of 28 trials each). The data are projected on the feature
subspace spanned by the optimal hyperplane and the largest PCA component.

the KL-divergence for the foot class is very high corresponds to a period when the sub-
ject gained better control over the BCI. This can also be inferred from the corresponding
visualizations.

A point to be noted here is that the subject took short breaks at various points during
the experiment. Although the data acquired during these intervals were excluded from the
analysis, the breaks may potentially influence performance. For example one of the breaks
coincided with the end of the phase with good performance—it is likely that upon resuming
the experiment the subject was unable to regain the control acquired in the previous phase.

The lower part of figure 5.6 shows local estimates of the distributions of bothclasses
during one feedback session. We first calculated the classifier which is optimal for the
feedback session and the largest PCA componentwPCA of the features. In this way, the
projection shows the dimension with the largest variance. The x-axis showsthe projection
of the data on normal vectorwFB of that hyperplane of the feature space corresponding to the
decision boundary of the classifier. The other dimension is chosen orthogonally towFB, such
thatwPCA is contained in this two-dimensional subspace. Just like in Fig. 5.2, the projection
preserves angles.

For a closer look, Fig. 5.5 shows the data distributions from each uninterrupted run. While
the distributions are qualitatively different, it is not clear whether there is a discontinuity at
each break. A further study consisting of new long-term experiments hastherefore been
performed to separate the gradual changes from the sudden changes induced by the breaks.
It is presented in Section 5.2. It is, however, clear that the user’s performance over a short
period of time (about 30 minutes) can show considerable changes.

A new physiological interpretation cannot be given at this point since the patterns encoun-
tered in occasional lapses of performance are highly individual; furthermore, the recorded
sessions were not sufficiently long to find trends in the EEG that correlate with performance.
See sections 5.2 and 6.1 for experiments including longer sessions of BCI usage.
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Figure 5.6.: This figure shows the change of the Kullback-Leibler Divergence during the
feedback session. The corresponding feature distributions are displayed below
for the shaded intervals. The data is projected on the plane spanned by the
normal vector of the optimal separating hyperplane for the feedback andthe
largest PCA-component of the feedback data.

5.1.7. Adaptive Classification

I have shown qualitative and quantitative evidence indicating nonstationarityin the BCI
classification problem; however, two questions remain unanswered: (a) What is the impact
of this nonstationary behavior on performance in a feedback setting? (b)What remedial
measures can we use to address the nonstationary behavior of EEG-related features? In this
section, I will propose a range of techniques that aim to quantify the natureand impact of
nonstationarity on performance, and thereby suggest adaptive methodsfor improving online
control. Accordingly, I will define and compare a broad range of classifiers and the rationale
behind each choice, and subsequently discuss their applicability in an onlinescenario.

Adaptive methods. The adaptive classification methods investigated are:

ORIG: This is the unmodified classifier trained on data from the offline scenario, and serves
as a baseline.
REBIAS: The continuous output of the unmodified classifier,shiftedby an amount that
would minimize the error on the labeled feedback data.
RETRAIN: The features are computed as determined by the offline scenario, but the LDA
classifier is retrained to choose the hyperplane that minimizes the error on labeled feedback
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data.
RECSP: The offline training data are completely ignored, and the CSP feature selection and
classification are trained solely on the feedback data.

The schemes are listed in increasing order of change to the classifier, andcorrespond
to different assumptions on the degree of difference between offline and online data. In
addition, there is the option of usingall the labeled online data up to the current point
(temporal), only a window over the immediate past (moving), or only an initial window
of data from each session (initial). Each choice corresponds to different assumptions of
the volatility of the online classification problem. The adaptation schemes are therefore
C-REBIAS3, C-RETRAIN andC-RECSP, W-REBIAS, W-RETRAIN andW-RECSP, andI-
REBIAS, I-RETRAIN andI-RECSP respectively for the three cases considered.

Performance against Non-Adaptive Classifiers.Fig. 5.7-(a) compares the classification
error of each adaptive method with the nonadaptiveORIG classifier. The adaptive classifiers
were trained on a window of 60 seconds length. That was also the shortest (i.e., first) window
of the temporal classifiers.

An inspection of the subplots reveals that the schemesREBIAS and RETRAIN clearly
outperform theORIG classifier, since most of the classification errors on the feedback data
decrease.RECSP, on the other hand, does not improve performance. A possible reason
for this is the small training sample size, a question which will be revisited in Section5.2.
Further, when examining each row, it can be seen that theI- methods perform better than
the W- andC- methods, indicating that theI- methods are more stable than theC- andW-
methods.

Also, the I-REBIAS method is comparable to the other algorithms–this is a very useful
result because theI-REBIAS method is a lightweight adjustment that only requires ashort
initial calibration period, and is thus relatively nonintrusive. Thus Fig. 5.7-(a) shows that
adaptive methods can indeed improve performance, even with simple adaptive schemes.

5.1.8. Performance against Best-Case Baseline

I will now address the central question regarding the online BCI scenario–how nonstationary
is the data distribution within the online sessions? For each method, we define anidealized
baseline scenario where the method can access the data and labels of both past and future
from an online session. We then compare the temporal4 k-fold crossvalidation error of the
method in this baseline scenario to the method trained only on data from the past (as in the
previous experiment).

This choice of baseline is aimed at examining whether each method suffers from having
“too much” training data, or too little data. For example, if the classification problem were
highly nonstationary, the windowed methods can be expected to outperformthe baseline,
since they can adapt to local changes. If the data are stationary acrossan online session,
then the baseline would be the best possible choice, since it has more trainingdata.

Fig. 5.7-(b) shows the results of this comparison. The following can be inferred from
the figure: Firstly, the baseline is better in almost all cases, indicating that the adaptive

3C- denotes cumulative,W- denotes fixed window sizes,I- denotes use of only the initial segment of the
session.

4i.e., the data is divided into k contiguous blocks in order to prevent overfitting
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Figure 5.7.: Comparison of various adaptive classification methods on data recorded from
online sessions. Each subplot is a scatter plot, with the error rate of a reference
method on they-axis and the error rate of the method of investigation on the
x-axis. The performance of the latter is better for those data points that lie
over the diagonal. Error rates are given in %. (a) All the proposed adaptive
methods (exceptRECSP) clearly outperform the unmodified classifer trained
on the offline data. (b) The adaptive methods are compared against a theoretical
baseline that uses labels of future data points in the online session. See textfor
more details.

methods have insufficient data. This is especially true for theRECSP algorithms, and is
clearly because of the very high-dimensional data they deal with. TheREBIAS methods on
the other hand do not benefit very much by the addition of more data, and theI-REBIAS
error is comparable to the temporal k-fold error onREBIAS.

Note that these results do not necessarily mean that there are no dynamic changes in
the data; in fact, in Section 5.1.6 it is shown that the data distributions do in fact move
considerably. Instead, these results indicate that within the constraints of the chosen feature
space and the adaptive algorithm, more training data will not help. The positive result from
this experiment is that the best-performingREBIAS-algorithms, which only rely on an initial
window of data, are comparable to the best possible error from theREBIAS algorithm.

5.1.9. Increasing Available Training Data

The choice of feature space is an important factor in the performance of our classification
algorithm. Fig. 5.8 shows the error averaged across subjects for each dynamic version of the
adaptive algorithms (i.e., theC- and theW- methods), as a function of the data window used
for training. The figure confirms that theRECSP methods indeed improve on addition of
training data; however, they are still considerably worse than the best-performing algorithm.
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Figure 5.8.: Influence of parameters on the adap-
tive classification results. This figure
shows the average error across all ses-
sions and subjects as a function of the
window of data points (in seconds)
used for the windowed classification
methods. For theC- classifiers, this
indicates the size of the first training
window.

The experiments were not sufficiently long to examine whether, with sufficient data, the
RECSP- algorithms can be competitive. Note, however, that the algorithm is already too
heavy-weight in terms of data and computation to be viable as an adaptive algorithm on
short time scales. The question how much data theRECSP- algorithm actually needs will
be addressed in Section 5.2, where a study with considerably longer experiments will be
analyzed.

5.1.10. Discussion

These results show that an important factor affecting online BCI performance are the neu-
rophysiological changes to the mental state of the subjects (as described inSection 5.1.6)
between the offline and online settings. These changes do not render theEEG features found
on the training data unusable, but require only a slight modification of the classification step.
This is mainly attributed to the effectiveness of the applied offline feature selection scheme,
and the fact that the basic neurophysiological processes used for control are similar in both
scenarios. Our proposed modification can in fact be implemented in practice as a short
calibration phasein the initial part of a session involving online BCI use.

While changes in performance and feature distributions do occur during online sessions
(see Section 5.1.6), the classification results indicate that on average, theydo not have a
significant effect on performance. It is unclear at this point whether these changes can be
affected by a different choice of feature space, or the use of additional features; however, a
complete relearning of the feature selection is impractical due to higher computational costs
and scarcity of data. Studies of longer-term BCI operation will be presented in Section 5.2
and Chapter 6 to shed further light on the exact nature of the changes during an online
setting, and to suggest ways of addressing these changes.

The problem we frequently encountered with our Brain-Computer Interface system is
that the performance decreases when going from offline training sessions to online oper-
ation of the BCI. One could suspect this to be caused by bad model selectionstrategies
which could in principle choose overly complex classification models that overfit the EEG
data. The evidence presented in this section has clearly shown that an alternative reason
for failure should also be considered: nonstationarities in the EEG statistics.The subject’s
brain processes during feedback can cause the distributions to wander astray on a very local
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timescale. This observation could in principle make simple learning methods ratherhopeless
and one would have to refer to special statistical modelling that takes into account covari-
ance shifts [133, 134] or even more sophisticated techniques such as transductive inference
[143]. However, the successful adaptive methods investigated in this study that are guided
by a better understanding of the possible neurophysiological causes ofnonstationarity turn
out surprisingly simple: a bias adaptation in combination with an offline feature selection
scheme significantly increases BCI performance. It was clearly demonstrated that a strong
source of nonstationarity stems from the difference between training and feedback session,
whereas during the feedback session the statistics seems rather stable on the scale of up to
an hour (depending on the subject). So a practical outcome of this study is (1) to correct for
the bias between training and feedback session and (2) to furthermore incorporate every half
hour one short 2-3 minute controlled feedback session into the neurophysiological paradigm
under investigation and retrain or adapt the bias only when changes of thestatistics, say due
to fatigue, are observed.

5.2. How Much Data Are Required?

In the last section, it was demonstrated that it can be useful to adapt the classifiers in a
fixed feature space, where the feature projections are predetermined by some training data.
However, the question still remained if it would further improve the BCI performance if the
feature space, i.e., the CSP filters, would continuously be adapted to the ongoing signal of a
feedback session which is not interrupted by breaks between the runs.Also, we have seen
that the adaptation of the feature space,RECSP, shows a suboptimal performance. Up to
this point, it is not clear if this is just an effect of the small size of the adaptationwindow.
In order to address these questions, I will examine data recorded from three subjects using a
BBCI-based free text spelling experiment in which the labels for the data can be estimated
post hoc from the words spelled out by the subjects, and can then be used online to adapt
the classifiers used by the BBCI. I will revise some of the adaptive classification schemes
from the last section that can use the estimated labels and I will present a comparative
performance study of these schemes.

I will show that even in cases where a static classifier already performs quite well, on-
line adaptation of the classifiers does not degrade the classification performance. Only the
RECSP-method does still not provide a stable BCI performance if retrained on too short
data windows.

5.2.1. Experimental Setup

This section relies on data from 3 subjects, of which one subject was a naive BCI user
and the other two subjects had some previous experience. The experimentsconsisted of
two different parts: a calibration measurement and a feedback period. After the calibra-
tion measurement, which proceeded as explained in Section 2.3.3, the parameters of the
subject-specific translation algorithm were estimated (semi-automatically): selection of two
of the three imagery classes and frequency bands showing best discriminability; CSP anal-
ysis (see Section 2.2.1) and selection of CSP-filters; calculating a linear separation between
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Figure 5.9.: This figure shows the shift in the power of the selected frequency band, in terms
of r-values in one subject. Positive values indicate increased bandpower in the
selected frequency band in the calibration measurement compared to the feed-
back session.

bandpower values in the surrogate CSP-channels of the two selected classes by Linear Dis-
criminant Analysis (LDA).

In the feedback session, the classifier output of the ongoing EEG was used to move a
cursor horizontally on the screen, as in the “Cursor Control” scenario (see 2.3.5).

5.2.2. Differences from Calibration to Feedback

In many earlier BBCI feedback experiments (as presented in Section 5.1),a strong shift in
the features from training to feedback sessions was encountered as themajor detrimental
influence on the performance of the classifier. Accordingly I introducedan adaptation of
the classifier’s bias as a standard tool in our system. To investigate the cause of this shift
in data distributions, I compared the brain activity during calibration measurement vs. feed-
back situation using the bi-serial correlation coefficientsr, which was calculated between
bandpower values of each channel. The topography of one representative subject shown in
Fig. 5.9 suggests that in the former case a strong parietalα rhythm (idle rhythm of the vi-
sual cortex) is present due to the decreased visual input during the calibration measurement,
while this rhythmic activity is decreased in online operation due to the increaseddemand
for visual processing, which supports the findings from Section 5.1.

5.2.3. Mental Typewriter Feedback

Since the mental engagement with an application is one additional possible source of non-
stationarity, the investigation of nonstationarity issues is most interesting duringthe control
of real applications. Therefore I chose a mental typewriter application which was used for
free spelling by the subjects. Furthermore this application has the benefit that even in a free
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operation mode it is possible to assign labels (i.e., subject had intended to move the cursor
left or right) to ongoing EEG in an a-posteriori fashion: after the correct completion of a
word, one can decide for preceding trials the direction in which the subjectwas trying to
move the cursor. This also applies if the intended word is not known to the experimenter
beforehand. A detailed description of this type of feedback is given in 2.3.5.

Labeling Data From Online Feedback

The subjects were instructed to use the mental typewriter interface to write error-free sen-
tences over a period of 30 minutes. After the recording of the data, labels were assigned a
posteriori to the binary choices (“trials”), depending on the desired outcome of the letter.

Since the feedback was presented in asynchronous mode (i.e., starting andend point of
each trial were not given at a fixed rate by the application, but were based solely on the
output of the classifier), the lengths of the trials range from less than one second up to tens
of seconds. For this analysis I take only the last 750 ms before the completionof the trial
into account.

5.2.4. Adaptation Algorithms

The adaptive classification methods investigated are the same as in Section 5.1:

ORIG: This is the unmodified classifier trained on data from the calibration session, and
serves as a baseline.
REBIAS: The continuous output of the unmodified classifier is used,shiftedby an amount
that would minimize the error on the labeled feedback data.
RETRAIN: The features are used as chosen from the offline scenario, but the LDA classifier
is re-trained to choose the hyperplane that minimizes the error on labeled feedback data.
RECSP:The offline training data are completely ignored, and CSP feature selection and
classification training are performed solely on the feedback data.

In the study previously presented here (Section 5.1), these methods havebeen shown to
have a low computational complexity and a very straightforward applicability in an online
scenario. As only theRECSP-method did not improve the classification performance, it is
the purpose of this investigation to enquire the reason for this failure. With a much larger
amount of training data, I will observe if the adaptation quality can be furtherincreased for
this method in particular.

In all adaptive methods a trade-off must be made: taking more training samplesfor re-
training gives more stable estimates, but on the other hand it makes the method less adaptive,
i.e., the policy should be to take as little training samples for re-training as possiblebut
enough to allow estimations with reasonable stability. Here the number of training samples
necessary for re-training is estimated separately for each method and each subject.

5.2.5. Results

For validation of the proposed classification schemes, I select for each trial from the feed-
back experiment a preceding window of specified size for re-training. Using the CSP filters
and the classifier from the calibration measurement and these new training trials, I update
the classifier and apply it to the current test trial – inRECSP training data are essentially
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Figure 5.10.: The solid lines show the dependency of each algorithm on the number of train-
ing samples. For each subject, a sliding window containing the indicated
amount of training samples per class (x-axis) was used for adaptation in the
recording of the feedback session, and the resulting classifier was applied to
the current sample. The average classification error on the test samples is
shown on the y-axis in %, and the position of the optimal adaptation window
is marked with a cross. The dashed horizontal lines indicate the respective
errors of theORIG-classifier, applied to all samples of the feedback session.

ignored. Then the predicted laterality is compared with the actual labels. Note that all vali-
dations only take into account labels of past trials as it would happen in an online feedback
experiment. This procedure corresponds to theW-methods from Section 5.1. Fig. 5.10
shows the influence of the number of training trials on the accuracy of eachadaptation
method. In all methods under investigation, the error rate decreases with theused amount
of training data. TheRECSP-method, however, does not produce satisfactory results when
used with less than 20 training samples per class. With more samples, the curve stabilizes
at a low error rate for one subject, while remaining far above the baseline of ORIG for
the other two subjects. MethodsREBIAS andRETRAIN perform more stably, producing a
reliable estimation with only a few adaptation trials.

Table 5.3 shows the classification errors of all presented adaptation methods, evaluated
for a window size that is optimal in the sense that window sizes of up to 10 trials per class
more will not decrease the classification error. This window size is also denoted in the table.
For subjectal all suggested adaptation methods show an improvement over the performance
of the original classifier, where the gain is increasing with the complexity of theadaptation.
However none of these improvements reach the level of significance (using McNemar’s test,
with a confidence level ofα = 5%, see [47] for details). For subjectaw the opposite effect
can be observed. For the last subjectREBIAS andRETRAIN again show some improvement
while RECSP performs poorly. Taking into account that in this analysis the window size for
adaptation was chosen a posteriori to fit optimally to the test (i.e., the evaluation isbiased in
favor of the adaptive methods), one has to conclude thatin this datathe original classifier
can hardly be outperformed by any re-learning method.
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5.2. How Much Data Are Required?

ORIG REBIAS RETRAIN RECSP

al 4.9 4.4 (15) 3.9 (40) 3.6 (40)
aw 6.2 6.6 (35) 7.0 (30) 9.7 (25)
zj 7.6 6.0 (25) 6.6 (20) 16.7 (40)
mean 6.2 5.7 5.8 10.0

Table 5.3.: Validation errors for different adaptation methods, evaluated with a sliding win-
dow with an individually chosen number of training trials. The error rates are
given in %. The number in brackets denotes the optimal window size (trials per
class) for each subject under each method. Only the two numbers printed inbold
differ significantly from theORIG-classifier.

5.2.6. Discussion

This study shows the tradeoff between the various adaptive methods explored. The light-
weight adaptive methods such as readjusting bias and angle of the LDA classifier using
feedback data can help to improve the performance of the classifier. Here, they do not re-
sult in significant increases of the performance. Note that this does by nomeans indicate
that nonstationarities were absent in theEEG signals, but it indicates that the BBCI classi-
fier successfully extracted relevant information from sensorimotor areas, while filtering out
contributions from sources of nonstationary characteristics like the visual cortex. In fact
Fig. 5.9 which shows an enormous difference between the brain activity during calibration
measurement and feedback operation was calculated from one of the experiments of this
study.

Based on the results presented here one could conjecture that in the idealized case, fea-
ture extraction and classification can be successful in extracting a control signal that is not
affected by the nonstationarities in the EEG. In fact, classification results onthe data inves-
tigated in this study could hardly be outperformed by any of the adaptive methods. Never-
theless experience with other data (such as the study presented in Section 5.1) has shown
that the change of mental state when turning from the calibration measurementto online
operation sometimes needs to be compensated by a lightweight adaptive method such as the
manual adaptation of the bias, see [9] or Section 5.1.

In summary, this study has shown that adaptive methods are not generally required for the
continuous operation of a BCI. In fact, if robust feature extraction andclassification methods
are used that manage to eliminate most sources of nonstationarity, the adaptive methods can
no longer improve the classification performance. However, even in this case, the straight-
forward methods of bias and LDA adaptation have shown to have a very stable performance
and do, in particular, not compromise the classification performance as compared to the
static classifier. These methods can therefore be readily applied in BCI experiments.

Note that all these methods still operate in a fixed feature space, which is notsubject
to adaptation over the course of the experiment. Due to the nonstationarity of the data
(exemplified by Fig. 5.9), one can expect a much larger performance gainif the feature
space is also either adapted or robustified against the changes in the data.Unfortunately,
the most straightforward methodRECSP performs suboptimally, even when adapting on
very large time windows. This failure can certainly be accounted to the high dimensionality
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5. Observations in a Fixed Feature Space

of the estimated parameters: for the CSP estimation, the covariance matrices of dimension
C×C (C being the number of electrodes) have to be estimated, which is difficult with only
a few data points. The next chapter is dedicated to exploring the nonstationarity of these
covariance matrices and the associated CSP filters. With more knowledge on the nature of
the nonstationarity, it will be easier to find ways to make the feature space robust against
these influences.
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6. How to Adjust the Feature Space

6.1. A Novel Method for the Quantification of Changes in EEG
Data

For the classification of Event-Related Desynchronization (ERD), the estimation of the sig-
nal covariance matrices is of central interest. In the calculation of CSP filters and patterns,
the classwise calculated sample covariance matricesΣ1 andΣ2 are calculated on bandpass-
filtered, epoched training data for the classes 1 and 2. The calculation of optimal CSP filters
then involves a simultaneous diagonalization of these matrices, as described inSection 2.2.1.
In other words, a CSP projection of the EEG can be described as a function of the covariance
matrices of the EEG. If the covariance matrices are changing over time, the discriminability
of the CSP features is also jeopardized.

In [141], a simple method for the decomposition of these matrices was investigated for
adapting the spatial filters across sessions. I will present a slightly different approach, which
does not focus on the algebraic properties, but rather on the data distribution of the matrices:
if it is possible to describe the change of the covariance matrices, a method can be defined
to adapt the spatial filters as well. As a first step towards this goal, I will now present a
new view on the covariance matrix space, in order to learn more how the parameters from
different sessions are connected.

Note that these matrices are very high-dimensional features of the EEG: ifC is the number
of electrodes, the matrices haveC2 entries, but due to their symmetry, only the upper triangle
matrix (with C·(C+1)

2 entries) has to be estimated. For the remainder of this section, I will
regard the sample covariance matrices as features of the EEG, and will show that a low-
dimensional description for the shift of the covariance matrices is possible for most of the
subjects under study. This description in simple terms can be helpful to identifythe reasons
for the shift and can point to remedies against its influence on the classification performance.

6.1.1. Experimental Setup

The estimation of such a large number of parameters (i.e., quadratic in the number of chan-
nels) is only possible with a sufficient number of observations. Therefore, I will report
results from a series of experiments with 6 subjects, where 11 BCI feedback runs were
conducted per experiment.

The feedback runs were conducted with a “Cursor Control” feedback, with a fixed du-
ration of 3.5 seconds for each trial (see Section2.3.5 for details). Guidedby the previous
experience with nonstationary bias (see Section 5.1), there were two bias adaptation peri-
ods per run. In the beginning, for a period of 20 seconds, a cursor was presented rotating
clockwise at constant speed. Based on these 20 seconds of EEG data,the average classifier
output was calculated and then the current bias was determined. This methodwas intended
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6. How to Adjust the Feature Space

Subject zq ay zp al aw zk

Classes LR LR LR FR LF LR

Table 6.1.: The classes of mental imagery which the subjects used for the feedback. L and
R denote left and right hand, and F denotes foot imagery.

to prevent the control signal from being shifted exclusively to either positive or negative
values.

Then, the subject controlled the cursor for 20 trials (10 per class, in random order), and
the bias was fine-tuned at the end of this period. With the adjusted bias, the subject con-
trolled the cursor for the following 100 trials (50 per class, in random order). The procedure
corresponds to the initial calibration of the bias, as it was found to be a goodchoice in offline
studies, see [126].

In each trial of the feedback, one of the two boxes on either side of the screen was high-
lighted to indicate a new target. After being fixed in the middle for 750 ms, the cursor was
released. The subjects were instructed to now imagine the associated hand or foot move-
ment (see table 6.1), in order to hit the target with the cursor. The classifieroutput was used
to control the cursor in horizontal direction in a rate-controlled fashion. After 3.5 seconds,
the cursor was fixed again and the outcome of the trial was determined by the horizontal po-
sition of the cursor. If the cursor was on the correct side of the screen, the trial was counted
as “hit”, and as “missed” otherwise. The target box was then colored green (for a successful
trial) or red (in the other case), and after a break of 1 second, the nexttarget was presented.

Only in runs number 6, 7, 10 and 11, the cursor was not visible to the subjects, such that
they only performed their movement imagination and received a feedback ofthe success-
fulness of the trial by the color code of the target box at the end of the trial.This type of
feedback will be called “feedback of results”. It hast been chosen inorder to generate differ-
ent levels of visual input for the subjects during the experiment. This enables us to supervise
the influence of the visual scene on the band power in the visual cortex. More details on the
setup of the experiment can be found in Section 6.3.

6.1.2. Methods

After bandpass-filtering the EEG, epochs were extracted in the interval from 500 ms to
4500 ms after the presentation of the target stimulus. The frequency filter was a Butterworth-
filter of order 5, in the frequency band of [9 25 ]Hz.

By considering the class labels for each trial, I calculated the class-wise sample covari-
ances

Σi, j = X>
i, jXi, j

for classi ∈ {1,2} and run j ∈ {1, . . . ,11}, whereXi, j is the (#samples)× (#electrodes)-
matrix which results from the concatenation of all trials of classi in run j; by the preceding
bandpass-filter, I can assume thatXi, j has mean 0 over time. The class-averaged sample
covariance matrix is then computed as

Σ j := 0.5(Σ1, j +Σ2, j)
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6.1. A Novel Method for the Quantification of Changes in EEG Data

for run j ∈ {1, . . . ,11}, if an equal number of trials for both classes has been recorded.
For the comparison of different elements of the vector spaceR

C×C, an appropriate metric
has to be used.

In this example, I therefore used the metric resulting from the Frobenius norm, defined
by

||A||F :=

√

√

√

√

C

∑
i=1

C

∑
j=1

(ai j )2,

for all A∈ R
C×C. This is equivalent to using the canonical isomorphism

ˆ: R
C×C → R

C2
,

which maps a matrix to the concatenation of its columns, and applying the euclideannorm,
i.e.,

||A||F = ||Â||2.

While this metric ignores most of the properties of a matrix, it is nevertheless sensitive to
changes such as scaling. The metric regards the matricesΣ1, . . . ,Σ11 as if they were vectors
Σ̂1, . . . , Σ̂11, drawn from aC2-dimensional normal distribution.

Then, mean and covariance of theC2-dimensional vectors can be estimated as usual with
sample mean and sample covariance. This is depicted in Fig. 6.1, where the solidellipsoid
line denotes the standard deviation of the sample covarianceV of Σ̂1, . . . , Σ̂11 around the
sample mean̂Σ0. Discriminant theory (see [42]) now tells us that the eigenvector∆̂ asso-
ciated to the largest eigenvalue ofV is the best direction for a linear approximation of the
pointsΣ̂ j ( j = 1, . . . ,11). ∆̂ is called the first principal component ofV and can therefore be
regarded as the direction of the shift, in the spaceR

C2
.

After calculatingΣ̂0 and∆̂, the sample covariance matrices can be approximated by pro-
jecting their vectorial representations on the lineL := {Σ̂0+ r · ∆̂|r ∈ R}. In other words, the
approximations̃Σ j are defined as

Σ̃ j := Σ0 + r j ·∆,

where

r j :=
(Σ̂ j − Σ̂0)

>∆̂
∆̂>∆̂

for j = 1, . . . ,11. Ther j can be interpreted as the factor by which the influence of the shift
direction is imposed on the EEG data. Fig. 6.2 shows the approximated values and the sizes
of the approximation errors for the previous example. In order to assessthe quality of the
approximation, I will calculate the average error, normalized by the average distance of the
point from the mean, i.e.,

a :=
1
11 ∑11

j=1 ||Σ j − Σ̃ j ||2F
1
11 ∑11

j=1 ||Σ j −Σ0||2F
,

for every subject. Note that the closer this value to 1, the more orthogonal are Σ̂ j − Σ̂0 and
ˆ̃Σ j − Σ̂0 on average, which suggests a bad approximation.
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Figure 6.1.: This sketch shows how the sample covariance matricesΣ̂ j ( j = 1, . . . ,11) are
approximated linearly by principal component analysis (PCA). For this pur-
pose, the sample mean (of the sample covariances),Σ̂0, and the eigenvector̂∆ of
the sample covariance matrix (of the sample covariances)V, associated to the
largest eigenvalue ofV, are estimated. These parameters are depicted in red.

Σ̂0 + r j · ∆̂
Σ̂ j

Figure 6.2.: This figure shows the linear approximation of the points in Fig. 6.1. The length
of the orthogonal projection of̂Σ j on the lineL = {Σ̂0 + r · ∆̂|r ∈ R} depicts the
approximation error.
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Subject zq ay zp al aw zk

a 0.45 0.06 0.08 0.10 0.28 0.03

Table 6.2.: This table shows the average error of the approximation normalized by the aver-
age distance to the meanΣ̂0. The error is smaller than 0.5 for all subjects, which
shows that a considerable part of theΣ̂ j is explained by the linear interpolation.

6.1.3. Results

The approximation quality is shown in table 6.2. In all subjects, the valuea is below 0.5,
which corresponds to an average angle of at most 30◦ between(Σ̂ j − Σ̂0) and ( ˆ̃Σ j − Σ̂0).
For subjectsay, zp, alandzk, the angle is even below 6◦, which corresponds to almost per-
fect linear interpolation. This finding can be supported by visual inspection of the original
matricesΣ j and their approximation counterpartsΣ̃ j , as in the example in Fig. 6.3. The ap-
proximation error is very low, since the typical structure of the covariancematrices is almost
completely reproduced by the approximation.

Since it is now possible to identify the shift of the covariance matrix from one run to
the next one, I can now try to give an interpretation by analyzing the matrix∆. The first
observation is that it has one large positive eigenvalue, some more positiveeigenvalues
(approximately 10% of the number of channels), whereas all other eigenvalues are close to
0. Hence, if∆ is regarded as a positive semidefinite matrix, the shift can be interpreted as
follows:

Suppose(Xt)t∈I ,(Zt)t∈I are independent time series for some index setI . If (Xt)∼N(0,Σ)
and(Zt) ∼ N(0,c∆) for all t and for somec ≥ 0, then(Xt + Zt) ∼ N(0,Σ + c∆). In other
words,∆ can be interpreted as the covariance matrix of another process, independent from
the one under observation.1

The main source of power of the new process can now be inspected, again by means of
principal component analysis. Fig. 6.4 shows the eigenvectorδ according to the largest
eigenvalue of∆ for every subject. This eigenvector can be interpreted as the source ofthe
main variance of the time series(Zt)t∈I . In all subjects, thisδ exhibits a strong focus on
parieto-occipital regions of the scalp. This indicates that differences in the α-band activity
of the visual cortex are responsible for a shift in the sample covariance matrices from run to
run.

For a closer investigation of this conjecture, I will give an analysis of two showcase ex-
amples, subjectsayandzk. These are the subjects with the best approximation performance,
which supports the view of∆ as the main difference between runs.

During the experiments, subjects were asked to write down an estimate of their sleepiness,
ranging from 1 (awake, not sleepy) to 10 (struggling to keep the eyes open, drowsy) after
the completion of each run. Fig. 6.5 plots this “drowsiness index” (on the horizontal axis)
against the approximation factorr j for each run j. The numbers in the plot denote the
numbers of the run. Although the drowsiness index was only denoted in discrete steps (i.e.,
integer numbers), a positive correlation is evident. The closer the subjectwas to falling

1c can be forced to be non-negative in every run, by settingc j := r j −minkrk andΣ := Σ0−minkrk ·∆. Then
the resulting matrices̃Σ j are exactly of the formΣ+c j ·∆.
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Figure 6.3.: The first row of this figure shows scaled images of the covariance matrices for
each run foray. After calculating the meanΣ0 and the first principal component
∆, these matrices can be approximated by the termsΣ̃ j = Σ j + r j∆, as shown in
the second row. If the approximation is successful, the remainder (as shown in
row 3) is close to 0.
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Figure 6.4.: The first principal componentδ of the first principal component∆ for all six
subjects under study. In all subjects, a strong focus on parieto-occipital regions
can be noticed. The absolute scale of the components is irrelevant, since they
are normalized. Only the relative distribution and topology are of interest.

asleep in runj, the higher the “covariance shift” indexr j . This finding is similar in five
of the six subjects, for whom the correlation between ther j and the drowsiness index is
significant (p < 0.1).

For subjectzk, the shift index is correlated with the modality of displaying the feedback.
Fig. 6.6 shows the shift factorr j for each blockj. The runs where the cursor was invisible
to the subject (“feedback of results”) are shaded in gray; in these blocks, the shift factor is
much higher than in the other blocks. This correlation was only found in subject zk.

The presented examples support the interpretation of the covariance shift factor r as the
activation strength of the associated principal componentδ . The bandpower in theα-band
exhibits a large variability from run to run.

6.1.4. Application to Classification Problems

This method can not only be used for analysis of the data, but also for the construction of
spatial filters which are robust against the presented trend in the data from run to run and
provide a good discriminability between classes. For this purpose, I will comeback to the
classification problem associated to a labeled time series.

For i ∈ {1,2} and j ∈ {1, . . . ,11}, let Σi, j denote the sample covariance matrix of all
the trials of classi in run j. I have shown that the common class covariance matrixΣ j =
1
2(Σ1, j +Σ2, j) for run j can be approximated by

Σ̃ j = Σ0 + r j∆.

In the light of the previous section, the main contribution of the difference between runs
appears to be due to different activation levels of the visual cortex, which is not class-
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Figure 6.6.: For subjectzk, this plot shows the covariance shift factor in each run. The gray
shaded areas indicate the blocks where only “feedback of results” wasgiven.
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dependent; we may therefore assume that one can also approximateΣi, j by

Σ̃i, j := Σi,0 + r j∆

for the same real-valued scalarsr j as defined in the previous section, whereΣi,0 := 1
11 ∑11

j=1 Σi, j

is the mean of the class-wise sample covariance matrices for classi.
Note that the∆ is the same principal component as it has been calculated in the previous

section, since I only want to consider a common shift for both classes.
With this approximation, it is possible to re-formulate the optimal CSP solution in the

following way, as it is derived in [22]:

wCSP = argmaxw∈RC
w>(Σ1, j −Σ2, j)w

w>(Σ1, j +Σ2, j)w

≈ argmaxw∈RC
w>(Σ1,0 + r j∆−Σ2,0− r j∆)w

w>(Σ1,0 + r j∆+Σ2,0 + r j∆)w

= argmaxw∈RC
w>(Σ1,0−Σ2,0)w

w>(Σ1,0 +Σ2,0 +2r j∆)w

= argmaxw∈RC
w>(Σ1,0−Σ2,0)w

w>(Σ1,0 +Σ2,0 +cΘ)w

The right hand side (withc := 2r j andΘ := ∆)2 is similar to the formulation of “invariant
CSP” (iCSP), see [16], whereΘ is the covariance matrix of a process which does not pro-
vide discriminative information about the class labels. By adding it to the class-averaged
covariance sample matrix(Σ1,0 + Σ2,0), the resulting filters are more and more invariant to
the process with the covariance matrixΘ, the higher the scalar valuec is chosen. This, on
the other hand, can make them less responsive to the actual class differences.

This calculation gives a new perspective on how to compute optimal CSP filtersfor each
block: by approximating the class covariances by their estimatesΣ̃i, j , the calculation results
in the iCSP filters which are invariant to the shift defined by the “covariancedirection” ∆.
The furtherΣ j is from the mean covarianceΣ0, the higher the invariance factorc = 2r j .

In this manner, the approximation of class covariances can be used for thecalculation
of robust classifiers. However, I will not follow this approach, since this method has some
shortcomings for the parameter estimationwithin sessions:

1. In order to estimate the direction of the shift,∆, the recording of several blocks of data
is required, possibly under different levels of attention and sleepiness.The number of
parameters to estimate is the product of the number of recorded blocks andC2, where
C is the number of electrodes. Therefore, a large number of trials in each block is
required.

2. The estimation of the shift factorr is only possible if the direction∆ is known. If
transferred to a real-world BCI scenario, this would correspond to an extremely long
calibration measurement.

2Following a similar argument as in the previous section, it can be assumed without loss of generality thatc is
non-negative.
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Subject zq ay zp al aw zk

aClass1 0.49 0.15 0.52 0.20 0.44 0.07
aClass2 0.63 0.14 0.16 0.21 0.41 0.08

Table 6.3.: This table shows, similar to table 6.2, the error of the approximation for classes
1 and 2 separately. See text for details.

3. The above calculation can only be accurate, if the approximation error

aClass i:=
1
11 ∑11

j=1 ||Σi, j − Σ̃i, j ||2F
1
11 ∑11

j=1 ||Σi, j −Σi,0||2F
is very small. Table 6.3 shows the approximation qualityaClass 1andaClass 2for each
class and for each subject. If this table is compared to table 6.2, it shows thatthe
magnitude of the approximation error for both classes is considerably higher than the
error of the averaged sample covariance matrices,a.

However, for the estimation of parametersacross sessions, the first two aspects do not re-
strict the applicability of the method, since each single session provides enough data for the
robust estimation of high-dimensional parameters such as channel-wise covariance matrices.

6.1.5. Discussion

At the beginning of this section, some model assumptions were taken which areclearly not
valid in a global setting.

For example, it is a common procedure in probability theory that the sample matrices
Σi are modeled by a Wishart distribution, i.e.,Σi ∼ WC(Σ,100·400), where the degree of
freedom (here: 40000) is the product of the number of samples in one trial and the number
of trials used for estimation, andΣ is the unknown underlying covariance matrix. Unfortu-
nately, this distribution does not give rise to an appropriate metric onR

C×C; due to this lack
of direct applicability, I opted for the Frobenius norm.

Furthermore, the sample covariance matrices can not have a Gaussian distribution, since
this would also imply that an indefinite or even negative definite matrix could occur with
non-zero probability. Yet I have demonstrated that theΣ j can belocally approximated by
linear parametrization. These model simplifications resulted in a surprisingly accurate ap-
proximation for the sample covariance matrices of most of the subjects under study.

It is surprising that the main direction of change between the differentΣ j is a matrix
which is again positive semidefinite except for very small negative eigenvalues. This is not
evident, as the following simple example shows:

Suppose

Σ1 =

(

1 0
0 0

)

and

Σ2 =

(

0 0
0 1

)

.

80



6.2. Choosing a Robust Feature Space – and Omitting the Calibration

Then both are positive semidefinite, but the straight line connecting them is characterized
by the direction of

∆ :=

(

1 0
0 −1

)

,

which is indefinite.
Since the∆ for the approximation of the covariances of all our subjects is always (nearly)

positive semidefinite, the difference can be interpreted by means of an additional neuro-
physiological component that is only modulated in strength throughout the experiment. For
all subjects, the principal source of the component can be localized in the parieto-occipital
region of the scalp, and in most cases, the activation indexr can be correlated to the level
of tiredness that was estimated by the subjects after each run. As shown in Section 5.1,
the activation of the visual cortex can have a serious impact on the signals that are used for
bandpower feature classification. Here I have presented a completely different approach for
the localization of the main source of this activation.

In this section, I have presented a new method for the comparison between the sample co-
variance matrices of bandpass-filtered EEG signals between different runs. As an example,
the data of long experiments (with 11 runs per subject) were presented. The surprising re-
sult is that for most subjects the change from session to session can be easily and accurately
parametrized by linear interpolation. Both the shift direction∆ and the shift factorr can be
related to neurophysiological and psychological parameters, like the sleepiness of a subject
or the activity of the parieto-occipital cortex regions. Therefore it is a new and useful tool
for neurophysiological data analysis.

The proposed method can readily be used for classification and is closely related to the
iCSP method demonstrated in [16]. Since the application for classification problems suffers
from some drawbacks, mainly related to the amount of data needed for estimation of spatial
filters, I will present a different approach in the next section, where the training data from
the same experiment day will be reduced to a minimum.

6.2. Choosing a Robust Feature Space – and Omitting the
Calibration

So far, the timescale in which I analyzed nonstationarity was limited to the course of a single
session. There also exists a strong variability for a single subject when comparing data from
one session to the next. This challenges a stable operation of Brain-Computer Interface
(BCI) systems. In our studies, we tried exemplarily to re-use the classifier from a previous
session for another online BCI experiment – an attempt which failed due to a significant
change of the brain signals. This does not only provide evidence for thenonstationarity
between sessions, but it leads to a very practical and relevant problem:

To present, the use of machine learning based EEG-BCI systems involves two time-
consuming preparational steps at the beginning of every new session. The first one, the
montage of an EEG cap, has been largely alleviated by recent advancements (see [117] and
the discussion Section 6.3.5 in this chapter). The second step is the recording of calibration
data, which I will address with this study. As the signals vary between sessions even for
the same user, machine learning based BCI systems rely on the calibration procedure as a
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requirement for optimal performance (machine training). Even subjects that are experts in
the use of machine learning based BCI systems still have to undergo the calibration session
of about 20-30 min. From this data their (movement) intentions are so far infered.

Especially for patients with impaired concentration ability, this initial calibration reduces
the valuable remaining time for controlling a device or computer software in the socalled
feedback application phase, but also for healthy users, it can be an annoying procedure.

The present contribution studies to what extent one canomit this brief calibration period.
In other words, is it possible to successfully transfer information from prior BCI sessions of
the same subject that may have taken place days or even weeks ago? While thisquestion is
of high practical importance to the BCI field, it has so far only been addressed in [124] in
the context of transfering channel selection results from subject to subject. In contrast to this
prior approach, I will focus on the more general question of transfering whole classifiers,
resp. individualized representations between sessions. Note that EEG patterns typically vary
strongly from one session to another, due to different psychological pre-conditions of the
subject (see e.g. Fig. 3.5). A subject might for example show different states of fatigue and
attention, or use diverse strategies for movement imagination across sessions. A successful
session-to-session transfer should thus capture generic ’invariant’ discriminative features of
the BCI task.

For this I first transform the EEG feature set from each prior session into a ’standard’
format (Section 6.2.1) and normalize it. This allows to define a consistent measure that
can quantify the distance between representations. I use CSP-based classifiers (see Sec-
tion 2.2.1) for the discrimination of brain states; note that the line of thought presented here
can also be pursued for other feature sets resp. for other classifiers. Once a distance function
(Section 6.2.2) is established in CSP filter space, one can cluster existing CSPfilters in order
to obtain the most salient prototypical CSP-type filters for a subject acrosssessions. To this
end, I apply the IBICA algorithm [83, 84] for computing prototypes by a robust ICA decom-
position (see Section 6.2.2). I will show that these new CSP prototypes are physiologically
meaningful and furthermore are highly robust representations which are less easily distorted
by noise artifacts.

6.2.1. Experimental Setup

The BCI sessions under study were performed with Event-Related (De-)Synchronization
(ERD/ERS) phenomena (see Section 2.1.2) in EEG signals related to hand andfoot imagery
as classes for control. I investigate data from experiments with 6 healthy subjects: aw (13
sessions),al (8 sessions),cm (4 sessions),zp (4 sessions),ay (5 sessions) andzq (4 ses-
sions). These are all the subjects that participated in at least 4 BBCI sessions. Each session
started with the recording of calibration data, followed by a machine learning phase and a
feedback phase of varying duration. All following retrospective analyses were performed
on the calibration data only.

The calibration period for these experiments were performed with the standard setup,
see Section2.3.3. The randomized and balanced motor imagery tasks investigated for all
subjects exceptay were left hand (l), right hand (r), and right foot (f ). Subjectay only
performed left- and right hand tasks. Between 120 and 200 trials were performed during the
calibration phase of one session for each motor imagery class.
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Figure 6.7.:Left: Non-euclidean distance matrix for 78 CSP filters of imagined left hand
and foot movement.Right: Scatterplot of the first vs. second dimension of
CSP filters after Multi-Dimensional Scaling (MDS). Filters that minimize the
variance for the imagined left hand are plotted as red crosses, foot movement
imagery filters are shown as blue dots. Cluster centers detected by IBICA are
marked with magenta circles. Both figures show data fromal.

Data preprocessing and Classification

The time series data of each trial was windowed from 0.5 seconds after cue to3 seconds
after cue. The data of the remaining interval was band pass filtered between either 9 Hz –
25 Hz or 10 Hz – 25 Hz, depending on the signal characteristics of the subject. In any case
the chosen spectral interval comprised the subject specific frequencybands that contained
motor-related activity.

For each subject a subset of EEG channels was determined that had been recorded for all
of the subject’s sessions. These subsets typically contained 40 to 45 channels which were
densely located (according to the international 10-20 system) over the morecentral areas of
the scalp (see scalp maps in following sections). The EEG channels of eachsubject were
reduced to the determined subset before proceeding with the calculation ofCommon Spatial
Patterns (CSP) for different (subject specific) binary classification tasks.

After projection on the CSP filters, the log-bandpower was estimated by takingthe loga-
rithm of the variance over time. Finally, a linear discriminant analysis (LDA) classifier was
applied to the best discriminable two-class combination.

6.2.2. A Closer Look at the CSP Parameter Space

The CSP filters are not just randomly drawn points fromR
C (whereC is the number of elec-

trodes), but instead represent subject-specific neurophysiologicalconditions, which suggests
that, for a given subject, similar filters should be found across all sessions. I will first define
a meaningful notion of similarity in this space and then use this relation to explore the space.
It can be expected that the regions with a high density of CSP filters contain examples for
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filters which are particularly stable across sessions. I will call these regions “clusters”, and I
will introduce a method how to sample prototypical filters from the clusters, using a notion
of “inlier” points which have a low distance to their nearest neighbors.

Comparison of CSP filters

CSP filters are obtained as solutions of a generalized eigenvalue problem. Since every mul-
tiple of an eigenvector is again a solution to the eigenvalue problem every point in the space
of CSP filters (RC) on the line through a CSP filter point and the origin form an equivalence
class (except for the origin itself). More precisely, it is sufficient to consider only normal-
ized CSP vectors on the(C−1)-dimensional hypersphere. This suggests that the CSP space
is inherently non-euclidean. As a more appropriate metric between two pointsw1 andw2

(column vectors of a CSP filter matrixW) in this space, I calculate the angle between the
two lines corresponding to these points:

m(w,w2) = min

(

arccos

( |w1∗w2|
||w1|| ∗ ||w2||

)

,π −arccos

( |w1∗w2|
||w1|| ∗ ||w2||

))

.

When applying this measure to a set of CSP filters(wi)i≤n, one can generate the distance
matrix

D = (m(wi ,w j))i, j≤n,

which can then be used to find prototypical examples of CSP filters. Fig. 6.7 shows an
example of a distance matrix for 78 CSP filters for the discrimination of the variance during
imagined left hand movement and foot movement. Based on the left hand signals, three
CSP filters showing the lowest eigenvalues were chosen for each of the 13 sessions. The
same number of 3×13 filters were chosen for the foot signals. The filters are arranged in
groups according to their relative magnitude of the eigenvalues, i.e., filters with the largest
eigenvalues are grouped together, then filters with the second largest eigenvalues etc.

The distance matrix in Fig. 6.7 shows a block structure which reveals that the filters of
each group have low distances amongst each other as compared to the distances to members
of other groups. This is especially true for filters for the minimization of variance in left
hand trials.

Finding Clusters in CSP space

The idea to find CSP filters that recur in the processing of different sessions of a single
subject is very appealing, since these filters can be re-used for efficient classification of
unseen data. As an example of clustered parameters, Fig. 6.8 shows a hierarchical clustering
tree (see [42]) of CSP filters of different sessions for subjectal. Single branches of the
tree form distinct clusters, which are also clearly visible in a projection of thefirst Multi-
Dimensional Scaling-Components in Fig. 6.7 (for MDS, see [27]).

Once a suitable distance function is established, it can be used to find regions in the data
space consisting of CSP filters, which are more densely sampled than others(‘clusters’).
In particular, by identifiying points located in the middle of clusters, it is possibleto select
them as typical CSP filters.

The proposed metric of Section 6.2.2 coincides with the metric used for Inlier-Based In-
dependent Component Analysis (IBICA, see [83, 84]). This method was originally intended
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Figure 6.8.: Dendrogram of a hierarchical cluster tree for the CSP filtersof left hand move-
ment imagery (dashed red lines) and foot movement imagery (solid blue lines).
Cluster centers detected by IBICA are used as CSP prototypes. They are marked
with magenta arrows.

to find estimators of the super-Gaussian source signals from a mixture of signals. By pro-
jecting the data onto the hypersphere and using the angle distance, it has been demonstrated
that the correct source signals can be found even in high-dimensional data. The key in-
gredient of this method is the robust identification of inlier points as it can be done with
theγ-index (see [53]), which is defined as follows: Letw be a point in CSP-space, and let
nn1(w), . . . ,nnk(w) be thek = 5 nearest neighbors ofw, according to the distancem. The
average distance ofw to its neighbors is then called theγ-index ofw, i.e.

γ(w) =
1
k

k

∑
i=1

m(w,nni(w)).

If w lies in a densely populated region of the hypersphere, then the average distance to its
neighbors is small, whereas if it lies in a sparse region, the average distance is high. The
data points with the smallestγ are good candidates for prototypical CSP filters since they
are similar to other filters in the comparison set. This suggests that these filters are good
solutions in a number of experiments and are therefore robust against changes in the data
such as outliers, variations in background noise etc. (see also section 4.1). Only the CSP
filter with the lowestγ-index can clearly be regarded as “inlier”-point of a cluster. In orderto
find other regions of the filter space which are also densely populated, weapplied a heuristic
which is presented in the next paragraph.

Finding Cluster Prototypes

We first calculated theγ-index of each filter to obtain a ranking according to the distance
function explained above. The lowestγ-index indicates that the corresponding filter is inside
a region with many other filter examples and should therefore be chosen as cluster proto-
type. The same applies to the second-to-lowestγ-index, but in this case it would not be
recommendable to select this filter, since it is highly probable that the filter is from the same
region as the first one. To ensure that we also sample prototypes from other clusters, an
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Figure 6.9.: Overview of the presented training and testing modes for the example of four
available sessions. The left part shows a comparison of ordinary CSP with three
methods that do not require calibration. The validation scheme in the right part
compares CSP with three adaptive methods. See text for details.

incremental procedure of choosing and re-weighting was applied to determine a predefined
number of cluster prototype filters.

The search starts with one prototype only, that is chosen as the filter with the minimal
overallγ-index. The chosen filter point is removed from the set of all filter points. Then the
average distance of each remaining filter to its neighbors is re-weighted by the inverse of
the distance to the removed point, as explained in [83]. Due to this re-weighting, all points
in the vicinity of the chosen cluster prototype receive a largerγ-index. The re-weighting is
driven by the assumption that these neighboring points belong to the same cluster with high
probability. Due to their increasedγ-index, they are less likely chosen as prototypes in the
next iteration. The iterative procedure ends, when a predefined number of cluster prototypes
has been determined.

6.2.3. Competing Analysis Methods: How Much Calibration Is Needed?

Fig. 6.9 shows an overview of the validation methods used for the algorithms under study.
The left part shows validation methods which mimick the following BCI scenario:a new
session starts and no data has been collected yet. The top row representsdata of all sessions
in original order. Later rows describe different data splits for the training of the CSP filters
and LDA (both depicted in blue solid lines) and for the testing of the trained algorithms on
unseen data (green dashed lines). The ordinary CSP method does not take any historical
data from prior sessions into account (second row). It uses training data only from the first
half of the current session. This serves as a baseline to show the general quality of the data,
since half of the session data is generally enough to train a classifier that is well adapted
to the second half of the session. Note that this evaluation only corresponds to a real BCI
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scenario where many calibration trials of the same day are available.

Zero training methods

This is contrasted to the following rows, which show the exclusive use of historic data in
order to calculate LDA and one single set of CSP filters from the collected data of all prior
sessions (third row), or calculate one set of CSP filters for each historicsession and derive
prototypical filters from this collection as described in Section 6.2.2 (fourth row), or use a
combination of row three and four that results in a concatenation of CSP filters and derived
CSP prototypes (fifth row). Feature concatenation is an effective methodthat has been
shown to improve CSP-based classifiers considerably (see [35]).

Adaptive training methods

The right part of Fig. 6.9 expands the training sets for rows three, fourand five for the first
10, 20 or 30 trials per class of the data of the new session. In the methods ofrow 4 and 5,
only LDA profits from the new data, whereas CSP prototypes are calculated exclusively on
historic data as before. This approach is compared against the ordinaryCSP approach that
now only uses the same small amount of training data from the new session.

This scheme, as well as the one presented in the previous paragraph, has been cross-
validated such that each available session was used as a test session instead of the last one.

6.2.4. Results

The underlying question of this work is how strongly the distributions of EEG data are
affected by changes that occur between experimental sessions. As a practical consequence,
the question arises whether information gathered from previous experimental sessions can
prove its value in a new session. In an ideal case existing CSP filters and LDA classifiers
could be used to start the feedback phase of the new session immediately, without the need
to collect new calibration data.

I checked for the validity of this scenario based on the data described in Section 6.2.1.
Table 6.4 shows the classification results for the different classification methods under the
Zero-training validation scheme. For subjectsal, ayandzq, the classification error ofCON-
CAT is of the same magnitude as the ordinary (training-based) CSP-approach. For the other
three subjects,CONCAT outperforms the methodsHISTandPROTO. Although the ideal case
is not reached for every subject, the table shows that our proposed methods provide a decent
step towards the goal of Zero-training for BCI.

Another way to at least reduce the necessary preparation time for a new experimental
session is to record only very few new trials and combine them with data from previous
sessions in order to get a quicker start. I simulate this strategy by allowing the new methods
HIST, PROTO andCONCAT to take a look also on the first 10, 20 or 30 trials per class of
the new session. The baseline to compare their performance would be a BCIsystem trained
only on these initial trials. In Fig. 6.10, this comparison is depicted. Here the influence
of the number of initial training trials becomes visible. If no new data is available,the
ordinary classification approach of course can not produce any output, whereas the history-
based methods, e.g.CONCAT already generates a stable estimation of the class labels. All
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Subjects aw al cm zp ay zq
Classes LF RF LF LR LR LR
Ordinary CSP 5.0 2.7 11.8 16.2 11.7 6.2
HIST 10.1 2.9 23.0 26.0 13.3 6.9
PROTO 9.9 3.1 21.5 26.2 10.0 11.4
CONCAT 8.9 2.7 19.5 23.7 12.4 7.4
Sessions 13 7 4 4 5 4

Table 6.4.: Results of Zero-Training modes. All classification errors are given in %. While
the ordinary CSP method uses half of the new session for training, the threemeth-
odsHIST, PROTO andCONCAT exclusively use historic data for the calculation
of CSP filters and LDA. (as described on the left side of Fig. 6.9). Amongst
them,CONCAT performs best in four of the six subjects. For subjectsal, ay and
zq its result is even comparable to that of ordinary CSP.

methods gain performance in terms of smaller test errors as more and more trialsare added.
Only after training on at least 30 trials per class, ordinary CSP reaches the classification
level thatCONCAT had already shown without any training data of the current session.

Fig. 6.11 shows some prototypical CSP filters as detected by IBICA clustering for subject
al and left hand vs. foot motor imagery. All filters have small support (i.e., many entries are
close to 0), and the few large entries are located on neurophysiologically important areas:
Filters 1–2 and 4–6 cover the motor cortices corresponding to imagined handmovements,
while filter 3 focuses on the central foot area. This shows that the clustercenters are spa-
tial filters that meet the neurophysiological expectations, since they are able to capture the
frequency power modulations over relevant electrodes, while masking out unimportant or
noisy channels.

6.2.5. Discussion

This work shows that experienced BCI subjects do not necessarily need to perform a new
calibration period in a new experiment. By analyzing the CSP parameter space, I could re-
veal an appropriate characterization of CSP filters. Finding clusters of CSP parameters for
old sessions, novel prototypical CSP filters can be derived, for whichthe neurophysiological
validity could be shown exemplarily. The concatenation of these prototype filters with some
CSP filters trained on the same amount of data results in a classifier that not only performs
comparable to the presented ordinary CSP approach (trained on a large amount of data from
the same session) in half of the subjects, but also outperforms ordinary CSP considerably
when only few data points are at hand. This means that experienced subjects are predictable
to an extent that they do not require calibration anymore. The presented data clearly show
that the distributions of the CSP filters are changing from session to session, which corre-
sponds to nonstationary time series on a long timescale. However, the newly introduced
perspective of data miningon the parametershas led to a method for the extraction of very
robust features which can also be expected to work on a new, unseen data set.

Advanced BCI systems (e.g. BBCI) have the ability to dispense with extensive subject
training and now allow to infer a blueprint of the subject’s volition from a short calibration
session of approximately 30 min. This became possible through the use of modern machine
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learning technology. The next step along this line to make BCI more practical is tostrive for
zero calibration time. Certainly it will not be realistic to achieve this goal for arbitrary BCI
novices, rather in this study I have concentrated on experienced BCI users (with 4 and more
sessions) and discussed algorithms to re-use their classifiers from priorsessions.

As all the data presented in this section was analyzed offline, it is still an openquestion
how well the results will transfer to the online scenario. Therefore, I will now put the meth-
ods covered here into action and will present the results obtained by an online experiment
with theCONCAT-classifier in the next section.

6.3. Towards Zero Training for Brain-Computer Interfacing

In the previous Section 6.2, I have presented a method for the comparison of different spatial
filters. This led to the identification of particularly stable CSP filters which can beexpected
to perform well on future sessions. This development opens up a new field for further
investigations: In the case of long-term BCI users, who repeatedly perform BCI sessions
with the same mental tasks, rich datasets of previous sessions are accessible. While the
standard machine learning approach only focuses on the current day,the previous section
has demonstrated in an offline analysis, that also data from other sessionsthan the current
one can be used to set up a classifier with a high performance right from the start. As a proof
of concept, the offline analysis has shown that theCONCAT method is even superior to the
standard CSP approach with up to 30 trials of calibration data.

The transfer of these results to an online application can be jeopardized bymany different
factors. Although the classification setup will be exactly as in the offline simulation, the
subjects can now be influenced by the feedback, which might put them into adifferent
psychological state. Motivation and task involvement as well as frustrationin periods of
low performance can hardly be simulated in offline measurements.

A further problem for the transfer of theCONCAT classifier to an online environment
might be the fact thatCONCAT is only trained on calibration data, while it has been shown
that there can be a substantial shift of the features when going from online to offline data.
Therefore, one can expect that a bias adaptation will be necessary for some of the subjects,
as it was suggested in Section 5.1.

The superior method from the last section,CONCAT, is now tested against the standard
approach where spatial filters and classifiers are trained anew on the calibration data of a
new session.

The study is presented in the following order: In Section 6.3.2, I introduce an experi-
mental setting that allows for the comparison of ourCONCAT approach and the ordinary
approach including calibration. In Section 6.3.4, I show the results of this comparison, dis-
cuss our findings (Section 6.3.5) and put them into perspective.

6.3.1. Features and Classification

The online experiments will be performed analogously to the methods presented in Sec-
tion 6.2. Therefore, the classification will rely on the discrimination of imagined hand and
foot movements, and spatial filters will be required to extract the most discriminative signals
from the EEG signal. Here I will describe generally, how spatial filters areused to calculate
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Figure 6.12.: Scheme of theCONCAT training procedure. Session 1 to session n shows a
standard BCI procedure: spatial filter and classifiers are learned anew from a
calibration recording (e.g. with CSP and LDA) before they are applied during
a feedback application at the same day. The newCONCAT method eliminates
the calibration recording: spatial filters and a classifer are predeterminedbe-
fore sessionn+ 1 starts. The spatial filters for sessionn+ 1 are extracted
from old spatial filters (blue), the classifier for sessionn+1 is calculated from
old calibration recordings (red). The feedback application of sessionn+ 1 is
preceded by a bias adaptation (yellow).

features for classification, and how the ongoing EEG is translated into a control signal. This
method applies to both classical CSP and the proposed method.

The EEG signals of the calibration measurement are band-pass filtered (subject-specific
frequency band, see Section 6.3.2 and Table 6.5) and spatially filtered with the selected CSP
filters. From these signals the log-variance is calculated in each trial of the calibration data
(interval is selected subject-specfically, typically 750 to 3500 ms relative to the presentation
of the visual cue). This procedure results in a feature vector with dimensionality equal to
the number of selected CSP filters (which was in this study 6 for classical CSPand 12 for
the proposed method, see Section 6.3.3). For classification least squaresregression (LSR)
was used.

For online operation, features are calculated in the same way every 40 ms from the most
recent segment of EEG (sliding windows of 1000 ms width). CSP filters calculated from
the initial calibration measurement are not adapted during online operation. Nevertheless,
the system allows stable performance even for several hours ([94, 17]). But for optimal
feedback the bias of the classifier might need to be adjusted for feedback. Since the mental
state of the user is very much different during the feedback phase compared to the calibration
phase, also the non-task-related brain activity differs. For a thoroughinvestigation of this
issue cf. [71, 126, 69], or see Section 5.1 of this work. With regard to thisstudy, the issue is
discussed in Section 6.3.2.
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#chan- #past #train Frequency band Interval
Subject nels sessions trials Classes (CSP) (CONCAT) (CSP) (CONCAT)

zq 46 7 845 LR [9 14] [9 25] [810 4460] [500 3000]
ay 46 4 324 LR [8 22] [9 25] [710 2650] [500 3000]
zp 46 5 704 LR [10 25] [9 25] [2750 5000] [500 3000]
al 44 9 684 FR [11 25] [9 25] [1600 4690] [500 3000]
aw 44 13 1075 LF [11 17] [10 25] [1500 4500] [500 3000]
zk 46 7 240 LR [8 31] [9 25] [920 4390] [500 3000]

Table 6.5.: Subject-specific parameters. The first until third column reportthe number of
sensors and sessions, as well as the number of trials per class which were avail-
able in total from these previous sessions. The fourth column indicates the two
motor imagery classes that have been used (L: left hand, R: right hand;F: right
foot). The frequency band for CSP analysis was chosen for each subject individ-
ually. For original CSP (column 5) it was chosen on data of the actual session.
For CONCAT (column 6) it was chosen on previously available sessions. The
same holds for the time window used for the training of the classifier, denoted in
milliseconds after stimulus presentation: for CSP (column 7), the window was
optimized on the training data, while forCONCAT, a fixed window was used for
all subjects.

6.3.2. Experimental Setup

To demonstrate the feasibility of theCONCAT approach, a BCI feedback study was de-
signed to compare the proposed approach with the classical CSP approach in terms of feed-
back performance. The specific construction of the two classification setups is described in
Section 6.3.3.

The BCI experiments were performed with 6 healthy subjects, 5 male and one female,
aged 26–41. These were all the subjects who had performed at least 4 BCI sessions be-
fore with the Berlin Brain-Computer Interface (BBCI). The large amount of past experi-
mental data is a prerequisite for the extraction of prototypical CSP filters as described in
Section 6.2.2, since the cluster density in the CSP filter space can only be estimated with a
sufficient number of sample points.

The feedback consisted of the visual presentation of a computer cursorwhich was con-
trolled by the output of one of two different classifiers. The first three feedback runs were
done with the pre-computedCONCAT-classifier, see Section 6.3.3. After the completion of
the third run, an ordinary CSP classifier was trained as described in Section 6.3.3, and in
the next 8 runs, either theCONCAT or the ordinary CSP classifier was used for feedback;
the order was randomly chosen and unknown to the subject. Due to the high impact that
a modulation of the oscillatory activity in the visual cortex can have on the classification
of bandpower-based classifiers (see Chapter 5), I enforced a difference in the visual work-
load by switching from ordinary “Fixed-Duration” cursor control (blocks I–II and IV) to
“Fixed-Duration” Feedback of Results (blocks III and V), where the cursor was invisible
(see Section 2.3.5 for details).

The EEG data were bandpass-filtered to a subject-specific frequency band (see Table 6.5),
and spatial filters, as described in Section 6.2.2 and Section 2.2.1, were applied. Finally, the
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Figure 6.13.: This figure shows a schematic overview of the applied paradigms for each run
of the feedback session. Block I, II and IV were conducted with regular Cur-
sor Control feedback (with a fixed duration), whereas the cursor wasinvisible
during blocks III and V. In block I, the predefined classifier was applied, and
the sequential order of the classifiers (either regularCSP or CONCAT) was
randomized for block II–V.CSP was trained using the data of block I.

band power of the spatially and temporally filtered signals was estimated by calculating the
logarithm of the squared sum of the filter outputs. These features were fed into a linear
classifier. I used least squares regression (LSR), in order to forcethe classwise mean of the
linear classifier output to be +1 and -1, respectively. Details on LSR-classifiers are given in
Section 2.2.2.

At a rate of 25 Hz, graded classifier outputs were calculated for the last 1000 ms, and
averaged over 8 samples. A scalar factor was multiplied to the result, and finally a real-
valued bias term was added.

Guided by our experience with nonstationary bias, a bias adaptation was performed at
the beginning of every run. Therefore, the subject controlled the cursor for 20 trials (10 per
class), and the bias was adapted at the end of this period. The procedure corresponds to the
initial calibration of the bias as presented in Section 5.1. In the following 100 trials (50 per
class), the subject received feedback in a “Cursor Control” feedback application.

6.3.3. Construction of Classifiers

Here I will describe the determination of the spatial filters and classifier for the proposed
approach and the calculation of filters and classifier for the classical CSPapproach on data
recorded at the beginning of the session. The feedback performanceof these two approaches
is compared using the experimental design described in Section 6.3.2 and results are reported
in Section 6.3.4. Most of these settings are chosen as straightforward consequences from
the offline analysis presented in Section 6.2.

The Zero-Training Filters and Classifier

The clustering approach for prototypical CSP filters relies on the same distance function
and training procedure as presented in Section 6.2: spatial filters are clustered according
to their non-euclidean distance in the parameter space, and cluster centersare chosen as
representatives for especially stable filters.
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For each subject, data from a number of past sessions (past data) hasbeen available (see
Table 6.5). Based on this data, a set of spatial filters and theCONCAT classifier was con-
structed individually for each subject. This preparation could take place days before the
planned feedback experiment, as only historic data is involved for the construction ofCON-
CAT. For every subject, I performed the following:

I first calculated for each class the three filters with the three largest eigenvalues for each
historic session of the subject using the CSP algorithm from Section 2.2.1. Those top three
filters of both classes and all past sessions of that subject, amounting to 6 prototype filters
(Section 6.2.2), constituted the first 6 dimensions of the feature space. In addition to these
prototypical filters, I also pooled all the data from past experiments of thatsubject and
calculated ordinary CSP filters on this collection of historic data sets. The resulting filters
(3 per class) were appended to the 6 prototype filters. Filtering the EEG dataof the pooled
data set (all past sessions of the subject) resulted in a 12-dimensional feature space. Finally,
a linear classifier was calculated on the features using Least Squares Regression (LSR).

The Ordinary CSP Filters and Classifier

For each subject, I also built a set of ordinary CSP filters and a corresponding classifier.
In contrast to theCONCAT solution, this setup can not be prepared beforehand. The con-
struction is done on the fly during a new experimental session and does notinvolve data
from past sessions. This corresponds to the standard classification scenario as presented in
Section 2.3, and will be refered to asCSP in the following.

For the training of this regular CSP classifier, I first recorded three runs of feedback data
(with feedback provided by the output of theCONCAT-classifier), totalling to more than 150
trials per class. According to the cross-validation error on this data, the optimal frequency
band was selected, as well as some additional parameters like length and starting point of
the training time interval for estimating the band power. The Common Spatial Patterns were
computed on this data and two spatial filters were chosen for each class. These parameters
were chosen as described in Section 2.3. Then a linear classifier (LSR) was trained using
filtered data from the first three runs.

6.3.4. Results

Feedback Performance

The first three runs of feedback showed that all subjects under studywere able to operate
the BCI with the pre-computed classifier at a high accuracy, where only 10trials per class
from the current day were required to update the classification scenario. Fig. 6.15 shows,
for each subject, the percentage of successful (“hit”) trials from each run. After the third
run, the subjects could not know in advance, which one of the two classifiers was used for
the generation of the feedback.

For subjectszq, al andzk, theCSP feedback performed better than theCONCAT feedback.
In ay andaw, the feedback performance on the four blocks is very similar with both clas-
sifiers, whereas in subjectzp, theCONCAT feedback even outperformed theCSP feedback.
Note that if the initial three runs are further taken into account for a more exact estimation
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Figure 6.14.: The discriminability of the calibration data for each previous session (N −
7, . . . ,N−1) as calculated by the cross-validation error of the CSP algorithm.
Frequency band and time window were specifically optimized for each session
and each subject. The cross-validation error on sessionN is calculated on the
three runs from block I, with the settings from table 6.5.

of the feedback performance ofCONCAT, Subjectzq’s performance withCONCAT can no
longer be found to be inferior to the performance withCSP.

The performance over all subjects is shown in Fig. 6.16, where the feedback performance
in each run of the four blocks is collected in a single boxplot for each classifier. The CSP
performance is slightly higher on average, although this difference is notsignificant: a
Wilcoxon ranking test was performed, at a significance level ofp = 0.05.

Adaptation of Classifier Bias

The bias was updated at the beginning of every run. I can now check if this update was
necessary for the accuracy of the classifiers. For runi and classifierj and movement class
k, let µi jk be the mean of the classifier output of the corresponding 50 trials. Then thevalue

b̂i j := bi j

µi j2−µi j1
relates the optimal biasbi j for run i and classifierj with the actual distance

between the class means. A value of 1 would correspond to shifting the decision boundary
by the entire inter-means distance. The results of this calculation are shown inFig. 6.17.
For most subjects, the required shift is moderate (b̂i j < 0.5), but for subjectszpandzk, the
CONCAT classifier requires a strong update of the bias, since the absolute values exceed 1.
TheCSP classifier, trained on data from the same day, is not as susceptible to bias shift as the
CONCAT classifier, since the change is comparatively small also for these two subjects. This
finding supports the hypothesis from Section 5.1 that a bias-shift is required for classifiers
that are trained on calibration data without visual feedback (such as theCONCAT-classifier),
whereas the shiftwithin the session is comparatively smaller. The latter is the case for the
CSP-classifier which is trained on online BCI data with visual feedback.
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Figure 6.15.: The feedback results for each of the six subjects. The feedback accuracy is
denoted for the 100 trials of each run. The initial three runs, here markedas
“I”, were done with theCONCAT classifier, and in the following the order of
the classifiers was randomly permuted in each block of two runs, here denoted
as “II–V”. The shift of the blue curve relative to the green curve within the
shaded areas indicates the order of the classifiers within the block.
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Figure 6.16.: This figure shows the feedback performance of theCSP and theCONCAT clas-
sifier over all subjects. The median of theCSP feedback accuracy is slightly
higher. This difference is not significant (Wilcoxon ranking test,p < 0.05).

96



6.3. Towards Zero Training for Brain-Computer Interfacing

 I  II III  IV  V 
−0.5

0

0.5
VP zq

 I  II III  IV  V 
−0.5

0

0.5
VP ay

 I  II III  IV  V 

0

1

2

3

VP zp

 I  II III  IV  V 
−0.5

0

0.5
VP al

 I  II III  IV  V 
−0.5

0

0.5
VP aw

 I  II III  IV  V 

−2

−1

0

VP zk

 I  II III  IV  V 
−0.5

0

0.5
Average

CONCAT bias
CONCAT bias
CSP bias
CONCAT bias  est.
CSP bias est.

Figure 6.17.: At the beginning of each run, the bias for the classifier was adapted using
10 trials per movement imagination class. The plot shows the optimal bias
update, as calculated on the following 100 trials. This value is normalized by
the difference between the classifier output class means. The solid lines show
the optimal bias forCSP (green) andCONCAT (blue) classifier separately.
The dashed lines indicate the bias, as it was actually calculated on the initial
20 trials by the adaptation procedure during the feedback.

Besides the check for necessity of the bias update, Fig. 6.17 also provides a comparison
of the “optimal” bias with the actual bias, both calculated with the same normalization.The
dashed lines indicate the bias, as it was computed on the initial 20 trials during thefeedback.
From this figure, it is evident that the estimated and the optimal bias coincide quitewell.
Although the estimation error is sometimes not neglectable (as for subjectsaw andzk),the
dashed and the corresponding solid lines are highly correlated. If the classifier would not
have been adapted (corresponding to setting the bias to 0 in Fig. 6.17), the error would be
larger in nearly all runs than with the proposed adaptation strategy. This proves that the
update procedure is in fact stable and useful in combination with theCONCAT-classifier.

Fig. 6.18 exemplifies the effect of the bias shift for subjectzp. In the left part, the classi-
fiers are calculated for each of the 1100 trials of the feedback, without adding any bias term.
While CSP classification (on the x-axis) shows a good separability of the data into positive
and negative values (for right hand and left hand movement, respectively), theCONCAT
classifier assigns negative values to almost every point, resulting in a poorclassification rate
(near 50%, corresponding to chance level accuracy). This effectcan be alleviated by esti-
mating the bias on the 20 initial trials that were performed previous to every run. The right
part of the figure shows the result: bothCSP andCONCAT classification rate now are com-
parable. Note that an improvement of classification accuracy by bias adaptation was highly
significant for two subjects.
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Figure 6.18.: This figure shows the effect of the bias estimation for subjectzp. In the left
part of the figure, bothCONCAT and theCSP classifier are computed on the
1100 trials of the feedback session, without adding a bias term. While the CSP
method performs already quite well, the output ofCONCAT (on the y-axis)
is negative for almost all samples, which would correspond to a classification
error near 50%. The right part of the figure shows the output on the same trials,
after an initial bias adaptation on the 20 initial trials per run. For theCSP
classification, the bias is not changing the result significantly, butCONCAT
clearly profits from the bias update.

Discriminabilty owed to Each Prototype Filter

Here I investigate each prototype CSP filter with respect to the discriminability ofthe corre-
sponding log variance feature and relate it to itsγ-index, see Section 6.2.2. For the evalua-
tion of the discriminability of each features, I use as measure the area underthe ROC-curve
(AUC, see e.g. [42] and Section 3.1). This value is 0.5 for features that are uncorrelated with
the class affiliation and 1 for features that are perfectly separable. I regarded theγ-index,
calculated on the previous sessions, as a quality prediction for the performance of the feature
in the online application of the classifier. Fig. 6.19 confirms this hypothesis by showing that
there is in fact a strong negative correlation between theγ-index and the AUC-value of the
features. The higher the density of the CSP filters, accumulated over many sessions, at a
particular point, the higher the discriminability of the corresponding log variance feature in
the current online session. Note that below aγ-value of 0.7, only features of the three sub-
jects with the overall highest feedback performances (subjectsal, zqandaw) can be found.
These features, on the other hand, have the highest AUC-values.
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Figure 6.19.: This figure compares theγ-index of a prototypical CSP filter, as calculated
on previous sessions, with the discriminability of this feature in the feedback
session. The filters with the lowestγ-index have the highest performance. This
correlation is highly significant (p < 0.01).
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6.3.5. Discussion

The final validation of BCI algorithms can only be provided in online experiments. However,
in contrast to offline evaluation, only one classifier can be applied to the samedata set. This
makes a comparison especially hard, since the differences between different data sets (high
inter-subject and inter-session variability) add to the variability of the performance. It is
therefore required to record all data sets under similar conditions. All datafor one subject
was recorded on the same day, which clearly limits the possible number of runsthat could
be performed. I evaluated the performance of this new classifier with the standard CSP
method that is used for the classification of band power features in imaginarymovements
([18]). In order to keep the subjects equally motivated under both conditions, they were not
informed which classifier was used for which part of the experiment and instructed them
to keep trying to hit the ordered targets on the screen, irrespective of thepossibly degraded
performance of the current classifier.

The aim of this study was to construct and evaluate a classification method thatcan be ap-
plied without a lengthy calibration measurement. While the features I chose have proven to
be quite discriminative for the classification task at hand, the bias adaptation was indispens-
able for two of the six subjects (and did not degrade the performance forthe other subjects).
Possible explanations for the shift of the bias from one session to anotherinclude the differ-
ences in electrode impedances as well as physiological effects like superimposed occipital
α-rhythm, see Chapter 5 and [126, 71, 69]. The number of trials per classthat are initially
used for the adaptation period has to be chosen according to a trade-offbetween the total du-
ration of the adaptation period and the precision of the estimation. After preliminary off-line
evaluations I found 10 trials per class to be a quite balanced choice. Note that this number
might as well be adjusted according to the predicted feedback accuracy for the subject. Bias
parameter estimation is clearly expected to degrade with a more variable feedback discrim-
inability during the adaptation period, and the presented findings support this expectation.
Therefore, if a low feedback performance for a subject can be expected, one could easily
increase the number of trials used for adaptation. It is on the other hand desirable to keep
the total duration of the adaptation period very short, since the goal is to operate real-world
BCI applications right from the start, where knowledge of class labels is not available and
even the equality of class distributions are not always reasonable assumptions.

In this study, the training data for theCSP-classifier are different from the usual calibra-
tion data: in the normal case, no feedback is given during the presentationof stimuli. Also,
the visual scene now resembles more closely the feedback setup (see Section 2.3), i.e., the
targets are on the left and right side of the screen and change the color toindicate the next
movement task. Although one might suspect that this could degrade the classification per-
formance of theCSP classifier due to the higher complexity of the mental task, this is not
the case. Fig. 6.14 shows the development of the cross-validation error over the previous
experiments for each subject. Parameters like the frequency band and thetime interval were
subject-specifically optimized in each session. The last point (sessionN) denotes the exper-
iment from this study, where the first three runs were taken into account. This corresponds
to the data on which theCSP classifier was trained. The cross-validation performance for
this session is of the same magnitude as the previous performance and hencedoes not reveal
a systematic disadvantage for theCSP method. On the contrary, the following application
of the classifier might even benefit from the fact that the task differencebetween the training

100



6.3. Towards Zero Training for Brain-Computer Interfacing

data and the test data is relatively small.

For the training of theCONCAT classifier, some of the parameters were not specifically
optimized, such as the frequency band, the training window for parameter estimation on the
previous sessions, and the movement type combination used for the feedback. The settings
that were applied here were fixed beforehand. It has been shown in recent publications [38,
22], that the optimization of spatial and temporal parameters can result in significantly better
classification accuracy. Therefore, selecting these highly subject-dependent parameters on
the same day’s training data for theCSP classifier may have resulted in a slight advantage
for this method, but I decided for the optimization in order to have the best possible classifier
as a comparison.

Only in subjectzk, theCSP classifier clearly outperforms theCONCAT classifier. The rea-
son might be due to the amount of training data which was present from previous sessions:
while the training sessions for all other subjects contained more than 100 trialsper class,
only 35 trials per class and session were recorded for subjectzk, see also table 6.5. This led
to a higher variability in the collection of CSP filters; it also explains the lowγ-index for all
features of subjectzk, see Fig. 6.19.

For subjectzk, theγ-values for theCONCAT-features are slightly higher than for subject
zp. From the feedback performance in Fig. 6.15, one can even see a slow positive trend
for the CONCAT classifier throughout the day. The trend in the performance for theCSP
classifier, on the other hand, is degrading over time. Subjectzpreported that she was trying
to control the feedback with different strategies over time, always switching to the mental
imagery that seemed most reliable at each point in time. This variability in the mental
strategies, induced by the feedback presentation, is reflected in the brainsignals. Fig. 6.20
shows the evolution of the scalp topographies related to the discriminability of theband
power features in each electrode. I calculated the band power featuresfor the 100 feedback
trials in each run and calculated ther2-values between left and right hand imagery class, as
a measure of linear discriminability. The figure shows that towards the end ofthe session,
the features on the right motor cortex are more discriminative than the features initially
on the left motor cortex. The feedback performance of theCSP classifier appears to be
more susceptible to this shift, while theCONCAT classifier is based on a broader basis
of spatial filters, which can account for the variability in the signals. A possible remedy
for the degrading performance is the adaptive estimation of the linear hyperplane of the
classifiers, [71, 146]. Using an adaptation period as short as 10 trials per class, however,
the adaptation of the hyperplane forCONCAT fails for almost every subject, as an offline
evaluation on the given shows. This is mainly due to the fact that for a linear classifier,
the number of parameters to be estimated grows quadratically with the number of feature
dimensions. Since theCONCAT feature space has 12 dimensions (6 “prototype” filters and
6 “CSP” filters), 20 trials are too little data. Similar results have been shown in Section 5.2
(see also [71]) for classical CSP; the suggested bias update requiresonly the estimation of
one single parameter and is therefore more robust. If, however, the feature discrimination
performance is changing over time like in subjectzp, this bias update might not be sufficient
any more. Other options, like a continuous adaptation of the bias throughout the feedback
run, require at least the a posteriori knowledge of all the labels of this run, which can not be
granted in all feedback applications. Moreover, in Chapter 5 (see also [126]), this adaptation
scheme did not prove to be superior to the initial adaptation of the bias.
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Figure 6.20.: For each feedback run of the session, this figure shows the scalp topographies
of class discriminability on band power features for subjectzp. After bandpass
filtering to the frequency band of 10–25 Hz, the log-bandpower was calcu-
lated for each electrode in the window 500–3000 ms after the presentation of
the stimulus. Finally, signedr2-values were calculated as a measure of class
discriminability.

Fig. 6.19 suggests a good prediction accuracy for prototypical CSP filters with a lowγ-
index. However, since the features of some subjects (e.g.zkandzp) appear to form distinct
clusters for each class, one should consider some reasonable normalization between these
values. Theγ-index, as formulated above, depends mainly on the number of dimensions and
on the number of samples, since if the number of dimensions (in this case: the number of
electrodes) is fixed, the maximally possibleγ-index is a monotonic decreasing function in
the number of samples. Not only the maximal, but also the expected minimalγ-index under
randomly drawn samples will differ. Therefore, I estimated this value by a simulation: the
number of dimensions and samples were chosen for every subject according to Table 6.5.
The minimalγ-value was calculated and averaged over 1000 repetitions. The results are
displayed in Table 6.6. Since the values range from 1.12 for subjectaw to 1.22 for subject
ay, the correlation found in Fig. 6.19 is not influenced if eachγ-value is normalized by the
expected minimalγ-value. Note that for subjectszkanday, some of theγ-values are close
to 1 after normalization; this corresponds to a “cluster” density which is expected to occur
even in random samples. These features, in turn, have very low AUC-values.

With respect to the cumbersome electrode preparation great advancementscould be achie-
ved in the meantime. In [117], a novel dry EEG recording technology was presented which
does not need preparation with conductive gel. In the reported study withgood BCI subjects,
feedback performance was comparable to the approach with conventional EEG caps for
most subjects. Note that this system only uses 6 electrodes and can thus be miniaturized to
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Subject Expected Minimalγ

zq 1.17± 0.02
ay 1.22± 0.02
zp 1.20± 0.02
al 1.15± 0.02
aw 1.12± 0.02
zk 1.17± 0.02

Table 6.6.: This table shows the minimalγ-index for a collection of randomly drawn points,
together with the standard deviation. For this calculation, the same dimensional-
ity (corresponding to the number of electrodes) and the same number of points
(corresponding to three times the number of experiments) was used.

run with a tiny EEG amplifier and a pocket PC.
This study has successfully transfered the results obtained in Section 6.2 tothe online

scenario. For the majority of subjects, the new classifier performed with a similar accuracy
like the standard machine learning approach which was trained on three runs of feedback
data from the same day. The theoretical considerations concerning the distance measure in
the space of spatial filters were justified with this promising result. By analyzingthe amount
of variability from session to session, I have introduced a new method whichcompletely
overcomes the tedious calibration period. Especially in the case of paralyzed or completely
locked-in patients, who rely on communication devices on a daily basis, this method is
particularly appealing, since it lets the subjects initiate the communication right away.

The study also revealed that for some of the subjects, the bias had to undergo substantial
adaptation. This was not surprising, since the findings of Chapter 5 already suggested that
the output of classifiers trained on calibration data often needs a shift during the feedback
period. The method of an initial bias adaptation, which was also developed in that chapter,
proved to be extremely effective, since it decreased the error for the bias substantially.

After the analysis of the degree of nonstationarity across sessions, the presented approach
is the successful combination of methods which account for this nonstationary behaviour.
The result is a single method, which not only shows a stable performance throughout an
entire session, but also requires minimal calibration time for the next session.
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7. Conclusion and Outlook

In this work, I have presented a new framework for the assessment of nonstationarity. The
concept of time series with probability distributions which change over time can be found
in many research fields where data are measured with sensors (such as audio and video
data analysis, speech recognition, biomedical or meteorological data), but it can also occur
in more abstract processes such as stock market rates or network traffic analysis. In all
these cases, nonstationarity can lead to serious problems if methods for signal processing
or classification are applied to the data under the hypothesis of stationary distributions. I
have applied the presented framework to the field of EEG data. In this scenario, I could
demonstrate the power of these methods by visualizing and interpreting the data.

A variety of visualization tools was introduced in Chapters 3 and 5 for the differences
between the brain signals of two distinct time intervals. These tools have foundtheir way
into the BCI research community: they were first presented in [126] and later adapted in
[144]. By application to data from online BCI feedback experiments, I could show that a
source for nonstationarity on many timescales is the modulation of occipital alphaduring
different states of visual input (see Chapter 5 and Section 6.1). This is an unprecedented
discovery with the methods of applied machine learning and points out the impactof the
shift on the classification performance. In this sense, I have exemplified that the analysis of
nonstationarity in a machine learning context can also lead to neurophysiological insights.

Once the reasons for the change of the distributions over time are known, itmakes sense
to consider remedies against their influence on the classification performance. I have sug-
gested various methods for adapting the classifiers over the course of anexperiment, and
have shown that they can be readily applied in online experiments. The key ingredient, a
bias adaptation, is a very robust method and also turned out to be an important prerequisite
for the transfer of classifiers across sessions. However, the discovery that bandpower fea-
tures can actually undergo a shift within a single experimental session has led to a series of
publications which suggest other means of adaptation for this scenario ([132, 133, 16]).

With the same approach, namely with an analysis of the variability of the optimal param-
eters, I developed and implemented a new method which reduces the calibrationperiod of
usually 20–40 minutes substantially (see Chapter 6). After attaching the electrodes, subjects
can immediately receive feedback and use BCI applications at high information transfer
rates. In the same spirit as [117], where a method is presented to overcomethe need for
transductive gel for EEG measurements (“dry electrode cap”), this method enables longterm
BCI users to start BCI sessions with almost no preparation time. For daily applications, this
is a crucial requirement and will help in the realization of BCI devices for severely disabled
users. The development of this novel approach has paved the way forrevolutionizing mod-
ern rehabilitation for the disabled. The applicability of devices of this kind makes it also
attractive for healthy users to use BCIs as additional input channel forman-machine interac-
tion. Computer games and the direct control of machines can only be usefuland applicable,
if the calibration time of the devices is reduced to a minimum, while preserving maximal
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precision. Combined with a “dry” cap, my development is a large step towardsthis goal.
This achievement as well as other work (see [9, 10, 11, 12, 13, 14, 17, 18, 39, 38, 41, 61,
65, 66, 67, 68, 69, 70, 90, 95, 96, 97, 126, 132, 133]), has contributed to the BBCI’s in-
ternational success. Note that the method is by no means limited to its application in BCI,
despite the potential it shows in this field. It can be regarded as a generaltool for machine
learning and signal processing.

Future research will have to transfer the tools provided in this thesis to otherscenarios,
such as the transfer of classifier parameters from subject to subject. Although the variability
across subjects can easily be regarded within the same framework as the variability from
session to session, it is out of the scope of this work. However, with this approach, BCI
research can be conceivable for a wider range of applications, by reducing the calibration
time for naive subjects, such as it has been introduced in this work for longterm BCI users.
It is, moreover, not only a straight-forward, but also highly promising idea to apply these
methods to other neurophysiological paradigms or multi-class applications.

Apart from the question of robustification for BCI, it is a task with high potential to
apply these methods to other areas where machine learning methods are affected by the
nonstationarity in the data. Future research should strive for the robustification of general
time series, in order to make machine learning applications more usable.
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A. Appendix

A.1. Delta

Theδ -index of a point in a given data set is a measure for its outlierness, as it was used in
Section 4.1.
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Figure A.1.: In the left examplea is an outlier an thus itsδ index is large. In the right
example it is part of a larger group so itsδ index is small. Both examples
assumek = 5.

Considern data points{x1, . . . ,xn} ⊂ R
d in d-dimensional space with the euclidean norm

||x|| =
√

x>x. We denote thek nearest neighbors ofx∈ R
d among the given set by

nn1(x), . . . ,nnk(x) ∈ {x1, . . . ,xn} ⊂ R
d
.

The outlier indexδ (x) is defined to be the length of the mean of the vectors pointing fromx
to itsk nearest neighbors, i.e.,

δ (x) = ||1
k

k

∑
j=1

(x−nnj(x))||.

As shown in Figure A.1,δ is large if the neighbors are all in the same direction, which is
usually the case for outliers.

A.2. Gamma

If the data under study are taken from an arbitrary metric space, it is not granted that an
addition operation is defined for this space. This means that an outlier index can not be
defined according to the definition ofδ , since this requires subtraction, addition and scalar
multiplication to be defined. In the following definition of theγ-index, this problem is solved
by applying the averagingafter the application of the metric.
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Let w ∈ (S ,m) be a point in an arbitrary metric spaceS , and let nn1(w), . . . ,nnk(w) be
the k nearest neighbors ofw, according to the metricm. The average distance ofw to its
neighbors is then called theγ-index ofw, i.e.

γ(w) =
1
k

k

∑
i=1

m(w,nni(w)).

In this form, theγ index was applied to the space of CSP filters, which has an inherently
non-euclidean metric (see Section 6.2).

A.3. Adaptation: Implementation details

A.3.1. The BBCI software package

The Berlin Brain-Computer Interface is an inter-coordinated package ofhardware and soft-
ware solutions, designed to meet a large variety of requirements for brain-computer inter-
facing. Its implementation is specifically tailored for modularity, i.e., the componentscan be
modified and replaced without losing functionality. I will give an overview in the following,
but for a more detailed description, see [34].

Most of the BBCI online toolbox is written in MATLAB [92], since this allows fora fast
and intuitive modification of the signal processing and classification routines involved. This
requirement is crucial for the ongoing experimental research in the BBCIproject. Since,
on the other hand, the graphical output of MATLAB is not optimized for realtime applica-
tions, the online toolbox was divided into several parts which communicate via the network-
protocols TCP [148] and UDP [149], to distribute the workload on different processors. This
modular setup even makes it possible to distribute the components to different machines,
connected over local area network or internet.

The single parts of the toolbox can be grouped into mainly four components:

1. Acquisition: The EEG data are recorded with a BrainVision Recorder, obtained from
the company Brain Products GmbH. The included software also provides a TCP-
server, which makes the data available at a rate of 25 Hz, i.e., in blocks of 40ms
length. The data are given with the associated channel labels and with blocknumbers
to avoid loss of data.

2. Signal processing and classification: This unit is the core of the BBCI toolbox, since
it encompasses the routines which can be implemented using machine learning tech-
niques. The data are first fetched from the TCP server (as describedabove), convo-
luted with spatial and temporal filters and then written into a buffer of appropriate
length. The following feature extraction as well as the classification method depend
strongly on the applied BCI paradigm and the pre-defined parameters. After applica-
tion of the classifier, simple post-processing steps, such as the application of a scalar
factor or a real-valued bias term, can be performed. The resulting outputvalue is sent
to the graphical feedback unit via UDP.

3. Graphical output: Again, the type of the presented feedback application depends on
the BCI paradigm. In any case, the feedback unit will transform the classification
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Figure A.2.: The figure shows an overview of the BBCI framework. The red part denotes
modifications which were required for the implementation of adaptive classi-
fiers.

values it receives into graphical events on a computer screen. In the case of a rate-
controlled “cursor”-feedback, the incoming values are used to manipulate the hori-
zontal position of a cursor on the screen; a positive value will move the cursor to the
right, a negative value will move it to the left side of the screen.

4. Operator interaction: All parts of the feedback loop can be controlled by an opera-
tor. A graphical user interface (GUI) is provided which enables the operator to send
control parameters to the classification unit and to the graphical unit.

A.3.2. The Adaptation unit

Figure A.2 demonstrates the interaction of the adaptation unit with the various other parts
of the BBCI online toolbox. The demands for the adaptation unit were as follows:

1. Access to parameters, i.e., single parts of the classifier.

2. Possibility to exchange the entire classifier.

3. Receive control signals from feedback applications, e.g. beginningand end of adap-
tation periods.

4. Receive control signals from the GUI.

5. Display the exchanged parts of the classifier on the GUI, for control purposes on
behalf of the experimenter.

Since one of the crucial requirements is the access to all classifier parameters, the adaptation
was integrated into the classification unit of the BBCI online toolbox. In this fashion, the
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adaptation unit has full access to the entire MATLAB workspace which includes the loaded
variables and the classification parameters.

In the same framework, the adaptation routine can read out the feature variables as well as
the classification output values in the ongoing feedback presentation. An analysis of these
values can result in a reasonable update of the parameters. By listening to marker signals
which are accessible on the TCP server of the acquisition device, the adaptation routine is
responsive to specific start and end triggers sent by the feedback routine.

For the communication with the GUI, a new UDP communication channel is established,
enabling the adaptation routine to send control signals to the GUI, which can modify some
of the values stored here. The GUI, on the other hand, is now equipped with a new thread
which regularly checks for communication packets originating from the adaptation unit.
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