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Abstract— P300-based Brain Computer Interfaces offer com-
munication pathways which are independent of muscle activity.
Mostly visual stimuli, e.g. blinking of different letters are used
as a paradigm of interaction. Neural degenerative diseases like
amyotrophic lateral sclerosis (ALS) also cause a decrease in
sight, but the ability of hearing is usually unaffected. Therefore,
the use of the auditory modality might be preferable. This work
presents a multiclass BCI paradigm using two-dimensional
auditory stimuli: cues are varying in pitch (high/medium/low)
and location (left/middle/right). The resulting nine different
classes are embedded in a predictive text system, enabling to
spell a letter with a 9-class decision. Moreover, an unbalanced
subtrial presentation is investigated and compared to the well-
established sequence-wise paradigm. Twelve healthy subjects
participated in an online study to investigate these approaches.

I. INTRODUCTION

Using Brain-computer interfaces (BCI) one can send

control signals without the use of any muscle. Recording
electroencephalography (EEG), brain signals are acquired,
analyzed and classified, thereby a direct connection between
brain and computer is set up. Recently, most research in
this field is aimed towards developing tools for patients
with completely locked-in syndrome, who have lost their
volitional control over all muscles. BCI might be the only
technology which could establish a communication pathway
for these patients.
There is a variety of different approaches to set up a BCI
speller. These mostly differ in the measuring technology,
feature extraction, data analysis and modality of interaction.
In common type of BCI experiment, subjects are asked to
attend to a specific cue while masking others. Using this
oddball paradigm one reliably observes a positive deflection
in voltage with a latency of about 300 ms after target
stimulus onset, called P300. This innate ERP component
mainly appears over central and parietal brain areas. The
P300 speller [1] quantifies P300 responses to choose letters.
In a visual paradigm, letters are ordered in a grid where rows
and columns are randomly flashing up. This paradigm has
been successfully studied for more than two decades [2], [3]
and was successfully tested as a communication device for
individuals with advanced ALS [4].
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The visual modality requires the subject to be able to control
the eyes. Since eye-movements, blinks and the adjustment
of focus is -at least partly- relying on volitional muscle
activity, some patients, including those suffering from late
stage amyotrophic lateral sclerosis (ALS) are not eligible for
a BCI applications with visual stimuli. The auditory modality
could circumvent this problem.

Most auditory BCI applications are based on one-
dimensional stimuli [5], [6], [7] with up to 6 alternative
choices per trial. There are recent approaches for multiclass
BCI paradigms [8] that include a second spatial dimension
to increase discriminability of auditory cues. In this study,
cues varied in two dimensions (pitch and direction) but
both dimensions transmitted the same information, i.e. a cue
with a specific pitch was always presented from the same
direction.

The present study presents a multiclass auditory P300 speller
with auditory stimuli differing in two independent dimen-
sions: nine auditory cues are varying in pitch (high, medium,
low) and location (left, middle, right). A spelling system,
which is very similar to the T9 system on mobile phones was
implemented. Using this system, subjects are able to spell a
character with a 1 out of 9 multiclass decision. Subjects were
asked to spell two sentences in an online experiment. We
demonstrate that this auditory P300 speller is more accurate
and faster than most of those previously reported. Moreover
a novel method for subtrial selection is investigated, where
the number of presentations of each cue is dependent on
previous classifier outputs results within the same trial.

II. METHODS
A. Participants

12 healthy volunteers (9 male, mean age: 25.1, range: 21
- 34) participated in the BCI experiment which lasted for
three to four hours. Subjects were not paid for participation,
two subjects (VPmg and VPja) had previous experience with
BCI. All subjects reported to not suffer from neurological
diseases and to have normal hearing. Two subjects (VPnx
and VPmg) were excluded from online experiments due to
a poor classification performance in the calibration data.

B. Experimental design

Subjects sat in a comfortable chair facing a static screen
that showed the visual representation of a 3x3 pad with 9
numbers ordered row wise. Each block in the experiment
consisted of an auditory oddball task. Subjects were asked
to minimize eye movements and other muscle contractions
during the experiment. Nine auditory stimuli, lasting 100 ms
were presented using a low-latency USB soundcard and light



neckband headphones.

While preparing the EEG cap, subjects got used to the sound
and speed of the cues, listening to those auditory stimuli
which were used in the spelling paradigm lateron.

We performed three calibration runs, each run consisted of
nine trials with each cue being target once. One practice-run
without recording was performed ahead. In one trial we first
presented the target cue three times while the corresponding
number on a 3x3 grid was highlighted. After a short pause
of 2 seconds we presented 13 or 14 random sequences of all
nine auditory cues. The last 12 sequences of each trial were
used to train the classifier. ISI was 225ms and we assured
the pitch to change with each subtrial and that there were at
least 3 different cues in between the same stimulus.

After training the binary classifier we performed two online
spelling runs. Subjects were asked to spell a short sentence
(’Klaus geht zur Uni’) and a long sentence (’Franz jagt im
Taxi quer durch Berlin’) in separate runs. The short sentence
was spelled using the standard sequence-wise subtrial selec-
tion. For the long sentence an unbalanced subtrial selection
was used. Each trial consisted of 135 subtrials. Order of the
sentences was randomized. In the spelling runs subjects were
asked to attend to the tone which represents the key (1-9) of
the character they want to spell.

C. Auditory stimuli

The selection of stimuli is a crucial element for any kind
of P300 BCI system. Since auditory perception is strongly
varying within subjects, the selection of cues for an auditory
BCI application is even more important. Therefore three
tones varying in pitch (high/medium/low) and sound quality
were carefully chosen in a way that they are -on a subjective
scale- as different as possible to each other. Each of these
tones was presented in three different locations: only on the
left channel, only on the right channel and on both channels.
This two-dimensional 3x3 design obeys a close analogy to
the number pad of a standard mobile phone, where e.g.
number 4 is represented by the middle tone (4-6) presented
on the left channel only (1, 4, 7).

D. Data acquisition

EEG was recorded monopolarly using 64 Ag/AgCl elec-
trodes. Channels were referenced to the nose. Electroocu-
logram (EOG) was recorded under the right eye. Signals
were amplified using a Brain Products 64-channel amplifier,
sampled at 1 kHz and filtered by an analog bandpass filter
between 0.1 and 250 Hz. Further analyzes were done in
Matlab. The online feedback was implemented as Pythonic
Feedback Framework [9].

After filtering, data was down sampled to 100 Hz and
epoched between -150 ms and 800 ms relative to stimulus
onset, using the first 150 ms as baseline.

E. Unbalanced subtrial presentation

Aiming to possibly reduce the number of subtrials per trial
we investigated a method of unbalanced subtrial selection:
the number of presentations of each cue was dependent

on previous classifier outputs results within the same trial.
Thus cues initiating less significant classifier outputs were
presented less frequently. After 5 complete sequences the
unbalanced procedure started and the selection of the next
cue was a random experiment with

Pi = Cnorm (GXp - :le‘tld('ul; + d)7 (1)
where p; is the probability of choosing ¢ as the next cue. u;
is the mean classifier output initiated by cue @ and ¢, oppm, 18
a factor for normalization. d is a constant shift to weight
the influence of the online classification results that was
constantly set to 0.1 for this study. Additionally, p; was set
to O if the preceding subtrial had the same pitch or cue ¢ was
presented within the last three presentations.

FE. Classification

Binary classification was done using the Fisher Discrim-
inant (FD) algorithm. Due to the dimensionality of the
features (up to 252 dimensions), we applied a shrinkage
method [10]. In the online experiment, the 1 out of 9
multiclass decision was based on a fixed number (135) of
subtrials and their classifier outputs. A one sided t-test with
unequal variances [11] was applied for each key and the
most significant key (i.e. lowest p-value) was chosen to be
the target.

G. Predictive text system

For this BCI speller, the commonly used T9 predictive
text system from mobile phones was applied in a modified
version. The system was set up with a german dictionary
of the 10,000 mostly used words in the german language.
Since the standard T9 system uses more than 9 keys, it was
modified in a way that exactly 9 keys are needed for spelling.
Two different modes were implemented: A spelling mode in
which key ’2’ to ’9’ represent the alphabet and activation of
key ’1’ leads to the selection mode. In the selection mode,
the user can choose between fitting words, go back to the
spelling mode or delete previously entered keys. That way,
errors in the multiclass selection can be undone with two
additional selections. The system is constrained to words in
the dictionary, which can be arbitrarily extended.

III. RESULTS
A. Binary accuracy

Accuracy of the binary problem was computed on the
calibration data for each subject based on 327 target and 2592
nontarget subtrials minus the ones excluded with the artifact
correction which was done with a simple variance threshold
method. After excluding subjects VPnx and VPmg, cross
validation analyses reveal that on average 69.5% of targets
and 81.4% of nontargets were correctly identified.

B. Multiclass accuracy

Within all trials of the online experiments, 89.37% of
the multiclass decisions were correct. Decision were made
after 135 subttrials in each trial. The multiclass decision in



TABLE I
SUBJECT-SPECIFIC DATA AND SPELLING PERFORMANCE. ’CORRECT HITS’ AND 'CORRECT MISS’ REFER TO THE ACCURACY OF THE BINARY

CLASSIFICATION PROBLEM WHICH IS ESTIMATED WITH CROSS VALIDATION. ’CL. ERROR’ IS AN ESTIMATE OF MULTICLASS CLASSIFICATION ERROR

WHICH IS CALCULATED ON CALIBRATION DATA AS WELL. FOR THE ONLINE SPELLING RESULTS, THE SHORT SENTENCE IS MARKED WITH ¢,

WHEREAS ? SPECIFIES THE LONG SENTENCE. THE NUMBER OF DECISIONS IS VARYING SINCE A FALSE DECISION MAY REQUIRE 1 TO 3 UNMISTAKEN

DECISION TO BE CORRECTED. THE SPELLING RUN MARKED WITH ¥ WAS NOT COMPLETED BECAUSE SUBJECT VPoc HAD A DROP OF ACCURACY

AFTER THE 45TH TRIAL AND FAILED TO ENTER THE LAST TWO REMAINING KEYS.

subject | VPnv  VPnw  VPnx VPny VPnz VPmg VPoa VPob VPoc VPod VPja VPoe "
correct hits | 73.4 64.8 424 675 684 47.8 65.5 72.7 75 61.6 777 687 | 655
correct miss 80.6 80.8 63.2 824 813 73.3 78.8 84.7 83.3 78.6 859 77.1 | 79.2
cl. error | 0.158 0.199 0.461 0.199 0.18 0354 0.195 0.131 0.13 0232 0095 0.19 | 02

# decisions” 29 31 23 29 38 26 28 23 28.4
time (min) ¢ 25.1 23.0 154 217 26.9 18.1 19.1 17.9 20.9
# decisions® 63 53 97 51 49 45% 61 49 48 | 57.3
time (min) 471 365 767 36.8 39.5 309" 489 362  38.6 | 435

the short sentence with a balanced subtrial presentation was
slightly more accurate (92.51%) than the decision in the
long sentence (87.98%). We observed that 3 subjects (VPnt,
VPoc and VPoe) had a sudden drop in decision accuracy.
Without any obvious reason, their classification performance
dropped to zero. For VPnt and VPoe, this observation
occurred in between the two sentences, accuracy of VPoc
dropped at the end of the first (long) sentence when there
were just 2 correct trials required to finish the sentence.
These subjects reported that they could not concentrate
anymore. Even longer pauses did not have any beneficial
effect. Experiments were then stopped. Since VPoc almost
finished the sentence the run was considered to be completed.

C. Location and latency of N200 and P300

An early negative and a late positive component could be

found for each subject except for the two excluded ones.
Although individual differences in location and latency of
these components were observed, grand average analyses
reveal strong evidence for structurally common signals. For
a target cue, we find an early negative deflection 200-300ms
after stimulus onset which is centered in the frontal-temporal
area. Moreover we find a positive deflection 350-600 ms after
stimulus onset which is centered in the central-parietal area.
Fig. 2 depicts the ERPs at electrode "Fz’ and scalpmaps for
four time frames.
Due to the cross-lateral processing of auditory stimuli we
expected the N200 to vary for each stimulus. Fig. 1 depicts
grand averaged ROC scalpmaps of N200 for each of the nine
cues, illustrating that the early negative deflection is located
in cross-lateral areas. As expected, the P300 component
did not vary for the nine cues (scalpmaps not shown)
since it is not related to primary but cognitive processing.
Fig. 3 pictures the importance of the spacial and temporal
dimension seperatly for classification.

D. Bit rate, characters per minute and early-stopping

In the online spelling runs early stopping methods were not
applied, thus each trial had 135 subtrials. It took 15 min to 26
min (1=20.9) to spell the short sentence and 31 min to 76 min

Fig. 1. ROC scalpmaps of the N200 component (interval: 200-300ms
after stimulus onset) for each single cue. Design corresponds to the two-
dimensional paradigm: The left plot in the second row maps the ROC
generated by target cue 4 against all other nontargets.

(u=43.5) for the long sentence. We find an average spelling
speed of 0.845 characters/minute. Since the sentences were
not spelled word by word but in one go, all kinds of pauses
are taken into account: individual relaxation as well as
fixed intertrial periods mainly influence the spelling speed.
Furthermore the space character is considered as a valid
character, resulting in 16 characters for the short sentence
and 36 characters for the long sentence.

The rate of communication can also be assessed with the
Information Transfer Rate (ITR) [12]. On average, a subject
achieved a bit rate of 3.18 bits/minute in this unconstrained
condition.

An offline early stopping method was simulated: A decision
was made as soon as the minimum p-value fell below a given
threshold. We find that introducing an early stopping method,
we can intensely reduce the number of subtrial per decision:
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Fig. 3.  Spatial and temporal distribution of discriminative information.

Loss obtained for a single temporal 40 ms averaged window (left plot). The
loss obtained for each electrode separately is depicted as scalp topography
(right plot).

the average bitrate got improved to 5.95 bits/minute (Fig. 4).

E. Balanced and unbalanced subtrial presentation

Next to presenting cues in a completely balanced random
sequence we investigated an unbalanced trial presentation,
using online results to present stimuli with conspicuous clas-
sifier outputs more often. We find that the introduced method
can accelerate a multiclass decision while slightly loosing
accuracy. We computed the ITR [12] for both methods,
finding that using the unbalanced method we can slightly
increase the bit rate (Fig. 4).

IV. CONCLUSIONS

This study presents a novel paradigm for an auditory
BCI speller with two-dimensional stimuli and a predictive
text system. Subjects spelled two sentences with 16 resp.
36 characters in an online experiment. We find that 10 of
12 subjects are able to successfully use the system with a
high accuracy.

We also approach a new method for subtrial selection,
taking online binary classification results into account.
This method aims to accelerate a decision by presenting
specific cues more frequent if they initiated more significant
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Fig. 4. Grand-averaged Information Transfer Rate (ITR) in bits/minute

as a function of stopping threshold. The standard sequence-wise paradigm
(maximum value: 5.78 for pcri+ = 0.01) is represented in black, the
unbalanced paradigm (maximum value: 5.95 for pcr;¢+ = 0.0025) for
subtrial selection is marked green.

classifier outputs than others before. We find a slightly
increased bitrate for the unbalanced method compared to
the standard sequence-wise for subtrial selection.
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