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Abstract

We introduce Focal Vector Field Reconstruction (FVR), a novel technique for the

inverse imaging of vector fields. The method was designed to simultaneously achieve

two goals: a) invariance with respect to the orientation of the coordinate system, and

b) a preference for sparsity of the solutions and their spatial derivatives. This was

achieved by defining the regulating penalty function, which renders the solutions

unique, as a global ℓ1-norm of local ℓ2-norms. We show that the method can be

successfully used for solving the EEG inverse problem. In the joint localization of

2-3 simulated dipoles, FVR always reliably recovers the true sources. The competing

methods have limitations in distinguishing close sources because their estimates are

either too smooth (LORETA, Minimum ℓ2-norm) or too scattered (Minimum ℓ1-
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norm). In both noiseless and noisy simulations, FVR has the smallest localization

error according to the Earth Mover’s Distance (EMD), which is introduced here

as a meaningful measure to compare arbitrary source distributions. We also apply

the method to the simultaneous localization of left and right somatosensory N20

generators from real EEG recordings. Compared to its peers FVR was the only

method that delivered correct location of the source in the somatosensory area of

each hemisphere in accordance with neurophysiological prior knowledge.

Key words: EEG/MEG, Inverse Problem, Source Localization, Second-Order

Cone Programming, ℓ1-norm Regularization, Sparsity, Vector Fields, Rotational

Invariance

1 Introduction

Precise localization of neuronal activity is an important aspect for a better

understanding of brain functioning. Several functional imaging methods have

been developed for investigating this issue, including Single Photon Emission

Computed Tomography (SPECT), Positron Emission Tomography (PET) and

functional Magnetic Resonance Imaging (fMRI). These techniques provide

high spatial resolution of brain activity using metabolic indicators such as

blood oxygenation level (fMRI) or the concentration of radioactively marked

substances (SPECT/PET) in the tissue. Due to the slow response of the

metabolism, however, these measures cannot be used to assess rapidly varying

neuronal activity in a range of few milliseconds. Apart from measuring direct

neuronal activity, Electroencephalography (EEG) and Magnetoencephalogra-
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phy (MEG) allow very accurate reconstruction of the time course of neuronal

signals with a microsecond precision (Nunez and Srinivasan, 2005). Impor-

tantly both techniques are noninvasive, and do not interfere with neuronal

activities. However, the signal arriving at the sensors contains contributions

from all areas of the brain, as well as external noise. The forward mapping

from cerebral sources to sensors is well-defined and can be described mathe-

matically with the help of a suitable model of the head. Inferring the sources

that lead to a certain measurement, on the other hand, is impossible, as in-

finitely many source configurations will fulfill the forward equation. In other

words, the inverse problem is ill-posed.

One strategy to still obtain a unique solution to the inverse problem is to

regularize, i.e. to restrict the search space to a sufficiently simple class of

sources. A common approach is to assume that the measured scalp pattern has

been generated by dipolar (point-like) sources (Scherg and von Cramon, 1986;

Mauguière et al., 1997; Komssi et al., 2004; Huttunen et al., 2006). Respective

approaches model a small number of dipoles, where the optimal number has to

be known in advance. The inversion is carried out by solving an overdetermined

nonlinear system in a least-squares sense. Unfortunately, the cost function of

dipole fits is highly nonconvex and the obtained solution depends heavily on

the initialization. Additionally, dipolar sources can be a poor approximation

if, e.g., the true sources are spatially extended and oriented normal to a folded

cortical surface.

An approach related to dipole fitting is dipole imaging. Imaging methods

model a large but fixed number of dipoles. These are arranged in a regular

grid covering the whole brain (or optionally just the cortical areas). Inferring

the dipole current vectors requires solving a heavily underdetermined system,
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in which the fulfillment of the forward equation constitutes only a constraint.

Several methods tackle the underdetermined nature of the problem by incor-

porating additional information. Very often temporal structure in the signal

is used, as for example in beamforming (Veen and Buckley, 1988), subspace

methods like MUSIC and (RAP)MUSIC (Schmidt, 1986; Mosher and Leahy,

1999) and the methods proposed in (Baillet and Garnero, 1997; Huang et al.,

2006; Malioutov et al., 2005; Cotter et al., 2005; Polonsky and Zibulevsky,

2004). The approach of Dale and Sereno (1993) imposes anatomical constraints

obtained from MRI on the sources. A general overview on inverse methods for

EEG and MEG is given by Baillet et al. (2001).

In this paper we focus on the situation in which only the scalp pattern at

one time point is available. In this case, imaging methods have to define an

additional quality criterion in order to obtain a unique solution. Ideally, this

regularizing criterion should encode prior knowledge on how a “good” solution

looks like. We here assume that a) brain sources are focal and we request

b) invariance with respect to rotations of the coordinate system. Standard

Minimum ℓp-norm solutions, weighted or not, are either rotationally invariant

but highly non-focal (p=2) or focal but violating rotational invariance (p=1).

We will propose an alternative consisting of a global ℓ1-norm of local ℓ2-norms

which fulfills both goals simultaneously. Local ℓ2-norms can be calculated both

of the sources (as in “standard” Minimum ℓ2-norm solutions and of their

second order spatial derivatives (as in LORETA). We here suggest to use a

specific combination of the two, relaxing the strict focality requirement in

favor of a more robust “simplicity” requirement.

This paper is organized as follows. In section 2 we will first give an overview

of existing methods and then we will present the mathematical details of our
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method. In section 3 we show illustrative examples in a simple constructed one-

dimensional scenario, followed by detailed simulated examples of EEG inverse

calculations and a case study using real EEG data from electric stimulation of

left and right median nerve. We finally discuss the results and give a conclusion

in sections 4 and 5, respectively.

2 Materials and methods

2.1 Inverse imaging

Let x ∈ R
M denote a scalp pattern measured at M EEG or MEG sen-

sors. The current density in the brain is modeled by N dipolar sources di =

(rT
i , sT

i )T , i ∈ {1, . . . , N}. The locations ri ∈ R
3 are kept fixed, so that the

quantities to be inferred are the dipole moment vectors si = (si,x, si,y, si,z)
T , i ∈

{1, . . . , N}. Let s ∈ R
3N = (sT

1 , . . . , sT
N)T be the vector containing the stacked

moments. As the relationships between source currents and EEG/MEG mea-

surements are linear, the forward equation just reads x = Ls in both cases.

The matrix L is called lead field matrix. It comprises information about ge-

ometric and conductive properties of the tissue. We will assume L to have

maximal rank, that is for EEG the reference electrode is not included in x

and L. If we require that the estimated solution explains the data exactly, the

inverse solution for an imaging methods can be cast as

ŝ = arg min
s

f(s) s.t. x = Ls, (1)

where f defines the imaging method. The choice of f choice crucially affects the

shape of the estimated source distribution, as there are much less constraints
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on s than degrees of freedom.

For practical reasons it is desirable to choose f to be convex, as only then

numerics guarantees to find the best solution. Important convex functions in

this context are ℓp-norms. Minimizing a norm of s is reasonable, since unnec-

essarily complicated source configurations (e.g. sources with opposite moment

at nearby locations) are avoided. The first approach along these lines used

the ℓ2-norm and its solution is traditionally called Minimum Norm Estimate

(MNE, Hämäläinen and Ilmoniemi, 1994, extending their 1984 technical re-

port). However, signal attenuation in the tissue causes this method to under-

estimate deep sources. A method known as sLORETA (Pascual-Marqui, 2002)

overcomes the problem by standardizing the MNE and is proven to recover the

location of a single point source exactly in the absence of measurement noise. A

variety of so-called Weighted Minimum Norm Estimate (WMNE) approaches

employ weighting matrices for depth compensation (Jeffs et al., 1987; Köhler

et al., 1996). One particular method is LORETA (Pascual-Marqui et al., 1994),

which searches for the smoothest current density explaining the data. Mini-

mum ℓ2-norm methods have the desirable property that they are linear, i.e.

their solutions are obtained by simply multiplying a precalculated pseudoin-

verse matrix to the measurement vector. These solutions, however, tend to be

smeared, making it difficult to separate distinct close sources. The occurrence

of spurious “ghost sources” is another problem of linear methods.

Smoothness related problems are addressed by Minimum ℓ1-norm solutions,

also referred to as Minimum Current Estimates (MCE, Matsuura and Okabe,

1995). These solutions are sparse, which seems to be congruent with the as-

sumption that only a few narrow regions of the brain are active in a certain

experimental condition. This argument has also been used to justify the FO-
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CUSS algorithm (Gorodnitsky et al., 1995), which provides even sparser solu-

tions by implicitly minimizing ℓp-quasinorms (p < 1). Sparse imaging methods

usually do not model any spatial relation between dipoles, which causes their

solutions to be scattered. For example, such a method may explain a single

dipolar source located off-grid by several disconnected dipoles (see Figs. 3 and

4). The spatial scattering problem can be alleviated by averaging the sparse

inverse solutions at different time points (Uutela et al., 1999), assuming that

the source configuration is stable over time.

Another issue with many sparse approaches is that they do not take into

account the vectorial nature of currents. As a result, the orientation of the

estimated dipoles are often axes-parallel, as one or two. Several techniques are

used to alleviate this problem. One possibility is to a-priori fix the orienta-

tions in a meaningful way. In Uutela et al. (1999) the dipole orientations are

taken from MNE, while dipole amplitudes are minimized using ℓ1-norm. A

much more complicated approach is suggested in Huang et al. (2006), where

activity in a voxel is discouraged, if the orientation of the MNE solution in the

respective voxel is close to one of the coordinate axes. In cortically-constrained

approaches (Dale and Sereno, 1993; Kincses et al., 2003) dipoles are usually

oriented perpendicular to the cortical surface, modeling the apical dendrites

of pyramidal neurons, which are known as the main generators of cortical

EEG/MEG. This approach, however, requires very precise knowledge of the

cortical geometry, as small changes of the normal vector can already lead to

considerably different forward equations.
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2.2 Focal Vector Field Reconstruction (FVR)

Many real-world signals possess a sparse structure, i.e. they can be expressed

by a linear combination of a few basis functions. This concept has been utilized

in Basis Pursuit (BP, Chen et al., 1998), where a time series is approximately

represented by a small number of Gabor functions from an overcomplete dic-

tionary. Other authors have used sparsity for image denoising (Rudin et al.,

1992) and reconstruction (Compressive Sensing, Candes et al., 2006). In the

regression and classification context, ℓ1-norm regularization leads to sparse

coefficients (Bennett and Mangasarian, 1992; Tibshirani, 1996; Graepel et al.,

1999). In inverse imaging, predominantly sparsity in the “natural” basis of

unit impulses has been considered so far, although other bases may be as well

useful. We reason, that plausible source estimates should have a relatively

simple structure. This is the case for functions with sparse second deriva-

tives, which, in one dimension, are just the piecewise linear functions. In our

proposed approach, we impose sparsity of the current density as well as spar-

sity of its second spatial derivatives. Sources fulfilling both our criteria will be

mainly zero, except for a minimal number of continuous patches. Interestingly,

this approach has structural similarity to the fused lasso algorithm recently

proposed in statistics (Tibshirani et al., 2005), which also considers a joint

regularization in two bases.

Discrete Laplace operator

For calculating discrete second derivatives, we consider the Laplacian rather

than the full 3 × 3 Hessian. The Laplacian has the advantage of rotational

invariance, compared to other local operators. Assume the brain to be seg-
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mented into voxels of size h, the activity in each is represented by a dipole in

the center. The N × N operator is given by

D
(N×N)
i,j =

1

h2






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



















− |{k | ‖ri − rk‖2 = h}| i = j

1 ‖ri − rj‖2 = h

0 else ,

(2)

i.e. each diagonal entry D
(N×N)
i,i is equal to the number of voxels adjacent to

voxel i. With this definition nonzero currents at the boundary are not necessar-

ily penalized. This is important, as cerebral activity measured by EEG/MEG

can often be expected to originate from cortical structures. Note that, in con-

trast to FVR, LORETA (Pascual-Marqui et al., 1994) uses a definition with

−6 on the diagonal, regardless of the number of adjacent voxels. While this

choice makes the Laplacian non-singular, which is a prerequisite for the an-

alytical inversion carried out by LORETA, it also practically prohibits the

correct localization of superficial sources.

Laplace-filtering is done separately for each moment of the current density.

Hence, the full 3N × 3N operator can be written as D = D(N×N) ⊗ I(3×3),

with I(K×K) being the K × K identity matrix and ⊗ denoting the Kronecker

product.

Depth compensation

We conduct a depth compensation, that is inspired by the post-hoc cur-

rent standardization of sLORETA (Pascual-Marqui, 2002). More precisely,

we make use of the source covariance estimate derived in there, which is de-
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fined by Ŝ = L̄T
(

L̄L̄T
)−1

L̄ ∈ R
3N×3N , with L̄ = L for MEG and L̄ = HL

for EEG, where H = I − 11T /1T1 ∈ R
M×M is the centering matrix and 1 a

column vector of ones. Let Wi denote the 3× 3 matrix square root of the part

of Ŝ belonging to the ith dipole. We include the Wi as penalties in the cost

function of FVR, i.e. we penalize large currents at positions with high a-priori

uncertainty. This approach differs from the one used in Pascual-Marqui (2002)

in that allows to standardize not only current power, but vectorial currents.

Cost function of FVR

A central aspect of our method is the way sparsity of the current density

is enforced. We propose to minimize the ℓ1-norm of the current amplitudes,

rather than the individual moments of the current vectors. With this choice,

rotational invariance of the FVR solution is guaranteed. Let si ∈ R
3 denote

the dipole moment at the ith voxel such that s = (sT
1 , . . . , sT

N)T . Similarly, let

ti = ti(s) ∈ R
3 denote the moment of the Laplacian of the source field at the

ith voxel. Then the FVR optimization problem takes the following form

ŝFVR = arg min
s

N
∑

i=1
‖Wisi‖2 + α

N
∑

i=1
‖Witi‖2

s.t. x = Ls .

(3)

Formulations like Eq. (3), which involve sums of ℓ2-norms generally arise when-

ever joint sparsity of groups of variables is desired 1 . While we arrive at the

1 Note that in Eq. (3) it is not possible to replace the inner ℓ2-norms by their

squared counterparts without losing the sparsity property. This is easily understood,

as a sum of squared ℓ2-norms is nothing but a global ℓ2-norm, which is known for
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FVR objective from a rotational invariance requirement, this concept has also

been used for regression (Yuan and Lin, 2006) and sparse spatio-temporal de-

compositions (Malioutov et al., 2005). Minimizing sums of ℓ2-norms is harder

than traditional ℓ1-norm or ℓ2-norm minimization, although not substantially.

While the latter problems are solved by linear and quadratic programs, respec-

tively, Eq. (3) can be cast as an instance of Second-Order Cone Programming,

(SOCP, see e.g. Lobo et al., 1998). SOCP problems are also convex and thus

unambigously solvable (Boyd and Vandenberghe, 2004). By introducing aux-

iliary variables u and v, Eq. (3) can be rewritten using SOC constraints

ŝFVR = arg min
s,u,v

N
∑

i=1
ui + α

N
∑

i=1
vi

s.t. ‖Wisi‖2 ≤ ui , i = 1, . . . , N

‖Witi‖2 ≤ vi , i = 1, . . . , N

x = Ls .

(4)

Rotational invariance

If the coordinate system is rotated by an orthogonal matrix U , the lead field

L̄ and the sources s are transformed as

L̄−→ L̄ÛT ≡ L̄U (5)

s−→ Ûs ≡ sU (6)

where

Û ≡ I(N×N) ⊗ U (7)

producing nonsparse estimates (as in WMNE and LORETA).
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is the rotation operator for all voxels. Then

Ŝ = L̄T
(

L̄L̄T
)−1

L̄ −→ L̄T
U

(

L̄U L̄T
U

)−1
L̄U = Û ŜÛT (8)

and the block diagonal entries of the square root of Ŝ transform as

Wi −→
(

USiU
T
)1/2

= U
√

SiU
T = UWiU

T . (9)

Now, Eq. 3 is rotationally invariant since a)

‖Wisi‖ −→ ‖UWiU
T Usi‖ = ‖Wisi‖ (10)

and b) the same holds for ‖Witi‖ because the Laplacian is a scalar differential

operator and the rotation is independent of space (i.e. the moment of each

voxel is rotated identically).

Note that a rotation of the coordinate system must be distinguished from a

rotation of the grid. Invariance with respect to the former is exactly fulfilled

implying that the method itself does not prefer specific source orientations.

Rotational invariance of the latter is an approximation limited by the discrete

approximation of the Laplacian, however with negligible impact for small voxel

distances.

Computational cost

At present, the computational requirements of FVR are quite high. For the

7mm grid used in our experiments (amounting to 6249 dipoles), an inverse

calculation (M ≈ 100) took approximately 45 min on a single-processor com-

puter (2 GHz clock rate, 2 GB memory), compared to 3 min for MCE. For a

coarser grid with 1 cm inter-voxel distances (2142 dipoles), the time required

by FVR was only 4 min on the same machine.
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Several options for accelerating the computation exist. A considerable speedup

may already be achieved by reducing the number of constraints using Trun-

cated Singular Value Decomposition (TSVD, see below) of the lead field. Fur-

thermore, the currently used generic solver (Sturm, 1999) could be replaced

by a specialized algorithm. Parallel implementations as the one described in

Nakata et al. (2006) are also conceivable; this, however, goes beyond the scope

of this contribution.

Measuring accuracy of reconstruction results

In order to assess the quality of source reconstructions, we here propose to

measure the disagreement of the simulated and the estimated dipole ampli-

tudes by means of the Earth Mover’s Distance (EMD, Rubner et al., 2000).

This quantity is suitable for comparing distributions with possibly nonoverlap-

ping support, for which a distance measure in the domain space is available.

In the case of EEG/MEG inverse solutions the Euclidean distance between

dipoles provides such a measure.

To understand the Earth Mover’s Distance, consider that for a given source

distribution the amplitude at each voxel is divided into a huge number of

units 2 with tiny and fixed amplitude. Two source distributions have the same

total number of units. One can now transform the first source into the second

source by moving the units of the first source to match those of the second

2 For a formal definition of the Earth Mover’s Distance, no division into units is

necessary. This was just introduced here to give the reader a better intuition. The

exact definition of EMD along with an efficient algorithm for its computation is

provided in Rubner et al. (2000).
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source. The average distance the units have to be transported depends on

the specific transformation we choose. The minimum average distance (aver-

aged over all units and minimized over all possible transformations) defines

the EMD. The idea of using this metric in this context is that it provides a

meaningful measure for arbitrary types of source distributions. We can, e.g.,

compare a few dipole solution with highly distributed sources without hav-

ing to worry which local maximum corresponds to which dipole, or we can

compare a 3-dipole solution with a 2-dipole solution in a meaningful way.

3 Results

3.1 Illustration

[Fig. 1 about here.]

Fig. 1 illustrates the main properties of the inverse methods LORETA and

MCE compared to that of FVR. The current density domain was defined to

be a straight line of 300 scalar sources. Three source configurations, consist-

ing of either three Hanning windows, two boxcar windows or a single sine

wave, were simulated. Source reconstruction was performed based on noise-

free “measurements”, which were obtained by smoothing and subsampling the

sources. Apparently, only FVR is able to recover the exact number of sources

in all three cases. LORETA is not able to distinguish all three sources in the

Hanning example. Instead, one estimated source is placed exactly in between

two true sources. MCE estimates consist of spikes, the number and locations

not always being in line with the true source configuration.
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[Fig. 2 about here.]

In Fig. 2 the effect of enforcing sparse current amplitudes is illustrated on

the basis of two simulations. The sources were modeled as a straight line of

100 two-dimensional vectors. In one case we simulated two sources with Han-

ning window envelopes. In the other example, two boxcar windows were used.

All vectors belonging to the same source had equal orientation. Ten pseudo

measurements were constructed from the source vectors by means of lowpass-

filtering. Note, that for this example the ”forward solution” has no physical

origin. It was just constructed to contain essential features of real EEG/MEG

forward mappings in a simple one-dimensional case and for illustration pur-

poses only. In the examples shown, MCE source estimates according to Mat-

suura and Okabe (1995) are all parallel to one of the two axes. In contrast to

that, the modified version minimizing the ℓ1-norm of vector amplitudes recov-

ers the original orientations very well, while being even sparser. Finally, the

additional sparsity of the amplitudes of the Laplacian removes the problem of

source scattering.

3.2 Simulated dipoles

We conducted simulations in a realistic volume conductor using the publicly

available Montreal head (Holmes et al., 1998) with three shells (brain, skull,

skin). Grids with 7mm and 10mm voxel distances were constructed fully inside

the inner shell. The forward problem in a realistic head model was solved

using semi-analytic expansions of the electric lead fields (Nolte and Dassios,

2005). We simulated four source configurations, consisting of either two or

three dipoles located at random off-grid positions. In each example, either
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the sagittal or the axial coordinate was the same for all dipoles. The dipoles

moment vectors had random orientation and unit amplitude. Hypothetical

EEG patterns were constructed by carrying out the forward calculation for

118 standard electrode positions. We investigated the noiseless case as well as

the case in which the pattern was superimposed by Gaussian white noise. In

each example, the signal-to-noise ratio, defined by signal strength and noise

standard deviation averaged over all channels, was set to 5. Inverse imaging

solutions were computed according to WMNE, LORETA, MCE (according to

Matsuura and Okabe (1995)) and FVR. For WMNE and MCE the sLORETA-

based weighting, as well as the standard approach of weighting each moment

with the ℓ2-norm of the corresponding column of L was used.

In the presence of noise, a relaxation of the hard constraint x = Ls is advisable.

Most commonly, Truncated Singular Value Decomposition is used for doing

so, while a different option may be given by quadratic constraint

‖Ls − x‖2 ≤ ǫ. (11)

In TSVD, perfect reconstruction is requested only in the space spanned by the

right-singular vectors of L belonging to the k largest singular values. This has

the consequence that only the low-frequency components of the scalp pattern

have to be explained, as these contain the most variance. In contrast, the con-

straint (11) equips the inverse method with maximal flexibility to “smoothen”

the pattern. We therefore adopted this approach and minimized the cost func-

tion of each inverse method subject to Eq. (11). This resulted in all cases

in convex problems, which were solved exactly using an iterative algorithm

(Sturm, 1999). We set ǫ based on our prior knowledge of the noise level, i.e.

ǫ = ‖x‖2/5. In other words, the deviation of the model and the measured

16



electric potential was adjusted to be consisted with statistical expectations.

The tradeoff between sparsity and simplicity of the FVR solution is controlled

by means of the model parameter α. The choice of α does not affect the quality

of fit of the solutions. For the experiments reported in this paper α was set to

10−2 cm2, i.e. we regarded sparsity more important than simplicity.

[Fig. 3 about here.]

[Fig. 4 about here.]

3.3 Somatosensory Evoked N20

To provide a real world example as a proof of concept, we recorded 113-

channel EEG of one male subject (26 years) during electrical median nerve

stimulation. EEG electrodes were positioned according to the international

10-20 system and their spatial position was obtained using a 3D digitizer.

The electrode positions were mapped later onto the surface of the Montreal

head and forward calculations were performed. EEG data were recorded with

sampling frequency of 2500 Hz, and digitally bandpass-filtered between 15 Hz

and 450 Hz. For the following analysis the data was decimated to 1250 Hz.

Left and right median nerves were stimulated in separate blocks by constant

square 0.2 ms current pulses with intensities of approx. 9 mA (above motor

threshold). The inter-stimulus interval varied randomly between 500 and 700

ms. About 1100 trials were recorded for each hand. The study was approved

by the local Ethics Committee of the Charité, University Medicine Berlin.

Electrodes were excluded from the analysis if standard deviation at these
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electrodes exceeded 50 µV. The remaining 106 channels were segmented into

epochs in a time interval from -100 ms to 70 ms relative to the stimulus on-

set. Baseline correction was based on the mean amplitude in the prestimulus

interval (-100 ms to -10 ms). An epoch was rejected from the averaging, if its

amplitude was more than 100 µV in either the prestimulus or poststimulus

interval (10 ms to 70 ms). After this, at least l = 973 epochs remained in each

class. These epochs were averaged separately for the left and right median

nerve stimulation. Visual inspection of the averaged signals revealed that the

peak time of the N20 deflection was approximately at 21 ms. Fig. 5 shows

both the average time courses of both conditions, as well as the average po-

tential patterns at this time. A combined pattern was created by arithmetic

summation of the patterns related to left and right N20.

[Fig. 5 about here.]

We inverted the single left and single right as well as the summed pattern,

amounting to a (joint) localization of the left and right N20 generators. The

methods tested were LORETA, MCE and FVR. For MCE, the sLORETA-

based depth compensation was employed. All three methods were required

to provide the same quality of fit. The regularization parameter ǫ was set to

‖SE(X)‖2/‖x‖2, where X is the m × 973 matrix containing the left, right

and summed trials, respectively, and SE(X) is the m × 1 vector of electrode

standard errors.

[Fig. 6 about here.]

In cases like above, where the presence of more than one source is indicated, an

automatic decomposition of the estimated current density is desirable. In the

case of sparse solutions, such a decomposition is easily obtained by computing
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the connected components (with respect to the grid neighborhood relation) of

the set of dipoles having nonzero estimated amplitude.

[Fig. 7 about here.]

3.4 Quantitative performance analysis

We also performed a quantitative comparison of the inverse solutions. For that

purpose, source localization was repeatedly performed within a 5×5 crossval-

idation, i.e. for each localization task the following procedure was carried out

five times. The channels were randomly divided into five sets of equal size. For

each union of four sets, inverse solutions were computed.

The patterns to be inverted were grouped into the N20 evoked potential, the

noiseless and the noisy simulated patterns. For the simulations, localization in

terms of the Earth Movers distance was considered the ultimate performance

measure. Apart from localization, we defined a number of performance criteria

that do not rely on explicit knowledge of the true sources. These include

sparsity, defined as the fraction of dipoles with (close to) zero amplitude. The

generalization error of a crossvalidation run was defined as the mean squared

difference of the measurement at those channels, which were taken out for the

source estimate, and the prediction for these channels based on the estimated

source distribution. Finally, stability of the solution was assessed as the sum of

the variances of the dipole moments over the 25 crossvalidation runs. Table 1

lists the results of the numerical analysis. Mean and standard errors (SE) were

computed across the experiments of a group and the crossvalidation runs. As

stability aggregates information of all runs, mean and SE were taken across
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experiments only for this measure.

[Table 1 about here.]

4 Discussion

In the simulations, FVR outperformed the other methods with significantly

better localization in both the noiseless and the noisy case. In the noiseless sim-

ulations, FVR also had by far the highest stability and generalization perfor-

mance. In the presence of noise (simulations and N20 localization), this advan-

tage became insignificant for generalization (on par with sLORETA weighted

MCE) and vanished for stability. Here, WMNE and LORETA achieved the

best scores, followed by FVR. High stability seems, however, less valuable in

conjunction with a large localization bias, as it is indicated for these methods

in Table 1. The sLORETA weighted MCE outperformed all other methods

significantly in terms of sparsity, which was above 99 % on average. Column-

norm weighted MCE and FVR were, however, also very sparse (above 97 %).

The good localization of FVR becomes apparent also in Figs. 3 and 4, which

show inverse solutions based on the whole set of 118 channels. FVR was the

only method that had exactly as many distinct active patches as there were

true sources. In the noiseless setting, the centers of gravity of these patches

were located on top of the simulated dipoles (at the closest gridpoints). With

noise added to the pattern, only a small offset was observed for some sources.

For WMNE and MCE the column-norm weighting was not a sufficient depth

compensation. These methods became comparative to FVR only when the

sLORETA based weighting was used.
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The sources estimated by LORETA and WMNE are typically distributed over

the whole brain. For this reason, it is common in smooth inverse methods to

analyze only maximal values of the source distribution (although this is in

disagreement to the model the estimation was based on). However, for some of

the simulations in Figs. 3 and 4 this analysis does not yield acceptable results,

as the local maxima of the LORETA/WMNE estimates were not even close to

some of the true sources. For example, LORETA estimated a spurious ghost

source even in a noisefree simulation (SAG3), while at the same time two real

sources were spuriously merged into one local maximum in the middle. Also

thresholding, which is another popular way to preprocess smooth estimates,

would not alleviate this problem.

The difference in the estimates obtained from noisy and noisefree patterns were

relatively small for WMNE, LORETA and FVR. For MCE, on the other hand,

virtually disjoint sets of dipoles were predicted to be active. MCE solutions

usually featured several spikes, that were scattered around a true source in

the noisefree case. Due to the scatter, the distinction of sources being than a

few centimeters apart was hardly possible (see e.g. example AX3).

In the localization of the single left and single right N20 component, LORETA

and FVR detected strongest currents in the contralateral somatosensory cor-

tex (inverse solutions are not shown here). This is in good agreement with

the localization of the hand areas reported in the literature (Huttunen et al.,

2006; Komssi et al., 2004). Both methods estimated one source centered in

the respective somatosensory area. The extension of this source, however, was

too large to be realistic for LORETA, whereas it was much smaller for FVR 3 .

3 Of course, a realistic spatial extent of the sources does not imply, that the exact

shape and size of the true sources is always recovered. This cannot be achieved by
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MCE revealed several activation spots (mainly single dipoles) in the contralat-

eral sensorimotor cortex.

Simultaneous localizations of left and right N20 generators performed with

LORETA, sLORETA weighted MCE and FVR are shown in Fig. 6. The FVR

solution showed two major patches, which closely match the estimates from

single pattern localization. LORETA, on the other hand, estimated only one

large active region over the central area, with the maximum lying exactly in

between the two individually estimated sources. The MCE solution consisted

of several small patches scattered across the whole somatosensory area in the

proximity of activation spot obtained in the single pattern localizations.

Due to the linearity of the forward equation, the estimates from the simulta-

neous localizations should ideally be just the sum of activations obtained from

inverting the single left and single right N20 patterns. As mentioned above,

this was approximately the case for FVR, but dids not hold for LORETA.

The better ability of FVR to recover the same sources in both cases manifests

also in the low EMD between its joint source reconstruction and the sum of

its single-pattern reconstructions, which was only 0.76 compared to 1.20 for

LORETA and 3.29 for MCE.

We conducted a connected components analysis of the FVR inverse solution

for the summed N20 pattern. For LORETA and MCE this did not seem help-

ful, as the analysis returned either too few (one) or too many (more than 20)

components, which were considered unrealistic. The FVR source distribution

revealed five distinct sources. They are shown in Fig. 7, along with the indi-

vidual scalp patterns obtained from forward calculations. For each component

any method, due to the genuine ambiguity of inverse problems.
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a dipole having the mean orientation was drawn at the center of gravity. The

components were named C1 to C5 according to the decreasing ℓ2-norm of

their EEG patterns. The two strongest sources according to this criterion are

the N20 generators. Their patterns resemble very much the single-component

patterns shown in Fig. 5, except that the latter ones are a bit more central

and even contralateral. It seems that the residuals were combined in a third,

more central component with questionable physiological relevance. However,

this component is already three times less pronounced (in terms of the norm

of its pattern) than the first two. Judging by its characteristic frontal pattern,

component C4 seems to contain an eyeblink artifact. This is in line with the

location of C4, which is maximally close to the eyes. Component C5 has a

rather negligible influence on the EEG measurement and may be considered

biological noise.

Using FVR and performing the connected components analysis we could clearly

separate task related activity of interest from artifictual activity. Thus, as a

side effect, the method can be used to reject artifacts based on a purely spatial

criterion, given that brain regions likely to pick artifacts are known. At this

point, it should also be mentioned that task related and artifactual compo-

nents were inseparably mixed in the LORETA estimate. A similar problem

can be expected to occur in cortically constrained approaches, where deep

artifactual sources can only be modeled using large parts of the cortex.

5 Conclusion and Outlook

In this paper we have introduced Focal Vector Field Reconstruction as a new

method for localizing generators of human brain activity on the basis of an
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EEG or MEG measurement. So far, the method was formulated to analyze an

evoked potential at a single time point. For the future, we intend to generalize

this to more complex cases such as time-dependent evoked potential, cross-

spectral matrices, and subspaces defined by the latter. We expect that in all

these cases the problem will ultimately lead to a Second-Order Cone Problem.

This emerged here naturally from the requirement of rotational invariance, but

always follows whenever sparsity makes sense e.g. in spatial dimension but not

in other dimensions like dipole moment, time or frequency.

Future studies will also apply our novel Focal Vector Field Reconstruction

to complex imaging paradigms and use it for contributing to the analysis of

interactivity and causality of neural information processing. Note, however,

that the numerics of solving a SOCP will need further improvements as the

ultimate goal would be to have a fast solver that is able to model complex

brain signals in real-time.
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TRUE

PAT

LOR

FVR

MCEMCE

HANN BOX SINE

Fig. 1. One-dimensional simulations illustrating the characteristics of standard in-
verse solutions and FVR. Simulated source configurations (TRUE) include three
hanning windows (HANN), two boxcar windows (BOX) and a sine wave (SINE). Hy-
pothetical measurements (PAT) were obtained by smoothing and subsampling the
sources. Source reconstructions according to one-dimensional versions of LORETA
(LOR), FVR and MCE are shown in the three lower panels.
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TRUE

PAT

MCE

MCE_AMP

FVR
HANN BOX

Fig. 2. Simulations, illustrating the approaches of MCE and FVR to achieve spar-
sity of a vector field. A straight line of two-dimensional vectors models the current
density. The vector envelopes were taken to be combinations of either two Han-
ning (HANN) or two boxcar windows (BOX). Vector orientations were fixed within
sources. True sources (TRUE) and pseudo patterns are shown in the upper panels
of the plot. The inverse solutions of MCE, the corrected version of MCE working
on amplitudes (MCE AMP) and FVR are shown below.
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NOISELESS NOISY NOISELESS NOISY

PAT

WMNE COL

WMNE SLOR

LOR

FVR

MCE COL

MCE SLOR

AX2 SAG2

Fig. 3. Comparison of inverse solutions in two realistic examples. In each, two dipoles
(black color) were put into an either axial (AX2) or sagittal (SAG2) slice of the brain.
The resulting scalp patterns with noise (NOISY) or without it (NOISELESS) are
shown in the top panel. Panels below show current densities reconstructed from
these patterns by means of column-norm weighted Minimum Norm (WMNE COL),
sLORETA weighted MNE (WMNE SLOR), LORETA (LOR), FVR, column-norm
weighted MCE (MCE COL) and sLORETA weighted MCE (MCE SLOR). Dipole
amplitudes are shown color-coded (red = low, yellow = high) with scales adjusted
to the range of the individual solution. In each plot the average activity within 1 cm
is shown. Mean amplitudes exceeding 7 % of the individual scale are shown opaque.
Between 0 % and 7 % opacity is linearly scaled between 0 and 1. Spaces between
grid dipoles are interpolated.
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Fig. 4. Comparison of inverse solutions in examples with three simulated dipoles.
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20 ms

C3 C4Cz

F3 F4F7 F8Fz

P3 P4P7 P8Pz

N20

RIGHT LEFT SUM

Fig. 5. Somatosensory Evoked N20 after left and right median nerve stimulation.
Upper part: Averaged time series between 10 ms and 70 ms after stimulus onset.
Lower part: Averaged scalp patterns at 21 ms and sum of left and right pattern.
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LOR

FVR

MCE

Fig. 6. Source localization of summed left and right N20 component. The average
estimated dipole amplitudes of eight consecutive axial slices (thickness 2 cm) of the
brain is shown for the inverse solutions of LORETA (LOR), FVR and MCE.
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C3 2.5

C4 1.8

C5 0.2

SAG COR AX PAT NORM

Fig. 7. Connected component analysis of the FVR inverse solution for the summed
N20 pattern. Components were sorted from top to bottom according to the ℓ2-norm
(NORM) of their scalp patterns (PAT). For each source component, the average
dipole amplitudes of 1 cm sagittal (SAG), coronal (COR) and axial (AX) slices
around the source gravity center are shown (red and yellow color, different scale for
each component). Additionally, a single dipole (black) having the mean orientation
of the source and unit amplitude is drawn at the gravity center.
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LOCALIZATION STABILITY GENERALIZATION SPARSITY

×105 ×102 ×102

SIM NOISELESS

WMNE COL 4.70 ± 0.03 0.31 ± 0.18 1.28 ± 0.15 09.1 ± 0.38

WMNE SLOR 4.36 ± 0.06 0.38 ± 0.24 1.31 ± 0.15 19.6 ± 0.56

LOR 4.35 ± 0.06 0.31 ± 0.23 1.31 ± 0.16 14.1 ± 0.55

FVR 2.11 ± 0.10 0.03 ± 0.02 0.03 ± 0.00 97.5 ± 0.11

MCE COL 4.56 ± 0.10 3.27 ± 0.29 3.23 ± 0.17 98.8 ± 0.00

MCE SLOR 2.56 ± 0.12 1.25 ± 0.16 0.15 ± 0.01 99.2 ± 0.03

SIM NOISY

WMNE COL 5.17 ± 0.03 0.20 ± 0.04 9.45 ± 0.23 19.7 ± 0.39

WMNE SLOR 4.66 ± 0.04 0.18 ± 0.04 9.31 ± 0.21 29.0 ± 0.30

LOR 4.66 ± 0.04 0.18 ± 0.04 9.29 ± 0.20 26.9 ± 0.47

FVR 2.40 ± 0.07 1.34 ± 0.13 8.58 ± 0.17 97.4 ± 0.05

MCE COL 5.16 ± 0.10 2.90 ± 0.43 11.0 ± 0.23 99.6 ± 0.00

MCE SLOR 2.79 ± 0.07 2.76 ± 0.16 8.80 ± 0.19 99.8 ± 0.00

N20

WMNE COL 0.08 4.03 ± 0.18 14.3 ± 0.15

WMNE SLOR 0.08 3.97 ± 0.16 33.2 ± 0.03

LOR 0.06 4.02 ± 0.15 30.6 ± 0.47

FVR 1.29 3.87 ± 0.13 98.1 ± 0.05

MCE COL 2.61 4.59 ± 0.16 99.7 ± 0.00

MCE SLOR 2.53 3.91 ± 0.16 99.8 ± 0.00

Table 1
Performance of column-norm weighted minimum norm (WMNE COL), sLORETA
weighted MNE (WMNE SLOR), LORETA (LOR), FVR, column-norm weighted
MCE (MCE COL) and sLORETA weighted MCE (MCE SLOR) in noiseless sim-
ulations (SIM NOISELESS), noisy simulations (SIM NOISY) and somatosensory
evoked N20 localization (N20). Winning entries in each category are shown in slanted
font. Entries being within a confidence interval of three standard errors around the
winner are shown in bold.
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