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Abstract— Due to its high temporal resolution, electroen-
cephalography (EEG) is a promising research tool for studying
functional and effective brain interaction. Yet, it is rather
uncommon for researchers to validate their connectivity esti-
mation methodologies prior to applying them to real data, even
though problems have been pointed out regarding the validity
of some of the predominant approaches. We here provide
an extendable simulation framework that enables researchers
to test their analysis pipelines on customizable realistically
simulated EEG data. We define three simple criteria to measure
source localization, connectivity detection and directionality
estimation performance. All data and code needed to generate
pseudo-EEG data and to benchmark a method’s estimation
performance are provided.

I. INTRODUCTION

The reconstruction of the activation time courses and
locations of the neuronal populations (here referred to as
sources) contributing to an EEG (electroencephalography)
measurement, is a challenging inverse problem. To date, a
variety of methods serving that purpose exist, accounting for
the fact that different experimental settings may require dif-
ferent source characterizations. Inverse source reconstruction
algorithms have been validated in a considerable body of
literature using simulated and real data.

A related problem is the EEG-based estimation of func-
tional or effective brain connectivity. Here, not the source
activity itself is of interest, but the interaction between brain
sites, which may be estimated from an inverse solution in
a subsequent step. Brain connectivity analyses are more
challenging than inverse source reconstructions alone, since
they rely both on the correct estimation of the source
activity and the correct subsequent inference of the interaction
structure from the estimated sources.

The property of being inherently two-step procedures
makes systematic benchmarking of connectivity analyses
difficult. At the same time, it is also difficult if not impossible
to devise an EEG experiment in which the interactions
between all sources contributing to the measurements (that is,
the entire brain) are known. It is therefore rather common to
publish results of EEG-based brain connectivity analyses
without or with only limited empirical validation of the
employed methodology. Common limitations include the
disregard or insufficient modeling of the source mixing caused
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by volume conduction in the head, the disregard of correlated
noise sources, and generally the overestimation of the signal-
to-noise ratio (SNR). This is problematic since, it is especially
the mixing of signal and noise sources present in any real
EEG dataset that causes established connectivity measures
such as Granger Causality to suffer from wrongly detected
connections as well as missed connections [11], [6], [5], [14].

Considering the steadily growing body of literature on
EEG-based brain connectivity analysis, the field would benefit
from a standardized benchmark. In this work, we present an
extendable simulation framework that can be used to generate
realistic EEG data from underlying interacting brain sources,
as well as to validate the performance of inverse source
reconstruction and brain connectivity analyses on that data.

II. A SOURCE CONNECTIVITY BENCHMARK

In order to provide a standardized environment capturing
the most important aspects of real EEG recordings, our
simulation framework is characterized by
• The use of a high-resolution average anatomy template

aligned to the Montreal Neurological Institute (MNI)
coordinate system.

• The use of a realistic volume conductor model.
• The use of the extended 10/20 electrode montage.
• The presence of interacting sources exerting time-

delayed influence on another.
• Interactions being confined to a narrow frequency band.
• Realistic source locations being confined to the cortical

manifold and emitting electrical currents perpendicular
to the local surface.

• Generally, varying locations, spatial extents and depths
of the sources.

• The presence of independent background brain processes
with pink noise spectra.

• The presence of white sensor noise.
• Realistic SNR ranges.

At the same time, the simulation setting is designed to
be as simple as possible in order to ensure a transparent
and unambigous performance evaluation. That is, while the
framework can be extended in many possible ways, we here
consider only
• The presence of only two interacting sources.
• Linear interaction.
• Uni-directional information flow.
• Spatially non-overlapping sources.

Since mislocalization or misestimation of source activity will
negatively affect subsequent connectivity analysis, the prob-
lem of source connectivity estimation cannot be decoupled
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from the problem of inverse source reconstruction. Conse-
quently, we here provide means to evaluate methodologies
both with respect to source reconstruction and connectivity
estimation accuracy. Precisely, all evaluations are carried out
only on the coarse level of eight regions of interest (ROIs)
that are identical to the octants of the brain, which allows us
to introduce very simple performance metrics.

All data and code required to generate pseudo-EEG
datasets will be made publicly available at http://bbci.
de/supplementary/EEGconnectivity/. This includes
lead fields, source and electrode coordinates, as well as
Matlab scripts for generating simulated data, evaluating
performance metrics, and conducting source reconstructions
and connectivity estimations using baseline methods from the
literature. Researchers benchmarking their methods have the
opportunity to adjust and extend this simulation framework
according to their needs.

A. Forward model of EEG data

Inverse source reconstruction requires a forward model of
how neural activity in the brain maps to the sensors. In its
discretized form, this model reads

x(t) = Lj(t) + ε(t) . (1)

Here, the time-dependent 3R-dimensional vector j(t) repre-
sents the directed intracellular neuronal currents at R distinct
locations on the cortical surface. The M×3R lead field matrix
L describes the relationship between intrcellular currents and
the observable scalp potentials at M sensors. Finally, ε(t) is a
M -dimensional noise vector. Inverse source reconstruction is
concerned with the estimation of the source primary currents
j(t) given the measurements x(t) in a given head model L,
while functional or effective brain connectivity estimation
is concerned with the estimation of the information flow
between brain sites from either j(t) or (less commonly) x(t).

B. Head model

Lead fields were computed in the ICBM152b brain, a
standard head geometry obtained by nonlinearly averaging
the anatomical magnetic resonance images of 152 adults [3].
Surfaces of the brain, skull and skin shells were extracted
using the Brainstorm software [13]. Within this 3-shell
geometry, the EEG forward problem was solved using the
boundary element method (BEM) [4]. Note here that the final
version of this benchmark will make use of a highly-detailed
finite element model (FEM) of the same anatomy [16]. The
forward model was evaluated at 2504 nodes of a mesh of the
cortical surface, and for 64 EEG electrodes to yield the lead
field. Only for plotting purposes, a higher-resolution cortical
mesh was created to which source distributions defined on the
lower-dimensional mesh could be mapped. Cortical surfaces
were extracted using the BrainVISA Morphologist toolbox.
Electrodes were placed according to the extended international
10-20 system [12].

C. Regions of interest

Eight regions of interest (ROIs) being identical to the
octants of the brain are defined. Two ensure that octants
cover brain areas of roughly similar size, octant boundaries
were determined based on cutting the cortical mesh into
two halves each containing an equal number of nodes. The
cutting planes obtained this way are defined by the equations
x = 0 mm (separating left and right hemispheres), y = -
18.7 mm (separating anterior and posterior hemispheres) and
z = 12.8 mm (separating superior and inferior hemispheres).
All coordinates given are in MNI space. The combination
of the three hyperplanes defines eight octants as shown in
Figure 1.

Octant Definition ( [x, y, z] in mm) Color

RAI x ≥ 0 & y ≥ -18.7 & z < 12.8 Gray
RAS x ≥ 0 & y ≥ -18.7 & z ≥ 12.8 Pink
RPI x ≥ 0 & y < -18.7 & z < 12.8 Brown
RPS x ≥ 0 & y < -18.7 & z ≥ 12.8 Yellow
LAI x < 0 & y ≥ -18.7 & z < 12.8 Orange
LAS x < 0 & y ≥ -18.7 & z ≥ 12.8 Green
LPI x < 0 & y < -18.7 & z < 12.8 Blue
LPS x < 0 & y < -18.7 & z ≥ 12.8 Red

Fig. 1. Division of the brain into eight octants.

D. Spatial structure of the sources

In each simulated dataset, two distinguished sources are
modeled. These two sources are constrained to lie in different
randomly sampled brain octants. Within each octant, a random
node of the cortical mesh is picked as the center of the source
activity. The center nodes are required to be at least 10 mm
away from the octant boundaries. Note that the randomized
sampling of source locations leads to a considerable variation
of source depth with sources in inferior regions being deeper
than sources in corresponding superior regions, and sources
in posterior regions being deeper than corresponding sources
in anterior regions (see Figure 2). Here, depth is defined as
the mean Euclidean distance of the center node from all scalp
electrodes.

The spatial distribution of the source current amplitudes is
modeled by a Gaussian function, where the geodesic distance
between nodes of the cortical mesh is used as the distance
metric. The spatial standard deviation of the amplitude
distributions is sampled uniformly between 10 mm and 40 mm.
The amplitude at nodes located outside the seed octant is
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set to zero, such that no ‘leakage’ of activity across octant
borders occurs, and the true connectivity between octants
can be defined unambigously. The amplitude distributions
are divided by their `2-norm for each source separately. The
orientation of the neuronal current at each node is defined as
the normal vector w. r. t. the mesh surface at that node. Scalp
topographies for each source are computed by multiplying
the 3D current distribution (the product of amplitude and
orientation) with the lead field, that is, by summing up the
contributions from all nodes of the source octant. Figure 2A
depicts the source amplitude distributions, as well as the
resulting scalp potentials, for two representative sources.
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Fig. 2. A: examples of brain sources. Left: source with small spatial
extent (spatial standard deviation along cortical manifold σ = 10 mm) in
the right anterior superior octant of the brain. Right: source with large (σ =
40 mm) spatial extent in the right posterior inferior octant of the brain. Uper
panel: source amplitude distribution. Note that sources do not extend into
neighboring octants. Lower panel: resulting theoretical EEG field potential
assuming currents oriented perpendicular to the cortical manifold. B: depth
distribution (mean and standard deviation) of the cortical surface points
belonging to each of the brain octants.

E. Source dynamics
The time courses of the two distinguished sources are

modeled using bivariate linear autoregressive (AR) models
of the form[
j1(t)
j2(t)

]
=

P∑
p=1

[
a11(p) a12(p)
a21(p) a22(p)

] [
j1(t− p)
j2(t− p)

]
+

[
ε1(t)
ε2(t)

]
,

where the aij(p), i, j ∈ {1, 2}, p ∈ {1, . . . , P} are linear AR
coefficients, and εi(t), i ∈ {1, 2} are uncorrelated standard
normal distributed noise variables (innovations). Importantly,
the offdiagonal entries a12(p) and a21(p) describe time-
delayed linear influences of one source on another. A sampling
rate of 100 Hz, and an AR model order of P = 5 is used.

Two variants of the linear system j(t) = [j1(t), j2(t)]
> are

constructed. For the first variant, jint, a12(p), p ∈ {1, . . . P}
is set to zero for all lags p, modeling a unidirectional
time-delayed influence of jint

1 (t) on jint
2 (t). For the second

variant, jnonint, all offdiagonal coefficients a12(p) and a21(p),
p ∈ {1, . . . P} are set to zero, leaving the two time series
jnonint
1 (t) and jnonint

2 (t) completely independent. The AR
coefficients are sampled from the univariate standard normal
distribution. Only stable AR system, for which the combined
spectral power of the two sources in the alpha band (8–13 Hz),
normalized by the width of the alpha band, is higher than the
overall normalized power, are selected. Sources are bandpass-
filtered in the alpha band using a third-order Butterworth filter.
The resulting time series thus represent non-/interacting alpha-
band oscillations being either independent or characterized
by a clearly defined sender-receiver relationship.

F. Generation of pseudo-EEG data
Pseudo-EEG data containing simulated underlying brain

interaction are created as follows. A total of T = 18 000
samples of the source time series jint(t) are generated,
corresponding to a 3 minute recording. The source time
courses are then mapped to two patches of the cortical surface
and projected to the EEG sensors through multiplication with
the lead field, giving rise to the signal contribution sint(t) of
the EEG. In addition, 500 brain noise time series obeying
1/f -shaped (pink noise) power spectra and random phases
are generated. These noise sources are placed at 500 locations
randomly sampled from the entire cortical surface, and are
also mapped to EEG sensor space. This procedure yields the
brain noise contribution nbrain(t) of the EEG. In addition,
spatially and temporally uncorrelated sensor noise nsensor(t)
is sampled from a univariate standard normal distribution.
The overall noise contribution is defined as

n(t) = 0.9
nbrain(t)

‖nbrain(t)‖F
+ 0.1

nsensor(t)

‖nsensor(t)‖F
, (2)

where ‖n(t)‖F is the Frobenius norm. The overall pseudo-
EEG measurement is generated according to

xint(t) = α
sint(t)

‖sint(t)‖F
+ (1− α)

n(t)

‖ñ(t)‖F
, (3)

where ñ(t) is the alpha-band filtered version of n(t). The
signal-to-noise parameter α is drawn uniformly from the
interval [0.1, 0.9]. Lastly, a highpass filter at 0.5 Hz (third
order Butterworth) is applied to xint(t).

In the same way as xint(t), a second pseudo-EEG measure-
ment xnonint(t) containing no form of brain interaction at all
is generated. The purpose of this pseudo-measurement is to
benchmark methods in their ability to detect the presence or
absence of time-delayed brain interaction at all.

G. Task

For a given dataset comprising xint(t), xnonint(t) (renamed
as x1(t) and x2(t) so that no information about the presence
of underlying connecvitity is revealed), the following three
questions are asked.

1) Localization: In which two brain octants are the alpha-
band signal sources are located?

2) Connectivity: Which one of the two datasets x1(t) and
x2(t) contains actual simulated brain interaction?

3) Direction: In the dataset estimated to contain interacting
sources, which one of the two octants estimated to
contain the sources is sending information, and which
one is receiving information?
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H. Performance measures

The correctness of the answers to the above-mentioned
questions is evaluated in a straightforward way using the
following three performance measures. It is suggested that
researchers analyze K ≥ 100 datasets and report mean and
standard errors of these three measures.

LOC: This measure compares the true octants containing
the alpha-band sources with the estimated ones. Each octant
estimated correctly adds a score of 1/2. The measure therefore
takes one of the values 0, 1/2 and 1, while the expected value
under random guessing is ≈ 1/4. Neither the order in which
octants are given, nor their assumed interaction is taken into
account.

CONN: This measure evaluates whether the correct one
of the anonymized measurements x1(t) and x2(t) has been
estimated to contain actual time-delayed brain interaction.
Correct estimates lead to a score of +1, whereas incorrect
estimates lead to a score of -1. Importantly, researchers can
refuse to make a decision, which leads to a score of 0. Thus,
CONN may take one of the values -1, 0 and +1, where the
expected value under random guessing is 0.

DIR: This measure evaluates the correct assessment of
interaction directionality by comparing the estimated connec-
tivity between estimated sources with the true connectivity
between simulated sources. The evaluation is split into three
parts corresponding to the assessment of interactions between
left and right, anterior and posterior, as well as superior and
inferior hemispheres. Due to this split, DIR can provide a
positive measure of connectivity estimation performance even
in the case of moderate source mislocalization.

For a given pair of true and estimated source octants, as well
as the true and estimated directionality between those, DIR
evaluates for each of the three spatial directions separately
whether the estimated flow is compatible with the true flow.
For each correct estimate, a score of +1/3 is given, whereas
for each incorrect estimate -1/3 is given. Refusal to decide on
direction leads to a score of 0. If the direction ist estimated,
but CONN = -1, then the DIR score is also -1. The scores
attainable by DIR are therefore -1, -1/3, 0, 1/3, and 1, while
the expected value under random guessing is ≈ -1/2.

I. Strategies

It is generally up to the researcher using the benchmark
to decide in which way and order they infer the location
and connectivity of the two sources. One way would be
to apply inverse source reconstruction [7], [8] first, define
the source octants based on power maps, and then analyze
connectivity between those octants in a second step. Another
valid way would be to analyze the full connectivity graph after
source localization, and then choose source octants based
on maximal connectivity. Approaches using blind source
separation techniques or avoiding source representations
entirely are also in principle valid as long as they lead
to source octant and connectivity estimates. An example
estimation pipeline serving as a baseline will be included in
the full-length version of this paper.

J. Extensions

The framework can be freely modified or extended.
Non-linear interaction: Curently, only linear dynamics

are considered through the use of linear AR models. For re-
searchers proposing non-linear or non-parametric approaches
to connectivity estimation [15], [9], it will be useful to create
a variant of the benchmark simulating sources with particular
non-linearities.

Bi-directional interaction: The current framework only
considers unidirectional information flow, while studying the
more realistic bidirectional case is also worthwile [14].

More than two interacting sources and brain network
analyses: Graph-theoretical analyses of networks derived
from, e. g., Granger-causal analyses are becoming increasingly
popular [2], [10], [1]; it would therefore be useful to extend
the simulation setting to permit testing of such approaches.

III. CONCLUSIONS
We present a simulation framework enabling researchers

working in the field of EEG-based brain connectivity to
validate their approaches.
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