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Optimizing Spatial Filters for Robust
EEG Single-Trial Analysis

Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki Kawanabe, Klaus-Robert Miiller

Abstract—Due to the volume conduction multi-channel elec-
troencephalogram (EEG) recordings give a rather blurred image
of brain activity. Therefore spatial filters are extremely useful
in single-trial analysis in order to improve the signal-to-noise
ratio. There are powerful methods from machine learning and
signal processing that permit the optimization of spatio-temporal
filters for each subject in a data dependent fashion beyond
the fixed filters based on the sensor geometry, e.g., Laplacians.
Here we elucidate the theoretical background of the Common
Spatial Pattern (CSP) algorithm, a popular method in Brain-
Computer Interface (BCI) research. Apart from reviewing several
variants of the basic algorithm, we reveal tricks of the trade
for achieving a powerful CSP performance, briefly elaborate
on theoretical aspects of CSP and demonstrate the application
of CSP-type preprocessing in our studies of the Berlin Brain-
Computer Interface project.

I. INTRODUCTION

Noninvasive Brain-Computer Interfacing (BCI) has in the
recent years become a highly active research topic in neu-
roscience, engineering and signal processing. One of the
reasons for this development is the striking advances of BCI
systems with respect to usability, information transfer and
robustness for which modern machine learning and signal
processing techniques have been instrumental [2], [14], [L5],
[4]]. Invasive BCIs ([46]), in particular intracranial signals,
require completely different signal processing methods and are
therefore not discussed here.

The present paper will review a particularly popular and
powerful signal processing technique for EEG-based BCIs
called common spatial patterns (CSP) and discusses recent
variants of CSP. Our goal is to provide comprehensive infor-
mation about CSP and its application. Thus we address both
the BCI expert who is not specialized in signal processing and
to the BCI novice who is an expert in signal processing.

Consequently the present paper will mainly focus on CSP
filtering (Sec. [III), but we will also briefly discuss BCI
paradigms and the neurophysiological background thereof
(Sec. [M). Finally we will report on recent results achieved with
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Fig. . Overview of the machine-learning-based BCI system. The
system runs in two phases. In the calibration phase, we instruct the
subjects to perform certain tasks and collect short segments of labeled
EEG (trials). We train the classifier based on these examples. In the
feedback phase, we take sliding windows from continuous stream
of EEG; classifier outputs a real value that quantifies the likeliness
of class membership; we run a feedback application that takes the
output of the classifier as an input. Finally the subject receives the
feedback on the screen as, e.g., cursor control.

the Berlin Brain-Computer Interface using advanced signal
processing and machine learning techniques (Sec. [[V-A).

II. BACKGROUND
A. Overview of a BCI system

An overview of a BCI system based on machine learning is
shown in Fig. [T} The system operates in two phases, namely
the calibration phase and the feedback phase. The feedback
phase is the time the users can actually transfer information
through their brain activity and control applications; in this
phase, the system is composed of the classifier that classifies
between different mental states and the user interface that
translates the classifier output into control signals, e.g., cursor
position or selection from an alphabet. In the calibration phase,
we collect examples of EEG signals in order to train the
classifier. Here we describe a typical experiment as performed
in the Berlin BCI (BBCI) project. We use three types of
imaginary movements, namely, left hand (L), right hand (R)
and right foot (F) as the mental states to be classified. Other
paradigms based on, e.g., modulation of attention to external
stimulation can be found in [55]. The subjects are instructed
to perform one of the three imaginary movement{] indicated
on the screen for 3.5 seconds at the interval of 5.5 seconds.
We obtain 420 trials of imaginary movement (140 for each

'For more effective performance it is important to instruct the subjects to
concentrate on the kinesthetic aspect rather than the visual ([37]).



class) in a randomized order for each subject (less is sufficient
for feedback performance). The data is then used for the
training of the classifier and assessment of generalization error
by cross-validation. In particular, we compare three pair-wise
classifiers and select the combination of two classes that yields
the best generalization performance.

After the calibration measurement subjects perform 5 feed-
back sessions consisting of 100 runs. Here the output of the
binary classifier is translated into the horizontal position of a
cursor. Subjects are instructed to move the cursor to that one
of the two vertical bars at the edges of the screen which was
indicated as target by color. The cursor is initially at the center
of the screen; it starts to follow the classifier output based on
the brain signal 750ms after the indication of the target. A
trial ends when the cursor touches one of the two bars; the
bar that the cursor reached is colored green if correct and red
otherwise. The next trial starts after 520 ms (see [2], [4]], [7]
for more details).

The performance of the classifier is measured by the ac-
curacy of the prediction in percent. The performance of the
overall system is measured by the information transfer rate
(ITR, [54]) measured in bits per minute (bpm):

# of decisions

ITR = —— :
duration in minutes

(plogatr) + (1 - phogs (=7 ) +1om)) @)

where p is the accuracy of the subject in making decisions
between N targets, e.g., in the feedback explained above,
N =2 and p is the accuracy of hitting the correct bars. ITR
measures the capacity of a symmetric communication channel
that makes mistake with the equal probability (1 —p)/(N—1)
to all other N — 1 classes divided by the time required to
communicate that amount of information. The ITR depends
not only on the accuracy of the classifier but also on the design
of the feedback application that translates the classifier output
into command. Note that the duration in minutes refers to
the total duration of the run including all inter-trial intervals.
In contrast to the accuracy of the decision, the ITR takes
different duration of trials and different number of classes into
account. Note that the communication channel model can be
generalized to take the nonsymmetric or nonuniform errors
into account [44].

Brain activity was recorded from the scalp with multi-
channel EEG amplifiers (BrainAmp by Brain Products, Mu-
nich, Germany) using 55 Ag/AgCl electrodes in an extended
10-20 system.

B. Neurophysiological Background

Macroscopic brain activity during resting wakefulness com-
prises distinct ‘idle’ rhythms located over various cortical
areas, e.g. the occipital a-rhythm (8—12Hz) can be measured
over the visual cortex [I]]. The perirolandic sensorimotor
cortices show rhythmic macroscopic EEG oscillations (u-
rhythm, sensori motor rhythm, SMR) ([24], [20]), with spectral
peak energies of about 8—14 Hz (localized predominantly over
the postcentral somatosensory cortex) and around 20 Hz (over
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Fig. 2. Event-Related Desynchronization (ERD) during motor im-

agery of the left and the right hand. Raw EEG signals of one subject
have been band-pass filtered between 9 and 13 Hz. For the time
courses, the envelope of the signals has been calculated by Hilbert
transform (see e.g., [9]) and averaged over segments of -500 to
4500 ms relative to each cue for left or right hand motor imagery.
ERD curves are shown for Laplace filtered channels at C3 and C4,
i.e. over left and right primary motor cortex. The topographical maps
of ERD were obtained by performing the same procedure for all
(non Laplace filtered) channels and averaging across the shaded time
interval 1000 to 4000 ms.

the precentral motor cortex). The occipital o-rhythm is quite
prominent and can be seen in the raw EEG with the naked eye
if the subject closes the eyes (idling of the visual cortex). In
contrast the p-rhythm has a much weaker amplitude and can
only be observed after appropriate signal processing. In some
subjects no u-rhythm can be observed in scalp EEG.

Our system is based on the modulation of the SMR. In fact,
motor activity, both actual and imagined [25], [42], [45], as
well as somatosensory stimulation [38] have been reported to
modulate the p-rhythm. Processing of motor commands or
somatosensory stimuli causes an attenuation of the rhythmic
activity termed event-related desynchronization (ERD) [42],
while an increase in the rhythmic activity is termed event-
related synchronization (ERS). For BCIs the important fact is
that the ERD is caused also by imagined movements (healthy
users, see Fig. [J) and by intented movements in paralyzed
patients ([30]).

For ‘decoding’ of different motor intentions from brain
activity, the essential task is to distinguish different spatial
localization of SMR modulations. Due to the topographical
arrangement in the motor and somatosensori cortex, these
locations are related to corresponding parts of the body, cf.
Fig.[3] For example, left hand and right hand have correspond-
ing areas in the contralateral, i.e., right and left motor cortex,
respectively; see Fig. [

C. Why Spatial Filtering is Important

Raw EEG scalp potentials are known to have a poor spatial
resolution owing to volume conduction. In a simulation study
in [39] only half the contribution to each scalp electrode came
from sources within a 3cm radius. This is in particular a
problem if the signal of interest is weak, e.g. sensorimotor
rhythms, while other sources produce strong signals in the
same frequency range like the o-rhythm of the visual cortex
or movement and muscle artifacts.

The demands are carried to the extremes when it comes
to single-trial analysis as in BCI. While some approaches
try to achieve the required signal strength by training the
subjects ([S3]], [30]) an alternative is to calibrate the system
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central
sulcus

Fig. 3. Left. Lobes of the brain: Frontal, Parietal, Occipital,
and Temporal (named after the bones of the skull beneath which
they are located). The central sulcus separates the frontal and
parietal lobe. Right. Geometric mapping between body parts and
motor/somatosensory cortex. The motor cortex and the somatosensory
cortex are shown at the left and right part of the figure, respectively.
Note, that in each hemisphere there is one motor area (frontal to the
central sulcus) and one sensori area (posterior to the central sulcus).
The part which is not shown can be obtained by mirroring the figure
folded at the center.
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Fig. 4. Spectra of left vs. right hand motor imagery. All plots are

calculated from the same dataset but using different spatial filters.
The discrimination between the two conditions is quantified by the
r?-value. CAR stands for common average reference.

to the specific characteristics of each user ([19], [2], [[7]). For
the latter data-driven approaches to calculate subject-specific
spatial filters have proven to be useful.

As a demonstration of the importance of spatial filters, Fig. 4]
shows spectra of left vs. right hand motor imagery at the right
hemispherical sensorimotor cortex. All plots are computed
from the same data but using different spatial filters. While
the raw channel only shows a peak around 9 Hz that provides
almost no discrimination between the two conditions, the
bipolar and the common average reference filter can improve
the discrimination slightly. However the Laplace filter and even
more the CSP filter reveal a second spectral peak around 12 Hz
with strong discriminative power. By further investigations
the spatial origin of the non-discriminative peak could be
traced back to the visual cortex, while the discriminative
peak originates from sensorimotor rhythms. Note that in many
subjects the frequency ranges of visual and sensorimotor
rhythms overlap or completely coincide.

III. METHODS
A. General framework

Here we overview the classifier we use. Let X € RE*T
be a short segment of EEG signaﬂ which corresponds to a
trial of imaginary movement; C is the number of channels
and T is the number of sampled time points in a trial. A
classifier is a function that predicts the label of a given trial
X. For simplicity let us focus on the binary classification
e.g., classification between imagined movement of left and
right hand. The classifier outputs a real value whose sign is
interpreted as the predicted class. The classifier is written as
follows:

J
S Awi Y {BiYi—o) = Y Bjlog (W,TXXTW/‘>+[30- 2)
=1

The classifier first projects the signal by J spatial filters
{w;}/_, € R%; next it takes the logarithm of the power of
the projected signal; finally it linearly combines these J di-
mensional features and adds a bias f. In fact, each projection
captures different spatial localization; the modulation of the
rhythmic activity is captured by the log-power of the band-pass
filtered signal. Note that various extensions are possible (see
Sec. [V-D). A different experimental paradigm might require
the use of nonlinear methods of feature extraction and classifi-
cation respectively [33]]. Direct minimization of discriminative
criterion [17] and marginalization of the classifier weight [22]]
are suggested. On the other hand, methods that are linear in
the second order statistics XX ', i.e., Eq. (]Z[) without the log,
are discussed in [49], [48] and shown to have some good
properties such as convexity.

The coefficients {w;}/_, and {B;}/_, are automatically
determined statistically ([21]) from the training examples i.e.,
the pairs of trials and labels {X;,y;}? , we collect in the
calibration phase; the label y € {41, —1} corresponds to, e.g.,
imaginary movement of left and right hand, respectively, and
n is the number of trials.

We use Common Spatial Pattern (CSP) [18], [27] to deter-
mine the spatial filter coefficients {w j}jzl. In the following,
we discuss the method in detail and present some recent
extensions. The linear weights {[3,-}?11 are determined by
Fisher’s linear discriminant analysis (LDA).

B. Introduction to Common Spatial Patterns Analysis

Common Spatial Pattern ([18], [27]) is a technique to
analyze multi-channel data based on recordings from two
classes (conditions). CSP yields a data-driven supervised de-
composition of the signal parameterized by a matrix W € R€*€
(C being the number of channels) that projects the signal
x(t) € RC in the original sensor space to xcsp(t) € RC, which
lives in the surrogate sensor space, as follows:

xcsp(t) = WTx(t).

%In the following, we also use the notation x(r) € RC to denote EEG signal
at a specific time point #; thus X is a column concatenation of x(r)’s as
X =[x(t),x(t+1),...,x(r+T —1)] for some ¢ but the time index ¢ is omitted.
For simplicity we assume that X is already band-pass filtered, centered and
scaled i.e., X = LTXband,paSS (It —ITI;), where I7 denotes T x T identity
matrix and I7 denotes a T-dimensional vector with all one.
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Fig. 5. Effect of spatial CSP filtering. CSP analysis was performed
to obtain 4 spatial filters that discriminate left from right hand motor
imagery. The graph shows continuous band-pass filtered EEG after
applying the CSP filters. The resulting signals in filters CSP:L1 and
CSP:L2 have larger variance during right hand imagery (segments
shaded in green) while signals in filters CSP:R1 and CSP:R2 have
larger variance during left hand imagery (segment shaded red).

In this paper, we call each column vector w; € RC (j =
1,...,C) of W a spatial filter or simply a filter; moreover
we call each column vector a; € RC (j=1,...,C) of a
matrix A = (W-1)T € RE*C a spatial pattern or simply a
pattern. In fact, if we think of the signal spanned by A as
x(t) = ZJC-:lajsj(t), each vector a; characterizes the spatial
pattern of the j-th activity; moreover, w; would filter out all but
the j-th activity because the orthogonality w]Tak = 0jx holds,
where & is the Kronecker delta (0;x = 1 for j=k and =0
for j # k). The matrices A and W are sometimes called the
mixing and de-mixing matrix or the forward and backward
model ([41]]) in other contexts.

The optimization criterion that is used to determine the
CSP filters will be discussed in detail in the subsequent
Sec. In a nutshell, CSP filters maximize the variance
of the spatially filtered signal under one condition while
minimizing it for the other condition. Since variance of band-
pass filtered signals is equal to band-power, CSP analysis is
applied to approximately band-pass filtered signals in order
to obtain an effective discrimination of mental states that are
characterized by ERD/ERS effects (Sec. [[I-B). Fig. [5| shows
the result of applying 4 CSP filters to continuous band-pass
filtered EEG data. Intervals of right hand motor imagery are
shaded green and show larger variance in the CSP:L1 and
CSP:L2 filters, while during left hand motor imagery (shaded
red) variance is larger in the CSP:R1 and CSP:R2 filters.
See also the visualization of spatial maps of CSP analysis
in Sec.

C. Technical Approaches to CSP Analysis

Let 2(t) € RE*C and £(-) € RE*C be the estimates of the
covariance matrices of the band-pass filtered EEG signal in
the two conditions (e.g., left hand imagination and right hand
imagination):

1

= VY xx'
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where .7, (c € {+,—1}) is the set of indices corresponding to
trials belonging to each condition and |.#| denotes the size
of a set .#. The above expression gives a pooled estimated
of covariance in each condition because each X is centered
and scaled. Then CSP analysis is given by the simultaneous
diagonalization of the two covariance matrices

WIEOwW = A, )
wEOw =A0), (A diagonal)

where the scaling of W is commonly determined such that
A 4 AC) = [ ([18]). Technically this can simplyf| be
achieved by solving the generalized eigenvalue problem

Ty = Az, (5)

Then Eq. (@) is satisfied for W consisting of the generalized
eigenvectors w; (j =1,...,C) of Eq. () (as column vec-
tors) and l}c) = w}—Z(C)w ;j being the corresponding diagonal
elements of A (¢ € {+,—}), while A in Eq. @) equals
A;H /1}7). Note that )L;C) > 0 is the variance in condition
¢ in the corresponding surrogate channel and AJ(H +7L;_) =1.

Hence a large value A;H
the corresponding spatial filter w; yields high variance in the
positive (negative) condition and low variance in the negative
(positive) condition, respectively; this contrast between two
classes is useful in the discrimination. Koles [27] explained
that the above decomposition gives a common basis of two
conditions because the filtered signal xcsp(t) = W 'x(t) is
uncorrelated in both conditions, which implies ‘independence’
for Gaussian random variables. Figure [6] explains how CSP
works in 2D. CSP maps the samples in Fig. [f[a) to those
in Fig. [6(b); the strong correlation between the original two
axes is removed and both distributions are simultaneously de-
correlated. Additionally the two distributions are maximally
dissimilar along the new axes. The dashed lines in Fig. []
denote the direction of the CSP projections. Note that the two
vectors are not orthogonal to each other; in fact they are rather
almost orthogonal to the direction that the opponent class has
the maximum variance.

A generative view on CSP was provided by [40]. Let us
consider the following linear mixing model with nonstationary
sources:

(l}ﬁ) close to one indicates that

scNf/V(OvA(C)) (CE {+7_})a
where the sources s. € R¢ (¢ € {+,—}) are assumed to be
uncorrelated Gaussian distributions with covariance matrices
A (c € {+,-}) for two conditions respectively. If the
empirical estimates ¥ are reasonably close to the true covari-
ance matrices AAYA T, the simultaneous diagonalization gives
the maximum likelihood estimator of the backward model
w=(@a"'

A discriminative view is the following (see also the para-
graph Connection to a discriminative model in Sec.[V-D). Let

x. = As,,

3In Matlab this can be done by » W= eig(S1l, S1+S2).
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Fig. 6. A toy example of CSP filtering in 2D. Two sets of samples
marked by red crosses and blue circles are drawn from two Gaussian
distributions. In (a), the distribution of samples before filtering is
shown. Two ellipses show the estimated covariances and dashed lines
show the direction of CSP projections w; (j = 1,2). In (b), the
distribution of samples after the filtering is shown. Note that both
classes are uncorrelated at the same time; the horizontal (vertical)
axis gives the largest variance in the red (blue) class and the smallest
in the blue (red) class, respectively.
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us define S; and S, as follows:
S;=x*) —x) : discriminative activity, (6)
S, =xH 4 x) : common activity,

where S; corresponds to the discriminative activity, i.e., the
band-power modulation between two conditions and S. cor-
responds to the common activity in the two conditions that
we are not interested in. Then a solution to the following
maximization problem (Rayleigh coefficient) can be obtained
by solving the same generalized eigenvalue problem,

o w'lSw

maximize

weRC

wiSw )
It is easy to see that every generalized eigenvector w; cor-
responds to a local stationary point with the objective value
AJH) —l}_) (assuming A;Jr) +l;_) =1 as above). The large
positive (or negative) objective value corresponds to large
response in the first (or the second) condition. Therefore, the
common practice in a classification setting is to use several
eigenvectors from both ends of the eigenvalue spectrum as
spatial filters {w };zl in Eq. ). If the number of components
J is too small, the classifier would fail to fully capture the
discrimination between two classes (see also the discussion in
Sec. on the influence of artifacts); on the other hand, the
classifier weights {ﬁj}jzl could severely overfit if J is too
large. In practice we find J = 6, i.e., three eigenvectors from
both ends, often satisfactory. Alternatively one can choose the
eigenvectors according to different criterion (see Sec. [A) or

use cross-validation to determine the number of components.

D. Feedback with CSP Filters

During BCI feedback the most recent segment of EEG
is processed and translated by the classifier into a control
signal, see Fig. [[] This can be done according to Eq. (@),
where X denotes the band-pass filtered segment of EEG. Due
to the linearity of temporal (band-pass) and spatial filtering,
these two steps can be interchanged in order. This reduces

TABLE I

RESULTS OF A FEEDBACK STUDY WITH 6 HEALTHY SUBJECTS
(IDENTIFICATION CODE IN THE FIRST COLUMN). FROM THE THREE
CLASSES USED IN THE CALIBRATION MEASUREMENT (SEE SEC.[[I-A)) THE
TWO CHOSEN FOR FEEDBACK ARE INDICATED IN SECOND COLUMN (L:
LEFT HAND, R: RIGHT HAND, F: RIGHT FOOT). COLUMNS 3 AND 4
COMPARE THE ACCURACY AS CALCULATED BY CROSS-VALIDATION ON
THE CALIBRATION DATA WITH THE ACCURACY OBTAINED ONLINE IN THE
FEEDBACK APPLICATION ‘RATE CONTROLLED CURSOR’. THE AVERAGE
DURATION + STANDARD DEVIATION OF THE FEEDBACK TRIALS IS
PROVIDED IN COLUMN 5 (DURATION FROM CUE PRESENTATION TO
TARGET HIT). SUBJECTS ARE SORTED ACCORDING TO FEEDBACK
ACCURACY. COLUMNS 6 AND 7 REPORT THE INFORMATION TRANSFER
RATES (ITR) MEASURED IN BITS PER MINUTE AS OBTAINED BY
SHANNON’S FORMULA, CF. @ HERE THE COMPLETE DURATION OF EACH
RUNS WAS TAKEN INTO ACCOUNT, I.E., ALSO THE INTER-TRIAL BREAKS
FROM TARGET HIT TO THE PRESENTATION OF THE NEXT CUE. THE
COLUMN overall ITR REPORTS THE AVERAGE ITR OF ALL RUNS (OF 25
TRIALS EACH), WHILE COLUMN peak ITR REPORTS THE PEAK ITR OF ALL
RUNS. FOR SUBJECT au NO REASONABLE CLASSIFIER COULD BE TRAINED
(CROSS-VALIDATION ACCURACY BELOW 65% IN THE CALIBRATION
DATA), SEE [2]] FOR AN ANALYSIS OF THAT SPECIFIC CASE.

calibration feedback

accuracy accuracy duration oITR pITR
shj classes [%] [%] [s] [b/m]  [b/m]
al LF 98.0 98.0+ 43 2.0+09 24.4 354
ay LR 97.6 950+ 33 1.8+0.8 22.6 31.5
av LF 78.1 90.5+102 3.5+29 9.0 24.5
aa LR 78.2 885+ 81 15+04 17.4 37.1
aw RF 95.4 805+ 58 26+1.5 59 11.0
au — - - - - -
mean 89.5 905+ 76 23+038 159 279

the computation load (number of signals that are band-pass
filtered), since the number of selected CSP filters is typically
low (2-6) compared to the number of EEG channels (32—-128).
Furthermore it is noteworthy, that the length of segment which
is used to calculate one time instance of the control signal
can be changed during feedback. Shorter segments result in
more responsive but also more noisy feedback signal. Longer
segments give a smoother control signal, but the delay from
intention to control gets longer. This trade-off can be adapted
to the aptitude of the subject and the needs of the application.
As a caveat, we remark that for optimal feedback the bias
of the classifier (fy in Eq. (2)) might need to be adjusted
for feedback. Since the mental state of the user is very much
different during the feedback phase compared to the calibration
phase, also the non task related brain activity differs. For a
thorough investigation of this issue cf. [29]], [47].

IV. RESULTS
A. Performance in two BBCI feedback studies

Here we summarize the results of two feedback studies with
healthy subjects. The first was performed to explore the limits
of information transfer rates in BCIs system not relying on
user training or evoked potentials and the objective of the
second was to investigate for what proportion of naive subjects
our system could provide successful feedback in the very first
session. One of the keys to success in this study was the proper
application of CSP analysis. Details can be found in [3]], [2],
[[7]1.

Table |I| summarizes performance, in particular the infor-
mation transfer rates that were obtained in the first study.
Note that calibration and feedback accuracy refer to quite
different measures. From the calibration measurement, trials of



TABLE I

PERFORMANCE RESULTS FOR ALL 14 SUBJECTS OF THE SECOND STUDY.
THE FIRST COLUMN SHOWS THE SUBJECT CODE AND THE SECOND
COLUMN A TWO LETTER CODE WHICH INDICATES THE CLASSES WHICH
HAVE BEEN USED FOR FEEDBACK. THE THIRD COLUMN SHOWS THE
AVERAGE ACCURACY DURING THE FEEDBACK + THE STANDARD ERROR
OF INTRA-RUN AVERAGES. THE AVERAGE DURATION + STANDARD
DEVIATION OF THE FEEDBACK TRIALS IS PROVIDED IN THE FOURTH
COLUMN (DURATION FROM CUE PRESENTATION TO TARGET HIT).
SUBJECTS ARE SORTED ACCORDING TO FEEDBACK ACCURACY. FOR
SUBJECT cg NO REASONABLE CLASSIFIER COULD BE TRAINED

calibration feedback

accuracy accuracy  duration
subject  classes [%] [%] [s]
cm LR 88.9 93.2+ 3.9 3.5+2.7
ct LR 89.0 914+ 5.1 27+1.5
cp LF 93.8 90.3+ 4.9 3.1+14
p LR 84.7 88.0+ 4.8 3.6+2.1
cs LR 96.3 874+ 2.7 39+23
cu LF 82.6 86.5+ 2.8 33+2.7
ea FR 91.6 857+ 85 3.8+22
at LF 82.3 843+ 13.1 10.0+83
zr LF 96.8 80.7+ 6.0 3.1+1.9
co LF 87.1 759+ 4.8 4.6+3.1
eb LF 81.3 73.1+ 5.6 59+4.8
cr LR 83.3 713+ 12.6 49+3.7
cn LF 71.5 53.6+ 6.1 39+24
cq — - - -
mean 87.3 826+ 114 43+19

approx. 3 s after each cue presentation have been taken out and
the performance of the processing/classification method was
validated by cross-validation. The feedback accuracy refers to
the actual hitting of the correct target during horizontal cursor
control. This involves integration of several classifier outputs
to consecutive sliding windows of 300 to 1000 ms length, see
Sec.

As a test of practical usability, subject al operated a mental
typewriter based on horizontal cursor control. In a free spelling
mode he spelled 3 German sentences with a total of 135
characters in 30 minutes, which is a ‘typing’ speed of 4.5
letters per minutes. Note that the subject corrected all errors
using the deletion symbol. For details, see [L1]. Recently,
using the novel mental typewriter Hex-o-Spell that is based
on principles of human-computer interaction the same subject
achieved a typing speed of more than 7 letters per minute,
cf. [6], [34].

Table [[I| summarizes the performance obtained in the second
study. It demonstrates that 12 out of 14 BCI novices were
able for control the BCI system in their very first session. In
this study, the feedback application was not optimized for fast
performance, which results in longer trial duration times.

B. Visualization of the spatial filter coefficients

Let us visualize the spatial filter coefficients and the cor-
responding pattern of activation in the brain and see how
they correspond to the neurophysiological understanding of
ERD/ERS for motor imagination. Figure [/ displays two pairs
of vectors (wj,a;) that correspond to the largest and the
smallest eigenvalues for one subject topographically mapped
onto a scalp and color coded. w; and a; are the j-th columns
of W and A = (W~!)T, respectively. The plot shows the
interpolation of the values of the components of vectors w;
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min variance for
right trials

min variance for
left trials

filter filter

pattern pattern

- 0 +

Fig. 7. Example of CSP analysis. The patterns (a;) illustrate how the
presumed sources project to the scalp. They can be used to verify
neurophysiological plausibility. The filters (w;) are used to project
the original signals. Here they resemble the patterns but their intricate
weighting is essential to obtain signals that are optimally discrimina-
tive with respect to variance. See Sec. [[II-B| for the definition of the
terms filter and pattern.

and a; at electrode positions. Note that we use a colormap
that has no direct association to signs because the signs of the
vectors are irrelevant in our analysis.

V. DISCUSSION
A. Dependence of linear spatial filtering prior to CSP

The question arises whether the results of CSP-based classi-
fication can be enhanced by preprocessing the data with a lin-
ear spatial filter (like PCA, ICA or re-referencing like Laplace
filtering). The question is difficult to answer in general, but two
facts can be derived. Let B € R€*0 be the matrix representing
an arbitrary linear spatial filter while using notions X;, £(*),
(), S,;, and S. as in Sec. Denoting all variables
corresponding to the B-filtered signals by ~, the signals are
X = B"X. This implies £(+) = BTx(t)B, £(-) = BTx(-)B,
Sqs=B'S;B, and S, = B'S.B. The filter matrices calculated
by CSP are denoted by W and W.

(1) If matrix B is invertible, the classification results will
exactly be identical, regardless of applying filter B before
calculating CSP or not. Let us consider the CSP solution
characterized by simultaneous diagonalization of £(*) and
() in Eq. @) with constraint A(t) + A=) = 1. This implies

Iy \T$H) =l — A(+)
(B~'W)TEHB W =A
(B~'W)TEC)BIW =1 - A

which means that B~!W is a solution to the simultaneous
diagonalization of £(*) and £(-). Since the solution is unique
up to the sign of the columns, we obtain

WD =B"'W with diagonal D: (D); ;= sign(w]TBwj).

Accordingly, the filtered signals are identical up to the sign:
WTX=DW'BTX=DWT'X, so the features, the classifier and
the classification performance does not change.

(2) If matrix B is not invertible, the objective of CSP
analysis (on the training data) can only get worse. This
can easily be seen in terms of the objective of the CSP-
maximization in the formulation of the Rayleigh coefficient,
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Eq. (7). Then the follwing holds

w'B'S,Bw
max ————_—— <
weR% WTBTSCBW

WTS;dW WTSdW
max = - =
weRCo WS W

since every term on the left hand side of the inequality is
covered on the right hand side for w = Bw. That means, the
CSP-optimum for the unfiltered signals (right hand side) is
greater than or equal to the CSP-optimum for the signals
filtered by B (left hand side). However, this result holds only
for the training data, i.e., it may be affected by overfitting
effects. If the prefiltering reduces artifacts, it is well possible
that the generalization performance of CSP improves. On the
other hand the prefiltering could also discard dicriminative
information which would be detrimental for performance.

B. Merits and Caveats

The CSP technique is very successfully used in on-line
BCI systems ([2]], [19]), see Sec. Also in the BCI
Competition III many of the successful methods involved
CSP type spatial filtering ([8]). Apart from the above results,
an advantage of CSP is the interpretability of its solutions.
Far from being a black-box method, the result of the CSP
optimization procedure can visualized as scalp topographies
(filters and patterns). These maps can be used to check
plausibility and to investigate neurophysiological properties,
cf. Sec. and also Fig.. [§]

It is important to point out that CSP is not a source separa-
tion or localization method. In contrary, each filter is optimized
for two effects: maximization of variance for one class while
minimizing variance for the other class. Let us consider, e.g.,
a filter that maximizes variance for class foot and minimizes
it for right: A strong focus on the left hemispherical motor
area (corresponding to the right hand) can have two plausible
reasons. It can either originate from an ERD during right hand
imagery, or from an ERS during foot imagery (hand areas are
more relaxed if concentration focuses on the foot, therefore
the idle rhythm may increase; lateral inhibition [36]], [43]]). Or
it can be a mixture of both effects. For the discrimination task,
this mixing effect is irrelevant. However this limitation has to
be kept in mind for neurophysiological interpretation.

Several parameters have to be selected before CSP can be
used: the band-pass filter and the time intervals (typically
a fixed time interval relative to all stimuli/responses) and
the subset of CSP filters that are to be used. Often some
general settings are used (frequency band 7-30 Hz ([35]]), time
interval starting 1000 ms after cue, 2 or 3 filters from each
side of the eigenvalue spectrum). But there is report that on-
line performance can be much enhanced by subject-specific
settings ([2]). In the Appendix we give a heuristic procedure
for selection of CSP hyperparameters and demonstrate its
favorable impact on classification. A practical example where
parameters are selected manually is given in [15]].

In addition, one should keep in mind that the discriminative
criterion (Eq. (6)) tells only the separation of the mean power
of two classes. The mean separation might be insufficient
to tell the discrimination of samples around the decision
boundary. Moreover, the mean might be sensitive to outliers.

Filter #1

Pattern #1

Fig. 8. CSP filter/pattern corresponding to the ‘best’ eigenvalue in
the data set of subject cr. This CSP solution is highly influenced
by one single-trial in which channel FC3 has a very high variance.
The panel on the right shows the variance of all single-trials of the
training data (x-axis: number of trial in chronological order, y-axis:
log variance of the trial in the CSP surrogate channel; green: left
hand imagery, red: right hand imagery). The trial which caused the
distorted filter can be identified as the point in the upper right corner.
Note that the class-specific box-plots on the right show no difference
in median of the variances (black line).

Artifacts, such as blinking and other muscle movements can
dominate over EEG signals giving excessive power in some
channels. If the artifact happens to be unevenly distributed
in two conditions (due to its rareness), one CSP filter will
likely to capture it with very high eigenvalue. Taking one
specific data set from our database as an example, the CSP
filter/pattern corresponding to the best eigenvalue shown in
Fig. [§] is mainly caused by one single trial. This is obviously
a highly undesirable effect. But it has to be noted that the
impact on classification is not as severe as it may seem on
the first sight; typically the feature corresponding to such an
artifact CSP filter component gets a near-zero weight in the
classification step and is thereby neglected.

Finally we would like to remark that the evaluation of CSP-
based algorithms needs to take into account that this technique
uses label information. This means that CSP filters may only
be calculated from training data (of course the resulting filters
need then to be applied also to the test set). In a cross-
validation, CSP filters have to be calculated repeatedly on
the training set within each fold/repetition. Otherwise severe
underestimation of the generalization error may occur.

C. Application of CSP to Source Projection

Here we report a novel application of CSP with a different
flavor than above. Instead of single trial classification of
mental states, CSP is used in the analysis of event-related
modulations of brain rhythms. We show that CSP can be
used to enhance the signal of interest while suppressing the
background activity.

Conventionally event-related (de-)synchronization is defined
as the relative difference in signal power of a certain frequency
band, between two conditions, for instance a pre-stimulus or
reference period and an immediate post-stimulus period [42]:

ERD(r) = Power(t) — Reference power.

Reference power

Thus ERD and ERS describe the relative power modulation of
the ongoing activity, induced by a certain stimulus or event.
Typically the sensor (possibly after Laplace filtering) that
exhibit the strongest ERD/ERS effect at a certain frequency
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Ilustration of an improved source projection using the CSP technique. Left panel: the time course of the averaged band-power

(10Hz) at the channel (CP3) with the most prominent ERD/ERS following a median nerve stimulation at the right wrist. The gray-shaded
areas indicate the two selected virtual classes for the CSP-algorithm, where 77 corresponds to the ERD phase, while 7, reflects the ERS
interval. Central panel: depicts the CSP-filter that minimizes the variance for 77, along with the projection of the corresponding source to
the scalp. See main text for the reason to constrain the filter to the left hemisphere. Right panel: time course of the averaged band-power
of the projected signal. Note that this source projection procedure has yielded ERD and ERS that are much more accentuated as they have

almost tripled in magnitude.

band is used for the analysis. Nevertheless the CSP technique
can help to further improve on the signal-to-noise ratio, by
optimizing the spatial filters focusing on rhythmic cortical
generators, that undergo the rhythmic perturbation.

We briefly outline how the CSP algorithm can be used
for this purpose in an illustrative example of somatosensory
stimulation. In particular, we use single trial EEG recordings
of electrical stimulations of the median nerve at the right wrist.
Such somatosensory stimulation typically causes modulations
of the u-rhythm, yielding a sequence of ERD followed by a
rebound (ERS), overshooting the pre-event baseline level. The
left panel of Fig. [0 depicts the time course of the averaged
ERD/ERS for the a-band at approximately 10Hz obtained
from the best sensor. Based on this averaged band power
modulations, we determine two disjoint temporal intervals T}
and 75, associated with the desynchronization and the hyper-
synchronization phase, respectively. These two intervals serve
as the opposed conditions (classes) in the conventional CSP
framework. We estimate covariance matrices £(*) and £(-)
as in Eq. (3) pooling covariance matrices in the two intervals
separately. Solving the CSP problem according to (5), yields
a set of spatial filters. The filter that minimized the variance
for the desynchronization period, while simultaneously max-
imizing those of the synchronization period constitutes the
optimal spatial projection onto the cortical generator under
consideration, i.e., onto the contralateral y-rhythm. Here we
restrict our CSP analysis only to the hemisphere that is
contralateral to the stimulation in order to obtain unilateral
spatial filter that has no cross talk with the other hemisphere.
Fig [9] depicts the obtained spatial CSP filter, along the time
course of ERD/ERS of the projected signal.

Note, in case the modulation of rhythmic activity comprises
only of an ERD or an ERS response, the same approach can
be used by simply contrasting a pre-stimulus reference interval
against the period of modulation. In other words CSP should
be thought as a general tool for contrasting different brain
states that yields a spatial filter solution that can be used to
enhance the signal-to-noise ratio and can be interpreted from
the physiological viewpoint.

D. Variants and Extensions of the Original CSP algorithm

a) Multi-class: In its original form CSP is restricted
to binary problems. A general way to extend this algorithm
to the multi-class case is to apply CSP to a set of binary
subproblems (all binary pairs or, preferably, in a one-vs-rest
scheme). A more direct approach by approximate simultaneous
diagonalization was proposed in [12]].

b) Automatic selection of spectral filter: The Common
Spatio-Spectral Pattern (CSSP) algorithm ([31]]) solves the
standard CSP problem on the EEG time series augmented
by delayed copies of the original signal, thereby obtaining
simultaneously optimized spatial filters in conjunction with
simple frequency filters. More specifically, CSP is applied to
the original x concatenated with its off Tms delayed version
x(t — 7). This amounts to an optimization in an extended
spatial domain, where the delayed signals are treated as new
channels %(t) = (x(1)7,x(t — )" )T. Consequently this yields

. S _ T T
spatial projections w = (w(o) w(® , that correspond to
vectors in this extended spatial domain. Any spatial projection
in state space can be expressed as a combination of a pure
spatial and spectral filter applied to the original data x, as
follow:

< 0
W x0) = Yowx() +wilx(1—7)
c=1

(0 o
= e | —Xe(1) + X t—=7) ), ®)
g ( )+ 2l )

where {}/C}f:] defines a pure spatial filter, whereas
(0) /—T/IH (7) .
(‘“’7‘%{70,...,07 W;( ) defines a Finite Impulse Response
(FIR) filter at each electrode c¢. Accordingly this technique
automatically neglects or emphasizes specific frequency
bands at each electrode position in a way that is optimal
for the discrimination of two given classes of signals. Note
that individual temporal filters are determined for each input
channel.
The Common Sparse Spectral Spatial Pattern (CSSSP)
algorithm [13] eludes the problem of manually selecting the
frequency band in a different way. Here a temporal FIR filter
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is optimized simultaneously with a spatial filter. In contrast to
CSSP only one temporal filter is used, but this filter can be of
higher complexity. In order to control the complexity of the
temporal filter, a regularization scheme is introduced which
favors sparse solutions for the FIR coefficients. Although
some values of the regularization parameter seem to give
good results in most cases, for optimal performance a model
selection has to be performed.

In [50] an iterative method (SPEC-CSP) is proposed which
alternates between spatial filter optimization in the CSP sense
and the optimization of a spectral weighting. As result one
obtains a spatial decomposition and a temporal filter with are
jointly optimized for the given classification problem.

c) Connection to a discriminative model: Here we show
how CSP analysis is related to a discriminative model. This
connection is of theoretical interest in itself, and can also be
used to further elaborate new variants of CSP. See [49], [48]]
for related models.

The quantity S; = () —£() in Eq. (@) can be interpreted
as the empirical average IAEXJ [yXX T} of the sufficient statistics
yXX T of a linear logistic regression model:

exp (vf(X;V,0))
Z(X,V,b)
V) =Te [VIXXT] +5,

P(y|X,V,b) =

where y € {+1,—1} is the label corresponding to two classes,
V € RE*C is the regression coefficient, b is the bias, and
Z(X,V,b) = e/ XV:h) 4 ¢=/(XV:b) In fact, given a set of trials
and labels {X;,y;} the log-likelihood of the above problem can
be written as follows:

n
log [ [P0ilXi,V.b)
=1

v’ (Z y,»XiX,T>
i=1

n - n
= ETI' |:V Sd:| —i:ZiIOgZ(Xi,V;b);

=Tr

+bY yi— Y logZ(X;,V,b)
i i=1

i=1

where for simplicity we assumed that each condition contains
equal number (n/2) of trials. Unfortunately, because of the
log-normalization Z(X,V,b) term, the maximum likelihood
problem cannot be solved as simple as the simultaneous
diagonalization. One can upper bound the logZ(X,V,b) under
the following condition:

n
y ‘Tr [VTX,-X,T] ‘ <1,
i=1

and maximize the lower bound of the likelihood as follows:

maximize
Ve RC xC

gTr [VTSd] ,
n

subject to Z
i=1

Tr [VTX,»X,T] ‘ <1

Indeed this yields the first generalized eigenvector of the CSP

problem (Eq. (3)) when V is rank=1 matrix V =ww .

d) Regularizing CSP: In practical BCI applications, the
smaller the number of electrodes, the smaller the effort and
time to set up the cap and also the smaller the stress of patients
would be. CSP analysis can be used to determine where the
electrodes should be positioned; therefore it would be still
useful for experiments with a small number of electrodes.
In [16l], ¢, regularization on the CSP filter coefficients was
proposed to enforce a sparse solution; that is, many filter coef-
ficients become numerically zero at the optimum. Therefore it
provides a clean way of selecting the number and the positions
of electrodes. Their results have shown that the number of
electrodes can be reduced to 10-20 without significant drop in
the performance.

e) Advanced techniques towards reducing calibration
data: Because there exists substantial day-to-day variability in
EEG data, the calibration session (15-35 min) is conventionally
carried out every time before day-long experiments even for an
experienced subject. Thus, in order to increase the usability of
BCI systems, it is desirable to make use of previous recordings
so that we can reduce the calibration measurement as small as
possible (cf. also data set IVa of the BCI competition III, [8]).
For experienced BCI users whose EEG data were recorded
more than once, [28] proposed a procedure to utilize results
from the past recordings. They extracted prototypical filters by
a clustering algorithm from the data recorded before and use
them as an additional prior information for the current new
session learning problem.

Recently [32] proposed an extended EM algorithm, where
the extraction and classification of CSP features are performed
jointly and iteratively. This method can be applied to the cases
where either only a small number of calibration measurements
(semisupervised) or even no labeled trials (unsupervised) are
available. Basically, their algorithm repeats the following steps
until a stable result is obtained: (i) constructing an expanded
training data which consists of calibration trials with observed
labels and a part of unlabeled (feedback) data with labels
estimated by the current classifier, (ii) reextracting the CSP
feature and updating the classifier based on the current data
sets. They analyzed the data IVa of BCI competition III ([8]])
and reported that because of the iterative reextraction of the
CSP features, they could achieve satisfactory performance
from only 30 labeled and 120 unlabeled data or even from 150
unlabeled trials (off-line analysis). Note that only results of
selected subjects of the competition data set [Va were reported.
Although there was no experimental result presented, it was
claimed that the extended EM procedure can also adapt to
nonstationarity in EEG signals.

f) Dealing with the nonstationary of EEG signals:
Another practical issue is nonstationarity in EEG data. There
are various suggestions how to handle the nonstationarity
in BCI systems ([S2], [S1], [26], [10]). With respect to
CSP-based BCIs, the result of [29], [47] was that a simple
adaptation of the classifier bias can compensate nonstationarity
astonishingly well. Further changes like retraining LDA and
recalculating CSP contributed only slightly or sometimes
increased the error rate.

The question whether the CSP filter W or the pattern A
should generalize to a new recording was raised by [23l.



From a source separation point of view, the j-th column w;
of the filter W tries to capture the j-th source denoted by
the j-th column a; of the pattern A while trying to suppress
all other sources that are irrelevant to the motor-imagination
task. Therefore, if the disturbances change while the relevant
source remains unchanged the optimal filter should adaptively
change to cancel out the new disturbances while still capturing
the relevant source. In [23|] the Fixed Spatial Pattern (FSP)
approach was proposed; that is to keep the spatial pattern of
the relevant source, i.e., subset of the columns of A unchanged
while changing the spatial filter adaptively in a new recording.
The true labels (i.e., the actual intension of a subject) are not
required when the FSP is applied because only the irrelevant
sources, which are assumed to be common to two classes, are
re-estimated.

A novel approach to make CSP more robust to nonsta-
tionarities during BCI feedback was proposed in [S)]. In this
work a short measurement of non task related disturbances is
used to enforce spatial filters which are invariant against those
disturbances. In invariant CSP (iCSP) the covariance matrix of
the disturbance is added to the denominator in the Rayleigh
coefficient representation of CSP, cf. Eq. (7).

VI. CONCLUDING DISCUSSION

We have reviewed a spatial filtering technique that often
finds its successful use in BCI: Common Spatial Patterns
(CSP). The method is based on the second order statistics
of the signal between electrodes and the solution is obtained
by solving a generalized eigenvalue problem. We have shown
a generative and a discriminative interpretation of the method.
We have applied the method to two motor imagination based
BCI studies. In the first study, we have reported the peak
information transfer rate from one subject of 35.4 bits/min.
In the second study we have shown that 12 out of 14 naive
subjects could perform BCI control on their first BCI exper-
iments. We have pointed out not only the advantage of the
method, such as low computation cost and interpretability but
also some caveats such as model selection and pre-processing
issues or deterioration under outliers. We showed subsequently
that CSP can be extended and robustified in order to alleviate
these critical aspects. In this review we have focused our
attention to applications of CSP for single trial EEG analysis
in the context of BCIL. Note however that CSP-filtering and
extensions thereof can be applied to extract general discrimi-
native spatio-temporal structure from multivariate data streams
beyond EEG. Future work will continue the quest to develop
novel spatio-temporal filtering methods that allow more ac-
curate and interpretable classification even for nonstationary,
noisy, interacting data sources. Special attention will be placed
on the construction of probabilistically interpretable nonlinear
modeling that allows the integration of feature extraction and
classification steps within a one step procedure in the spirit
of, e.g., [49], [48], [17], [22]).

APPENDIX

A. How to Select Hyperparameters for CSP

Here we give a heuristic procedure to automatically select
all parameters that are needed for successful CSP application.
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There is no claim whatsoever that these heuristics are close to
optimal or natural in any sense. But we have found them prac-
tically working and evaluate them here in comparison to the
general setting and to manual selection by the experimenter.
a) Selection of a Frequency Band: We provide our
heuristic for the selection of a discriminative frequency band
in pseudo code, see Algorithm 1. The EEG trials X should
be spatially filtered by a Laplacian or bipolar filter. In our
experience the algorithm works best if only few channels are
used. A good choice is, e.g., to choose C = {cy, ¢z, c3} with
c¢; being one from each area of the left hand, right hand and

feet with max , /Y r(score.(f))2.

Algorithm 1 Selection of a discriminative frequency band
Let X(.; denote trial i at channel ¢ with label y; and let
C denote the set of channels.
1: dB.(f,i) < log band-power of X, at frequency f (f
from 5 to 35Hz)
2: score(f) «— corrcoef (dB.(f,i), yi);
3: fmax < argmax Y. .c scorec (f)
score.(f) if scoreq(fmax) >0
—score.(f) otherwise

5: fscore(f) < Y ecscorel(f)
6: fmax < argmax ,fscore(f)
7
8

4: scorel(f) «—

2 S0 frmaxs ST Fmax

: while fscore(fy — 1) > fscore(f,4) *0.05 do
9 fo—Jfo—1
10: while fscore(f; + 1) > fscore(f,,) *0.05 do
1. fi—fi+1l
12: return frequency band [fy, fi]

b) Selection of a Time Interval: The heuristic selection
of a time interval proceeds similar to the selection of the
frequency band, see Algorithm 2.

Algorithm 2 Selection of a discriminative time interval

Let X(. ;) denote time sample 7 of trial i at channel ¢
with label y; and let C denote the set of channels.

1: env.(t,i) < envelope of X, calculated by Hilbert
transform (e.g. [9]) and smoothed

2: score,(t) < corrcoef (env.(t,i), yi);

3: fmax < argmax, Y. .cc | score.(¢)|

score,(r)

4: score’ (1) —

—score.(t) otherwise

5: tscore(t) «— Y .ccscore} (1)

6: 1hax < argmax, tscore(z)

7: thresh < 0.8 x ¥, tscore™ (¢)
f(x) > 0 and = 0 otherwise)

8: fp — trﬁlax; t — trtlax

9: while ¥, -, tscore(t) < thresh do

10: if ¥, tscore™(t) > ¥, tscore”(¢) then

11: to—to—1

12:  else

13: f1—t+1

14: return time interval [tg, ;]

(with fT(x) = f(x) if

: /
if Y 100ms<t’<tmax+100ms SCOTE () >0
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TABLE III

COMPARISON OF CSP-BASED CLASSIFICATION PERFORMANCE WHEN THE
HYPERPARAMETERS ARE FIXED A-PRIORI, SELECTED AUTOMATICALLY BY
THE PROPOSED HEURISTICS, OR SELECTED MANUALLY. EVALUATION BY
A CHRONOLOGICAL SPLIT OF THE CALIBRATION DATA (FIRST HALF FOR
TRAINING, SECOND HALF FOR TESTING). NOTE THAT ‘AUTO’ USES ONLY
THE FIRST HALF FOR HYPERPARAMETER SELECTION, WHEREAS
‘MANUAL’ USES THE WHOLE CALIBRATION DATA.

sbj fixed auto  manual
zq 2.5 0.5 0.1
p 11.9 14.8 8.1
zr 0.8 0.2 0.2
cs 9.6 4.1 1.3
at 6.9 6.7 6.7
ct 20.7 8.9 5.2
zk 9.9 6.0 1.5
cm 14.9 6.5 5.0
cm 15.1 6.4 2.1
cm 18.2 18.2 6.9
cm 13.7 8.2 5.0
ea 5.7 1.7 1.6
eb 25.0 27.1 12.1
mean 11.9 8.4 4.3

c) Selection of a Subset of Filters: The classical measure
for the selection of CSP filters is based on the eigenvalues
in (). Each eigenvalue is the relative variance of the signal
filtered with the corresponding spatial filter (variance in one
condition divided by the sum of variances in both conditions).
This measure is not robust to outliers because it is based
on simply pooling the covariance matrices in each condition
(Eq. (3)). In fact, one single trial with very high variance can
have a strong impact on the CSP solution (see also Fig. [§).
A simple way to circumvent this problem is to calculate
the variance of the filtered signal within each trial and then
calculate the corresponding ratio of medians:

(+)
J
+ medﬁf)

med

&)
J

score(w;) =
med

where medi.c) = median;c . gijXiXiTw j> (ce{+,—}). As

with eigenvalues, a ‘ratio-of-medians’ score near 1 or near
0 indicates good discriminability of the corresponding spatial
filter. These scores are more robust with respect to outliers than
the eigenvalue score, e.g., the filter shown in Fig. [§] would get
a minor (i.e., near 0.5) ratio-of-medians score.

d) Evaluation of Heuristic Selection Procedure: Here we
compare the impact of individually choosing the hyperparam-
eters for CSP-based classification. We compare the method
‘fixed” which uses a broad frequency band 7-30 Hz and the
time window 1000 to 3500ms post stimulus. The method
‘auto’ uses the heuristics presented in this Section to select
frequency band and time interval. In ‘manual’ we use the
settings that were chosen by an experienced experimenter by
hand for the actual feedback (see [[15] for a practical example
with manual selection). Note there is a substantial improve-
ment of performance in most of the data sets. Interestingly in
one feedback data set (subject cf) the ‘auto’ method performs
badly, although the selected parameters were reasonable.

TABLE IV

COMPARISON OF PERFORMANCE ANALOG TO TABLE[III] BUT WITH
EVALUATION BY TRAINING ON THE WHOLE CALIBRATION MEASUREMENT
AND TESTING ON THE FEEDBACK DATA (WINDOWS OF 1000 MS DURING
CURSOR MOVEMENT). NOTE THAT THESE ERROR RATES DO NOT REFLECT
THE ERRORS IN HITTING THE CORRECT BARS; A SUCCESSFUL TRIAL
OFTEN INCLUDES ERRONEOUS INTERMEDIATE STEPS.

shj fixed auto  manual
zq 17.4 13.1 12.5
p 24.4 24.6 22.8
zr 25.3 18.6 23.1
cs 26.1 23.0 21.8
at 39.6 34.9 33.6
ct 12.1 31.0 10.9
zk 28.2 27.3 28.8
cm 19.9 8.8 74
cm 6.2 2.5 2.0
cm 7.7 6.6 6.1
cm 27.7 7.0 59
ea 21.6 204 19.1
eb 50.3 42.3 39.1
mean 23.6 20.0 17.9
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