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The Berlin Brain-Computer Interface: Accurate
performance from first-session in BCI-naïve subjects
Benjamin Blankertz, Florian Losch, Matthias Krauledat, Guido Dornhege, Gabriel Curio, Klaus-Robert Müller

Abstract—The Berlin Brain-Computer Interface (BBCI)
project develops a non-invasive BCI system whose key features
are (1) the use of well-established motor competences as control
paradigms, (2) high-dimensional features from multi-channel
EEG and (3) advanced machine learning techniques. Spatio-
spectral changes of sensorimotor rhythms are used to discrimi-
nate imagined movements (left hand, right hand, foot). A previous
feedback study ([1]) with 10 subjects provided preliminary
evidence that the BBCI system can be operated at high accuracy
for subjects with less than 5 prior BCI exposures. Here, we
demonstrate in a group of 14 fully BCI-naïve subjects that 8/14
BCI novices can perform at >84% accuracy in their very first BCI
session, and a further 4 subjects >70%. Thus, 12/14 BCI-novices
had significant above-chance level performances without any
subject training even in the first session, as based on an optimized
EEG analysis by advanced machine learning algorithms.

I. I NTRODUCTION

Amplitude modulations of sensorimotor rhythms (SMRs)
can be voluntarily controlled by most subjects, e.g. by imag-
ining movements. Recently evidence was provided that also
patients suffering from amyotrophic lateral sclerosis (ALS)
can accomplish SMR modulations ([2]). This ability can be
taken as a basis for Brain-Computer Interfaces (BCIs) which
are devices that translate the intent of a subject measured
from brain signals directly into control commands, e.g. for
a computer application or a neuroprosthesis ([3]–[8]). For
alternative applications of BCI technology, see [9]–[11]).

One of the challenges in the development of BCI systems
is to minimize the amount of subject training that is needed
for accurate performance. In this regard the machine learning
approach to BCI has been shown to be highly promising ([12,
13]). In our first feedback study ([1]) nine out of ten untrained
subjects were able to operate a one-dimensional cursor control
feedback with high precision (median 91.7±5.4% accuracy).
Note that the subjects of that study were staff members, some
of which had performed feedback with earlier versions of the
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BBCI system before. Also the number of subjects was limited,
so the question was left open whether and how the results
would generalize to a broader group of completely untrained
subjects.

To date [14] is the only study which investigates BCI
feedback accuracy on a larger subject population. At an
exposition 99 subjects participated in a BCI experiment where
right hand motor imagery was discriminated from feet motor
imagery using 2 bipolar EEG channels. One run without and
one run with feedback (bar extension) was recorded, each
consisting of 40 trials. Feedback was provided either using
band power estimation or an adaptive autoregressive model
and a linear classifier (trained on the non-feedback run). Inthe
feedback runs, the following results were achieved: 6 % with
90–100 % accuracy, 11.7 % with 80–90 %, 24.9 % with 70–
80 %, 45.4 % with 60–70 %, and 12 % below 60 % accuracy.
The trial duration was 5 s from appearance of the visual cue
to the end of feedback plus 3 s inter-trial break. There was no
check for concurrent electromyogram (EMG) activity.

In this paper we report the performance of BCI novices
(not from our labs) in their first BBCI feedback session1 in the
framework of a broader study. Here, 12 out of 14 were able to
operate a cursor control application accurately (median 86.1±
5.0%). A rigorous investigation of EMG signals demonstrates
that the success cannot be ascribed to concurrent EMG activity
during motor imagery, see Section IV-C.

II. M ATERIAL

A. Neurophysiology

Macroscopic brain activity during resting wakefulness con-
tains distinct ‘idle’ rhythms located over various brain ar-
eas, e.g. the parietalα -rhythm (8–12 Hz) can be measured
over the visual cortex ([15]). The perirolandic sensorimotor
cortices show rhythmic macroscopic EEG oscillations (µ-
rhythm) ([16,17]), with spectral peak energies of about 9–
14 Hz localized predominantly over the postcentral somatosen-
sory cortex and typically phase synchronized components can
be found in the beta band ([18]) over the precentral motor
cortex. Modulations of theµ-rhythm have been reported for
different physiological manipulations, e.g., motor activity, both
actual and imagined ([19]–[21]), as well as somatosensory
stimulation ([22]). Standard trial averages ofµ-rhythm power
can reveal attenuation, termed event-related desynchronization
(ERD, [23]), or increase (event-related synchronization,ERS).

1By ‘session’ we refer to one experimental day. In this study itcomprises
several calibration (i.e., non-feedback) and feedback runs, see Section II-B.
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Fig. 1: Event-Related Desynchronization (ERD) during motor imagery ofthe left and the right hand. Raw EEG signals of one subject have
been band-pass filtered in theµ-band. For the time courses, the envelope of the signals has been calculated by Hilbert transform and averaged
over segments of -500 to 4500 ms relative to each cue for left resp. right hand motor imagery. ERD curves are shown for Laplace filtered
channels at C3 and C4, i.e. over left and right primary motor cortex. The topographical maps of ERD were obtained by calculating the
band-power for all (non Laplace filtered) channels in the shaded time interval from 1000 to 4000 ms after stimulus presentation, transforming
it to dB, and subtracting the band-power averaged over the whole recording.

Typically ERD is an indication of cortical activity, while ERS
can be observed during cortical idling.

Several EEG-based BCI systems rely on the fact that
amplitude modulations of sensorimotor rhythms can be vol-
untarily controlled by most of the subjects, e.g. by imagining
movements as explained above (see [24] for an interesting
variation of the paradigm). Fig. 1 shows the time course of
the amplitude of theµ-rhythm during left hand and right hand
motor imagery and the corresponding topographies.

While some approaches try to achieve the required signal
strength by training the subjects ([2,25,26]) an alternative is
to calibrate the system to the specific charateristics of each
user ([1,27]). For the latter data-driven approaches, calculating
subject-specific spatial filters have proven to be useful, cf.
Section III-A and [28].

B. Experimental Setup

Fourteen healthy BCI-novices (7m, 7f, age 27.5±3.1) took
part in this one-session study. We had no physiological or
psychological indicators that these subjects were particularly
suited for BCI control. In particular, the subjects did not
perform in any motor imagery experiment before. All record-
ings (calibration and feedback runs) of one subject have been
recorded on the same day (one ‘session’).

The subjects were sitting in a comfortable chair with arms
lying relaxed on armrests. Brain activity was recorded from
the scalp with multi-channel EEG amplifiers (BrainAmp DC
by Brain Products, Munich, Germany) using 55 Ag/AgCl
electrodes (reference at nasion; manufacturer Electro-Cap In-
ternational, Inc., Eaton, Ohio) in an extended 10-20 system
sampled at 1000 Hz with a band-pass from 0.05 to 200 Hz.
Additionally, we recorded EMG from both forearms and the
right leg as well as horizontal and vertical electrooculogram
(EOG). The EMG channels were exclusively used to control
for physical limb movements that could correlate with the task
and could be reflected directly (artifacts) or indirectly (afferent

signals from muscles and joint receptors) in the EEG channels.
An investigation of the potential influence of concurrent EMG
activity on the classifier, which should operate on the EEG
signals only, is given in Section IV-C.

In the beginning, a short ‘artifact measurement’ was
recorded during which the subject performed tasks like eye
movements, biting, and relaxing with open or closed eyes. Dur-
ing the ‘calibration measurement’ every 5.25–5.75 secondsone
of 3 different letters was displayed in randomized sequence
for 3.5 seconds on a screen to indicate which mental task the
subject should accomplish during that period. The investigated
mental tasks were imagined movements of the left hand (L),
the right hand (R), and the right foot (F). For each subject
140 trials per class were recorded within 4 runs with several
minutes of break in between. Furthermore, subjects performed
1 or 2 runs of physically executed movements.

After the calibration measurement subjects performed 5
feedback runs of 10 minutes duration (for 3 subjects only 4
runs have been recorded). Here the output of the classifier was
translated to the horizontal position of a cursor. See Fig. 2
for a cartoon of the feedback and its timing. One of the two
fields on the left and right edge of the screen was highlighted
as target at the beginning of a trial. The cursor was initially
at the center of the screen and started moving according to
the BBCI classifier output 750 ms after the indication of the

next trial
starts

cursor touches field:trial starts:
indication of resultcursor movesindication of target

0 750 ms x ms x + 520 ms

feedback:

Fig. 2: Course of a feedback trial. The target cue is indicated for
750 ms. Then the cursor starts moving according to the BCI classifier
until it touches one of the two fields at the edge of the screen. The
touched field is colored green or red according to whether or not its
was the correct target. 520 ms later, the next trial starts.
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target. The trial ended when the cursor touched one of the two
fields. That field was then colored green or red, depending on
whether or not it was the correct target. After 520 ms the next
target cue was presented (see [1,29] for more details). The
number of feedback trials varied according to the subjects’
performance between 297 and 1024 (see Table I for the
average trial duration of each subject). There was no special
motivation (like financial reward) for the subjects to achieve
good performance, but most subjects seemed well motivated
by their interest in the topic of the study.

III. M ETHODS

A. Subject-specific Spatial Filters

A crucial point in BCI data analysis is the extraction of
appropriate spatial filters that optimize the discriminability
of multi-channel brain signals based on event-related desyn-
chronization/synchronization (cf. Fig. 1 and Section II-A) of
the sensorimotor rhythms. Once these filters have been deter-
mined, subsequent processing and classification is relatively
straight forward, see Section III-B.

The spatial filters are calculated individually for each subject
from the data of a calibration measurement by Common
Spatial Pattern (CSP) analysis ([28,30,31]). The objective of
the CSP technique is to find spatial filters that maximize
variance of signals of one condition and at the same time
minimize variance of signals of another condition. Since band-
power can be calculated as the variance of band-pass filtered
signals, CSP filters can be used to discriminate conditions that
are characterized by ERD/ERS effects.

Technically CSP analysis works as follows. LetΣ1 andΣ2 be
estimates of the covariance matrices of the band-pass filtered
EEG signals under the two conditions. These two matrices
are simultaneously diagonalized such that the eigenvaluesof
Σ1 andΣ2 sum to 1. Practically this can be done by calculating
the generalized eigenvectorsW:

Σ1W = (Σ1 +Σ2)WD. (1)

Here, the diagonal matrixD contains the (generalized) eigen-
values ofΣ1 and the column vectors ofW are the filters for
the CSP projections. By this procedure a full decomposition
of the sensor space is determined. Best contrast is provided
by those filters with high eigenvalues (large variance for
condition 1 and small variance for condition 2) and by filters
with low eigenvalues (vice versa). Therefore, the common
practice in a classification setting is to use several eigenvectors
from both ends of the eigenvalue spectrum as features for
classification. The CSP filters can also be visualized as scalp
maps and chosen according to physiological plausibility. For
more details, see the CSP tutorial [28].

B. Features and Classification

The EEG signals of the calibration measurement are
band-pass filtered (subject-specific frequency band, see Sec-
tion III-C) and spatially filtered with the CSP filters determined
as described above. From these signals the log-variance is
calculated in each trial of the calibration data (interval is

selected subject-specfically, typically 750 to 3500 ms relative
to the presentation of the visual cue, see Section III-C). This
procedure results in a feature vector with dimensionality equal
to the number of selected CSP filters, which was between 2
and 6 (most often 4) in this study. To our experience, those
features can be well classified by linear methods, so we used
linear discriminant analysis (LDA). Nevertheless nonlinear
methods (e.g. [32,33]) can potentially improve the results, see
also the discussion [34].

For online operation, features are calculated every 40 ms
from sliding windows of 500 to 1000 ms width (subject-
specific). In the current setup, the CSP filters calculated from
the initial calibration measurement are not adapted during
online operation. Nevertheless the system allows stable perfor-
mance even for several hours ([35,36]). The issue of adapting
CSP filters during feedback was investigated in [37].

C. Selection of Subject-Specific Hyperparameters

While many parameters of the processing method are esti-
mated automatically like the filter matrix and the weightingof
the linear classifier, there are several hyperparameters which
were selected semi-automatically like the frequency band
and the selection of the CSP filters. To this end, class-wise
averaged plots of the spectra, of the ERD curves and of the
respective squared bi-serial correlation coefficient (r2-value)
were investigated. Ther2-coefficient reflects how much of
the variance in the distribution of all samples is explained
by the class affiliation. A heuristic based on ther2-values
suggested parameters to the experimenter. Additionally, the
cross-validation error was used as an indicator for good
parameter values. Further details about the processing methods
and the selection of parameters can be found in [1,38].
A heuristic procedure for fully automatic selection of all
neccessary parameters for CSP is proposed and evaluated in
[28].

IV. RESULTS

A. Neurophysiological Outcome

The neurophysiological properties of the EEG of all suc-
cessful subjects are shown in Fig. 3. Only the two imagery
conditions that have been used for feedback are displayed.
The frequency band that was chosen for online feedback is
shaded gray, see Section III-C. Here we discuss the results for
two representative subjects (ct andcu) in more detail. Cross-
validation results suggested to use only the alpha band for
subjectcu while using a broader band encompassing alpha and
beta range for subjectct. The topographies of the reference
condition (top scalp map row) look quite similar for most
subjects with a dominating occipital/parietalα rhythm, which
is only absent in subjectscn and co. For the motor imagery
conditions we essentially expect two effects: regularly, an ERD
over the sensorimotor area corresponding to the limb for which
motor imagery was performed ([23]), and, potentially, an ERS
over flanking sensorimotor areas, possibly reflecting an ‘sur-
round inhibition’ enhancing focal cortical activation ([39,40]).
Subjectct shows clearly the contralateral ERD during hand
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See large Figures on last two pages.

Fig. 3: The first row displays the averaged spectra of the two motor
imagery tasks (red: left hand, green: right hand; blue: right foot) in
the calibration measurement that have been used to train the classifier
(subjectco performed physical movements, see Section IV-A). The
r2-values of the difference between those conditions are color coded
and the frequency band that has been chosen is shaded gray. The
second row shows the average amplitude envelope of that frequency
band with 0 being the time point of stimulus presentation in the
calibration measurement. Spectra and amplitude envelopes are both
shown for the Laplace filtered channel that is indicated in the top
of the spectra subplot. The top scalp maps (row 3) show the log
power within the chosen frequency band averaged over the whole
calibration measurement. The fourth and fifth row display the log
band power difference topographies of the particular motor imagery
tasks (indicated by L, R, or F, respectively), from which the global
average (shown in row 3) is subtracted. The bottom row (6) displays
the r2-values of the difference (row 4 minus row 5) between the
individually chosen motor imagery tasks as scalp map.

motor imagery. An ipsilateral ERS was not observed. For
subjectcu left hand motor imagery results in a contralateral
ERD accompanied by a weaker ipsilateral ERD. During foot
imagery no ERD over the foot area was observed (the same
applies for the other subjects that used foot imagery), but a
strong ERS over both hand areas.

For subjectcn β-ERS at central scalp position was observed
during foot imagery, while the same region showed an ERD
during left hand motor imagery. This is not the typical case,
see Section II-A, but ERS ofβ oscillations over the foot
representation area was also reported, e.g., in [41] where this
effect was observed only after several months of BCI training.

For subjectco no sensorimotor rhythm (SMR) was visible
in the calibration measurement, i.e. the spectra from Laplacian
filtered channels over sensorimotor cortex did not show any
peak, but followed the 1/ f noise shape. We then recorded in
the same setup real movements (but acquiring only 35 trials
per class). Here a SMR with the expected desynchronization
was observed. We were able to train a classifier on the real
movement recording and it could be successfully used to pro-
vide feedback when the subjectimaginedmovements (results
reported in Table I). This interesting relation of imaginedand
real movements goes beyond the scope of this study and will
be the topic of a future publication.

Also for subject cq the spectra from Laplacian filtered
channels over sensorimotor cortex did not show any peak. But
here the same applied to the measurement with real move-
ments. Deeper analysis of such cases and the development
of strategies to provide BCI control also for subjects of this
category is subject of present resarch.

B. Feedback Performance

For subjectcq, no distinguishable classes were identified.
The other 13 subjects performed feedback: 1 near chance level,
3 with 70-80%, 6 with 80-90% and 3 with 90-100% hits, see
Table I. The results of all feedbacks runs are shown in the left
plot of Fig. 4.
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Fig. 4: Left: Feedback accuracy of all runs (magenta dots) and intra-
subject averages (black crosses).Right: Histogram of accuracies ob-
tained in BBCI-controlled cursor movement task in all feedback runs
of the study. Note, that the duration of trials (from cue presentation
to end of feedback) was variable in our study, see Table I.

TABLE I: Performance results for all 14 subjects of the study. The
first column shows the subject code and the second column a two
letter code which indicates the classes which have been used for
feedback (L: left hand, R: right hand, F: right foot). The third column
shows the average accuracy during the feedback± the standard error
of intra-run averages. The average duration± standard deviation of
the feedback trials is provided in the fourth column (duration from
cue presentation to target hit, inter-cue interval is 520 ms longer, see
Section II-B). Subject order is sorted according to feedback accuracy.
The last three columns investigate the influence of concurrent EMG
activity. Column 5 reports the results of EMG-based classification;
columns 6 and 7 compare the EEG-based feedback accuracy in the
subset of trials that have been classified correctly (column 6) or
incorrectly (column 7) based on EMG data.

sbj. cls. acc. fb dur. EMG acc in acc in
[%] [s] acc EMG+ EMG-

cm LR 93.2± 3.9 3.5±2.7 59.0 93.0 94.1
ct LR 91.4± 5.1 2.7±1.5 55.2 90.4 93.2
cp LF 90.3± 4.9 3.1±1.4 87.7 90.2 92.7
zp LR 88.0± 4.8 3.6±2.1 51.0 81.4 79.3
cs LR 87.4± 2.7 3.9±2.3 61.5 87.0 87.7
cu LF 86.5± 2.8 3.3±2.7 53.0 84.9 88.2
ea FR 85.7± 8.5 3.8±2.2 67.7 84.1 86.9
at LF 84.3±13.1 10.0±8.3 43.1 75.3 76.7
zr LF 80.7± 6.0 3.1±1.9 51.4 72.8 78.7
co LF 75.9± 4.8 4.6±3.1 69.1 75.5 76.3
eb LF 73.1± 5.6 5.9±4.8 69.8 71.5 77.3
cr LR 71.3±12.6 4.9±3.7 50.5 72.0 70.3
cn LF 53.6± 6.1 3.9±2.4 64.5 60.1 42.5
cq — – –

C. Independence of BCI Control from EMG Activity

It is in principle possible to voluntarily modulate sen-
sorimotor rhythms without concurrent EMG activity ([42]),
nevertheless EMG contributions always need to be thoroughly
investigated. While the experimenter checked for EMG activity
throughout the whole measurement some subjects of this study
did not manage to completely refrain from small EMG activa-
tions in some trials. We investigated the influence on the (EEG-
based) feedback performance in the following way. The 3
EMG channels were high-pass filtered at 20 Hz and segmented
in 500 to 3000 ms epochs relative to cue presentation. Then
features were calculated as log variance in 5 subwindows
of 500 ms of each trial and classified by linear discriminant
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analysis (LDA) in a leave-one-out fashion, such that each
feedback trial obtained a label ‘EMG+’ or ‘EMG-’ according
to correct or incorrect classification. Note that ‘EMG+’ trials
do not necessarily contain EMG activity. In the absence of
EMG activity classification would perform at chance, i.e. about
50 % of the trials would be ‘EMG+’. This was the case for
most of the subjects. However, for some subjects there were
substantially more ‘EMG+’ trials indicating that a portionof
those trials contains EMG activity. We then compared the
accuracy of the EEG-based feedback in the two subgroups
of ‘EMG+’ and ‘EMG-’ trials, see the last two columns in
Table I. If muscle activity has a positive bias then the first
quantity will be larger than the second one. It is interesting
to see that in most cases where these quantities differ, higher
accuracy was achieved in ‘EMG-’ trials. This suggests that
the causal relationship between BCI performance and EMG
artifacts might as well be the other way around: when for some
subjects the EEG-based feedback does not work reliably, they
subconciously used muscle activity in their effort to produce
the intended feedback. This activity, however, has apparently
no positive influence on the feedback signal. The only subject
for whom a positive dependence of EMG activity and feedback
accuracy was found (subjectcn) was the worst perfoming one.
In order not to bias our performance statistics we decided to
keep this subject in the result table.

V. D ISCUSSION

A. What makes the difference?

For a variety of reasons it is difficult in BCI research to
pinpoint the reasons, why a particular study leads to good
results. In order to approach this question in some aspects,we
did an offline analysis of our data using alternative processing
techniques. From the vast amount of possible alternatives,we
chose to investigate those parameters of data analysis in which
our system differs from the one used in [14] (see Section I).
That study provides an interesting counterpart to ours since
it requires much less resources (number of electrodes, prepa-
ration time). The achieved feedback accuracy is remarkable
for the quick setup, but considerably worse compared to
ours. Due to a number of reasons, those two studies are not
directly comparable (the latter study was conducted at a public
exposition with additional noise sources as well as potentially
psychological pressure on the subjects; a much lower number
of trials was recorded, etc.). Still it can be used as a motivation
to investigate how the (offline) performance in our data sets
varies, when the complexity of the system is reduced. We limit
the investigation to three factors: choice of motor imagery
classes, selection of frequency band and spatial filtering.

• CLASSES. In [14] the pair of motor imagery conditions
was fixed to be right hand vs. foot imagery. In our
study the calibration measurement additionally encom-
passed left hand imagery. The pair giving the best cross-
validation error on the calibration data was chosen for
feedback. For factor CLASSES we investigateright-foot
andbest pair.

• FREQBAND. In [14] band-power was calculated in the
two frequency bands 8–10 Hz and 16–20 Hz, while in our
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Fig. 5: Comparison of different preprocessing/classification meth-
ods. Three different factors have been investigated regarding the
impact of their specificity on classification performance. For each
factor (SPATFILT, FREQBAND, CLASSES) one fixed value and
one subject-adapted adjustment was contrasted. See Section V-A for
details. Cross-validation results were obtained from the calibration
measurements (we excluded subjectsco (too little number of trials)
and cq (signals no discriminable with any of the applied methods)
and are displayed as boxplots. Each box ranges from the 25- to the
75-percentile with the median marked in the center. The whiskers
extend to the minimum resp. the maximum.

study one frequency band was chosen individually for
each subject. For the factor FREQBAND we investigate
fixed and individual.

• SPATFILT . In [14] two bipolar channels corresponding
to FC3-CP3 and FCz-CPz have been used. In our study
subject-specific spatial filters were optimized by CSP
analysis. For factor SPATFILT we investigatebip2 and
csp.

The results of the investigation are presented in Fig. 5 (the
two rightmost bars are explained below). While in the settings
with fixed frequency bands (FREQBAND=fixed), CSP-based
classification performs similar to SPATFILT=bip, the selection
of subject-specific frequency bands in particular in connection
with CSP drastically improves performance. Furthermore, the
individual selection of two motor imagery classes out of three
had a positive effect. Note that only for one subject, combi-
nation foot vs. right (which was the fixed choice in [14]) was
selected (see Table I). The performance for FREQBAND=fixed
is generally quite bad. As can been seen in Fig. 3, the most
discriminative frequency band for most subjects in our study
falls between 10 and 15 Hz, a range which is left out in
the fixed setting of [14] that has also been used here for
comparison.

Since the number of channels is an essential factor for
the preparation time (but see Section V-D) we investigated
the factor SPATFILT further. The question was, whether the
essential cause for the lower performance ofbip was the
lower number of channels or the lack of subject-specific
positioning. Therefore we studied the following variants for
factor SPATFILT:

2For CLASSES=best pair, the selection of electrode positions in SPAT-
FILT=bip was chosen accordingly, e.g., FC4-CP4 was used if classleft was
involved.
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• In allbip all bipolar channels (of neighboring electrodes
in anterior to posterior direction like CP3-P3 or F4-FC4)
have been used for classification.

• In bestbip the two most effective channels among all
bipolar channels have been selected. The selection was
based on the Fisher score ([38]). For validation purpose,
channel selection was performed within cross-validation
on each training set.

The rationale ofbestbipis that after a first session with the full
channel setup, only the two selected bipolar channels mightbe
sufficient in future sessions. The stability of this choice across
sessions would have to be investigated, though.

The results (for the most favorable settings of FREQBAND
and CLASSES) are shown as the two rightmost boxes in
Fig. 5. For methodbestbip the median error is about 5%
lower than forbip. Using more channels inallbip lead to a
substantial improvement of performance. The error dropped
by nearly 10%. Note that this error is still 5% abovecsp in
the same setting.

Note that while the group size of 14 subjects in the present
study is large enough to draw conclusions, future studies with
the BBCI system will ultimately need to confirm them for a
larger cohort. See [43] for an investigation of relevant features
for BCI control in an offline study with 34 subjects performing
motor imagery.

B. Effect of Learning During the First Session

One important aspect of a BCI setup is how the feedback
accuracy develops over time, during one session or over a
sequence of sessions. Generally, an improvement of accuracy
over time is taken as a positive result, since it shows that
the subject is learning and the system can profit from it. (In
adaptive BCI systems, e.g. [26], improvement can also be
attributed to the ‘learning’ of the system). We would like to
add another view on the topic. Let us assume that tasks like
motor imagery can be performed quite effectively by most
subjects. Then a flexible BCI system which successfully de-
tects the subject-specific natural signals might not leave much
room for improvement. On the other hand, in a less flexible
system which is fixed to the ‘average’ neurophysiology, the
initial accuracy may be low but increase over time due to the
subjects’ ability to learn to produce brain signals as expected
by the system.

Here we investigate the effect of learning during the first
session. For this purpose we have split the feedback data of
each subject chronologically into 12 intervals and evaluated
the classification accuracy within each part (about 55 trials).
In order to check for training effects during the calibration
runs (without feedback), the calibration data has been split
into 6 intervals and classification accuracy was determined
within each part (about 43 trials) using the same classifier,
and the same temporal and spatial filters that were used during
feedback. Since filters and classifier were determined usingthe
calibration data, the results on the calibration data cannot be
seen as a general estimate of classifyability (overfitting). Still
it is an appropriate way to investigate therelativeevolution of
discriminability over time.
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Fig. 6: Left: Offline classification accuracy of the feedback classifier
in 6 chronological parts of the calibration data. Note that the feedback
classifier was trained on the calibration data, so classification may
be subject to overfitting. Nevertheless, the relative development of
classifyability over time can be seen.Right: Online classification
accuracy during BBCI feedback evaluated in 12 chronological parts
of the feedback data. In both cases, no significant trend in accuracy
over time was found.

The results in Fig. 6 show a considerable variation of
accuracy over time. While the across-subject average shows
a slight positive trend in accuracy (correlation coefficient r=
0.1 in both cases), it is not significant (p= 0.4 for calibration,
and p= 0.2 for feedback data).

The results presented in this section substantiate that the
good feedback results cannot be attributed to mental training
during the relatively long calibration measurement or due to
learning during the feedback runs. The feedback results rather
reflect the ability of our system to detect the natural subject-
specific brain patterns of motor imagery. Obviously the present
one-session study is not suitable to discuss the issue of learning
in general.

C. Spatial Filtering Prior to CSP

Due to volume conduction effects, raw scalp EEG is as-
sociated with a large spatial scale ([44]). Spatial filters,like
those determined by CSP analysis, are used to access signals
from well localized sources. One concern might be that this
smearing leads to suboptimal CSP filters. So a reasonable
question is whether additional spatial filtering (like Laplace)
should be appliedprior to CSP analysis. Mathematical details
of the following discussion can be found in [28]. If the signals
are spatially filtered with an invertible matrixB before CSP
is applied, exactly the same features are obtained as without
applying B. This is the case if, e.g., principal component
analysis (PCA) or independent component analysis (ICA) is
applied without discarding components. If the signals are spa-
tially filtered with a noninvertible matrixB, the discriminative
value of the obtained CSP filters as measured by Eigenvalues
can only decrease. Nevertheless it might be the case that
the generalization performance improves, e.g. ifB eliminates
artifacts to which CSP is susceptible.

For the present study, we did not use spatial filters prior the
CSP analysis. In an offline analysis, we evaluated the impact
of Laplace filtering before applying CSP and no systematic
difference was found: In 7/12 subjects (subjectsco and cq
were left out as in Fig. 5) plain CSP obtained a lower error
compared to prior Laplce filtering, and the mean error differed
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non significantly. The median error was 10% for plain CSP
and 10.8% with prior Laplace filtering. Still, the result may
be different for other data sets.

D. Facilitation of preparation

The proposed system reduces the effort for BCI control in
one aspect but increased it in another. While the machine
learning methods successfully reduced the need for subject
training, the demands for electrode preparation have risen
due to the large number of used electrodes. Furthermore a
calibration measurement in which the subject does not get
feedback needs to be recorded.

With respect to the cumbersome electrode preparation great
advancements could be achieved in the meantime. In [45] we
present a novel dry EEG recording technology which does
not need preparation with conductive gel. In the reported
study with good BCI subjects, feedback performance was
comparable to the approach with conventional EEG caps for
most subjects. Note that this system only uses 6 electrodes
and can thus be miniaturized to run with a tiny EEG amplifier
and a pocket PC.

We recorded 140 trials per class in the calibration mea-
surement to be on the safe side and to have an elaborate
database for offline analysis. The minimal demand for online
feedback is much lower. Fig. 7 shows how the validation error
on the calibration data depends on the number of training
samples. For this evaluation we did not use the parameters
(like frequency band) that have been used for feedback, since
these parameters were chosen in knowledge of the whole
calibration data. Instead we used an automatic procedure to
perform the selection ([28]) which is a heuristic based the bi-
serial correlation coefficient. From the figure we may conclude
that around 40 samples per classes are sufficient for good
performance. However, note that here we drew the training
set randomly from the whole data set. A shorter calibration
measurement might contain less variation in background brain
activity which can result in a classifier that is more prone
to nonstationarities in ongoing activity. A possible remedy
was proposed in [46] where a specific measurement captures
possible non task related variations and is used to enforce
invariance properties of the classifier.

A further strategy to reduce the training time was developed
in [47]. For users who participated in several calibration
sessions, the proposed approach allows to calculate a classifier
setup (CSP filters + LDA) on these past sessions. It was
demonstrated to give stable performance in follow-up feedback
session without the need to record new calibration data.

VI. CONCLUSION

The presented study provides evidence that most subjects
can operate the SMR-based BBCI system at high accuracy
in their first feedback session. In contrast, in [14] more than
57 % of the subjects achieved accuracies below 70 % during
feedback (see Section I), which is the level criterion that is
commonly assumed to be the threshold which needs to be
surpassed in order to be able to control feedback applications
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Fig. 7: Dependence of the calibration error on the number of samples
used for training. The number of training samples per class was
varied from 5 to 90. For each value, 100 subsets of training data
have randomly been drawn from the calibration data. CSP and LDA
have been trained and then applied to the remaining test data. The
curves show the average over the 100 errors values for each subject.
The shaded area extends to error plus standard deviation. Note that
for subjectco data from real movements have been used for training.
Since only 35 samples per class have been recorded this data set is
left out in this figure.

like mental typewriters. Note that in [14] a very reduced
system with only 2 bipolar channels was used as opposed to
our system with 55 sensors.

The feature of requiring no user training makes the BBCI
particularly attractive for BCI research studies. Furthermore
it shows that our system is a good candidate for clinical
use, because prolonged training is burdensome for paralyzed
patients as well as costly. It has been demonstrated that ALS
patients can indeed operate a BCI by the voluntary control
of sensorimotor rhythms ([2]). Nevertheless it has still to
be shown that the presented approach with minimal training
works for patients as well.

Future studies will investigate whether subjects for whom
the SMR-based approach fails could succeed in settings using
different neurophysiological features. Furthermore it isof high
interest to see whether those unsuccessful subjects are able to
learn BCI control after training.
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Fig. 3: The first row displays the averaged spectra of the two motor imagery tasks (red: left hand, green: right hand; blue: right foot) in the calibration measurement
that have been used to train the classifier (subject co performed physical movements, see Section IV-A. The r

2-values of the difference between those conditions are color
coded and the frequency band that has been chosen is shaded gray. The second row shows the average amplitude envelope of that frequency band with 0 being the time
point of stimulus presentation in the calibration measurement. Spectra and amplitude envelopes are both shown for the Laplace filtered channel that is indicated in the
top of the spectra subplot. The top scalp maps (row 3) show the log power within the chosen frequency band averaged over the whole calibration measurement. The
fourth and fifth row display the log band power difference topographies of the particular motor imagery tasks (indicated by L, R, or F, respectively), from which the
global average (shown in row 3) is subtracted. The bottom row (6) displays the r

2-values of the difference (row 4 minus row 5) between the individually chosen motor
imagery tasks as scalp map.
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