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The Berlin Brain-Computer Interface: Accurate
performance from first-session in BCl-naive subjects

Benjamin Blankertz, Florian Losch, Matthias Krauledat, Guidornhege, Gabriel Curio, Klaus-Robert Mller

Abstract—The  Berlin  Brain-Computer Interface (BBCI) ~ BBCI system before. Also the number of subjects was limited,
project develops a non-invasive BCI system whose key featuresso the question was left open whether and how the results

are (1) the use of well-established motor competences as control,, |4 generalize to a broader group of completely untrained
paradigms, (2) high-dimensional features from multi-channel subjects

EEG and (3) advanced machine learning techniques. Spatio- . ) ) .
spectral changes of sensorimotor rhythms are used to discrimi-  To date [14] is the only study which investigates BCI

nate imagined movements (left hand, right hand, foot). A previous feedback accuracy on a larger subject population. At an
feedback study ([1]) with 10 subjects provided preliminary eynosition 99 subjects participated in a BCI experimentrethe

evidence that the BBCI system can be operated at high accuracy . . .
for subjects with less than 5 prior BCI exposures. Here, we right hand motor imagery was discriminated from feet motor

demonstrate in a group of 14 fully BCl-naive subjects that 8/14 Imagery using 2 bipolar EEG channels. One run without and
BCI novices can perform at >84% accuracy in their very first BCl  one run with feedback (bar extension) was recorded, each
session, and a further 4 subjects >70%. Thus, 12/14 BCl-novices consisting of 40 trials. Feedback was provided either using
had significant above-chance level performances without any hand power estimation or an adaptive autoregressive model
sElEbéegnt;?ﬁ:ggbsvggvlgr:lgsdf 'ﬁzﬁﬁf éo{:éaariiﬁgsgg g:i]tﬁrr%gptmlzed and a linear classifier (trai_ned on the non-feedl_aack rurtheén _
feedback runs, the following results were achieved: 6 % with
90-100 % accuracy, 11.7 % with 80-90%, 24.9% with 70—
|. INTRODUCTION 80 %, 45.4 % with 60-70%, and 12 % below 60 % accuracy.

Amplitud dulati ‘ , hvth SMR The trial duration was 5s from appearance of the visual cue
mplitude modulations of sensorimotor rhythms ( St)o the end of feedback plus 3 s inter-trial break. There was no

can be voluntarily controlled by most subjects, e.g. by imagy . . tor concurrent electromyogram (EMG) activity.
ining movements. Recently evidence was provided that also

patients suffering from amyotrophic lateral sclerosis )L In this paper we report the performance of BCI novices

. . . o not from our labs) in their first BBCI feedback sessiamthe
can accomplish SMR modulations ([2]). This ability can b%%amework of a broader study. Here, 12 out of 14 were able to

taken as a basis for Brain-Computer Interfaces (BCls) whic rate a cursor control application accurately (mediaf-86

. ) . 0

r Vi that translate the intent of t m gx%? . . o .
are de ces that fransiate n€ intent of a subject measu .0%). A rigorous investigation of EMG signals demonstrates
from brain signals directly into control commands, e.g. fq

a computer application or a neuroprosthesis ([3}-[8]). Fti'nat the success cannot be ascribed to concurrent EMGtgctivi

or . . )
alternative applications of BCI technology, see [9]-[11]) arunng motor imagery, see Sectipn IV-C.

One of the challenges in the development of BCI systems
is to minimize the amount of subject training that is needed Il. MATERIAL
for accurate performance. In this regard t_he machin_e_ legrnia . Neurophysiology
approach to BCI has been shown to be highly promising ([12, . . . . .
13]). In our first feedback study ([]) nine out of ten untedn _Macroscopic brain activity during resting wakefulness-con
subjects were able to operate a one-dimensional cursoratont2ins distinct ‘idle” rhythms located over various brain- ar
feedback with high precision (median 93 5.4% accuracy). €2S: 0. the parietat-rhythm (8-12Hz) can be measured
Note that the subjects of that study were staff members, sofiyer the visual cortex ([15]). The perirolandic sensorianot

of which had performed feedback with earlier versions of tHePrtices show rhythmic macroscopic EEG oscillations- (
rhythm) ([16,17]), with spectral peak energies of about 9—
This work was supported in part by grants of tBeindesministerium 14 Hz localized predominantly over the postcentral songatos
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Fig. 1: Event-Related Desynchronization (ERD) during motor imagerhefleft and the right hand. Raw EEG signals of one subject have
been band-pass filtered in tieeband. For the time courses, the envelope of the signals has been tealdwfeHilbert transform and averaged
over segments of -500 to 4500 ms relative to each cue for left redp. wend motor imagery. ERD curves are shown for Laplace filtered
channels at C3 and C4, i.e. over left and right primary motor cort&e fbpographical maps of ERD were obtained by calculating the
band-power for all (non Laplace filtered) channels in the shaded timevahticom 1000 to 4000 ms after stimulus presentation, transforming
it to dB, and subtracting the band-power averaged over the wholediagor
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Typically ERD is an indication of cortical activity, whileFES  signals from muscles and joint receptors) in the EEG channel
can be observed during cortical idling. An investigation of the potential influence of concurrent GM

Several EEG-based BCI systems rely on the fact thagtivity on the classifier, which should operate on the EEG
amplitude modulations of sensorimotor rhythms can be valignals only, is given in Section IV-C.
untarily controlled by most of the subjects, e.g. by imaggni In the beginning, a short ‘artifact measurement’ was
movements as explained above (see [24] for an interestirggorded during which the subject performed tasks like eye
variation of the paradigm). Fig./ 1 shows the time course afiovements, biting, and relaxing with open or closed eyes: Du
the amplitude of the:-rhythm during left hand and right handing the ‘calibration measurement’ every 5.25-5.75 seconés
motor imagery and the corresponding topographies. of 3 different letters was displayed in randomized sequence

While some approaches try to achieve the required sigﬁa[ 3.5 seconds on a screen to indicate which mental task the
strength by training the subjects ([2,25,26]) an altexats subject should accomplish during that period. The investig
to calibrate the system to the specific charateristics oh ea@ental tasks were imagined movements of the left hand (L),
user ([1,27]). For the latter data-driven approachesutaing the right hand (R), and the right foot (F). For each subject
subject-specific spatial filters have proven to be useful, 40 trials per class were recorded within 4 runs with several
Section MlI-A and [28]. minutes of break in between. Furthermore, subjects pegdrm

1 or 2 runs of physically executed movements.
] After the calibration measurement subjects performed 5

B. Experimental Setup feedback runs of 10 minutes duration (for 3 subjects only 4

Fourteen healthy BCI-novices (7m, 7f, age 2731) took funs have been recorded). Here the output of the classifier wa

part in this one-session study. We had no physiological Banslated to the horizontal position of a cursor. See [Fig. 2
psychological indicators that these subjects were pdatigu for a cartoon of the feedback and its timing. One of the two
suited for BCI control. In particular, the subjects did nofi€lds on the left and right edge of the screen was highlighted
perform in any motor imagery experiment before. All recorcBS target at the beginning of a trial. The cursor was intiall

ings (calibration and feedback runs) of one subject have bed the center of the screen and started moving according to
recorded on the same day (One ‘Session’)_ the BBCI ClaSSifier Output 750 ms after the indication of the

The subjects were sitting in a comfortable chair with arms
lying relaxed on armrests. Brain activity was recorded from

the scalp with multi-channel EEG amplifiers (BrainAmp DC indication o et cursor moves “ication ofesut s
by Brain Products, Munich, Germany) using 55 Ag/AgC

electrodes (reference at nasion; manufacturer Electmpi@a + +»

ternational, Inc., Eaton, Ohio) in an extended 10-20 syste

sampled at 1000 Hz with a band-pass from 0.05 to 200 He. e —— o

Additionally, we recorded EMG from both forearms and thEig. 2: Course of a feedback trial. The target cue is indicated for

right leg as well as horizontal and vertical electroocumgr 750 ms. Then the cursor starts moving according to the BCI classifier

(EOG). The EMG channels were exclusively used to contrghtil it touches one of the two fields at the edge of the screen. The
for physical limb movements that could correlate with thekta touched field is colored green or red according to whether or not its

and could be reflected directly (artifacts) or indirectlff¢eent Wwas the correct target. 520 ms later, the next trial starts.
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target. The trial ended when the cursor touched one of the taelected subject-specfically, typically 750 to 3500 mstikada
fields. That field was then colored green or red, depending tthe presentation of the visual cue, see Sedction llI-CJs Th
whether or not it was the correct target. After 520 ms the negtocedure results in a feature vector with dimensionalifyad
target cue was presented (see [1,29] for more details). Tioethe number of selected CSP filters, which was between 2
number of feedback trials varied according to the subjec@hd 6 (most often 4) in this study. To our experience, those
performance between 297 and 1024 (see Table | for tfeatures can be well classified by linear methods, so we used
average trial duration of each subject). There was no spedinear discriminant analysis (LDA). Nevertheless nordine
motivation (like financial reward) for the subjects to asleie methods (e.g. [32,33]) can potentially improve the resisks
good performance, but most subjects seemed well motivatdo the discussion [34].

by their interest in the topic of the study. For online operation, features are calculated every 40 ms
from sliding windows of 500 to 1000 ms width (subject-
I1l. METHODS specific). In the current setup, the CSP filters calculatethfr

the initial calibration measurement are not adapted during
. o o _ online operation. Nevertheless the system allows stalferpe
A crucial point in BCI data analysis is the extraction ofhance even for several hours ([35,36]). The issue of adgptin

appropriate spatial filters that optimize the discrimitighi CSP filters during feedback was investigated in [37].
of multi-channel brain signals based on event-related rdesy

chronization/synchronization (cf. Fig. 1 and Section )I-#f
the sensorimotor rhythms. Once these filters have been deﬁ:-:r
mined, subsequent processing and classification is relativ. While many parameters of the processing method are esti-
straight forward, see Section III-B. mated automatically like the filter matrix and the weightirfg

The spatial filters are calculated individually for eachjeab the linear classifier, there are several hyperparameteishwh
from the data of a calibration measurement by Commovere selected semi-automatically like the frequency band
Spatial Pattern (CSP) analysis ([28,30,31]). The objecti¥ and the selection of the CSP filters. To this end, class-wise
the CSP technique is to find spatial filters that maximizaveraged plots of the spectra, of the ERD curves and of the
variance of signals of one condition and at the same tinespective squared bi-serial correlation coefficieritvalue)
minimize variance of signals of another condition. Sincacha Wwere investigated. The?-coefficient reflects how much of
power can be calculated as the variance of band-pass filtetie@ variance in the distribution of all samples is explained
signals, CSP filters can be used to discriminate conditioas tby the class affiliation. A heuristic based on th&values
are characterized by ERD/ERS effects. suggested parameters to the experimenter. Additiondlly, t

Technically CSP analysis works as follows. gtands, be cross-validation error was used as an indicator for good
estimates of the covariance matrices of the band-passtiiteParameter values. Further details about the processirtgoaiet
EEG signals under the two conditions. These two matricB8d the selection of parameters can be found in [1,38].
are simultaneously diagonalized such that the eigenvatfies® heuristic procedure for fully automatic selection of all
¥, andX, sum to 1. Practically this can be done by calculatinPeccessary parameters for CSP is proposed and evaluated in
the generalized eigenvectorg: 28].

2IW = (21 + Zz)W D. Q)

A. Subject-specific Spatial Filters

Selection of Subject-Specific Hyperparameters

IV. RESULTS
Here, the diagonal matri® contains the (generaliz_ed) eigen-y Neurophysiological Outcome
values ofZ; and the column vectors & are the filters for ) ) )

the CSP projections. By this procedure a full decomposition The neurophysiological properties of the EEG of all suc-
of the sensor space is determined. Best contrast is provid&$sful subjects are shown in Fig. 3. Only the two imagery
by those filters with high eigenvalues (large variance f&onditions that have been used for feedbaclf are dlsplayeq.
condition 1 and small variance for condition 2) and by filter§he frequency band that was chosen for online feedback is
with low eigenvalues (vice versa). Therefore, the commdifiaded gray, see Section Il-C. Here we discuss the resuits f
practice in a classification setting is to use several eigetovs WO representative subjectst(andcu) in more detail. Cross-
from both ends of the eigenvalue spectrum as features ¥gtidation results suggested to use only the alpha band for
classification. The CSP filters can also be visualized apsc&HPiectcuwhile using a broader band encompassing alpha and
maps and chosen according to physiological plausibility. pbeta range for subjedait. The topographies of the reference

more details, see the CSP tutorial [28]. condition (top scalp map row) look quite similar for most
subjects with a dominating occipital/parielrhythm, which

is only absent in subjectsn and co. For the motor imagery
conditions we essentially expect two effects: regulamyE&D
The EEG signals of the calibration measurement aower the sensorimotor area corresponding to the limb fockwhi
band-pass filtered (subject-specific frequency band, see Smotor imagery was performed ([23]), and, potentially, anSER
tion[Il1-C) and spatially filtered with the CSP filters detém@d over flanking sensorimotor areas, possibly reflecting an ‘su
as described above. From these signals the log-varianceagnd inhibition” enhancing focal cortical activation §30]).
calculated in each trial of the calibration data (interval iSubjectct shows clearly the contralateral ERD during hand

B. Features and Classification
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See large Figures on last two pades.

PR
Fig. 3: The first row displays the averaged spectra of the two mot *’| . | X X% % :

imagery tasks (red: left hand, green: right hand; blue: right foot) i
the calibration measurement that have been used to train the class §® .
(subjectco performed physical movements, see Section IV-A). Th§ ‘¥
r2-values of the difference between those conditions are color cocgm :
and the frequency band that has been chosen is shaded gray.
second row shows the average amplitude envelope of that freque o

feed

band with 0 being the time point of stimulus presentation in th -
calibration measurement. Spectra and amplitude envelopes are t s .

. . . . . - 0 5 10 15 20 25 30 35 40
shown for the Laplace filtered channel that is indicated in the t¢, ~enccpzpcs cueaa z coeb or on 196] of feedback runs

of the spti(_:tra;hsubﬁlot. T?e top scalg:) rr(ljaps (row d3) ShO\g] thehl . 4: Left: Feedback accuracy of all runs (magenta dots) and intra-
power within the chosen frequency band averaged over the WNnQigye + qverages (black crosserRjght: Histogram of accuracies ob-
calibration measurement. The fourth and fifth row display the I%in

band power difference topographies of the particular motor image y ed in BBCI-controlled cursor movement task in all feedback runs
tasks (indicated by L, R, or F, respectively). from which the globi the study. Note, that the duration of trials (from cue presentation

average (shown in row 3) is subtracted. The bottom row (6) displays end of feedback) was variable in our study, see Table I.
the r2-values of the difference (row 4 minus row 5) between the

individually chosen motor imagery tasks as scalp map. TABLE [: Performance results for all 14 subjects of the study. The

first column shows the subject code and the second column a two
letter code which indicates the classes which have been used for

motor imagery. An ipsilateral ERS was not observed. Edgedback (L: left hand, R: right hand, F: right foot). The third colum

subjectcu left hand motor imagery results in a contralaterai?oWs the average accuracy during the feedbacke standard error
of intra-run averages. The average duratiorstandard deviation of

ERD accompanied by a weaker ipsilateral ERD. During fo%e feedback trials is provided in the fourth column (duration from
imagery no ERD over the foot area was observed (the sagif presentation to target hit, inter-cue interval is 520 ms longer, see
applies for the other subjects that used foot imagery), butSaction 1I-B). Subject order is sorted according to feedback acgura
strong ERS over both hand areas. The last three columns investigate the influence of concurrent EMG

. e tivity. Column 5 reports the results of EMG-based classification;
For subjectn B-ERS at central scalp position was observe lumns 6 and 7 compare the EEG-based feedback accuracy in the

during foot imagery, while the same region showed an ER&pset of trials that have been classified correctly (column 6) or
during left hand motor imagery. This is not the typical casécorrectly (column 7) based on EMG data.
see Section II-A, but ERS o oscillations over the foot . . -
tation area was also reported, e.g., in [41] wiise t S ©S ac.® dur. EMG accin - accin
representati p » €.0., o [%] [s] acc EMG+ EMG-
effect was observed only after several months of BCI trgnin
. . e c LR  93.2+ 39 3527 59.0 930 941
~ For supject_co no sensorimotor rhythm (SMR) was v_|5|ble ot LR 914: 51 2.7:15 552 904 932
in the calibration measurement, i.e. the spectra from lcigsia  cp LF 903+ 49 3114 87.7 90.2 927
filtered channels over sensorimotor cortex did not show anyz? LR 88048 3621} 51.0 814 793
. ~Ycs LR 874+ 27 3.9:23 61.5 87.0 877
peak, but followed the Af noise shape. We then recorded in o, |F 865. 2.8 3.3.2.7 53.0 849 882
the same setup real movements (but acquiring only 35 trialsea FR 857 85  3.8:2.2 67.7 84.1  86.9
per class). Here a SMR with the expected desynchronization® ~ LF 843:13.1 10083 ) 431 753  76.7
: o zr LF 807+ 6.0  3.1+19 51.4 728 787
was observed. We were able to train a classifier on the reales,  |F 759, 48 4.6:3.1 69.1 755 763
movement recording and it could be successfully used to pro-eb  LF 731+ 56  5.9:4.8 69.8 715 773
vide feedback when the subjectaginedmovements (results ¢ LR 71.3:12.6  4.9:3.7 505 720 703
X o . ) : : cn  LF 536: 61 3.9:24 64.5 60.1 425
reported in Tablé 1). This interesting relation of imagiretl cq — _ _
real movements goes beyond the scope of this study and will

be the topic of a future publication.
Also for subjectcq the spectra from Laplacian filtered
channels over sensorimotor cortex did not show any peak. Bt Independence of BCI Control from EMG Activity
here the same applied to the measurement with real move-
ments. Deeper analysis of such cases and the developmef iS in principle possible to voluntarily modulate sen-

of strategies to provide BCI control also for subjects ofthisorimotor rhythms without concurrent EMG activity ([42]),
category is subject of present resarch. nevertheless EMG contributions always need to be thorgqughl

investigated. While the experimenter checked for EMG agtivi
throughout the whole measurement some subjects of thig stud
did not manage to completely refrain from small EMG activa-
tions in some trials. We investigated the influence on theGEE
For subjectcq, no distinguishable classes were identifiehased) feedback performance in the following way. The 3
The other 13 subjects performed feedback: 1 near chande le#MG channels were high-pass filtered at 20 Hz and segmented
3 with 70-80%, 6 with 80-90% and 3 with 90-100% hits, sei 500 to 3000 ms epochs relative to cue presentation. Then
Table'l. The results of all feedbacks runs are shown in the lééatures were calculated as log variance in 5 subwindows
plot of Fig.[4. of 500 ms of each trial and classified by linear discriminant

B. Feedback Performance
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analysis (LDA) in a leave-one-out fashion, such that eac s} 1
feedback trial obtained a label ‘EMG+’ or ‘EMG-’ according 4 T .
to correct or incorrect classification. Note that ‘EMG+'ald
do not necessarily contain EMG activity. In the absence
EMG activity classification would perform at chance, i.eoab
50% of the trials would be ‘EMG+'. This was the case fo
most of the subjects. However, for some subjects there we
substantially more ‘EMG+’ trials indicating that a portiaf -
those trials contains EMG activity. We then compared tt
accuracy of the EEG-based feedback in the two subgrot o
of ‘EMG+’ and ‘EMG-’ trials, see the last two columns inseateir bip:  [esp: (bip ‘esp [bip esp [Bp [esp bestbip  allbip
Tablell. If muscle activity has a positive bias then the firsFrReesancfixed - I HACEL e MOl ImAHICEN
quantity will be larger than the second one. It is interestin i pestpar pestpar
to see that in most cases where these quantities diﬁerehigﬁigs- 5T hg’emgﬁ}fgsrggt (;;c(:(ijfrirehne:vgr?)%?r?ﬁi?/igs%/iczzsgﬁ(r::tigpdilTetthh-e
accuracy was gchlevgd in ‘EMG- trials. This suggests th pact of their specificity on classification perfgrmance.gFor gach
the causal relationship between BCI performance and EMSgtor (SPATFILT, FREQBAND, CLASSES) one fixed value and
artifacts might as well be the other way around: when for sore@e subject-adapted adjustment was contrasted. See Sectibn V-A for
subjects the EEG-based feedback does not work reliably, thetails. Cross-validation results were obtained from the calibration
subconciously used muscle activity in their effort to proglu measurements (we excluded subjexig(too little number of trials)

and cq (signals no discriminable with any of the applied methods)

the intended feedback. This activity, however, has apmlqrenand are displayed as boxplots. Each box ranges from the 25- to the

no positive inﬂl{?nce on the feedback Signa{- The only stibjeg;_percentile with the median marked in the center. The whiskers
for whom a positive dependence of EMG activity and feedbaeltend to the minimum resp. the maximum.

accuracy was found (subject) was the worst perfoming one.
In order not to bias our performance statistics we decided to
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keep this subject in the result table. study one frequency band was chosen individually for
each subject. For the factor FREQBAND we investigate
V. DiscussION fixed and individual.
A. What makes the difference? o SPATFILT . In [14] two bipolar channels corresponding

to FC3-CP3 and FCz-CPz have been used. In our study
subject-specific spatial filters were optimized by CSP
analysis. For factor SPATFILT we investigamﬂ and

csp

For a variety of reasons it is difficult in BCI research to
pinpoint the reasons, why a particular study leads to good
results. In order to approach this question in some aspeets,

did an offline analysis of our data using alternative proogss ) o o
techniques. From the vast amount of possible alternatives, The results of the investigation are presented in Fig. 5 (the

chose to investigate those parameters of data analysisianwHWO rightmost bars are explained below). While in the setting
our system differs from the one used in [14] (see Section With fixed frequency bands (FREQBANMxed), CSP-based
That study provides an interesting counterpart to oursesinglassification performs similar to SPATFILD#p, the selection
it requires much less resources (number of electrodesapreff Subject-specific frequency bands in particular in cotinec
ration time). The achieved feedback accuracy is remarkalffgh CSP drastically improves performance. Furthermdre, t
for the quick setup, but considerably worse compared tedividual s_glectlon of two motor imagery classes_out okthr _
ours. Due to a number of reasons, those two studies are ABfl @ positive effect. Note that only for one subject, combi-
directly comparable (the latter study was conducted at siguihationfootvs. right (which was the fixed choice in [14]) was
exposition with additional noise sources as well as paaéipti Selected (see Table I). The performance for FREQBA btz
psychological pressure on the subjects; a much lower numiz@enerally quite bad. As can been seen in Fig. 3, the most
of trials was recorded, etc.). Still it can be used as a mitiga discriminative frequency band for most subjects in our gtud
to investigate how the (offline) performance in our data se@ls between 10 and 15Hz, a range which is left out in
varies, when the complexity of the system is reduced. W linfl'€ fixed setting of [14] that has also been used here for
the investigation to three factors: choice of motor image§Pmparson.
classes, selection of frequency band and spatial filtering. ~ Since the number of channels is an essential factor for
o CLASSES In [14] the pair of motor imagery Conditionsthe preparation time (but see Sect-D) we investigated
was fixed to be right hand vs. foot imagery. In Ou];he factor SPATFILT further. The question was, whether the

study the calibration measurement additionally encmfiSsentlal cause for the lower performanceby was the

passed left hand imagery. The pair giving the best cro guer n.umber of channels or the lack of _subjec_t-specific
validation error on the calibration data was chosen f&°Stioning. Therefore we studied the following variants f

feedback. For factor CLASSES we investigaight-foot actor SPATFILT:

andbest pair
. 2For CLASSESbest pait the selection of electrode positions in SPAT-
« FREQBAND. In [14] band-power was calculated in the t=pip was chosen accordingly, e.g., FC4-CP4 was used if didswvas

two frequency bands 8-10Hz and 16-20 Hz, while in ourvolved.
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100 100

« In allbip all bipolar channels (of neighboring electrode: = AL
in anterior to posterior direction like CP3-P3 or F4-FC4 = ot A/ '
have been used for classification. -

« In bestbipthe two most effective channels among al
bipolar channels have been selected. The selection v:
based on the Fisher score ([38]). For validation purpos:
channel selection was performed within cross-validatic®
on each training set.

The rationale obestbipis that after a first session with the full T 2 4 e 80w
channel setup, only the two selected bipolar channels nightFig. 6: Left: Offline classification accuracy of the feedback classifier

sufficient in future sessions. The stability of this choiceoss in 6 chronological parts of the calibration data. Note that the feedback
sessions would have to be.investigated though classifier was trained on the calibration data, so classification may

be subject to overfitting. Nevertheless, the relative development of
The results (for the most favorable settings of FREQBANDIassifyability over time can be seeRight: Online classification

and CLASSES) are shown as the two rightmost boxes agcuracy during BBCI feedback evaluateq in. ;2 chronolqgical parts
Fig. [5. For methodbestbip the median error is about 504, 0f the_ feedback data. In both cases, no significant trend in accuracy
. . . . over time was found.

lower than forbip. Using more channels iallbip lead to a

substantial improvement of performance. The error dropped

by nearly 10%. Note that this error is still 5% abowgpin The results in Fig/ 6 show a considerable variation of

the same setting. _ _ _ accuracy over time. While the across-subject average shows
Note that while the group size of 14 subjects in the presegislight positive trend in accuracy (correlation coeffitien

study is large enough to draw conclusions, future studiéls wp 1 in both cases), it is not significanp£ 0.4 for calibration,

the BBCI system will ultimately need to confirm them for aand p= 0.2 for feedback data).

larger cohort. See [43] for an investigation of relevanties  The results presented in this section substantiate that the

for BCI control in an offline study with 34 subjects performin g,qq feedback results cannot be attributed to mental trgini

motor imagery. during the relatively long calibration measurement or due t

learning during the feedback runs. The feedback resulterat

reflect the ability of our system to detect the natural subjec
One important aspect of a BCI setup is how the feedbagRecific brain patterns of motor imagery. Obviously the gnés

accuracy develops over time, during one session or ovelo@e-session study is not suitable to discuss the issueroitga

sequence of sessions. Generally, an improvement of agcuréicgeneral.

over time is taken as a positive result, since it shows that

the subject is learning and the system can profit from it. (I o .

adaptive BCI systems, e.g. [26], improvement can also §e Spatial Filtering Prior to CSP

attributed to the ‘learning’ of the system). We would like to Due to volume conduction effects, raw scalp EEG is as-

add another view on the topic. Let us assume that tasks l&eciated with a large spatial scale ([44]). Spatial filtdite

motor imagery can be performed quite effectively by moshose determined by CSP analysis, are used to access signals

subjects. Then a flexible BCI system which successfully déom well localized sources. One concern might be that this

tects the subject-specific natural signals might not leauehm smearing leads to suboptimal CSP filters. So a reasonable

room for improvement. On the other hand, in a less flexibkuestion is whether additional spatial filtering (like Lampd)

system which is fixed to the ‘average’ neurophysiology, thghould be appliegrior to CSP analysis. Mathematical details

initial accuracy may be low but increase over time due to tlod the following discussion can be found in [28]. If the sit;a

subjects’ ability to learn to produce brain signals as etgubc are spatially filtered with an invertible matr® before CSP

by the system. is applied, exactly the same features are obtained as withou
Here we investigate the effect of learning during the firgtpplying B. This is the case if, e.g., principal component

session. For this purpose we have split the feedback dataasflysis (PCA) or independent component analysis (ICA) is

each subject chronologically into 12 intervals and evaldatapplied without discarding components. If the signals gee s

the classification accuracy within each part (about 55dyial tially filtered with a noninvertible matriB, the discriminative

In order to check for training effects during the calibratiovalue of the obtained CSP filters as measured by Eigenvalues

runs (without feedback), the calibration data has beert spian only decrease. Nevertheless it might be the case that

into 6 intervals and classification accuracy was determinge generalization performance improves, e.d éliminates

within each part (about 43 trials) using the same classifi@ttifacts to which CSP is susceptible.

and the same temporal and spatial filters that were usedgdurin For the present study, we did not use spatial filters prior the

feedback. Since filters and classifier were determined ubing CSP analysis. In an offline analysis, we evaluated the impact

calibration data, the results on the calibration data cabeo of Laplace filtering before applying CSP and no systematic

seen as a general estimate of classifyability (overfittiggill  difference was found: In 7/12 subjects (subjectsand cq

it is an appropriate way to investigate tretative evolution of were left out as in Fig. |5) plain CSP obtained a lower error

discriminability over time. compared to prior Laplce filtering, and the mean error déffer
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non significantly. The median error was 10% for plain CS ;. xvalidation on calibration measurement
and 10.8% with prior Laplace filtering. Still, the result may | —
be different for other data sets. Y

at
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D. Facilitation of preparation

The proposed system reduces the effort for BCI control
one aspect but increased it in another. While the machi _
learning methods successfully reduced the need for subjggzo’
training, the demands for electrode preparation have ris ® 15
due to the large number of used electrodes. Furthermore 1o}
calibration measurement in which the subject does not ¢
feedback needs to be recorded. ‘ ‘ ‘ ‘ ‘ : ‘ : ‘

With respect to the cumbersome electrode preparation gr o 0w Sining saples parciass o 0%
advancements could be achieved-in the meantime. I-n [45] we 7: Dependence of the calibration error on the number of samples
present a novel dr_y EEG recordmg_ technology which do§§ed for training. The number of training samples per class was
not need preparation with conductive gel. In the reportglied from 5 to 90. For each value, 100 subsets of training data
study with good BCI subjects, feedback performance wagve randomly been drawn from the calibration data. CSP and LDA
comparable to the approach with conventional EEG caps fwmve been trained and then applied to the remaining test data. The

most subjects. Note that this system only uses 6 electrod&&/es show the average over the 100 errors values for each subjec
he shaded area extends to error plus standard deviation. Note that

and can thus be miniaturized to run with a tiny EEG amp“f'q-%r subjectco data from real movements have been used for training.
and a pocket PC. Since only 35 samples per class have been recorded this data set is

We recorded 140 trials per class in the calibration mebgeft out in this figure.
surement to be on the safe side and to have an elaborate
database for offline analysis. The minimal demand for online ) )
feedback is much lower. Fig. 7 shows how the validation errlik€ mental typewriters. Note that in [14] a very reduced
on the calibration data depends on the number of trainifyStem With only 2 bipolar channels was used as opposed to
samples. For this evaluation we did not use the paramet@H System with 55 sensors.
(like frequency band) that have been used for feedbackesinc The feature of requiring no user training makes the BBCI
these parameters were chosen in knowledge of the wheRdticularly attractive for BCI research studies. Funthere
calibration data. Instead we used an automatic procedureiftghows that our system is a good candidate for clinical
perform the selection ([28]) which is a heuristic based the B/S€, because prolonged training is burdensome for parhlyze
serial correlation coefficient. From the figure we may codelu Patients as well as costly. It has been demonstrated that ALS
that around 40 samples per classes are sufficient for gdeRfients can indeed operate a BCI by the voluntary control
performance. However, note that here we drew the traini§ Sensorimotor rhythms ([2]). Nevertheless it has still to
set randomly from the whole data set. A shorter calibratid¥€ shown that the presented approach with minimal training
measurement might contain less variation in backgrounih bravorks for patients as well.
activity which can result in a classifier that is more prone Future studies will investigate whether subjects for whom
to nonstationarities in ongoing activity. A possible remedthe SMR-based approach fails could succeed in settingg usin
was proposed in [46] where a specific measurement captugéféerent neurophysiological features. Furthermore itfiiigh
possible non task related variations and is used to enfoibéerest to see whether those unsuccessful subjects aeaabl

(+ std shaded)
w
o

N
a
N

invariance properties of the classifier. learn BCI control after training.
A further strategy to reduce the training time was developed
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Fig. 3: The first row displays the averaged spectra of the two motor imagery tasks (red: left hand, green: right hand; blue: right foot) in the calibration measurement
that have been used to train the classifier (subject co performed physical movements, see Section IV-A. The 72-values of the difference between those conditions are color
coded and the frequency band that has been chosen is shaded gray. The second row shows the average amplitude envelope of that frequency band with 0 being the time
point of stimulus presentation in the calibration measurement. Spectra and amplitude envelopes are both shown for the Laplace filtered channel that is indicated in the
top of the spectra subplot. The top scalp maps (row 3) show the log power within the chosen frequency band averaged over the whole calibration measurement. The
fourth and fifth row display the log band power difference topographies of the particular motor imagery tasks (indicated by L, R, or F, respectively), from which the
global average (shown in row 3) is subtracted. The bottom row (6) displays the 72-values of the difference (row 4 minus row 5) between the individually chosen motor
imagery tasks as scalp map.
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