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The non-invasive Berlin Brain-Computer Interface:

Fast Acquisition of Effective Performance in

Untrained Subjects
Benjamin Blankertz, Guido Dornhege, Matthias Krauledat, Klaus-Robert Müller, Gabriel Curio

Abstract—Brain-Computer Interface (BCI) systems establish
a direct communication channel from the brain to an output
device. These systems use brain signals recorded from the scalp,
the surface of the cortex, or from inside the brain to enable users
to control a variety of applications. BCI systems that bypass
conventional motor output pathways of nerves and muscles can
provide novel control options for paralyzed patients. One classical
approach to establish EEG-based control is to set up a system
that is controlled by a specific EEG feature which is known
to be susceptible to conditioning and to let the subjects learn
the voluntary control of that feature. In contrast, the Berlin
Brain-Computer Interface (BBCI) uses well established motor
competences of its users and a machine learning approach to
extract subject-specific patterns from high-dimensional features
optimized for detecting the user’s intent. Thus the long subject
training is replaced by a short calibration measurement (20
minutes) and machine learning (1 minute). We report results from
a study in which ten subjects, who had no or little experience with
BCI feedback, controlled computer applications by voluntary
imagination of limb movements: these intentions led to modula-
tions of spontaneous brain activity specifically, somatotopically
matched sensorimotor 7-30 Hz rhythms were diminished over
pericentral cortices. The peak information transfer rate was
above 35 bits per minute (bpm) for 3 subjects, above 23 bpm
for two, and above 12 bpm for 3 subjects, while one subject
could achieve no BCI control. Compared to other BCI systems
which need longer subject training to achieve comparable results
we propose that the key to quick efficiency in the BBCI system
is its flexibility due to complex but physiologically meaningful
features and its adaptivity which respects the enormous inter-
subject variability.

I. INTRODUCTION

The aim of Brain-Computer Interface (BCI) research is to

establish a novel communication system that translates human

intentions—reflected by suitable brain signals—into a control

signal for an output device such as a computer application or

a neuroprosthesis. According to the definition put forth at the

first international meeting for BCI technology in 1999, a BCI

“must not depend on the brain’s normal output pathways of

peripheral nerves and muscles” [Wolpaw et al., 2000].

There is a huge variety of BCI systems, see

[Pfurtscheller et al., 2005], [Wolpaw et al., 2002],
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[Kübler et al., 2001], [Dornhege et al., 2007b],

[Curran and Stokes, 2003]. BCI systems relying on intentional

modulations of evoked potentials can typically achieve higher

information transfer rates (ITRs) than systems working

on unstimulated brain signals, cf. [Cheng et al., 2002],

[Kaper and Ritter, 2004]. On the other hand, with evoked

potential BCIs the user is constantly confronted with

stimuli, which could become exhaustive after longer usage.

Furthermore, some patient groups might not be able to

properly focus their gaze and thus such a system will not be

a reliable means for their communication when visual evoked

potentials are employed.

One of the major challenges in BCI research is the

huge inter-subject variability with respect to spatial

patterns and spectrotemporal characteristics of brain

signals. In the operant conditioning variant of BCI,

the subject has to learn the self-control of a specific

EEG feature which is hard-wired in the BCI system,

see e.g. [Elbert et al., 1980], [Rockstroh et al., 1984],

[Birbaumer et al., 2000]. An alternative approach tries to

establish BCI control in the opposite way: While using much

more general features, the system automatically adapts to the

specific brain signals of each user by employing advanced

techniques of machine learning and signal processing

(e.g., [Müller et al., 2001], [Haykin, 1995]; and more

specifically with respect to BCI: [Blankertz et al., 2006c],

[Blankertz et al., 2006d], [Blankertz et al., 2004],

[Müller et al., 2004], [Müller et al., 2003]).

The Graz BCI group introduced the common spatial pattern

(CSP) algorithm (spatial filters that are optimized for the

discrimination of different condition, cf. Sec. II-C.1) for the

use in BCI systems [Ramoser et al., 2000] and reported in

[Guger et al., 2000a] results from a feedback study with a

CSP-based BCI operating on a 27 channel EEG. The feedback

study encompassed 6 sessions on 4 days for each of three

subjects that were experienced with BCI control. Nevertheless

the result for two out of three subjects was at chance level

in the first feedback session and reasonable BCI control was

only obtained from the 2nd feedback session on. The feedback

application did not allow to explore what information transfer

rates could be obtained because it relied on a synchronous

design where each binary decision needed 8 s, limiting the

highest possible ITR to 7.5 bits per minute (bpm) at a

theoretical accuracy of 100 %. In a more recent publication

([Krausz et al., 2003]) 4 patients with complete or partial

paralysis or paresis of their lower limbs were trained to operate
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a variant of the Graz BCI that uses band power features of only

2 bipolar channels. As feedback application a basket game was

used in which the subject controls the horizontal position of

a ball that falls downward at constant speed. The aim in this

application is to hit one of two basket targets at the bottom of

the screen. On the second and third day the maximum ITR of

6-16 runs of 40 trials each for the 4 subjects was between 3

and 17.2 bpm (mean 9.5±5.9).

A study from the Wadsworth BCI group

([McFarland et al., 2003]) investigates the influence of

trial duration and number of targets on the ITR in their BCI

system that uses operant conditioning for letting the users

learn to modulate the amplitude of sensorimotor rhythms. 8

subjects (2 patients, one spinal injury at c6 and one cerebral

palsy) trained over several months to operate a BCI application

similar to the basket game described above, but with vertical

cursor control and a variable number of target fields. The

average ITR from 8 runs of 20 to 30 trials for the 8 subjects

was between 1.8 and 17 bpm (mean 8.5±4.7) at the individual

best number of targets. In a more recent study in cooperation

with the BCI group in Tübingen ([Kübler et al., 2005]) a

similar methodology was successfully used with 4 patients

suffering from Amyotrophic Lateral Sclerosis (ALS). This

was the first study demonstrating that ALS patients are

capable of voluntarily modulating the amplitude of their

sensorimotor rhythms to control a BCI.

Based on offline results ([del R. Millán et al., 2002]) sug-

gest to use a local neural classifier based on quadratic

discriminant analysis for the machine learning part. Us-

ing this system asynchronously in an online feedback with

three classes (left/right-hand motor imagery and relax with

eyes closed) three subjects were able after a few days of

training to achieve an average correct recognition of about

75 % whereas the wrong decision rates were below 5 %. In

[del R. Millán and Mouriño, 2003] it was reported that with

this system a motorized wheelchair and a virtual keyboard

could be controlled. In the latter case trained subjects were

able to select a letter every 22 s. In a preliminary study the

best subject was reported to be able to do selections every 7 s.

Note that brain signals for one class were produced by closing

the eyes.

Here we demonstrate how an effective and fast BCI perfor-

mance can be realized even for untrained subjects by use of

modern machine learning techniques, cf. Sec. II-C and II-D.

II. MATERIALS AND METHODS

A. Neurophysiology and Features

According to the ‘homunculus’ model, as described in

[Jasper and Penfield, 1949], for each part of the human body

there exists a corresponding region in the primary motor and

primary somatosensory area of the neocortex. The ‘mapping’

from the body part to the respective brain areas approximately

preserves topography, i.e., neighboring parts of the body are

represented in neighboring parts of the cortex. For example,

while the feet are located close to the vertex, the left hand is

represented lateralized (by about 6 cm from the midline) on

the right hemisphere and the right hand almost symmetrically

on the left hemisphere.

Macroscopic brain activity during resting wakefulness con-

tains distinct ‘idle’ rhythms located over various brain areas,

e.g., the µ-rhythm can be measured over the pericentral

sensorimotor cortices in the scalp EEG, usually with a fre-

quency of about 10 Hz ([Jasper and Andrews, 1938]). Further-

more, in electrocorticographic recordings Jasper and Penfield

([Jasper and Penfield, 1949]) described a strictly local beta-

rhythm at about 20 Hz over the human motor cortex. In

non-invasive scalp EEG recordings the 10 Hz µ-rhythm is

commonly mixed with the 20 Hz-activity. Basically, these

rhythms are cortically generated; while the involvement of

a thalamo-cortical pacemaker has been discussed since the

first description of EEG by Berger ([Berger, 1933]), Lopes

da Silva ([da Silva et al., 1973]) showed that cortico-cortical

coherence is larger than thalamo-cortical pointing to a conver-

gence of subcortical and cortical inputs.

The moment-to-moment amplitude fluctuations of these

local rhythms reflect variable functional states of the under-

lying neuronal cortical networks and can be used for brain-

computer interfacing. Specifically, the pericentral µ- and β

rhythms are diminished, or even almost completely blocked,

by movements of the somatotopically corresponding body

part, independent of their active, passive or reflexive ori-

gin. Blocking effects are visible bilateral but with a clear

predominance contralateral to the moved limb. This atten-

uation of brain rhythms is termed event-related desynchro-

nization (ERD), see [Pfurtscheller and Lopes da Silva, 1999],

[Pfurtscheller et al., 2006].

Since a focal ERD can be observed over the motor and/or

sensory cortex even when a subject is only imagining a

movement or sensation in the specific limb, this feature can

well be used for BCI control: The discrimination of the

imagination of movements of left hand vs. right hand vs.

foot can be based on the somatotopic arrangement of the

attenuation of the µ and/or β rhythms. To this end, spatio-

spectral filters to improve the classification performance of

the CSP algorithm were suggested, e.g., [Lemm et al., 2005].

A complementary EEG feature reflecting imagined or

intended movements is the lateralized Bereitschaftspotential

(readiness potential, RP), a negative shift of the DC-

EEG over the activated part of the primary motor

cortex [Blankertz et al., 2003], [Blankertz et al., 2006a],

[Blankertz et al., 2006c]. The RP feature was used

in combination with co-localized ERD features and

showed encouraging results in offline BCI classification

studies [Dornhege et al., 2004a], [Dornhege et al., 2004b],

[Dornhege et al., 2007c].

B. Experimental Setup

Ten subjects (all male; 1 left handed; age 26–46 years, all

staff members at the two involved institutions) took part in

a series of feedback experiments. None of the subjects had

extensive training with BCI feedback: Two subjects had no

prior experience with BCI feedback, four subjects had one

session with (an earlier version of) BBCI feedback, three
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subjects had 4 sessions of BBCI feedback before, and one

subject had previously 2 sessions of cursor control feedback

and about 4 sessions of different BBCI feedback. See the

discussion of the influence of the prior feedback experience in

Sec. III-C.

Brain activity was recorded with multi-channel EEG am-

plifiers (Brain Products GmbH, Germany) using 128 channels

(64 for subjects 7–10) band-pass filtered between 0.05 and

200 Hz and sampled at 1000 Hz. For all results in this paper,

the signals were subsampled at 100 Hz. Additionally surface

EMG at both forearms and the right leg, as well as horizontal

and vertical EOG signals, were recorded. Those signals were

exclusively used to check the absence of target related muscle

activity or eye movements, see Sec. III-E. They have not been

used for generating the feedback. Subjects sat in a comfortable

chair with arms placed on armrests. All recordings for one

individual subject were recorded on the same day.

1) Calibration Sessions: All experiments contain a so

called calibration session in which the subjects performed

mental motor imagery tasks, guided by visual command stim-

uli. Thereby labeled examples of brain activity can be obtained

during the different mental tasks. These recorded single trials

were then used to train a classifier by machine learning

techniques which was applied online in the feedback sessions

to produce a feedback signal for (unlabeled) continuous brain

activity. Note that the ‘calibration sessions’ are only used to

generate examples to calibrate the classifier, not to train the

subject.

In the calibration session visual stimuli indicated which of

the following 3 motor imageries the subject should perform:

(L) left hand, (R) right hand, or (F) right foot. Target cues were

visible on the screen for a duration of 3.5 s, interleaved by

periods of random length, 1.75 to 2.25 s, in which the subject

could relax.

There were two types of visual stimulation: (1) targets were

indicated by letters appearing at a central fixation cross and

(2) a randomly moving small rhomboid with either its left,

right or bottom corner filled to indicate left or right hand or

foot movement, respectively. Since the movement of the object

was independent from the indicated targets, target-uncorrelated

eye movements are induced. This way the classifier becomes

robust against changes in the brain signals caused by eyes

movements. For seven subjects 2 sessions of both types were

recorded, while from the other three subjects 1 session of type

(1) and 3 sessions of type (2) were recorded. Overall 140 trials

for each imagery class have been recorded.

2) Feedback Sessions: After the calibration sessions were

recorded the experimentor screened the data to adjust subject-

specific parameters of the data processing methods, see Sec. II-

C.3 and Sec. II-D.2. Then he identified the two classes that

gave best discrimination and trained a binary classifier as de-

scribed in Sec. II-C. The third class was not used for feedback.

In cases where the cross-validation (cf. Sec. II-D.1) predicted a

reasonable performance, the subject continued with three types

of feedback sessions. Two have an asynchronous protocol1,

while the last is synchronous. Since most timing details were

individually adapted for each subject, we will here only report

the range in which those changes occurred. In all feedback

scenarios, we arranged the display according to the selected

paradigms, in particular we wanted to make the movement

most intuitive for the subjects. If the selected classes were

“right hand” and “right foot”, then a vertical movement was

more intuitive than a horizontal one. For reasons of legibility,

only the setup for the horizontal movement will be described

in the following sections.

Position Controlled Cursor. The first type of feedback pre-

sented to the subjects consisted of the control of a cursor

in one-dimensional (i.e., horizontal) direction. Items on the

screen included the cursor in form of a red cross of approx.

3 cm width, two targets in form of grey rectangles of 15 cm

height and 3 cm width (one at each lateral side of the screen)

and a counter at the top left corner of the screen, indicating

the respective numbers of successful and unsuccessful trials.

In the middle, a light gray rectangle of 20 cm width denoted

a designated central area, see Fig. 1.

The display was refreshed at 25 fps, and with every new

frame at time t0, the cursor was updated to a new position

(pt0 , 0) calculated from the classifier output (ct)t≤t0 , accord-

ing to the formula

pt0 = s

(

1

n

t0
∑

t=t0−n+1

ct − b

)

, (1)

where scaling factor s, bias b and averaging length n were

manually adjusted during a calibration session. We then restrict

the range of the above expression to the interval [−1, 1] and

translated this interval to horizontal positions on the screen.

The cursor was visible and controllable throughout the

whole run. At the beginning of each trial, the cursor was a

black dot and had to be moved into the central area of the

screen (Fig. 1) where the shape of the cursor changed to a

cross. After that the task was to steer the cursor into the

highlighted target by imagining the corresponding unilateral

hand movements. Once a target (non-target) was hit by the

cursor, it was colored green (or red) to show the success

(or failure) of the performance, and the cursor turned to

dot shape again. As long as the cursor had the dot shape

no selections (neither hits nor misses) could be made. This

strategy prevented unintended multiple activations of the same

target. As an additional information for the subjects, a 1 cm

stripe at the outermost section of the targets was colored blue

or gray to indicate whether or not this side was going to be

the next target (preview). Each run consisted of 25 trials of

this kind.

1These feedback applications fall between the categories ‘synchronous’ and
‘asynchronous’. While there are visual cues indicating the target, the time
point at which the decision is taken is not fixed beforehand but rather depends
on the brain signals of the user. If the user is in idle state the classifier output
should be small in magnitude such that the cursor stays in the center and
does not actuate a selection. In contrast to feedbacks with fixed trial length
we call this type of feedback ‘asynchronous’ albeit a systematic evaluation
of the idle state feature was not done.
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Fig. 1. The setup of the feedback session. Left panel - “cursor control”:
In this situation, the cursor is active and the right rectangle is marked as
the current target. The stripe on the left side indicates that after the current
target, the left rectangle will be highlighted as target (preview). Right panel
– “basket game”: The subject controls the horizontal position of a ball that
falls downward at constant speed. The aim is to hit the green colored one of
three baskets at the bottom of the screen.

Rate Controlled Cursor. The setup for the second type of

feedback was similar to the previous one, only the control

strategy for the cursor was slightly modified. In this setting, the

cursor was moving in a “relative” fashion, meaning that with

every new frame, the new position pt0 was the old position

pt0−1, shifted by an amount proportional to the classifier

output:

pt0 = pt0−1 + s

(

1

n

t0
∑

t=t0−n+1

ct − b

)

. (2)

In other words, in this setting, the first derivative (i.e., direction

and speed) of the cursor position was controlled rather than

its absolute position.

At the beginning of each trial, the cursor was set to the

central position and was kept fixed for 750–1000 ms before it

could start moving.

Basket Game. Here the scene consisted of three targets, gray

rectangles at the bottom of the screen of approx. 3 cm height,

and a counter at the upper left of the screen, which showed the

number of successful and unsuccessful trials. The two outer

rectangles were smaller than the middle one to account for

the fact that they were easier to hit. In each trial, one of the

targets was highlighted in blue, and the subject was trying to

direct a cursor in the form of a magenta ball into this target.

The cursor appeared at the top of the screen and was held

there for 500–750 ms. Then it was moving down at a fixed

rate such that it reached the bottom 1200–3000 ms (according

to the subject’s choice) after its release. The subjects were able

to control the horizontal position of the cursor by imagining

strategies as explained above. In this manner, they could try to

hit the intended target when the cursor reached the bottom line.

After the completion of a trial, the hit basket was highlighted

green or red, according to the success of the trial. The next

trial began 250 ms after hitting the target.

This feedback was similar to those described in

[McFarland et al., 2003], [Krausz et al., 2003], cf. Sec. I,

but here, as mentioned above, we changed the sizes of the

targets according to the difficulty to reach them.

3) Manual calibration: In our very first feedback exper-

iments we realized that the initial classifier was behaving

suboptimal. Thus we introduced a calibration phase at the

beginning of the feedback sessions in which the subject

controlled the cursor freely and the experimentor adjusted the

bias and the scaling of the classifier (b and s in eqn. (1) and

(2). Our investigations show that this adjustment is needed

to account for the different experimental and mental condi-

tions of the more demanding feedback situation when com-

pared to the calibration session, cf. [Krauledat et al., 2006],

[Shenoy et al., 2006].

C. Algorithms and Procedures

Machine learning techniques allow to learn from calibration

data optimized parameters such as (spatial and spectral) filter

coefficients, separation of the class distributions, and hyper-

parameters of all involved methods which are needed for the

online translation algorithm. Here, some of the hyperparam-

eters that allow to incorporate neurophysiological knowledge

have been selected semi-automatically. In this section we give

an overview of the following two processes: (1) learning from

calibration data, and (2) translating online brain signals to a

control signal, see Sec. II-D for details. For completeness we

also summarize the Common Spatial Pattern algorithm, which

is an essential part of (1).

1) Common Spatial Pattern (CSP) Analysis: The common

spatial pattern (CSP) algorithm [Fukunaga, 1990] is highly

successful in calculating spatial filters for detecting ERD/ERS

effects (see [Koles and Soong, 1998]) and for ERD-based

BCIs (see [Guger et al., 2000b]) and has been extended to

multi-class problems in [Dornhege et al., 2004a]. Given two

distributions in a high-dimensional space, the CSP algorithm

finds directions (i.e., spatial filters) that maximize variance for

one class and that at the same time minimize variance for the

other class. After having bandpass filtered the EEG signals in

the frequency domain of interest, high or low signal variance

reflect a strong, respectively a weak (attenuated), rhythmic

activity. Let us take the example of discriminating left hand

vs. right hand imagery. According to Sec. II-A, if the EEG is

first preprocessed in order to focus on the µ and β band, i.e.,

bandpass filtered in the frequency range 7–30 Hz, then a signal

projected by a spatial filter focussing on the left hand area is

characterized by a strong motor rhythm during the imagination

of right hand movements (left hand is in idle state), and by

an attenuated motor rhythm if movement of the left hand is

imagined. This can be seen as a simplified exemplary solution

of the optimization criterion of the CSP algorithm: maximizing

variance for the class of right hand trials and at the same time

minimizing variance for left hand trials. Additionally the CSP

algorithm calculates the dual filter that will focus on the spatial

area of the right hand in sensor space. Moreover a series of

orthogonal filters of both types can be determined.

For the technical details the reader is referred

to [Fukunaga, 1990], [Ramoser et al., 2000],

[Lemm et al., 2005]. As result the CSP algorithm outputs

a decomposition matrix W and a vector of corresponding

eigenvalues. The interpretation of W is two-fold: the rows
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filter filter

min variance for
trialsright

min variance for
trialsleft

pattern pattern

Fig. 2. The common spatial pattern (CSP) algorithm determines spatial
structures which represent the optimal discrimination between two classes
with respect to variance. The patterns illustrate how the presumed sources
project to the scalp. They can be used to verify neurophysiological plausibility.
The filters are used to project the original signals. They resemble the patterns
but their intricate weighting is essential to obtain signals that are optimally
discriminative with respect to variance. These two CSP filters were calculated
from the calibration data of subject aa and have been used for feedback.
Generally in this study 3 patterns/filters of each type were calculated.
Neurophysiologically unplausible pattern/filter pairs were discarded from the
use in online feedback.

of W are the stationary spatial filters, whereas the columns

of W−1 can be seen as the common spatial patterns, i.e.,

the time-invariant EEG source distribution vectors. Each

eigenvalue indicates the importance of the corresponding

filter for the discrimination tasks.

CS patterns can be used to verify neurophysiological plau-

sibility of the calculated solution, while the filters typically

incorporate an intricate weighting which is needed to project

out artifacts and noise sources and to optimize discriminability,

see Fig. 2: The patterns are much smoother and have a broad

focus, while the focus of the filters is much more localized

and either has a bipolar structure or the focus is surrounded

by areas that are weighted weaker but with the opposite sign.

This way, influences from other areas like artifacts or non

task-relevant fluctuations (ongoing activity resp. noise) are

attenuated.

Recently efficient extensions of CSP for multiclass

settings [Dornhege et al., 2004a] as well as optimized

spatio-temporal filter extensions of CSP have been

proposed [Lemm et al., 2005], [Dornhege et al., 2006],

[Tomioka et al., 2006], [Tomioka et al., 2007].

2) Classification with LDA: The linear discriminant analy-

sis (LDA) is obtained by deriving the classifier that minimizes

the risk of misclassification under the assumption that the class

distributions obey known Gaussian distributions with equal

covariances. Denoting the common covariance matrix by Σ
and the class means by µl (l = 1, 2) the decision function of

LDA is given by

x 7→ 1.5 + 0.5 ∗ (w>(x − 1

2
(µ1 + µ2))),

where w = Σ−1(µ2 − µ1).

3) Learning from Calibration Data: The basic idea is to

extract spatial filters that optimize the discriminability of

multi-channel brain signals based on ERD effects of the

(sensori-) motor rhythms, then to calculate the log band power

in those surrogate channels and finally to find a separation of

the two classes (mental states) in the feature space of those log

band power values. This process involves several parameters

that are individually chosen for each subject, as described in

Sec. II-D.2.

1) From the three available classes, only event markers of

the two classes with better discriminability are retained.

2) The raw EEG time series are band-pass filtered with a

butterworth IIR filter of order 5 (frequency band subject-

specific chosen, see Sec. II-D.2).

3) Trials are constructed from the filtered EEG signals

for each event marker representing a specific interval

relative to the time point of visual cues, typically 750

to 3500 ms.

4) CSP is used to find 3 spatial filters per class by applying

the algorithm to the trials classwise concatenated along

time. From those 6 filters some were selected according

to the neurophysiological plausibility of the correspond-

ing patterns, e.g., when exhibiting typical somatotopic

pericentral foci.

5) Variance was calculated for each of the CSP channels

(band power) and the logarithm was applied to yield a

feature vector for each trial.

6) The LDA classifier was used to find a linear separation

between the mental states. Note that this classification

process can in principle be enhanced by using more

complex classifiers [Müller et al., 2003].

4) Online Translation Algorithm: In the online application

a new feedback output was calculated every 40 ms (resp. 4

sample points) per channel. The continuously incoming EEG

signals were processed as follows:

1) The EEG channels were spatially filtered with the CSP

filter matrix W that was determined from the calibration

data. The result were 2 to 6 channels, depending on how

many CSP filters were chosen.

2) The 4 new data points per channel were spectrally

filtered with the chosen band-pass filter. The initial

conditions of the filter are set to the final conditions of

the filtering of the previous block of data. Accordingly

the result of the online frequency filtering is the same

as offline forward filtering the complete signals.

3) From the most recent interval (of given length) the log-

variance was calculated in each CSP channel.

4) Feature vectors are projected perpendicular to the sepa-

rating hyperplane of the LDA classifier.

5) The classifier output is scaled and a bias is added (s and

b in eqns. (1) and (2)).

6) Several consecutive outputs are averaged giving a

smoother control signal (n in eqns. (1) and (2), subject’s

choice).

Note that the ordering of spectral and spatial filtering was

changed from the calibration to the apply phase. This is pos-

sible due to the linearity of those operations and considerably

reduces computing time, since the number of channels that

are to be filtered are reduced from about 100 (original EEG

channels) to at most 6 (CSP channels).
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See large Figure on last page.

Fig. 3. The first row displays the averaged spectra of the two motor imagery tasks (red: left hand, green: right hand; blue: right foot) in the calibration
measurement that have been used to train the classifier. The r

2-values of the difference between those conditions are color coded and the frequency band
that as been chosen is shaded gray. The second row shows the average amplitude envelope of that frequency band with 0 being the time point of stimulus
presentation in the calibration measurement. The top scalp maps (row 3) show the log power within the chosen frequency band averaged over the whole
calibration measurement. The fourth and fifth row display the log band power difference topographies of the particular motor imagery tasks (indicated by L,
R, or F, respectively) minus the global average shown in row 3. The bottom row (6) displays the r

2-values of the difference (row 4 minus row 5) between
the individually chosen motor imagery tasks as scalp map.

D. Methodological and Technical Details

1) Validation: A validation was used to estimate the gen-

eralization error of the classifier with respect to the data of

the calibration sessions. To this end we used a 3 times 5-

fold cross-validation, i.e., for 3 repetitions all samples were

partitioned into 5 parts, each of which was used as test set

once, while the other 4 were used for training. Thus, 15

test set errors were determined and averaged. Since the CSP

algorithm uses class label information, the calculation of the

CSP filters has to be performed within the cross-validation on

samples of the respective training set and the spatial filters

are applied to the samples of the test set. That means for a

3 times 5-fold cross-validation the CSP algorithm is executed

15 times. The estimated generalization errors of all 3 binary

class combinations are used to select the best discriminable

pair of imagery conditions. In debatable cases also the subject

was asked what he would rather use for control paradigm.

2) Selection of Hyperparameters: The selection of the

parameters in the calibration procedure, cf. Sec. II-C.3 was

done semi-automatically based on class-wise averaged plots

of the spectra, of the ERD curves and of the respective r2-

values. The r2-coefficient reflects how much of the variance

in the distribution of all samples is explained by the class

affiliation. It is the squared bi-serial correlation coefficient r:

Xr :=

√
N+ · N−

N+ + N−

mean(X−) − mean(X+)

std(X+ ∪ X−)
, Xr2 := X2

r

where X+ and X− are the samples of class 1 and 2 respec-

tively, and N+ and N− are the numbers of samples, see also

[Dornhege et al., 2007c], [Müller et al., 2004]. Whenever the

sign of the difference was important, we multiplied the r2-

value with the sign of the r-value (‘signed r2-value’). Ad-

ditionally the generalization error, cf. Sec. II-D.1, was used

as indicator for good parameter values. A visualization of the

CSP analysis as shown in Fig. 2 was used to decide which

CSP filters are to be used and which are to be dropped.

3) Selection of Parameters in the Feedback Application:

At the very beginning of the feedback sessions an exploratory

phase “position controlled cursor” was performed during

which experimenter and subject found out interactively which

values for the meta-parameters of the feedback application

were most convenient for the subject. In the first step the bias

and the scaling of the classifier (b and s in eqns. (1) and (2))

were fine tuned. The length of the window used in online

classification was typically chosen between 500 and 1000 ms

and the number of averaged classifier outputs was left at the

default value 8. Subject aa wanted to have a more immediate

feedback and chose 300 ms and 5. (Effectively used for one

classifier output were 5 windows of length 300 ms with step

size 40 ms, i.e., an interval of 460 ms length.) For the basket

feedback, subjects could choose how fast the ball was falling

down.

III. RESULTS

For three subjects the combination left vs. right was found

optimal, for four subjects left vs. foot and for the remaining

two subjects right vs. foot (the criterium for selecting a binary

pair of tasks was the discriminability of the corresponding

classes of brain signals which have been acquired in the

calibration measurement, see Sec. II-B.2 and II-D.1). For one

subject no sufficient separation was achieved, see Sec. III-D.

A. Neurophysiological Outcome

The neurophysiological properties of the EEG of the suc-

cessful subjects are summarized in Fig. 3. The brain signals

of subject au in whom no sufficiently discriminable properties

were found are discussed in Sec. III-D.

The spectra shown in the top row of Fig. 3 together

with the color coded r2-values have been used to select for

each subject a frequency band (gray shading in the spectra)

that exhibits good discrimination between two motor imagery

tasks. This includes for all nine subjects the µ-band around

10 Hz, and extends up to the higher β-band for 6/9 subjects,

thereby implementing an individually optimized passband for

every subject. The second row shows the average amplitude

envelope of that frequency band with 0 being the time point

of the command stimulus presentation in the calibration mea-

surement. These curves demonstrate the ERD/ERS that was

caused by the ensuing motor imagery. Spectra and amplitude

envelope curves were calculated from that Laplacian filtered

channel that gave highest r2-values for spectral differences.

All these channels were found at the ’classical’ topographic

positions over pericentral hand or foot motor representations,

notably with slight but significant individual deviations, e.g.,

for hand movements, from the standard 10-20 positions C3/4

to adjacent non-standard positions CP4 (subject av) or CCP5

(subject aa). This need for tailoring an individually optimized

spatial information sampling was further corroborated by

exploiting the full data from the 128-channel EEG imaging:

These scalp maps reveal the spatial distribution of log band

power2 within the chosen frequency band for the two classes

that were chosen to train the classifier. The top scalp map

series (row 3) shows the log band power averaged over

the whole calibration measurement. Notably, this is not a

2We transform band power to dB by applying 10 log10 to it.
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rest condition, rather it serves as reference for the specific

imagery-related modulations in the calibration measurement.

(The pauses between motor imagery intervals were too short

for having examples of a true rest condition.) The fourth and

fifth row show the log band power during the execution of the

two motor imagery tasks relative to the reference in row 3. The

respective imagery class is indicated by the juxtaposed letters

L, R, or F indicating left/right hand, or foot motor imagery,

respectively. The bottom row (6) displays the signed r2-values

of the difference between the two chosen motor imagery tasks

as scalp map. The difference is calculated first class (fourth

row) minus second class (fifth row), i.e. green indicates more

power in the first condition than in the second condition while

magenta indicates the opposite relation. Whether, say, magenta

coloring is caused by a desynchronization in the first condition

or a synchronization in the second condition, or a combination

of both cannot be decided from those maps.

The topographies of the reference condition (top scalp

maps, row 3) look quite similar for all subjects with a

dominating occipital/parietal α rhythm. For the motor im-

agery conditions we essentially expected two effects: reg-

ularly, an ERD over the sensorimotor area correspond-

ing to the limb for which motor imagery was performed

([Pfurtscheller and Lopes da Silva, 1999]), and, potentially,

an ERS over flanking sensorimotor areas, possibly reflecting

an ‘surround inhibition’ enhancing focal cortical activation, see

[Neuper and Pfurtscheller, 2001], [Pfurtscheller et al., 2006].

With respect to imagination of hand movements most subjects

exhibit an ERD over the contralateral hand area. In subject

av the ERD is also present ipsilaterally. Subjects zv and cv

show also an ERS over the foot area during left hand imagery.

Conspicuously, for foot motor imagery mainly an ERS over

the hand areas is observed, and only 2/6 subjects (zv, cv)

exhibited also a relative ERD over the foot area. This is further

evidence for the necessity to tailor individually classifiers also

with respect to textbook expectations of ERD/ERS physiology,

as implemented in the adaptive BBCI approach which does

not enforce a priori hypotheses on the direction of power

changes in the spectrally optimized passbands. The overall

importance of these co-effective optimization steps becomes

evident when noting that the relative difference during motor

imagery compared to the reference is smaller by about factor

10 than the log band power during the reference condition.

An important result is that the r2-topographies which dis-

play those areas that significantly discriminate the two motor

imagery conditions are very clearly restricted to the involved

areas of the sensorimotor cortices. Only for subject aa the

area showing the ERD during right hand imagery extends

unexpectedly to occipital regions. Nevertheless, the CSP filters

that have been identified for this subject through the adaptive

BBCI approach are exclusively focused on sensorimotor areas

which provide the critical information for the differential

motor aspect of the imagery task, as shown in Fig. 2.

Fig. 4 demonstrates that the optimized CSP filters enhance

the discriminability of the brain signals. For subjects aw and

cv one of the selected CSP filters is displayed as scalp map.

Plots on the right show the spectra calculated from CSP filtered

brain signals. For subject aw the filter extracts the signal from
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Fig. 4. Left: Scalp topographies for subjects aw and cv one of the
selected CSP filters. Right: Spectra for the spatially filtered signals with
color coded r

2-values for the difference between the two classes below.
These plots exemplarily show for two subjects that CSP filter improves the
discriminability of the two conditions compared to the best Laplacian filtered
channel substantially, cf. Fig. 3.
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Fig. 5. Output signal averaged classwise over all trials of the calibration
measurement for subject aa. The output is the linear combination (calculated
by an LDA classifier) of the log band power estimates in the two channels
obtained from the CSP filters which are displayed in Fig. 2.

the sensorimotor area of the right hand and the corresponding

spectrum indicates an ERD for right hand and an ERS for foot

motor imagery (cf. also Fig. 3, row 2). Note that not only the

peak r2-value is increased from 0.560 (best Laplacian filtered

channel, cf. Fig. 3) to 0.835, but also the non-discriminative

peak at 9 Hz is filtered out almost completely. For subject

cv the filter focuses on the foot area and the corresponding

spectrum indicates an ERD for foot and an ERS for left hand

motor imagery (cf. also Fig. 3, row 2). Here the peak r2-value

was increased from 0.251 to 0.399.

For each subject from 2 up to 6 CSP filters were selected. A

linear classifier then combines the log band power estimates in

the CSP filtered channels to a one dimensional output signal.

Fig. 2 shows for subject aa the selected filters. In Fig. 5 the

corresponding classifier output signal is plotted averaged class-

wise over all trials of the calibration measurement. Note that

this signal is much smoother and shows better discrimination

than the corresponding envelope curve from the best Laplacian

filtered channel, cf. Fig. 3.

The paper [Pfurtscheller et al., 1999] reports in a visually

cued motor imagery paradigm similar to the one used here an

early discriminatory information. In two subjects discrimina-
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tion was significant about 500 ms and in one subject as early

as 250 ms after cue presentation. A more detailed analysis

revealed that in this subject the very early discrimination was

based on short-lasting β bursts localized over the ipsilateral

hand area. A detailed analysis of the early period after cue

presentation in our data showed for several subjects significant

discrimination about 500 ms after cue presentation but these

were in none of the subjects owed to bursts in the β band.

B. Feedback Performance

Each feedback session consisted of several runs with 25

targets each. Between two successive runs there was a short

break. The number of runs performed were different for each

subject and feedback. The subjects performed 6 to 8 runs of

position controlled cursor, 8 runs of rate controlled cursor and

between 4 and 9 runs of the basket game. As performance

measure Wolpaw et al. ([Wolpaw et al., 2000]) suggested the

information transfer rate, a measure based on information

theory: The interface is modelled as a communication channel

with noise (classification error) where the transmitter (the

human) has to add redundancy such that a received decision

can be achieved with an arbitrarily small probability of er-

rors. With the confusion matrix P = (pi,j)i,j=1,...,N (pi,j

describes the probability to receive j while i was desired) the

formula for the ITR per decision is given by Id = log2 N +
1

N

∑

i,j pi,j log2 pi,j . Consequently the ITR per time is defined

by I := fId with f as decision rate. For simplification we

assume that pi,i = p and pi,j = 1−p

N−1
for all i, j. Then we

get Id = log2 N + p log2 p + (1 − p) log2

1−p

N−1
. Note that the

assumption pij = pji(i 6= j) is problematic for the basket

feedback, since neighboring targets are more likely to be hit

accidentally. However, an estimation of the confusion matrix

based on the given basket feedback data is too imprecise so

that we prefer to use the simplification with a more robust

estimation of the classification accuracy.

Table I summarizes the information transfer rates that were

obtained by the 9 successful subjects in the three feedback

sessions. Highest ITRs were obtained in the 1D rate controlled

cursor scenario.

One point that is to our knowledge special about the BBCI

is that it can be operated at a high decision speed, not only

theoretically, but also in practice. In the position controlled

cursor the average trial duration was 3.9± 1.4 seconds (intra-

subject averages range 2.1 – 6.3 s), and in rate controlled

cursor it was 2.8± 0.8 seconds (intra-subject averages range

1.7 – 3.8 s). In the basket feedback the trial duration is constant

(synchronous protocol) but was individually selected by each

subject with an average of 3.1± 0.7 (range 2.1 – 4.0 s). As trial

duration we count the whole trial-to-trial interval including the

break after target hit and before the start of the next trial. The

fastest subject was aa which performed at an average speed of

one decision every 1.7 s in the rate controlled cursor feedback.

The most reliable performance was achieved by subject al:

only 2% of the total 200 trials in the relative cursor control

were misclassified at an average speed of one decision per

2.1 s.

TABLE I

INFORMATION TRANSFER RATES (ITR) OBTAINED IN THE FEEDBACK

SESSIONS MEASURED IN BITS PER MINUTE AS OBTAINED BY SHANNON’S

FORMULA. FOR EACH FEEDBACK SESSION THE FIRST COLUMN

(‘OVERALL’) REPORTS THE AVERAGE ITR OF ALL RUNS, WHILE THE

SECOND COLUMN (‘PEAK’) REPORTS THE ITR OF THE BEST RUN.

SUBJECT au DID NOT ACHIEVE BCI CONTROL (NOT USED FOR

CALCULATING THE MEAN). FOR THE OTHER 9 SUBJECTS THE TWO

LETTER CODE AFTER THE SUBJECT NUMBER INDICATES WHICH

MOVEMENT IMAGERY CLASSES HAVE BEEN USED FOR FEEDBACK.

subj. training pos. ctrl cursor rate ctrl cursor basket game

/cls acc [%] overall peak overall peak overall peak

zq:LR 95.2 9.4 18.3 17.8 23.4 0.3 0.9
ay:LR 97.6 13.4 21.1 22.6 31.5 16.4 35.0
aa:LR 78.2 8.9 15.5 17.4 37.1 6.6 9.7
zv:LF 91.7 4.4 6.0 4.0 8.8 0.9 2.7
cv:LF 88.9 5.0 8.7 9.9 14.4 0.3 0.9
al:LF 98.0 12.7 20.3 24.4 35.4 9.6 16.1
av:LF 78.1 7.9 13.1 9.0 24.5 6.0 8.8
aw:RF 95.4 7.1 15.1 5.9 11.0 2.6 5.5
zk:RF 96.6 4.2 9.1 4.6 12.7 1.2 3.7
au: — 64.6 – – – – – –

mean 88.4 8.1 14.1 12.8 22.1 4.9 9.3

C. Impact of Previous Feedback Sessions

We claim that the BBCI approach can start in principle

without subject training at an instantaneously high level of

efficiency. To this end we engaged staff members as subjects

in this study who were available for serial recording sessions:

Thus, most subjects had one or more sessions of BBCI

feedback that were also used to develop and stepwise optimize

the system with on-line experiments before the systematic

study reported in full here. Importantly, we can demonstrate

that these repeated encounters with the BBCI, which might

be expected to convey ‘training’ effects, only had a minor

influence on performance. While we cannot compare feedback

performances directly since the system was in development

over the preceding sessions, with different kinds of feedback

having been tested and continuously optimized, we could uti-

lize the classification accuracy in the calibration measurements

of previous sessions for comparison with the present study in

order to gain insight into a possible shaping of brain responses

by BBCI experiences, cf. Fig. 6.

For most subjects no significant trend over time is dis-

cernible. Data of subjects aa and av could be discriminated

even slightly worse in the last session reported here. Note,

however, that the feedback performance of these subjects was

quite well, cf. Table I. Subject zk performed also in several

sessions with a different feedback system which are not shown

here (data was not available for analysis).

D. Investigating the Failure

In subject au no features were found that enabled a reli-

able discrimination between any of the three motor imagery

conditions. The spectra and log band power topography of

the whole calibration measurement, which is shown in Fig. 7

does not reveal any significant differences when compared to
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marked by crosses) and of calibration measurements of previous BCI sessions
(if any).
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Fig. 7. Left: Log band power topography averaged over the calibration
measurement of subject au. Right: Spectra during left vs. right hand motor
imagery in three Laplacian filtered channels over sensori motor areas. Com-
pared to the successful subjects almost no peak in the alpha or in the beta
frequency range is visible. The low r

2 values show that no discriminatory
information is found with respect to band power.

the successful BCI subjects in Fig. 3, in particular no general

slowing indicative of potential vigilance problems, or focal

slowings related to hitherto unknown regional dysfunctions.

However, the spectra from Laplacian filtered channels over

sensorimotor areas exhibit almost no peak in the alpha or

beta frequency range, cf. Fig. 7. Thus, no sensorimotor idle

rhythm was detectable in scalp EEG that could undergo

desynchronization during motor imagery. After recognizing

the failure of imagery-based BCI in this subject we added a

second control calibration measurement on the same day, but

now with executed movements. These recordings gave results

indistinguishable from the imagery condition (data not shown).

Therefore it is likely that the BCI failure in this subject was not

related to an unfavorable mental strategy (e.g., visual instead

of kinesthetic, see [Neuper et al., 2005]), but rather that the

idiosyncratic properties of the sensorimotor brain rhythms (or

what is discernible of them in scalp EEG) is unsuitable for

ERD/ERS-based BCI approaches.

The problem of ‘BCI illiteracy’ is important and chal-

lenging. Since this phenomenon is reported from all BCI

laboratories it seems not be a problem of data analysis but

rather inherent in the neurophysiological properties of the EEG

in some subjects. An investigation of this issue will require a

large experimental approach which is beyond the scope of this

study.

E. Investigating the Dependency of BCI Control

It is in principle possible to voluntarily modulate sen-

sorimotor rhythms without concurrent EMG activity, cf.

[Vaughan et al., 1998]. Nevertheless it has to be checked for

every BCI experiment involving healthy subjects. For this

reason we always record EMG signals even though they are

not used in the online system. On one hand we investigated

classwise averaged spectra, their statistical significant differ-

ences and the scalp distributions and time courses of the

energy of the µ and β rhythm. The results substantiated that

differences of the motor imagery classes indeed were located

in sensorimotor cortices and had the typical time courses

(except for subject au in whom no consistent differences

were found). On the other hand we compared how much

variance of the classifier output and how much variance of

the EMG signals can be explained by the target class. Much

in the spirit of [Vaughan et al., 1998] we made the following

analysis using the squared bi-serial correlation coefficient r2

(see Sec. II-D). The r2-value was calculated for the classifier

output and for the band-pass filtered and rectified EMG signals

of the feedback sessions. Then the maximum of those time

series was determined resulting in one r2-value per subject

and feedback session for EMG resp. for the BCI classifier

signal. The r2 for EMG was in the range 0.01 to 0.08

(mean 0.03±0.02) which is very low compared to the r2

for the BCI classifier signal which was in the range 0.20

to 0.79 (mean 0.46±0.16). The fact that the BBCI works

without being dependent on eye movements or visual input

was additionally verified by letting two subjects control the

BBCI with closed eyes (targets provided acoustically) which

resulted in a comparable performance as in the closed loop

feedback (100% hits for subject al and 96% hits for subject

ay). An important advantage is that when using the BBCI the

subject is free to scan the visual environment by exploratory

eye movements without diminishing the BBCI efficiency.

IV. DISCUSSION

The Berlin Brain-Computer Interface makes use of a ma-

chine learning approach towards BCI. Working with high

dimensional, complex features obtained from 128 channel

EEG allows the system a distinct flexibility for adapting to the

individual characteristics of each user’s brain. The result from

a feedback study with ten subjects demonstrates that the BBCI

system (1) robustly transfers the discrimination of mental

states from the calibration to the feedback sessions, (2) allows

a very fast switching between mental states, (3) provides

reliable feedback directly after a short calibration measurement

and machine learning without the need that the subject adapts

to the system (all at high information transfer rates, see

Table I).

Although this study involving ten subjects gives a clear

indication of the qualities of the proposed system, extended

studies need to be performed to investigate how general they

are with respect to different groups of subjects. It is of partic-

ular interest to verify how BBCI works for paralyzed patients.

A positive result was obtained in [Kübler et al., 2005] where

it has been demonstrated that ALS patients can indeed operate

a BCI by the voluntary control of sensorimotor rhythms, which

is a requirement for the direct transfer of the proposed system

to patient use. A crucial open issue is, how the BBCI feature

of minimal subject training transfers to patients.
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Other recent BBCI lines of research comprise (a) mental

typewriter experiments ([Müller and Blankertz, 2006],

[Blankertz et al., 2006b]), (b) the online use of the

error potential, (c) investigation of synchronization

features that capture dynamic interactions of brain areas

([Meinecke et al., 2005], [Nolte et al., 2006]) for BCI,

and (d) general real-time single-trial EEG analysis

in more natural paradigms, e.g., in driving situations

([Dornhege et al., 2007a]).

Our future studies will strive for 2D cursor control and

robot arm control ([Popescu et al., 2006]), still maintaining

our philosophy of minimal or no subject training and non-

invasiveness.
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Fig. 3: The first row displays the averaged spectra of the two motor imagery tasks (legend above scalp maps – red: left hand, green: right hand; blue: right foot) in the calibration
measurement that have been used to train the classifier. The r

2-values of the difference between those conditions are color coded and the frequency band that as been chosen is shaded gray.
The second row shows the average amplituded envelope of that frequency band with 0 being the time point of stimulus presentation in the calibration measurement. The topmost scalp
topographies maps (row 3) show the log power within the chosen frequency band averaged over the whole calibration measurement. The fourth and fifth row display the log band power
difference topographies of the particular motor imagery tasks (indicated by L, R, or F, respectively) minus the global average shown abovein row 3. The bottommost row (6) displays the
r
2-values of the difference (row 4 minus row 5) between the Individually chosen motor imagery tasks as scalp map.


