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In silico prediction tools for Ames mutagenicity represent a cost-
effective high throughput approach for prioritization of 
compounds before submission to experimental testing. Various 
modeling approaches have been pursued in the last years.
But publicly available data sets are mostly very limited in terms 
of size and chemical coverage.

● 7096 compounds together with their
activity in Ames mutagenicity test
(1521 of them listed in World Drug Index) 

● public sources (see diagram)
● balanced classes: 
         3769 Positives vs 3327 Negatives

Ames mutagenicity test

Composition of Data Sources

Positives

Negatives

Distribution of Molecular Weights

http://ml.cs.tu-berlin.de/toxbenchmark

The website offers the structures of the 7096 compounds 
together with the corresponding Ames test results & 
references in SMILES and SD-format.
To facilitate comparative evaluation of methods please use 
the fixed cross validation splits. (10 times 3 folds) 

Public Benchmark Data Set:1. Gaussian Processes
    

      Technique from the field of Bayesian  statistics:
      (1) Specify a huge number of possible functions; (2) Eliminate those that don't 
      agree with data; (3) Average over what remains: Prediction is a probability   
      distribution

2. Support Vector Machines (SVM)
    Construct a separating hyperplane in a high dimensional feature space.

3. Random Forests
    Combine the predictions of 50 decision trees trained on random chosen features

Supervised Machine Learning Methods infer properties of 
unknown compounds from a training set of compounds.
We considered 3 different Methods:
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Evaluation of Models:
- 10 times 5 fold Cross Validation

- Performance Measures:

1. Specificity:   TN/(TN+FP)

2. Sensitivity: TP/(TP+FN)

3. Area under Curve (AUC):
Plot false positive rate versus true positive rate. The Area under the resulting
curve was used as optimization criterion for the learning Algorithms. 

The presented benchmark data set will facilitate the 
development and analysis of QSAR approaches for Ames 
mutagenicity.

All three evaluated methods yield satisfactory results on the 
benchmark data set. The Gaussian Processes and SVMs are 
superior to the Random Forests.

The evaluation of other prediction methods on the proposed 
benchmark data set remains an open issue.

Each compound is represented as a selected set of 904 Molecular Descriptors from 
DRAGON-X version 1.2 based on a 3D structure generated by CORINA version 3.4.

   AUC          0,88        0,89       0,83

            GP        SVM      Forest

 Specificity    75 %      75%        75%  

 Sensitivity    86 %      87%        83%  
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Examples of Prediction Results:
Six true negative oral drugs4 and six true positive pharmacologically active 
compounds from the World Drug Index are shown to exemplify the diversity of 
chemical structures predicted.

Positive compounds:

Negative compounds:

● positive labeled Compounds:  
significantly induces revertant colony growth at least in one strain,
either in the presence or absence of a mammalian metabolizing
system (S9 mix)

● negative labeled Compounds: 
does not induce revertant colony growth in any strain tested,
both in the presence and absence of S9 mix

Ames Test

 Amphetamine  Metoprolol     Tamoxifen      Chlorpheniramine      Ergotamine            Dapsone

  Nitracrine        Carboquone    Amidox          Stemphyltoxin 3  Aflatoxin M1       Daniquidone 
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Our Approach:
 

● collect a representative 
data set

● evaluate different 
prediction systems on
data set

● make data set publicly
available for benchmark 
testing of other methods


