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Abstract
from nucleotidesequencest is animportantstepto
recognizepointsfrom which regionsencodingpro-
teins start, the so-calledtranslationinitiation sites
(TIS). This canbe modeledasa classificatiorprob-
lem. We demonstratéhe power of supportvector
machinegSVMs)for thistask,andshav how to suc-
cessfullyincorporatebiological prior knowledgeby
engineeringanappropriatékernelfunction.

1 Intr oduction

Living systemsare determinedby the proteins
they produceaccordingo theirgenetianforma-
tion. But only partsof the nucleotidesequence
carryingthisinformationencodeproteingCDS,
for coding sequence)while other parts (UTR,
for untranslatedegions)do not. Givena piece
of DNA or mRNA sequencef is mostinterest-
ing to know whetherit containsCDS,and,if so,
which proteinit encodes.

In principle, both CDS and the encoded
protein can be characterizedusing alignment
methods. Programscapableof aligning nu-
cleotidesequenceso proteindatabasesiclude
FASTX/ FASTY, Sear chW se andBLASTX.
However, this approachis hamperedy two se-
vereproblemsFirst,thereareseveralsourceof
noisemakingthe task moredifficult anderror
pronethanpureproteinalignment:(i) The cor-
rectstrandandreadingframehave to be found.
(i) Additional falsehits may resultfrom UTR
sequences(iil) Sequencingerrorsmay disrupt
the correctreadingframe. Second,alignment
basedapproachesely on homologousproteins
beingknown. This rendersthemunaptto find
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In order to extract protein sequencesnovel genes.Thus,a methodto identify CDSin

nucleotidesequencess desirablepothin order
to easahetaskfor alignment-basedpproaches
aswell asto find new genes.

Sinceliving cells are ableto distinguishbe-
tweenCDSandothernucleotidesequencearts
without utilizing ary homology information,
this should in principle also be possiblefor
computerprograms. In fact, there are algo-
rithms that identify CDS merely relying on
propertiesntrinsicto nucleotidesequencesthe
most successfulprogramsinclude GENSCAN

g[0] for genomicDNA and ESTScan [6] for

ESTs. ESTsare single-readpartial sequences
derivedfrom mRNA thatare particularlyerror
prone.ESTScan implementsa fifth-order hid-
den Markov modelthat simultaneouslyrecog-
nizesCDS by typical oligo-nucleotiderequen-
cies and correctssequencingerrors. It does
notincorporatea modelof translationinitiation
site (TIS) sequencesthat mark the beginning
of CDS.CGENSCAN employs generalizedhidden
Markov modelsto capturehestructureof anen-
tire genome. Despiteits overall sophistication,
GENSCAN usesa relatvely crude TIS model:
a piece of sequencas assigneda probability
for beinga TIS, basedon the positionalrelative
frequencief individual nucleotidesobsered
aroundatrueTIS.

Thereexistsanumberof moreelaboratenod-
elsof TIS themseles. Salzbeg extendsthe po-
sitional probabilities(asusedby GENSCAN) to
first order Markovian dependenciefl3]. This
is essentiallya properprobabilisticmodelingof



positionaldi-nucleotidesandleadsto a signifi-
cantincreasen recognitionperformanceThere
alsoexist methodgo explicitly capturecorrela-
tions betweennon-adjacenpositionsnearTIS
or othersignals[1], possiblyaidinginsightinto
thestructurafunctioningof thesesignals.How-

ever, sincefew suchcorrelationscanbe proved
to besignificantin TIS sequencesghereis little

gainfor TIS recognition.

All modelsdiscussedofarcanbecalledgen-
eratve, asthey canbe usedto generatgoten-
tial TIS sequencewith approximatelythe true
probability distribution. Applying suchmodels,
asequences considere@TIS if theprobability
it is assignedxceedsomethreshold.Themore
closelythetruedistributionis approximatedthe
betterthis approachworks. By usingso-called
discriminatve methods,in generala superior
distinctionbetweenrue andpseudor'IS canbe
achieved. Thesemethodsaim atlearningto dis-
criminate certain objectsfrom others, without
explicitly consideringorobabilitydistributions.

For example theprogramATGor [12] usesa
linear discriminantfunction that combinessev-
eral statisticalmeasuregerived from the se-
guence Eachof thosefeatureds designedo be
distinctive for trueversuspseudar'|S. Learning
allows to find a (linear) weightedcombination
of featureghatachiezesa gooddiscrimination.

A radically differentapproachto learninga
discriminatingfunctionis takenby Pederseand
Nielsen[11]. They train anartificial neuralnet-
work (NN) to predict TIS from a fixed-length
sequenc&indow arounda potentialstartcodon
(ATG). Theinputof theNN consistof abinary
encodingof the sequenceno higherlevel fea-
turesare supplied. The intriguing ideais that
the NN learnsby itself which featuresderived
from thesequencareindicative of atrueTIS.

Of the described methods, only ATGpr
malkesuseof theribosomescanningnodel[9].
According to this model, the translationstarts
at the first occurrenceof an appropriatesignal
sequencén themRNA, andthussequencehir-
ther downstreamthat resembletypical TIS are
inactive (pseudasites). Thescanningnodelcan
be combinedwith any TIS recognitionmethod,

onal to TIS signal sequenceaecognitionitself,
andis limited to completenRNA sequencesye
will notconsidetit in thefollowing.

In this paperwe shav thatwe cantoptheper
formanceof establisheanethoddor TIS recog-
nition by applying support vector machines
(SVMs) [4]. Like NNs, SVMs area discrimi-
native supervisednachinelearningtechnology
i.e. they needtrainingwith classifieddatain or-
derto learntheclassificationFor thetaskof TIS
recognitionwe shav thatSVMs canbesuperior
to NNs. To achieve this performancegain we
usea particularly desirablepropertyof SVMs:
the ability to adaptthemto the problemat hand
by including prior knowledgeinto the so-called
kernelfunction. Here, we demonstratdiow to
malke useof rathervaguebiologicalknowledge.
The paperis structuredasfollows: we first give
a brief descriptionof the SVM techniquethen
presentexperimentsand finally discussresults
andpotentialapplications.

2 Methods

2.1 Support Vector Machines

Formally, SVMs like ary other classification
methodaim at estimatinga classificationfunc-
tion f : X — {+£1} using classifiedtrain-
ing datafrom X x {£1} suchthat f will cor
rectly classify unseenexamples(testdata). In
our case,X will containsimplerepresentations
of sequencevindows, while +-1 corresponds$o
true TIS andpseudasites,respectrely.

In orderto besuccessfultwo conditionshave
to be respected. First, the training data must
be anunbiasedsamplefrom the samesourceas
the testdatawill be. This concernghe exper
imental setup. Second the size of the classof
functionsthat we chooseour estimatef from,
the so-calledcapacityof the learningmachine,
hasto be sensiblyrestricted. If the capacityis
too small, complex discriminantfunctionscan
not besuficiently well approximatedby ary se-
lectablefunction f —thelearningmachineas too
dumbto learnwell. Ontheotherhand toolarge
a capacitybearsthe risk of loosingthe ability
to learna function that generalizesvell to un-
seerdata.Thereasorliesin theexistenceof in-
finitely mary functionsthat are consistenwith

andis confirmedby theresultingimprovements the training examples,but disagreeon unseen

of recognition[2]. Sincethe modelis orthog-

(test) examples. Most of thosefunctionsper



fectly memorizethe particular examplesused
for training,but do notreflectgeneraproperties
of the classification.Picking sucha functionis
calledoverfitting.

In neural network training, overfitting is
avoided by early stopping, regularization or
asymptotiomodelselection3, 10]. In contrast,
thecapacityof SVMsis limited accordingo the
statisticaltheory of learningfrom small sam-
ples[17]. For learning machinesimplement-
ing linear decisionfunctions this corresponds
to finding a large magin separatiorof the two
classes.The mamgin is the minimal distanceof
trainingpointsto theseparatiorsurface(cf. Fig-
ure 1). Finding the maximummagin separa-
tion canbe castasa corvex quadratigprogram-
ming (QP)problem[4]. Thetime compleity of
solvingsuchaQPscalesapproximatelyjpetween
guadraticand cubic in the numberof training
patterngsee[14]), makingthe SVM technique
computationall}comparablyexpensve.

With respecto goodgeneralizationit oftenis
profitableto misclassifysomeoutlying training
datapointsin orderto achiese a larger magin
betweernthe othertraining points. SeeFigurel
for anexample.This’'neglectful’ learningstrat-
egy alsomastersnseparablelata[16], whichis
frequentin real-world applications. The trade-
off betweermagin sizeandnumberof misclas-
sifiedtraining pointsis controlledby a parame-
ter of the SVM, which thereforecanbe usedto
controlits capacity This extensionstill permits
optimizationvia QP[4].

It is temptingto think thatlinearfunctionscan
be insufficient to solve comple classification
tasks. A little thoughtrevealsthat this in fact
depend®ntherepresentationf thedatapoints.
Canonicalepresentationgsfrequentlyusedto
defineinput spacetendto minimizedimension-
ality andavoid redundang. Then,linearity may
easily be too restrictve. However, oneis free
to define(possiblyredundantjeatureghatnon-
linearly derve from any numberof input space
dimensions.Even for complex problems,well
chosenfeaturescould ideally be relatedto the
respectre classificatiorby rathersimplemeans,
e.g.by alinearfunction(cf. Figure2).

Any linearlearningmachinecanbe extended
to functions non-linearin input spaceX” by

Figurel: A binary classificationtoy problem: se-
paratedotsfrom crossesThe shadedegion consists
of training examples,the otherregions of testdata
(spatialseparatiorfor illustrationclarity only). The
datacanbeseparatedvith amagin indicatedby the
slim dottedlines, implicating the slim solid line as
decisionfunction. Misclassifyingonetraining point
(circled cross)leadsto a considerablextension(ar
rows) of themagin (fatlines)andtherebyto the cor
rectclassificatiorof two testexamplegcircleddots).

explicitly transformingthe datainto a feature
spaceF usingamap® : X — F (seeFigure
2). SVMs cando so implicitly, thanksto their

mathematicahiceness:all that SVMs needto

know in orderto bothtrain andclassifyaredot

productsof pairsof datapoints®(z), ®(y) € F

in featurespace. Thus, we only needto sup-
ply a so-calledkernel function that computes
thesedot products. This kernelfunction k& im-

plicitly definesghefeaturespacgMercers The-

orem,e.g.[4]) via

k(x,y) = (2(x) - ©(y)) -

Note that neither the SVM nor we need
to know &, becausethe mapping is never
performed explicitly. Therefore, we can
computationallyafford very large (e.g. 10%°-
dimensional)feature spaces. SVMs can still
avoid overfitting thanksto the maigin maxi-
mizationmechanism Simultaneouslythey can
learnwhich of thefeatureamplied by £ aredis-
tinctive for the two classes.So, insteadof hav-
ing to designwell-suitedfeaturesby ourselhes
(which can often be difficult), we canusethe
SVM to selecthemfrom a sufficiently rich fea-
ture space. Of course,it well be helpful if the
kernelsuppliesa type of featuresrelatedto the
correctclassification. In the next sectionswe
will shav how to boostthe processof learning
by choosingappropriat&kernelfunctions.



Figure 2: Threedifferentviews on the samedot versuscrossseparatiorproblem. Linear separatiorof
input points(a) doesnot work well: areasonablsizedmaigin requiresmisclassifyingonepoint. A better
separations permittedby non-linearfunctionsin input spacgb), which correspond$o alinearfunctionin
afeature-spacée). Input spaceandfeaturespacearerelatedby thekernelfunction (seemaintext).

2.2 Datasets 2.3 Engineeringthe kernel function

Little experienceexists in the application of Giventhe datasets,we have to choosea kernel
SVMs to biomoleculamproblems(to our know- functionk for training. A standarckernelfunc-
ledge, only work by Jaakkla and Haussler tion is the simple polynomialkernelk(x,y) =
[8]). Therefore,we comparethe performance (x-y+&)?. Thiskind of kerneltakestwo param-
of SVMs to thatof the mostpopularalternatve eters: the degreed and an additional constant
generalpurposemachinelearningtechnology «. Here, we use homogenougx 0) poly-
neuralnetworks (NNs). In orderto do so, we nomialsof first to fifth degree(d = 1,...,5).
usethevertebratelatasetprovidedby Pedersen Degree one correspondgo a linear separation

andNielsen[11]. We take careto only replace
the learningmachinerywhile retainingthe set-
ting: the definitionof trainingandtestdatasets
aswell asthedefinitionof inputspace.
Thesequencsetis built from highquality nu-
cleargenomicsequencesf aselectedetof ver
tebratestaken from GenBank. All introns are
removed, in analogyto the splicing of mMRNA
sequenceslhesetis thoroughlyreducedor re-

in input space.Theinput spaces definedby a
sparseit-encodingschemesusedby Pedersen
and Nielsen (personalcommunication): each
nucleotideis codedby five bits, exactly one of
whichis set. Thepositionof thesetbit indicates
whetherthe nucleotideis A, C, G or T, or if it
is unknawvn. Thus,thedot productx - y simply
countsthe numberof nucleotideghat coincide
in thetwo sequencerepresentetly x andy. If

dundang, to avoid over-optimisticperformance the degreed is setto two, the featurespacere-

estimategesultingfrom biaseddata. This pro-
tocol leaves3312sequencetsee[11]).

From thesesequencesthe datasetfor TIS
recognitionis built asfollows. For eachpoten-
tial startcodon(the nucleotidesequenceTG)
on the forward strand,one datapoint is gener
ated. This leadsto 13503datapoints,of which
3312 (24.5%) correspondo true TIS and the
other10191(75.5%)correspondo pseudasites.

flectsall pairwisecorrelationsof the nucleotide
frequenciesat ary two sequencepositions. A
degreeof threewould correspondo all corre-
lations of (possibly scattered)riplets, and so
on. With this simplekernelfunctionwe already
achieve resultscompetitve to thoseof the NN
devisedby PedersemandNielsen(seeTablel).
We designan improved kernel function by
incorporatingbasicbiological knowledge. We

Eachdatapoint is representedy a sequence make useof only one obsenation: While cer

window of 200 nucleotidesenteredaroundthe tainlocalcorrelationsaretypicalfor TIS, depen-
respectre ATG triplet. PederseandNielsendi- denciesbetweendistantpositionsare of minor

vide the datainto six partsof nearlyequalsize importanceor do not even exist. We want the
(= 2200 points)andfraction of true TIS. Each featurespaceo reflectthis fact. Thus,we mod-
partis in turnresenedfor testingthe classifica- ify the kernelutilizing a techniques described
tion learnedrom the otherfive parts. in [15]: At eachsequenc@osition,we compare



algorithm overall | true TIS | pseudosites| specificity | sensitvity
SVM, simplepolynomial 13.2%| 30.1% 7.8% 74.6% 69.9%
SVM, locality-improvedkernel| 11.9%| 30.1% 5.9% 79.5% 69.9%
SVM, codon-impre@edkernel | 12.3%| 29.8% 6.4% 78.2% 70.2%
neuralnetwork 15.4% 17.6% 14.8% 64.5% 82.4%
positionalpreferencescores 12.3% 24.9% 8.4% 74.4% 75.1%

Table1l: Comparisorof classificatiorerrors(first threecolumns:on all, on positive andon negative data
points).All results(exceptfor preliminarycodon-impreedfigures)areaverageoverthesix datapartitions.
SVMs aretrainedon 8000datapoints,leaving the remainingtraining data(~ 3300 points)for the deter

minationof suitableparameteralues. The NN resultsarethoseachieved by PedersemndNielsen([11],

personalcommunication). Here, model selectionseemsto have involved testdata, which might lead to

slightly overoptimisticfigures.Positionalpreferencescoresarecalculatecanalogousiyo Salzbeg [13], but
extendedo the200nucleotidesaroundthe ATG triplet alsosuppliedto theothermethods All valuesshavn

correspondo the optimal overall performancethoughthe truevs. pseudor S (or equivalently sensitvity

vs. specificity)trade-of canbe controlledby varyingthe classificatiorfunctionthreshold.

the two sequencefocally, within a small win-
dow of length2/+1 arouncthatposition.Again,
we countmatchingnucleotidesthis time multi-
plied with weightsw increasingfrom the bor-
dersto the centerof the window. The result-
ing weightedcountsaretakento the dt* power.
d, reflectstheorderof local correlationgwithin
thewindow) we expectto be of importance.

+1 d
win,(x,y) = (Z w; match;(x, y))
j=—1

Here, match, ;(x,y) is one for matching
nucleotidesat position p + j and zero other
wise. The window scorescomputedwith win,
are addedup over the whole length of the se-
guence Correlationdbetweerup to d, windows
aretakeninto accountby applyingpotentiation
with d, to theresultingsum.

k(x,y) = (Z win,(x, y))

We call this kernellocality-improved. In Ta-
ble 2 its TIS recognitionperformancds com-
paredto thatof the polynomialkernelfor differ-
ently sizedtrainingsets.

Ourkernelfunctionposegheproblemof how
to setanumberof parametergin additionto the
generaparametefor SVM capacitycontrolde-
scribedin section2.1). Sincewe considerong
distancecorrelationsunimportantwe setd, to
one. For eachof the remainingparametersywe
selecta smallnumberof valuesin anappropri-
aterange. SVMs aretrainedwith all combina-
tions of thesevalues,while excluding a part of

the training set. This partis thenusedto mea-
surethe performanceof the trainedSVM and
to selectthe correspondingparameters. With
respectto window size (27 + 1), we consider
nucleotidecomposition(two and more), inter-
actionsbetweenneighboringamino acids(six)
andthe assumedength of the ribosomalbind-
ing site (up to 14). For the degreeof local cor
relations(d,), we considewaluesupto five. Ta-
ble 2 shavsthatthe optimalparameterizatioof
thekerneldepend®n thetraining setsize. The
moredataavailableto the SVM, themorecom-
plex featurest canreliablylearn. Thetablealso
shaws thatthe performancemprovementsover
the polynomial kernel are very substantiafor
small numbersof training vectors,but decrease
for larger training sets. Again, this is consis-
tentwith statisticallearningtheory It is known
thatSVMs (aswell asotherlearningalgorithms)
areasymptoticallyoptimalwith whateverkernel
onechoosesj.e. they will performwell when
suppliedwith enoughtrainingdata(e.g.[17]).

In anattemptto furtherimprove performance
we try to incorporateanotherpiece of know-
ledgeinto thekernel thatagainis ratherdiffuse:
thecodon-structuref codingsequenceBy def-
inition the differencebetweena true TIS from
pseudositesis that downstreamof a TIS there
is CDS (which showvs codon structure),while
upstreamthereis not. CDS and UTR showv
statisticallydifferentcompositions. |t is likely
that the SVM exploits this differencefor clas-
sification. We could hopeto improve the ker-
nel by reflectingthe fact that CDS shifted by



SVM kernel function data points usedfor training
400 1000

18.1%  d=2 16.0% d=2

simplepolynomial

locality-improved
codon-impreed

17.9% d,=3]=2
18.4% dy=1]=2

15.9% d;=4,=3
15.6% d;=1,/=2

Table 2: Comparisorkernel functionsusing differently sizedsubsetsof the training dataset, averaged
over the six partitions. The percentagedenotethe overall classificatiorerrorsthat areachieved usingthe
indicatedsupposedlypptimal parametesettings.Notethatthe windows consistof 2/ + 1 nucleotides.

three nucleotidesstill looks like CDS. There-
fore, we further modify the locality-improved
kernelfunction to accountfor this translation-
invariance. In addition to counting matching
nucleotideson correspondingositionswe also
countmatcheghatareshiftedby threepositions.
We call this kernelcodon-impreed.

Tables2 and 1 suggestthat this modifica-
tion actually decreaseperformance. On the
other hand, a similar modificationto the sim-
ple polynomialkernelleadsto a significantin-
creasef recognitionaccurag (datanotshawn).
We thereforeconcludethatthe procesof learn-
ing somerelevant features(e.g. subtile local
correlations)is distorted by the modification.
In contrastto the simple polynomial kernel,
the locality-improved kernel seemsto be rich
enoughto easilylearntranslation-inarianceby
itself, wherever this provesadvantageous.

Nevertheless,both engineeredkernel func-
tions clearly outperformthe NN as devised by
Pederserand Nielsen by reducingthe overall
numberof misclassificationby about20% (see

well it finds the correctTIS within the set of
3312 mRNA-lik e sequenceslescribedin sec-
tion 2.2. Resultsare shavn in Table 3. On
average the programmissesthe true TIS posi-
tion by 41.6 nucleotides. Both this figure and
the table indicate that ESTScan could profit
from a TIS recognitionmodule. For genomic
sequenceandprogramdik e GENSCAN, a simi-
lar situationcouldbe expected.

However, cautionwould be necessaryn or-
der to useour methodwithin a rigorousprob-
abilistic framework like thoseof GENSCAN or
ESTScan. The SVM (as well as Pedersen
and Nielsens NN) seemgo exploit the differ-
entoligo-nucleotidereferencesf CDSin com-
parisonto UTRs. Thesepreferencesare al-
readyincorporatedn GENSCANandESTScan,
leadingto probabilitydistribution dependencies
that must be taken into account. In order to
avoid thesedependenciest would be easiest
to restrict the sequencewindow presentedo
the SVM to the ribosomebinding site. This
would mostprobablyleadto a decreasef clas-

Table1). The SVM alsobeatsthe performance sification performance. In addition, it would
of positional conditional probabilities, which be desirablethat the TIS recognition method
work surprisinglywell when appliedto larger computesprobabilityvaluesfor potentialTIS to
windows thansuggestedty Salzbeg. be true TIS. Meanwhile,it shouldbe usefulto
heuristicallycombineour TIS recognitionwith
3 Discussion GENSCAN or ESTScan output. We planto de-
First,we will briefly discussapplicationsof our voteworkto this area.
TIS recognitionmethod. This leadsto poten-  Therearefar too mary interestingclassifica-
tial pathsof improvement. Finally, we suggest tion tasksin bioinformaticstoo be coveredhere,
promising fields of applicationof techniques sowe restrictoursehesto two of the mostpop-
similar to thosepresentecbove. ular problems.First, we couldimaginethatthe
TIS recognitioncan be usedto improve re- excellent protein classificationperformanceof
liability andaccurag of aminoacid prediction theFisherkernelmethoddevelopedby Jaaklkola
from nucleotidesequenceslThetwo mainfields andHaussle[7] couldstill beimprovedby con-
of applicationareESTsandgenomicsequences.sideringlocal aminoacidcorrelationdn aman-
For EST data,the programESTScan aimsat nersimilarto ourlocality-improvedkernel.Sec-
identifying CDS asaccuratelyaspossible.In a ond, we believe that SVMs will prove success-
slight misuseof ESTScan, we investigatehow ful for exploiting the informationgatheredwith



ATG selection| overall | true TIS | pseudosites| specificity | sensitvity
left 39.0%| 93.7% 21.1% 8.9% 6.3%
right 18.1%| 51.3% 7.3% 68.7% 48.7%
closest 21.4%| 57.9% 9.4% 59.3% 42.1%

Table 3: Applicationof ESTScan for TIS recognitionon the original setof 3312sequencefcf. section
2.2).ForeachpredictedCDS,anATG triplet nearthesupposedtartpointof the CDSis selectedspredicted
TIS. Evaluationis shawvn for threedifferentselectiorstratgies. (Columnlabelsareasin Tablel.)

DNA chips.Here,kernelfunctionscouldbeen-
gineeredhatreflectthe structureof expression
dataascollectionof unrelatedime series.These
arefieldsof furtherfuturework.

In summary we have comparedthe perfor
manceof importantmethodsor sequencelas-
sification on a bio-molecularproblemof prac-
tical relevance. We shov that SVMs are com-
petitive to other morefrequentlyusedmachine
learningmethodsandoffer theuniqueadvantage
of aneasywayto includeprior knowledgetoim-
prove performance.
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