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Abstract In order to extract protein sequences
from nucleotidesequences,it is animportantstepto
recognizepointsfrom which regionsencodingpro-
teins start, the so-calledtranslationinitiation sites
(TIS). This canbemodeledasa classificationprob-
lem. We demonstratethe power of supportvector
machines(SVMs)for thistask,andshow how to suc-
cessfullyincorporatebiologicalprior knowledgeby
engineeringanappropriatekernelfunction.

1 Intr oduction
Living systemsaredeterminedby the proteins
they produceaccordingto theirgeneticinforma-
tion. But only partsof thenucleotidesequences
carryingthisinformationencodeproteins(CDS,
for codingsequence),while otherparts(UTR,
for untranslatedregions)do not. Givena piece
of DNA or mRNA sequence,it is mostinterest-
ing to know whetherit containsCDS,and,if so,
whichproteinit encodes.

In principle, both CDS and the encoded
protein can be characterizedusing alignment
methods. Programscapableof aligning nu-
cleotidesequencesto proteindatabasesinclude
FASTX/FASTY, SearchWise andBLASTX.
However, this approachis hamperedby two se-
vereproblems:First,thereareseveralsourcesof
noisemakingthe taskmoredifficult anderror-
pronethanpureproteinalignment:(i) Thecor-
rectstrandandreadingframehave to befound.
(ii) Additional falsehits may result from UTR
sequences.(iii) Sequencingerrorsmay disrupt
the correctreadingframe. Second,alignment
basedapproachesrely on homologousproteins
beingknown. This rendersthemunaptto find

novel genes.Thus,a methodto identify CDSin
nucleotidesequencesis desirable,bothin order
to easethetaskfor alignment-basedapproaches
aswell asto find new genes.

Sinceliving cells areable to distinguishbe-
tweenCDSandothernucleotidesequenceparts
without utilizing any homology information,
this should in principle also be possible for
computerprograms. In fact, there are algo-
rithms that identify CDS merely relying on
propertiesintrinsictonucleotidesequences.The
most successfulprogramsinclude GENSCAN
[5] for genomicDNA and ESTScan [6] for
ESTs. ESTsare single-readpartial sequences
derivedfrom mRNA thatareparticularlyerror-
prone.ESTScan implementsa fifth-orderhid-
den Markov model that simultaneouslyrecog-
nizesCDSby typical oligo-nucleotidefrequen-
cies and correctssequencingerrors. It does
not incorporatea modelof translationinitiation
site (TIS) sequences,that mark the beginning
of CDS.GENSCAN employsgeneralizedhidden
Markov modelsto capturethestructureof anen-
tire genome.Despiteits overall sophistication,
GENSCAN usesa relatively crudeTIS model:
a piece of sequenceis assigneda probability
for beinga TIS, basedon thepositionalrelative
frequenciesof individual nucleotidesobserved
arounda trueTIS.

Thereexistsanumberof moreelaboratemod-
elsof TIS themselves.Salzberg extendsthepo-
sitionalprobabilities(asusedby GENSCAN) to
first orderMarkovian dependencies[13]. This
is essentiallya properprobabilisticmodelingof



positionaldi-nucleotides,andleadsto a signifi-
cantincreasein recognitionperformance.There
alsoexist methodsto explicitly capturecorrela-
tions betweennon-adjacentpositionsnearTIS
or othersignals[1], possiblyaidinginsight into
thestructuralfunctioningof thesesignals.How-
ever, sincefew suchcorrelationscanbeproved
to besignificantin TIS sequences,thereis little
gainfor TIS recognition.

All modelsdiscussedsofarcanbecalledgen-
erative, asthey canbe usedto generatepoten-
tial TIS sequenceswith approximatelythe true
probabilitydistribution. Applying suchmodels,
asequenceis consideredaTIS if theprobability
it is assignedexceedssomethreshold.Themore
closelythetruedistributionis approximated,the
betterthis approachworks. By usingso-called
discriminative methods,in generala superior
distinctionbetweentrueandpseudoTIS canbe
achieved.Thesemethodsaimat learningto dis-
criminatecertainobjectsfrom others,without
explicitly consideringprobabilitydistributions.

For example,theprogramATGpr [12] usesa
lineardiscriminantfunction that combinessev-
eral statisticalmeasuresderived from the se-
quence.Eachof thosefeaturesis designedto be
distinctive for trueversuspseudoTIS. Learning
allows to find a (linear) weightedcombination
of featuresthatachievesa gooddiscrimination.

A radically different approachto learninga
discriminatingfunctionis takenbyPedersenand
Nielsen[11]. They train anartificial neuralnet-
work (NN) to predict TIS from a fixed-length
sequencewindow aroundapotentialstartcodon
(ATG). Theinputof theNN consistsof abinary
encodingof the sequence;no higher-level fea-
turesare supplied. The intriguing idea is that
the NN learnsby itself which featuresderived
from thesequenceareindicativeof a trueTIS.

Of the described methods, only ATGpr
makesuseof theribosomescanningmodel[9].
According to this model, the translationstarts
at the first occurrenceof an appropriatesignal
sequencein themRNA, andthussequencesfur-
ther downstreamthat resembletypical TIS are
inactive(pseudosites).Thescanningmodelcan
becombinedwith any TIS recognitionmethod,
andis confirmedby theresultingimprovements
of recognition[2]. Sincethe model is orthog-

onal to TIS signal sequencerecognitionitself,
andis limited tocompletemRNA sequences,we
will notconsiderit in thefollowing.

In thispaper, weshow thatwecantoptheper-
formanceof establishedmethodsfor TIS recog-
nition by applying support vector machines
(SVMs) [4]. Like NNs, SVMs area discrimi-
native supervisedmachinelearningtechnology,
i.e. they needtrainingwith classifieddatain or-
derto learntheclassification.For thetaskof TIS
recognition,weshow thatSVMscanbesuperior
to NNs. To achieve this performancegain we
usea particularlydesirablepropertyof SVMs:
theability to adaptthemto theproblemat hand
by includingprior knowledgeinto theso-called
kernel function. Here,we demonstratehow to
makeuseof rathervaguebiologicalknowledge.
Thepaperis structuredasfollows: we first give
a brief descriptionof the SVM technique,then
presentexperimentsand finally discussresults
andpotentialapplications.

2 Methods

2.1 Support Vector Machines
Formally, SVMs like any other classification
methodaim at estimatinga classificationfunc-
tion � ��� � 	�
��� using classifiedtrain-
ing datafrom ����	�
���� suchthat � will cor-
rectly classifyunseenexamples(testdata). In
our case,� will containsimplerepresentations
of sequencewindows,while 
� correspondsto
trueTIS andpseudosites,respectively.

In orderto besuccessful,two conditionshave
to be respected. First, the training datamust
beanunbiasedsamplefrom thesamesourceas
the testdatawill be. This concernsthe exper-
imentalsetup. Second,the sizeof the classof
functionsthat we chooseour estimate� from,
the so-calledcapacityof the learningmachine,
hasto be sensiblyrestricted. If the capacityis
too small, complex discriminantfunctionscan
notbesufficiently well approximatedby any se-
lectablefunction � – thelearningmachineis too
dumbto learnwell. Ontheotherhand,too large
a capacitybearsthe risk of loosing the ability
to learna function that generalizeswell to un-
seendata.Thereasonlies in theexistenceof in-
finitely many functionsthat areconsistentwith
the training examples,but disagreeon unseen
(test) examples. Most of thosefunctionsper-



fectly memorizethe particular examplesused
for training,but donotreflectgeneralproperties
of theclassification.Pickingsucha function is
calledoverfitting.

In neural network training, overfitting is
avoided by early stopping, regularization or
asymptoticmodelselection[3, 10]. In contrast,
thecapacityof SVMsis limited accordingto the
statisticaltheory of learning from small sam-
ples [17]. For learning machinesimplement-
ing linear decisionfunctions this corresponds
to finding a large margin separationof the two
classes.Themargin is the minimal distanceof
trainingpointsto theseparationsurface(cf. Fig-
ure 1). Finding the maximummargin separa-
tion canbecastasa convex quadraticprogram-
ming(QP)problem[4]. Thetimecomplexity of
solvingsuchaQPscalesapproximatelybetween
quadraticand cubic in the numberof training
patterns(see[14]), makingtheSVM technique
computationallycomparablyexpensive.

With respecttogoodgeneralization,it oftenis
profitableto misclassifysomeoutlying training
datapoints in order to achieve a larger margin
betweentheothertrainingpoints. SeeFigure1
for anexample.This ’neglectful’ learningstrat-
egy alsomastersinseparabledata[16], which is
frequentin real-world applications.The trade-
off betweenmargin sizeandnumberof misclas-
sifiedtrainingpointsis controlledby a parame-
ter of theSVM, which thereforecanbeusedto
control its capacity. This extensionstill permits
optimizationvia QP[4].

It is temptingto think thatlinearfunctionscan
be insufficient to solve complex classification
tasks. A little thoughtrevealsthat this in fact
dependsontherepresentationof thedatapoints.
Canonicalrepresentations,asfrequentlyusedto
defineinputspace,tendto minimizedimension-
ality andavoid redundancy. Then,linearitymay
easilybe too restrictive. However, one is free
to define(possiblyredundant)featuresthatnon-
linearly derive from any numberof input space
dimensions.Even for complex problems,well
chosenfeaturescould ideally be relatedto the
respectiveclassificationby rathersimplemeans,
e.g.by a linearfunction(cf. Figure2).

Any linearlearningmachinecanbeextended
to functions non-linear in input space � by

Figure1: A binary classificationtoy problem: se-
paratedotsfrom crosses.Theshadedregionconsists
of training examples,the other regionsof testdata
(spatialseparationfor illustrationclarity only). The
datacanbeseparatedwith amargin indicatedby the
slim dottedlines, implicating the slim solid line as
decisionfunction. Misclassifyingonetrainingpoint
(circledcross)leadsto a considerableextension(ar-
rows)of themargin (fat lines)andtherebyto thecor-
rectclassificationof two testexamples(circleddots).

explicitly transformingthe data into a feature
space� usinga map ����� � � (seeFigure
2). SVMs cando so implicitly, thanksto their
mathematicalniceness:all that SVMs needto
know in orderto both train andclassifyaredot
productsof pairsof datapoints �������������! "�$#%�
in featurespace. Thus, we only needto sup-
ply a so-calledkernel function that computes
thesedot products.This kernelfunction & im-
plicitly definesthefeaturespace(Mercer’s The-
orem,e.g.[4]) via&'�)(��+*,��-.�/����(0�213����*,�4��5

Note that neither the SVM nor we need
to know � , becausethe mapping is never
performed explicitly. Therefore, we can
computationallyafford very large (e.g. �7698!: -
dimensional)featurespaces. SVMs can still
avoid overfitting thanks to the margin maxi-
mizationmechanism.Simultaneously, they can
learnwhichof thefeaturesimpliedby & aredis-
tinctive for the two classes.So, insteadof hav-
ing to designwell-suitedfeaturesby ourselves
(which can often be difficult), we can usethe
SVM to selectthemfrom asufficiently rich fea-
ture space.Of course,it well be helpful if the
kernelsuppliesa type of featuresrelatedto the
correctclassification. In the next sections,we
will show how to boostthe processof learning
by choosingappropriatekernelfunctions.
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Figure2: Threedifferentviews on the samedot versuscrossseparationproblem. Linear separationof
input points(a) doesnot work well: a reasonablysizedmargin requiresmisclassifyingonepoint. A better
separationis permittedby non-linearfunctionsin inputspace(b), which correspondsto a linearfunctionin
a feature-space(c). Inputspaceandfeaturespacearerelatedby thekernelfunction(seemaintext).

2.2 Data sets
Little experienceexists in the application of
SVMs to biomolecularproblems(to our know-
ledge, only work by Jaakkola and Haussler
[8]). Therefore,we comparethe performance
of SVMs to thatof themostpopularalternative
generalpurposemachinelearning technology,
neuralnetworks (NNs). In order to do so, we
usethevertebratedatasetprovidedby Pedersen
andNielsen[11]. We take careto only replace
the learningmachinerywhile retainingthe set-
ting: thedefinitionof trainingandtestdatasets
aswell asthedefinitionof inputspace.

Thesequencesetisbuilt fromhighqualitynu-
cleargenomicsequencesof aselectedsetof ver-
tebratestaken from GenBank. All introns are
removed, in analogyto the splicing of mRNA
sequences.Thesetis thoroughlyreducedfor re-
dundancy, to avoid over-optimisticperformance
estimatesresultingfrom biaseddata. This pro-
tocol leaves3312sequences(see[11]).

From thesesequences,the dataset for TIS
recognitionis built asfollows. For eachpoten-
tial startcodon(the nucleotidesequenceATG)
on the forward strand,onedatapoint is gener-
ated.This leadsto 13503datapoints,of which
3312 (24.5%) correspondto true TIS and the
other10191(75.5%)correspondto pseudosites.
Each data point is representedby a sequence
window of 200nucleotidescenteredaroundthe
respectiveATG triplet. PedersenandNielsendi-
vide the datainto six partsof nearlyequalsize
( ;=<><�6�6 points)andfraction of trueTIS. Each
partis in turn reservedfor testingtheclassifica-
tion learnedfrom theotherfiveparts.

2.3 Engineering the kernel function
Giventhedatasets,we have to choosea kernel
function & for training. A standardkernelfunc-
tion is the simplepolynomialkernel &'�)(��+*,�?-��(@1A*CB�DE�GF . Thiskindof kerneltakestwoparam-
eters: the degree H and an additionalconstantD . Here, we usehomogenous( DI- 6 ) poly-
nomialsof first to fifth degree( HJ-��>�K5K5K5L��M ).
Degreeone correspondsto a linear separation
in input space.The input spaceis definedby a
sparsebit-encodingschemeasusedby Pedersen
and Nielsen (personalcommunication): each
nucleotideis codedby five bits, exactly oneof
whichis set.Thepositionof thesetbit indicates
whetherthe nucleotideis A, C, G or T, or if it
is unknown. Thus,thedot product(N1O* simply
countsthe numberof nucleotidesthat coincide
in thetwo sequencesrepresentedby ( and * . If
the degree H is setto two, the featurespacere-
flectsall pairwisecorrelationsof thenucleotide
frequenciesat any two sequencepositions. A
degreeof threewould correspondto all corre-
lations of (possibly scattered)triplets, and so
on. With thissimplekernelfunctionwe already
achieve resultscompetitive to thoseof the NN
devisedby PedersenandNielsen(seeTable1).

We designan improved kernel function by
incorporatingbasicbiological knowledge. We
make useof only oneobservation: While cer-
tainlocalcorrelationsaretypicalfor TIS,depen-
denciesbetweendistantpositionsareof minor
importanceor do not even exist. We want the
featurespaceto reflectthis fact.Thus,we mod-
ify thekernelutilizing a techniqueis described
in [15]: At eachsequenceposition,we compare



algorithm overall true TIS pseudosites specificity sensitivity
SVM, simplepolynomial 13.2% 30.1% 7.8% 74.6% 69.9%
SVM, locality-improvedkernel 11.9% 30.1% 5.9% 79.5% 69.9%
SVM, codon-improvedkernel 12.3% 29.8% 6.4% 78.2% 70.2%
neuralnetwork 15.4% 17.6% 14.8% 64.5% 82.4%
positionalpreferencescores 12.3% 24.9% 8.4% 74.4% 75.1%

Table1: Comparisonof classificationerrors(first threecolumns:on all, on positive andon negative data
points).All results(exceptfor preliminarycodon-improvedfigures)areaveragesoverthesix datapartitions.
SVMs aretrainedon 8000datapoints,leaving the remainingtrainingdata( PRQ7QKS7S points)for thedeter-
minationof suitableparametervalues.The NN resultsarethoseachieved by PedersenandNielsen([11],
personalcommunication).Here,modelselectionseemsto have involved testdata,which might lead to
slightly overoptimisticfigures.Positionalpreferencescoresarecalculatedanalogouslyto Salzberg [13], but
extendedto the200nucleotidesaroundtheATG triplet alsosuppliedto theothermethods.All valuesshown
correspondto theoptimaloverall performance,thoughthetruevs. pseudoTIS (or equivalentlysensitivity
vs. specificity)trade-off canbecontrolledby varyingtheclassificationfunctionthreshold.

the two sequenceslocally, within a small win-
dow of length <�TUBV� aroundthatposition.Again,
we countmatchingnucleotides,this time multi-
plied with weights W increasingfrom the bor-
dersto the centerof the window. The result-
ing weightedcountsaretakento the H>XZY8 power.H 8 reflectstheorderof localcorrelations(within
thewindow) weexpectto beof importance.

win[\��(��+*,��- ]_^a`bc+d�e ` W c match[ ^ c �)(��+*,�Uf Fhg
Here, match[ ^ c �)(��+*,� is one for matching

nucleotidesat position ijBlk and zero other-
wise. The window scorescomputedwith win[
are addedup over the whole length of the se-
quence.Correlationsbetweenup to H\m windows
aretaken into accountby applyingpotentiation
with Hnm to theresultingsum.&'��(��4*2��- ]o`b [ d 8 win[n��(2�+*,� f FUp

We call this kernellocality-improved. In Ta-
ble 2 its TIS recognitionperformanceis com-
paredto thatof thepolynomialkernelfor differ-
entlysizedtrainingsets.

Ourkernelfunctionposestheproblemof how
to setanumberof parameters(in additionto the
generalparameterfor SVM capacitycontrolde-
scribedin section2.1). Sincewe considerlong
distancecorrelationsunimportantwe set Hnm to
one. For eachof the remainingparameters,we
selecta smallnumberof valuesin anappropri-
aterange.SVMs aretrainedwith all combina-
tionsof thesevalues,while excludinga partof

the training set. This part is thenusedto mea-
surethe performanceof the trainedSVM and
to selectthe correspondingparameters.With
respectto window size ( <�TqBr� ), we consider
nucleotidecomposition(two and more), inter-
actionsbetweenneighboringaminoacids(six)
andthe assumedlengthof the ribosomalbind-
ing site (up to 14). For thedegreeof local cor-
relations( H 8 ), weconsidervaluesup to five. Ta-
ble2 showsthattheoptimalparameterizationof
thekerneldependson thetrainingsetsize. The
moredataavailableto theSVM, themorecom-
plex featuresit canreliably learn.Thetablealso
shows that theperformanceimprovementsover
the polynomial kernel are very substantialfor
smallnumbersof trainingvectors,but decrease
for larger training sets. Again, this is consis-
tentwith statisticallearningtheory. It is known
thatSVMs(aswell asotherlearningalgorithms)
areasymptoticallyoptimalwith whateverkernel
onechooses,i.e. they will performwell when
suppliedwith enoughtrainingdata(e.g.[17]).

In anattemptto furtherimproveperformance
we try to incorporateanotherpiece of know-
ledgeinto thekernel,thatagainis ratherdiffuse:
thecodon-structureof codingsequence.By def-
inition the differencebetweena true TIS from
pseudositesis that downstreamof a TIS there
is CDS (which shows codonstructure),while
upstreamthere is not. CDS and UTR show
statisticallydifferentcompositions.It is likely
that the SVM exploits this differencefor clas-
sification. We could hopeto improve the ker-
nel by reflectingthe fact that CDS shifted by



SVM kernel function data points usedfor training
400 1000

simplepolynomial 18.1% H =2 16.0% H =2
locality-improved 17.9% H 8 =3,T =2 15.9% H 8 =4,T =3
codon-improved 18.4% H 8 =1,T =2 15.6% H 8 =1,T =2

Table2: Comparisonkernel functionsusingdifferently sizedsubsetsof the training dataset, averaged
over thesix partitions.Thepercentagesdenotetheoverall classificationerrorsthatareachievedusingthe
indicatedsupposedlyoptimalparametersettings.Notethatthewindowsconsistof sKt9uwv nucleotides.

three nucleotidesstill looks like CDS. There-
fore, we further modify the locality-improved
kernel function to accountfor this translation-
invariance. In addition to counting matching
nucleotidesoncorrespondingpositions,wealso
countmatchesthatareshiftedby threepositions.
Wecall thiskernelcodon-improved.

Tables2 and 1 suggestthat this modifica-
tion actually decreasesperformance. On the
other hand,a similar modificationto the sim-
ple polynomialkernel leadsto a significantin-
creaseof recognitionaccuracy (datanotshown).
We thereforeconcludethattheprocessof learn-
ing somerelevant features(e.g. subtile local
correlations)is distortedby the modification.
In contrast to the simple polynomial kernel,
the locality-improved kernel seemsto be rich
enoughto easilylearntranslation-invarianceby
itself, wherever thisprovesadvantageous.

Nevertheless,both engineeredkernel func-
tions clearly outperformthe NN asdevisedby
Pedersenand Nielsenby reducingthe overall
numberof misclassificationsby about20%(see
Table1). TheSVM alsobeatstheperformance
of positional conditional probabilities, which
work surprisinglywell when appliedto larger
windowsthansuggestestby Salzberg.

3 Discussion
First,we will briefly discussapplicationsof our
TIS recognitionmethod. This leadsto poten-
tial pathsof improvement. Finally, we suggest
promising fields of application of techniques
similar to thosepresentedabove.

TIS recognitioncan be usedto improve re-
liability andaccuracy of aminoacid prediction
from nucleotidesequences.Thetwo mainfields
of applicationareESTsandgenomicsequences.
For EST data,the programESTScan aimsat
identifying CDSasaccuratelyaspossible.In a
slight misuseof ESTScan, we investigatehow

well it finds the correctTIS within the set of
3312 mRNA-lik e sequencesdescribedin sec-
tion 2.2. Resultsare shown in Table 3. On
average,the programmissesthe true TIS posi-
tion by 41.6 nucleotides.Both this figure and
the table indicate that ESTScan could profit
from a TIS recognitionmodule. For genomic
sequencesandprogramslikeGENSCAN, asimi-
lar situationcouldbeexpected.

However, cautionwould be necessaryin or-
der to useour methodwithin a rigorousprob-
abilistic framework like thoseof GENSCAN or
ESTScan. The SVM (as well as Pedersen
andNielsen’s NN) seemsto exploit the differ-
entoligo-nucleotidepreferencesof CDSin com-
parison to UTRs. Thesepreferencesare al-
readyincorporatedin GENSCAN andESTScan,
leadingto probabilitydistributiondependencies
that must be taken into account. In order to
avoid thesedependencies,it would be easiest
to restrict the sequencewindow presentedto
the SVM to the ribosomebinding site. This
would mostprobablyleadto a decreaseof clas-
sification performance. In addition, it would
be desirablethat the TIS recognitionmethod
computesprobabilityvaluesfor potentialTIS to
be true TIS. Meanwhile,it shouldbe useful to
heuristicallycombineour TIS recognitionwith
GENSCAN or ESTScan output.We planto de-
votework to thisarea.

Therearefar too many interestingclassifica-
tion tasksin bioinformaticstoobecoveredhere,
sowe restrictourselvesto two of themostpop-
ular problems.First, we could imaginethat the
excellent protein classificationperformanceof
theFisherkernelmethoddevelopedby Jaakkola
andHaussler[7] couldstill beimprovedby con-
sideringlocal aminoacidcorrelationsin a man-
nersimilarto ourlocality-improvedkernel.Sec-
ond,we believe thatSVMs will prove success-
ful for exploiting theinformationgatheredwith



ATG selection overall true TIS pseudosites specificity sensitivity
left 39.0% 93.7% 21.1% 8.9% 6.3%
right 18.1% 51.3% 7.3% 68.7% 48.7%
closest 21.4% 57.9% 9.4% 59.3% 42.1%

Table3: Applicationof ESTScan for TIS recognitionon theoriginal setof 3312sequences(cf. section
2.2).ForeachpredictedCDS,anATGtripletnearthesupposedstartpointof theCDSisselectedaspredicted
TIS. Evaluationis shown for threedifferentselectionstrategies.(Columnlabelsareasin Table1.)

DNA chips.Here,kernelfunctionscouldbeen-
gineeredthat reflectthe structureof expression
dataascollectionof unrelatedtimeseries.These
arefieldsof furtherfuturework.

In summary, we have comparedthe perfor-
manceof importantmethodsfor sequenceclas-
sificationon a bio-molecularproblemof prac-
tical relevance. We show that SVMs arecom-
petitive to other, morefrequentlyusedmachine
learningmethodsandoffer theuniqueadvantage
of aneasywayto includepriorknowledgeto im-
proveperformance.
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