A Platform-Independent Open-Source Feedback Framework
for BCI Systems

B. Venthur!, B. Blankertz!

!Machine Learning Laboratory, Berlin Institute of Technology, Berlin, Germany

venthurQcs.tu-berlin.de

Abstract

This paper introduces the Pythonic Feedback Framework which provides a platform inde-
pendent framework to develop BCI feedback applications in Python. It was designed to make
the development of feedback applications as easy as possible. Existing solutions have either
been implemented in C++, which makes the programming task rather tedious, especially
for non-computer-scientists, or in Matlab, which is not well suited for more advanced visual
(flickering is inavoidable which is unconfortable for the user and has side effects in the EEG)
or auditory feedback applications.

This framework solves this problem by moving the feedback implementations to a general
purpose, and easy to learn language like Python. Python provides many so called bindings to
other libraries, which allow it to develop high quality multimedia feedback applications, with
little effort.

The framework communicates with the rest of the BCI system via a standardized com-
munication protocol using UDP and XML and is therefore suitable to be used with any BCI
system that may be adapted to send its control signal via UDP in the specified format.

Having such a general feedback framework will also foster a vivid exchange of feedback
applications between BCI groups, even if individual system for processing and classification
are used.

1 Motivation

The motivation for the development of the presented feedback framework was to facilitate the
implmentation of high quality BCI feedback applications and to allow the interchange of such
applications between BCI groups. Accordingly, the feedback framework was designed as a stand-
alone program which may receive the control signal from a BCI system via a standardized protocol.
In order to make the implementation of new applications easy, many of the basic tasks common to
most feedback applications are accomplished in the framework and have not to be re-implemented
in the individual feedback applications. As programming language Python was chosen, because it
is easy to learn (interpreted language) and recognized as a very mature and stable language which
runs platform independent and already includes a very comprehensive class library. If Python is
too slow for certain time critical methods, it is possible to write those parts in C/C++ and call
them within Python. Most interesting about Python are the so called bindings. Bindings are
Python libraries which make other libraries, written in other languages than Python, available to
Python. We found Pygame (http://www.pygame.org/), a set of Python modules designed for
writing games a very useful resource for writing feedback applications. Pygame allows to create
high quality games and multimedia applications in Python. Since Python offers countless other
bindings like bindings to OpenGL, it is even possible to create feedbacks with complex 3D graphics
and special effects.

In contrast to compiled languages like C++, Python is also known to be very easy to learn.
Users with Matlab experience will find the syntax of Python familiar.

mailto:venthur@cs.tu-berlin.de
venthur@cs.tu-berlin.de
mailto:venthur@cs.tu-berlin.de
http://www.pygame.org/

Arbitrary BCI System

Data Acquisition m——————yp Signal Processing ret—a= GUI g

Control Signal XML over UDP \ Experimenter

EEG

Feedback Controller

Interaction Signal
---- -1 Active Feedback

Subject Feedback 1
Feedback 2
aaa ‘i\
Feedback n \L Plugins

Figure 1: Setup of an BCI experiment using the Pythonic Feedback Framework. The Feedback
Controller receives the control- and interaction signlas via UDP and XML.

2 Overview of the Framework

Figure 1 shows the setup of a generic BCI system using our Feedback Framework. The subject is
wearing a EEG cap and sitting in front of a computer which runs a feedback application. Brain
signals are collected and submitted to the data acquisition and signal processing units. The signal
is processed and the result (control signal) is sent to the Feedback Controller which processes the
incoming signal and forwards it to the feedback. The feedback application translates the control
signal into a visual, audible and/or tactile output.

The experimenter can remote-control the feedback and manipulate its variables via the GUI,
which also sends singals to the Feedback Controller. Those signals are called interaction signals.

The framework communicates with the rest of the BCI system via a standardized communi-
cation protocol using User Datagram Protocol (UDP) and Extensible Markup Language (XML)
and is therefore not bound to a single BCI system, but should be usable with any BCI system
providing control signals of some kind.

The feedbacks are realized as plugins of the Feedback Controller.

3 Components of the Framework

The feedback controller (Sec. 3.1) and the feedback base classes (Sec. 3.2) are components that are
general and take over the much of the programming load for the implementation of new feedback
applications by providing much of the general functionality.

3.1 Feedback Controller

The Feedback Controller manages the communication between the feedback and the rest of the
BCI system. It acts like a server, collecting control- and interaction signals over the network. Once
the Feedback Controller ist started, it is fully remotely controllable from the GUI: it is possible to
load feedbacks, manipulate their variables, start, pause and stop them. The data is sent in XML
format and must be therefore translated into Python compatible data structures and commands.
The Feedback Controller takes care of this. It sets feedback variables if necessary and calls the
appropriate event methods of the feedback.

Feedbacks are realized as plugins of the the Feedback Controller. Since the Feedback Con-
troller takes care about the whole communication between the feedback and the rest of the BCI

Feedback

OpenGLFeedback MyOpenGLFeedback

+ on_init() N
+ on_play()
+ on_pause()) MyPygameFeedback

+ on_quit() </—__ | PygameFeedback /"
+ on_control_event()] VA
+ on_interaction_event() [MyOtherPygameFeedback

Figure 2: Possible classdiagram: OpenGLFeedback and PygameFeedback are derived from the
Feedback base class and implement common functionality needed in all OpenGL- and Pygame
feedbacks.

system, implementing feedbacks is straight forward. Furthermore, since there is a uniform inter-
face between the feedback and the Feedback Controller, it is even possible, to exchange feedbacks
between various BCI systems of different BCI groups when using this framework.

3.2 Feedback Base Class

The Feedback base class is the interface to the Feedback Controller’s plugin system. The base
class provides methods, the Feedback Controller needs to communicate with the feedback. By
subclassing the Feedback base class, the derived class becomes a valid and ready-to-use feedback,
available to the Feedback Controller.

Feedbacks are event driven. Whenever the Feedback Controller receives a signal, it calls
the appropriate methods of the feedback to notify it: an incoming control signal causes an
on_control_event on the feedback, an incoming interaction signal with the play command an
on_play, and so on. To react on such events, only the respective on_-method of the feedback has
to be implemented. It is not necessary to implement all available events of the Feedback base
class, if the Feedback Controller triggers an event which was not implemented in the feedback,
nothing happens.

The object oriented approach of this framework makes it possible to further simplify the
development of feedbacks: If it becomes obvious that for example feedbacks using Pygame often
share the same blocks of code, it is possible to derive a PygameFeedback baseclass from the
Feedback base class, which already implements the shared functionality. Actual feedbacks using
Pygame can be derived from the PygameFeedback baseclass which can reduce the amount of code
per feedback drastically. Figure 2 illustrates the example.

3.3 GUI

The GUI is responsible for sending interaction signals to the Feedback Controller. It acts like a
remote control for the Feedback Controller and the running feedback: it allows to load, un-load
feedbacks, modify their variables, start, stop and pause them.

Once the GUI ist connected to the Feedback Controller, the Feedback Controller publishes all
available feedbacks to the GUI. The experimenter can now select the desired feedback in the GUI
and tell the Feedback Controller to load it. Once the Feedback Controller has loaded the feedback,
the feedback’s variables are automaticly published to the GUI. The GUI presents those variables
and their values in tabular form, allowing to modify their values or create new ones and send them
back to the Feedback Controller where they are directly applied to the running feedback.

The GUI is written in Python and QT and runs—Ilike the rest of the framework—platform
independently.

3.4 Documentation and Examples

Part of the framework is also a complete documentation of the system and its interfaces. The
documentation also provides a guide how to write own feedback applications using this framework.
Several well documented examples, explaining every major aspect of the feedback implementation,
are included.

4 A simple feedback example

The following listing shows a trivial feedback written with the framework. Although it does
nothing but printing the current control signal two times per second, it already shows the basic
structure of every feedback.

from Feedback import Feedback
import time

class ExampleFeedback(Feedback) :

def on_init(self):
print "Feedback successfully loaded."
self.quitting, self.quit, self.pause = False, False, False

def on_quit(self):
self.quitting = True
print "Waiting for main loop to quit."
while not self.quit:
pass

def on_play(self):
self.quitting, self.quit = False, False
self .main_loop()

def on_pause(self):
self.pause = not self.pause

def main_loop(self):
while 1:
time.sleep(0.5)
if self.pause:
continue
elif self.quitting:
break
print self._data
print "Left main loop."
self.quit = True

There are three variables which control the behavior of the feedback: pause tells the feedback
to pause it’s action, quitting tells the feedback to quit it’s main loop and quit is set when the
main loop has quit.

The heard of the feedback is the main_loop method. As the name suggests, it contains an
infinite loop where each iteration represents a tick (a very short amount of time) of the running
feedback. Each tick, the feedback checks the aforementioned variables pause and quitting and
decides what to do. If pause is set, the feedback just skips this tick, if quitting is set, it leaves

the loop and sets the quit method. If none of the two variables is set, it just executes the tick, in
this case by printing the content of the control signal.

The event on_play starts the main loop, on_pause and on_quit control the main loop’s
behavior by setting the pause and quitting variables. on_quit does a bit more than just setting
the quitting variable: after the variable has been set, it waits until the main loop has quit by
repeatingly checking the quit variable. Only after quit has been set, the on_quit method returns,
which tells the Feedback Controller that the feedback has successfully terminated.

5 Communication with the rest of the BCI system

In order to couple the Framework as loosely as possible with the rest of the BCI system and thus
allowing to support many different BCI systems, the Feedback Controller receives the control-
and interaction signals via User Datagram Protocol (UDP), a very lightweight network protocol
supported by all major operating systems and programming languages. UDP servers and -clients
are trivial to implement and allow the communication between programs on different machines in
the network or on the same machine.

The the content of the signals is send via Extensible Markup Language (XML) which is a well
known standard for exchanging information especially over internet. Libraries to parse XML files
or creating new ones are available for most modern programming languages.

The utilization of UDP and XML as a standardized interface to communicate with the frame-
work, should make it very easy to adapt most existing BCI systems to use this framework to
develop Feedbacks in Python.

6 Requirements

The framework itself has very few dependencies. It needs Python 2.4 or higher and optionally
pyParallel (http://pyserial.sourceforge.net) to utilize the parallel port to send markers to
the EEG acquisition system. No requirements are imposed regarding the operating system. The
framework will run on every platform which is supported by Python.

To use the GUI which uses Python’s QT bindings, PyQT (http://www.riverbankcomputing.
com/software/pyqt/) is needed. PyQT also runs on every major platform.

To use this framework in a specific BCI system, the BCI system should be able to send the
control signal via XML and UDP. Modifying existing BCI systems to create valid XML files
containing the control signal and sending them over UDP, should be fairly easy regardless of the
programming language being used.

7 Conclusion

The Pythonic Feedback Framework provides a solution for writing high quality BCI feedback
applications with minimal effort. Through the use of a standardized interface using a standard
protocol for the communication with the BCI system, this framework is very generic and it should
be easily adaptable to most existing BCI systems.

Moreover such a unified feedback framework creates the unique opportunity of exchanging BCI
feedback applications between BCI groups, even if individual systems are used for processing and
classification.

The presented framework runs on every major platform (Linux, Mac and Windows), is Free
Software and licensed under the terms of the GNU General Public License (GPL) for non-
commercial purposes.

http://pyserial.sourceforge.net
http://www.riverbankcomputing.com/software/pyqt/
http://www.riverbankcomputing.com/software/pyqt/

	Motivation
	Overview of the Framework
	Components of the Framework
	Feedback Controller
	Feedback Base Class
	GUI
	Documentation and Examples

	A simple feedback example
	Communication with the rest of the BCI system
	Requirements
	Conclusion

