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Abstract

Many settings of unsupervised learning can be viewed as quantization
problems, namely of minimizing the expected quantization error subject
to some restrictions. This has the advantage that tools known from the
theory of (supervised) risk minimization like regularization can be readily
applied to unsupervised settings. Moreover, one may show that this setting
is very closely related to both, principal curves with a length constraint
and the generative topographic map. Experimental results demonstrate
the feasibility of the proposed method.

In a companion paper we show that uniform convergence bounds can
be given for algorithms such as a modified variant of the principal curves
problem.

Introduction

The problems in unsupervised learning are by far less precisely defined than in
the supervised counterpart. Usually no explicit cost function exists with desired
outputs or anything alike. Instead, one has to make assumptions on the data,
with respect to which several questions may be asked.

One could look for properties of the data that can be extracted with high
confidence. In other words, which feature extracting functions can be found
among a given class with, say, unit variance and zero mean. Moreover, the
properties should not change too much on unseen data. This leads to a feature
extracting approach like (Kernel) Principal Component Analysis [9].

Another strategy is to look for properties that represent the data best. This
means that one is looking for a descriptive model of the data, thus also a (pos-
sibly quite crude) model of the underlying probability distribution. Generative
models like Principal Curves [5], the Generative Topographic Mapping [2], sev-
eral linear Gaussian models [8], or also simple vector quantizers [1] are examples
thereof. This is the kind of models we will study in this paper. We will show
that many of the problems can be formalized in a quantization error setting.
This will allow to use techniques from regularization theory. Moreover, we
show in a companion paper [11] that one can use these results to give uniform
convergence bounds.

2 The Quantization Error Functional

Denote X a vector space and X := {z1,...,Z,} C X a dataset drawn iid from an
underlying probability distribution P(z). Moreover consider (compact) index
sets Z, maps f: Z — X, and classes F of such maps (with f € F).

Here the map f is supposed to describe some basic properties of P(z). In
particular one seeks such f that the so—called quantization error

Rif)= [ minllo = () %dP@) (1)

is minimized. Unfortunately, this is unsolvable, as P is in general unknown.

Hence one replaces P by the empirical density p(z) = = >, §(z — z;) and

m
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instead of (1) analyzes the empirical quantization error defined by
Rnplf] = = 3 min o — )| e
= — Y minl||z; — f(2)||*.
emp m ] €2

Many problems of unsupervised learning can be cast in the form of finding a
minimizer of (1) or (2). Consider some practical examples.

Example 1 (Sample Mean) Define Z := {1}, f:1 — f1 with f; € X, and
F to be the set of all such functions. Then the minimum of

R[f] = /x Iz — f1]2dP(x) 3)

denotes the variance of the data and the minimizers of the quantization func-
tionals can be determined analytically by

1 m
argmin R[f] = / zdP(z) and argmin Remp[f] = — Zx, (4)
feF x feF m=

This is the (empirical) sample mean. Via the law of large numbers it follows
that both Remp|f] and its minimizer converge to R[f] and the corresponding
minimizer.

Example 2 (k—Vectors Quantization) Define Z := {1,...,k}, f i — f;
with f; € X, and F to be the set of all such functions. Then

R[f]:= min ||z — f,||*dP(z) (5)
x 2€{1,...,k}

denotes the canonical distortion error of a vector quantizer. In practice one

uses the k—-means algorithm to find a set of vectors {fi,..., fx} minimizing

the empirical quantization error. Also in this case, one can prove convergence
properties of (the minimizer) of Remp(f] to (the one of) R[f] [1].

Instead of discrete quantization one can also consider a quantizer mapping the
data onto a manifold of lower dimensionality than the input space. PCA can
also be viewed in this way [5]. This is formalized in the following example:

Example 3 (Principal Components) Define Z:=[0,1], f:z — fo+2z- f1
with fo, f1 € X, ||fil| = 1, and F to be the set of all such line segments. Then
the minimizer of

Rif)i= [ min o fo- 2 AlPdP() (6)
x 2€[0,1]
yields a line segment parallel to the direction of largest variance in P(z) [5].

Based on the properties of the current example, Hastie & Stuetzle [5] carried
this idea further by also allowing other functions f(z) than linear ones.
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Example 4 (Principal Curves) Denote 2 := [0,1]P (with D > 1 for princi-
pal surfaces), f:z — f(z) with f € F C €°[0,1]P, i.e. the class of continuous
curves, possibly with a further restriction of F. The minimizer of

R[f]:= [ min_ [z~ f(2)|[*dP(z) (7)
X z2€[0,1]

is not well defined, unless F is a compact set. Moreover, even the minimizer of
Remp|f] is not well defined either, in general. In fact, it is an ill posed problem
in the sense of Arsenin and Tikhonow [12]. Until recently [6], no convergence
properties of Remp[f] to R[f] could be stated.

Despite the problems mentioned above, an algorithm to minimize Remp[f], was
devised by [5]. It proceeds as follows: after initialization to the principal com-
ponents, the projections of the data-points onto the curve are estimated, the
curve based on that is re—estimated and smoothed by kernel smoothers or sim-
ilar techniques. This is iterated until a fixed point has been reached.

Kegl et al. [6, 7] modified the original “principal-curves” algorithm slightly,
in order to prove bounds on R[f] wrt. Remp[f] and to show that the resulting
estimate is well defined. In particular the changes imply a restriction of F to
polygonal lines with a fixed number of knots and, most importantly, fized length
L.

Instead of a length constraint we now consider smoothness constraints on
the estimated curve f(z). This is done via a regularization operator.

3 Invariant Regularizers

As a first step we will show that the class of admissible operators can be re-
stricted to scalar ones, provided some basic assumption about scaling behavior
and permutation symmetry are imposed.

Proposition 1 (Homogeneous Invariant Regularization) Any regular-
ization term Q|[f] that is both, homogeneous quadratic and invariant under an
irreducible orthogonal representation p of the group G on X, i.e. satisfies

QU] > Oforallfe5 (8)
Qlaf] = da*Qlf] for all scalars a (9)
Qle(g)fl = QIf] for all p(g) € G (10)
is of the form
Q[f] = (Pf,Pf) where P is a “scalar” operator. (11)

Proof It follows directly from (9) and Euler’s “homogeneity property”, that
Q[f] has to be a quadratic form, thus Q[f] = (f, M f) for some operator M.
Moreover M can be written as P*P as it has to be a positive operator (cf. (8)).
Finally from

(Pf,Pf)=(Pp(g)f,Pp(g)f) (12)
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and the polarization equation it follows that P*Pp(g) = p(g)P*P has to hold
for any p(g) € §. Thus, by virtue of Schur’s lemma (cf. e.g. [4]), it follows that
P*P only may be a scalar operator. Then, without loss of generality, also P
may be assumed to be scalar. | |

A consequence of the proposition above is that there exists no “vector valued”
regularization operator satisfying the invariance conditions. Hence it is useless
to look for other operators P in the presence of a sufficiently strong invariance.
A practical application of proposition 1 is the following corollary.

Corollary 2 (Permutation and Rotation Symmetries) Under the assump-
tions of proposition 1 both, the canonical representation of the permutation
group in a finite dimensional vector space X and the group of orthogonal trans-
formations on X enforce scalar operators P.

This follows immediately from the fact that these groups are unitary and irre-
ducible on X by construction. Thus in the following we will only consider scalar
operators P.

4 A Regularized Quantization Functional

In the following a modification to minimizing the empirical quantization func-
tional is proposed, which will lead to an algorithm that is more amenable to
implementation. Moreover, uniform convergence bounds can be obtained for
smooth curves, independently of the number of nodes/grid-points [11]. For
this purpose, a regularized version of the empirical quantization functional is
needed.

Rireg[f] := Remp[f] + —IIPf||2 mellxz F@)IP + IIPfIIQ- (13)

Here P is a scalar regularization operator in the sense of Arsenin and Tikhonov,
penalizing unsmooth functions f (see [10] for details). In the present case this
is a useful assumption, since all curves, which can be transformed into each
other by rotations, should be penalized equally.

Using the results of [10] regarding the connection between regularization opera-
tors and kernels it appears suitable to choose a kernel expansion of f matching
the regularization operator P, i.e. (Pk(z;,-),Pk(z;,-)) = k(z;,z;). Finally
assume P*Pfy = 0, i.e. constant functions are not regularized. Hence one gets

fo-I-ZaZ zi,z) with z; € Z, a; € X, and k : 22 5 R (14)

for some previously chosen nodes z1, ..., zpr (of which one takes as many as one
may afford in terms of computational cost). Consequently the regularization
term can be written as
M
IPFI? = (i, a)k(zi, 2)- (15)

ij=1
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What remains to do is to find an algorithm that finds a minimizer of Remp.
This is achieved by an EM type strategy. In the following we will assume the
data to be centered and therefore drop the term fy. This greatly simplifies the
notation (while the modification to take fy into account is straightforward).

An Algorithm for minimizing R, f]

No re-interpretation of the regularized quantization error as some likelihood
(with a suitable prior) of a class of generative models is done. Instead, the
techniques of EM algorithms [3] are adapted to solve

2
m M

M
. A
{al,..IflaIE}cx Z T — Zajk(giazj) + 5 Z (ai,aj)k(zi, zj) (16)
{C1stmcz | 1=1 Jj=1 i,j=1

likewise in an iterative fashion. For this purpose one iterates over minimiz-
ing (16) with respect to {(1,...,{m}, equivalent to the projection step, and
{ai,...,an}, which corresponds to the expectation step. This is repeated un-
til convergence, in practice until the regularized quantization functional does
not decrease significantly any further. One obtains:

Projection For each i € {1,...,m} choose (; such that

(i == argmin ||f(¢) — x> (17)
ez

Clearly, for fixed «;, the so chosen (; minimize the term in (16), which in turn
is equal to Ryeg[f] for given a; and X.

Adaptation Now the parameters (; are fixed and «; is adapted such that Ryeg[f]

decreases further. For fixed (; differentiation of (16) with respect to «; yields
A
(EKZ + KCTIQ) a=K/X (18)

where (K)ij := k(z,2;) is an M x M matrix and (K¢);; = k((;,z5) is m x M.
Moreover, with slight abuse of notation, o, and X denote the matriz of all
parameters, and samples, respectively. The term in (16) keeps on decreasing
until the algorithm converges to a (local) minimum. What remains is to find
good starting values.

Initialization If not dealing, as assumed, with centered data, set fy to the sample

mean, ie. fy = %221% Moreover, choose the coefficients «; such that f
approximately points into the directions of the first D principal components
given by the matrix F := (e1,...,ep). This is done as follows, analogously to
the initialization in the generative topographic map [2, eq. (20)].

2
M

M M
. A
min E E(z; — 2z9) — E ajk(zi, zj)|| + 3 E (0, )k (2, 25)
Jj=1 '

{al,...,aM}CI)C i—1 ij=1
(19)
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Thus « is determined as the solution of (31 + K,) @ = E(Z — Z,) where Z
denoted the matrix of z;, zp the mean of z; and Zy the corresponding matrix.

The derivation of this algorithm was quite “ad hoc”, however, one can show
that there exist similar precursors in the literature. First it is shown that
minimizing (13) is equivalent to minimizing the quantization error subject to a
length constraint on the estimated curve.

Regularizers for Length Constraints

By choosing P := 8,, i.e. the differentiation operator, ||[Pf||> becomes an in-
tegral over the squared “speed” of the curve. Reparameterizing f to constant
speed leaves the empirical quantization error unchanged, whereas the regu-
larization term is minimized. This can be seen as follows: by construction
f[O,l] |10, f(2)||dz does not depend on the (re)parameterization. The variance,
however, is minimal for a constant function, hence ||0,f(z)|| has to be constant
over interval [0,1]. Thus ||Pf|?> equals the squared length L? of the curve at
the optimal solution.

One can show that minimizing the empirical quantization error plus a reg-
ularizer is equivalent to minimizing the empirical quantization error for a fixed
value of the regularization term (for A adjusted suitably). Hence the proposed
algorithm is equivalent to finding the optimal curve subject to a length con-
straint, i.e. it is equivalent to the algorithm proposed by [6].!

The Connection to the GTM

Just considering the basic algorithm of the GTM (without the Bayesian frame-
work), one can observe that it minimizes a rather similar quantity to Ryeg[f]. It
differs in its choice of Z, which is chosen to be a grid, identical with the points
z; in our setting, and the different regularizer (called Gaussian prior in that
case) which is of /5 type. In other words instead of using ||Pf||? Bishop et al.
[2] choose Y, ||ci||? as a regularizer. Finally in the GTM several (; may take
on “responsibility” for having generated a data-point z; (this follows naturally
from the generative model setting in the latter case).

Note that unlike in the GTM (cf. [2, sec. 2.3]) the number of nodes (for the
kernel expansion) is not a critical parameter. This is due to the fact that there
is a coupling between the single centers of the basis functions k(z;,2;) via the
regularization operator. If needed, one could also see the proposed algorithm in
a Gaussian Process context (see [13]) — the data X then should be interpreted
as created by a homogeneous process mapping from Z to X.

Finally the use of periodical kernels (cf. [10]) allows one to model circular
structures in X. After solving the algorithmic issue one has to come up with
good uniform convergence bounds [11].

!The reasoning is slightly incorrect — f cannot be completely reparameterized to constant
speed, as it is an expansion in terms of a finite number of nodes. However the basic properties
still hold.
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5 Experiments

In order to show that the basic idea of the proposed algorithm is sound, we
ran several toy experiments (cf. figure 1). We generated different data sets in 2
and 3 dimensions from 1 or 2 dimensional parameterizations. Then we applied
our algorithm using the prior knowledge about the original parameterization
dimension of the data set in choosing the latent variable space to have the
appropriate size. For almost any parameter setting (A, M, and width of basis
functions) we obtained reasonable results.

Figure 1 Upper 4 images. We generated a dataset (small dots) by adding
noise to a distribution indicated by the dotted line. The resulting manifold
generated by our approach is given by the solid line (over a parameter range
of Z = [-1,1]). From left to right we used different values for the regular-
ization parameter A = 0.1,0.5,1,4. The width and number of basis function
was constant 1, and 10 respectively. Lower 4 images. Here we generated a
dataset by sampling (with noise) from a distribution depicted in the left most
image (small dots are the sampled data). The remaining three images show

the manifold yielded by our approach over the parameter space Z = [—1,1]? for
A =0.001,0.1,1. The width and number of basis functions was constant again
(1 and 36).

We found, that for a suitable choice of the regularization factor A a very close
match to the original distribution can be achieved. The number and width
of the basis functions had of course an effect on the solution, too. But their
influence on the basic characteristics is quite small.

Finally, figure 2 shows the convergence properties of the algorithm. One
can clearly observe that the overall regularized quantization error decreases for
each step, while both the regularization term and the quantization error term
are free to vary. This experimentally shows that the algorithm finds a (local)
minimum of Rqyant[f]-
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Figure 2 Left: regularization term, middle: empirical quantization error, right:
regularized quantization error vs. number of iterations.

6 Discussion

We proposed a framework for unsupervised learning that can draw on the tech-
niques available in minimization of risk functionals in supervised learning. This
yielded an algorithm suitable to deal with principal manifolds. The expansion
in terms of kernel functions and the treatment by regularization operators made
it easier to decouple the algorithmic part (of finding a suitable manifold) from
the part of specifying a class of manifolds with desirable properties. In par-
ticular, our algorithm does not crucially depend on the number of nodes used.
Furthermore the regularization operator treatment makes it easier to obtain
uniform convergence results (cf. [11]).

The current approach builds a bridge between algorithms such as Principal
Curves/Surfaces and the Generative Topographic Map, two methods that did
not seem too closely related after all. Using the proposed techniques, it should
be quite straightforward, to modify the GTM in a way to take a Gaussian
process prior into account.

It is our hope that, building on the current results, it will be possible to use
the framework of regularized risk functionals for capacity control in an effective
way also in unsupervised learning.
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