A Probabilistic Approach to Classifying
Metabolic Stability

The original publication is available at pubs.acs.ofg
http://dx.doi.org/10.1021/ci700142c

Anton Schwaighofér', Timon Schroetér’, Sebastian Mik§ Katja Hanseh T,
Antonius ter Laak, Philip Lienad, Andreas Reiché| Nikolaus Heinrich,
Klaus-Robert Miillet T

T Fraunhofer FIRST, KekuléstraBe 7, 12489 Berlin, Germany
* Technische Universitat Berlin, Department of Computdefee, Franklinstrale 28/29,
10587 Berlin, Germany
Tidalab GmbH, SophienstraRe 24, 10178 Berlin, Germany
I' Research Laboratories of Bayer Schering Pharma, Mii8st178, 13342 Berlin,
Germany

Abstract

Metabolic stability is an important property of drug molesithat should—
optimally—be taken into account early on in the drug desigrcess. Along
with numerous medium or high throughput assays being imgteed in
early drug discovery, a prediction tool for this propertyulcbbe of high
value. However, metabolic stability is inherently diffictd predict, and no
commercial tools are available for this purpose. In thiskwee present
a machine learning approach to predicting metabolic stgbthat is tai-
lored to compounds from the drug development process atrB2gieering
Pharma. For four differenn vitro assays, we develop Bayesian classifica-
tion models to predict the probability of a compound beingahelically
stable. The chosen approach implicitly takes the “domaiapgficability”
into account. The developed models were validated on rquejegct data
at Bayer Schering Pharma, showing that the predictions igidyhaccu-
rate and the domain of applicability is estimated corredtlyrthermore, we
evaluate the modelling method on a set of publicly availaiaie.
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1 Introduction

In the drug development process, 50% of the failiiedate development stages
are due to an unfavorable ADMET profile (Absorption, Digfition, Metabolism,
Excretion & Toxicity). A lot of research effort has been isted in obtainingn
silico predictions for properties that are closely related to tHEVAET profile,
like aqueous solubility® or lipophilicity.*> Commercial tools are available for a
number of properties relevant to the drug development poc&long with the op-
timized high and medium throughput methods in early phaokiaetics, predic-
tive tools for metabolic stability are called for. For thimperty, however, building
general-purpose models that are accurate over a large maidteuctural classes
is virtually impossible, since a plethora of not fully ungi&od mechanisms is
involved in metabolizing a chemical compound for examplthgmhuman liver.

Furthermore, experimental protocols and assays can vaiglyyisuch that
tool predictions and actual experimental outcome may éxlalge differences.
Only when the classes of compounds are limited, one can loogsadblish Quan-
titative Structure Property/Activity Relationship (QSPRRodels that reliably pre-
dict a property like metabolic stability. To date, thererdydittle published work
about such approach@< despite development efforts by various pharmaceutical
companies.

In this work we investigate the use of different regressiod elassification
methods to develop assay-specific models for metabolidlisfalihe approach
we finally chose was a Bayesian method, namely nonlineasititzion with
Gaussian Process priors. Each of the models (for human, malese, female
mouse, and male rat) predicts the probability of a compouwiaigometabolically
stable in then vitro assay. Models are based on experimental data collected in
the drug development process at Bayer Schering Pharmage\ieepercentage of
compound remaining after incubation with liver microsonfi@s30min is mea-
sured. During model fitting, the statistical fine structufettee molecular de-
scriptor space is learned, allowing the model to predictstadility for unseen
compounds.

A particular strength of our approach is to provide an implbeck for the
“domain of applicability”. The model is fully probabilistj and outputs the prob-
ability (between 0 and 1) for the compound to be stable. Iftfeglel is queried
outside its range of expertise, or in areas of conflictingdatmodel output close
to 0.5 indicates that it is equally likely for the compoundb® stable or unsta-
ble. A blind test of the final models confirmed this behaviardompounds from
new projects and shows that performance clearly increabes focussing on the
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compounds that can be predicted with high confidence by thdemd\Iso, the
developed models are, in a statistical sense, well caéitifathe predicted prob-
ability does correlate with the empirical probability focampound being stable.
The absolute value of the model output thus carries an iméuiheaning.

1.1 Background: Machine Learning

Machine learning subsumes a family of algorithmic techagjwith a solid sta-
tistical foundation that aim to find reliable predictionsibferring from a limited
set of experimental data. In computational chemistry,d¢bidd be measurements
from which we seek to derive, e.g., a predictor for the progpenetabolic stabil-
ity”, or for the water solubility of a compoun®® A large variety of techniques
has been developed in the machine learning and statistiescaities to account
for different prediction tasks and application aréaS.

The use of machine learning techniques for computationamistry is of
course not new. Neural Networks? for example, have a long history in com-
putational chemistry>14 Recently, the successful application of Support Vector
Machined?1%>16in many domains has also initiated their use for predictirapp
erties of chemical compound$:1°

In virtually all application scenarios for such QSAR modéls a key require-
ment to provide confidence estimat@<¢! Users of QSAR models need to be able
to assess whether they can trust the predictions made bydtelmWith that in
mind, SVMs are not ideal for applications in computatiorfamistry, since they
can not provide theoretically well founded confidence eatew (only heuristics
such as “Platt scaling® are available).

We find that Bayesian modeling approaches are more suitableomputa-
tional chemistry. In a Bayesian approach, one strives @t @ quantities in-
volved in model building as uncertain, and describe thempvadability distri-
butions. In such a framework, the model output is also a gdibadistribution,
which includes the required confidence estimates. Bayeg@noaches can be
applied to different forms of models. In this work, we use adfic Bayesian
nonlinear classification model, a Gaussian Process (GPgIRde’

The authors have demonstrated in recent work how Gaussiame$¥ regres-
sion models can be used to accurately predict the water itidl and the
lipophilicity*® of drug discovery molecules. The main advantages of GP mod-
els in this context are error bars for each individual predi; and a fully au-
tomatic procedure for model selection that allows for seng-training of the
model whenever new data becomes available. In this papeshow how a re-
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lated approach can be used to predict the metabolic stabflidrug candidates,
using a Bayesian classification method. Again, our focu®tonly on accurate
predictions, but also omeaningful probabilistic outcomes

1.2 Background: Metabolic Stability

Measuring the metabolic stability is part of the finstvitro studies on drug dis-
covery molecules in the pharmaceutical industry, aimingratlicting thein vivo
pharmacokinetic&® This, in turn, determines important factors like how much
and often the drug will need to be given. Metabolic stabiktgonsidered one of
the properties of a compound that are critical for its mapkeential?®

Metabolic stability provides information about the extehimetabolic clear-
ance of a compound. When administered orally, the elinonadiuring the first
passage through the liver can be calculated (first passkgfietich—under cer-
tain assumptions—Ileads to an estimate of the oral biodikilaof the com-
pound. In general, the process of metabolizing a compoundealivided into
phase | and phase Il metabolic enzym&#nvestigations from this work were per-
fomed using liver microsomal preparations, hence cover oxbreductive phase
| metabolism, involving enzymes like cytochrome P450, flavmonooxidases,
esterases and epoxide hydrolases. A overview of the ind@weymes and pro-
cesses depending on the biological matrix can e.g. be foutiteiwork of Cash-
manet al.?’ Details on the correlations betwegnvitro andin vivo clearance are
given by Masimirembwat al.°

The metabolism of a compound depends on a large number ablesirelated
to both the chemical itself and the biological system. Evéemthe metabolism
can be attributed to a specific enzyme (for example, one igytteehrome P450
family), modeling can be difficult due to the promiscuousunaf the enzymé®

A large variety of approaches has been developed in ordetdcess the is-
sue of metabolic stability by in silico methods. Two recemtiews%28 give an
overview. Following the nomenclature of Gomtedral.,%® the approaches can be
grouped as follows:

¢ Rule-based systems apply alarge number of programmeddrieformations
to the molecule, in order to directly predict metabolites.

e Oxidation by a CYP enzyme is one of the most common early gsEe
in metabolism. One can therefore estimate the likelihoo@amdlying a
one-electron oxidation to each site in the molecule, and tantify the
metabolically labile “hot spots”.
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e By predicting substrate binding, it is possible to estinvatether a molecule
can dock into the active site of the (CYP) enzyme.

e Prediction of metabolism inhibition and enzyme inducti@m delp to es-
timate potential drug-drug interactions, by estimatingthler a compound
can change the pharmacokinetics of co-administered drugs.

e The last class of approaches aims at directly predictingtkeall metabolic
stability, via a descriptor-based statistical modelingxgeriments that mea-
sure stability inin vitro assays.

The work presented in this paper falls into the last category

To date, there is only little published work on models to direpredict the
metabolic stability. Bursét al.2° present results on a small data set of 32 steroidal
androgens, modeled using a decision tree approach. As theraumote, the gen-
eralization ability seemed to be rather poor (around 50%classifying stable
versus non-stable). A set of 130 calcitriol analogs is usgeddnmsen et di.to
build partial least squares (PLS) models, combined withhiods for feature se-
lection. On a set of 20 validation compounds, an accuracyp® #/as achieved.
Shen et af use modified nearest neighbor approach, including a disthased
heuristic to estimate the domain of applicabfitpn a set of 631 compounds. The
most recent reference describes the process of buildinglolket stability models
at Eli Lilly. 28 Also, the application of the developed models in new drugalisry
projects is described.

In our work, we aim at improving upon the previous work in tloddwing
aspects:

e The modeling approach should correctly take the domain pfieability
(DOA) into account, and thus detect when the model is querigside its
range of data. Many of the currently used measures for the B@Ajuite
difficult to interpret® Thus, we wish to achieve a measure for the DOA that
conveys an intuitive meaning to the user.

e Ideally, the process of model building should be fully auédim and not
require user intervention for choosing parameters. Thagnaever new ex-
perimental data becomes available, an improved model caormsructed
easily.



2 Methods and Data

2.1 Methodology overview

For each molecule, the 3D structure of one conformation eslipted using the
program Corin&d® From the 2D structure and the predicted 3D structure, a set
of Dragort! descriptors is generated. Based on the descriptor and neeasuts

of the percentage of each compound remaining after incuiatith liver micro-
somes for 30min, a Gaussian Process classification modeted. fiwhen ap-
plying this model to a previously unseen compound, desusre calculated as
described above and passed on to the trained model. The madeh predicts

the probability that the compound in question is metabticstable, i.e., after
incubation for 30 min, more than 50% of the compound remains.

2.2 Experimental Protocol

The experimental protocol used to measure in-vitro metalsthbility is as fol-
lows: Liver microsomes were adjusted to a cytochrome P45%@eamtration of
0.2uM. Sodium phosphate buffer was used at 100mM at pH 7.4. Thectm®
were glucose-6-phosphate (8 mM), MgCl (4mM), NADR5M), and G-6-P
dehydrogenase (1 |unl).

Compounds were tested afild. Two samples were incubated at %7 and
constant shaking for 30min and were stopped by addition edald methanol
(1+1). Omin samples were stopped by icecold methanol befdding the test
compound. All samples were stored in the freeze2@°C) over night and thawed
during centrifugation at 2000 g before taking an aliquotHiéL.C-UV/Vis analy-
sis.

Experimental outcome is the per-cent recovery at 30 mirergas peak area
of the parent compound in relation to the Omin value. Testosie was used
as metabolic reference compound at iPD All incubations were perfomed in
duplicate.

2.3 Experimental Data

The Bayer Schering Pharma in-house data used for modelmgiltcludes mea-
surements of metabolic stability using microsomes of huyrfeanale mouse, male
mouse and male rat liver. The number of measurements foraessely is listed in
Table 1. After model selection and building, a set of comptsuinom recent drug



Assay # experimental data # data for model building

Human 2196 1931 (1172 stable, 759 unstable)
Mouse female 1268 1134 (560 stable, 574 unstable)
Mouse male 1022 904 (408 stable, 496 unstable)
Rat male 1647 1459 (758 stable, 701 unstable)

Table 1: Number of available experimental data for eachyasgae middle col-
umn lists the number of raw data per assay, the right colusts the number of
data after merging multiple measurements and removingeositl

Assay # experimental data # data for blind test

Human 700 631 (361 stable, 270 unstable)
Mouse female 358 326 (139 stable, 187 unstable)
Mouse male 194 183 (98 stable, 85 unstable)
Rat male 290 264 (148 stable, 116 unstable)

Table 2: Number of blind test data for each assay. The midalienn lists the
number of raw data per assay, the right column lists the nurobédata after
merging multiple measurements and removing outliers. Expntal values for
these compounds were only available to FIRST/idalab aftalehbuilding had
been completed

discovery projects were used as blind test data for the fioalais. These data are
summarized in Table 2.

2.4 Multiple Measurements

For a number of compounds, several experimental data ailalaegor a specific
assay (for example, if a compound has been measured sewveesl in mouse
liver microsomes). Thus, it is necessary to fuse multipl@soeements into a
consensus value.

The set of measurement values is noisy and contains lardiersut Com-
pounds where the spread of experimental values is larger3d# were removed
completely. To merge multiple measurements into a conseraue, we proceed
as follows: We consider the histogram of measured valuesh Sinistogram can
be characterized by two quantities, the spread of expetahgalues y-spread)
and the spread of the bin heightsspread).

7



3 ; ; ; "

- Training
+ Blind test

PCA component 2
o

-2}

3 ) 3 0 1 2
PCA component 1
Figure 1: Visualization of training and blind test data foe aissay “mouse female”

by principal component analysis (PCA). The blind test dataecs recent projects,
and thus follows a distribution that is different from thaifing data

Frequency
w w
o a
o o
Frequency
= =
B (2] o ) o N
o o o o o

n
o

0O 20 40 60 80 100 0O 20 40 60 80 100
% remainina % remainina
(a) Histogram of experimental valu@s) Histogram of experimental values
for training data for blindtest data

Figure 2: Histograms of raw experimental values for tregnamd blindtest data,
with all assays pooled



Several cases arise regularly: For smafipreads (all measured values are
similar), taking the median value is the most sensible aho@n the other hand,
large y-spread with large-spread hints at outliers. In such a case, we use the
median of the values in the higher of the two bins as the cansewmalue. The
worst case is given by two far apart bins of equal height (lyigpread and zero
z-spread). In this case we omit the compound altogethere siechave equally
strong evidence for the conflicting measurements. Our aisadyiggests that 25%
is a suitable threshold between small and large spreads.

2.5 Training and Validation Setups

To build machine learning models from the data sets deatiib&ec. 2.2, we
used the following protocol:

Training: In order to choose the right descriptors, model structund, aso to
estimate model performance, we used 2fold cross-validatithe training
data for each assay. The training data is split in two hal®e&P classi-
fication model is built on the first half, and evaluated on cooms in the
second half. This is repeated with the roles of the two haévxehanged.
The overall procedure is then repeated 5 times with differ@mdom splits.
Thus, in each of the 5 runs, model predictions for the fulihiray set are
generated, where each prediction is an out-of-samplegiredj made by a
model that has not seen the particular compound in its trgidata. Based
on the cross-validation performance, optimal model sgs$tiwere chosen,
and used to build final models from all training data.

Blind test: The final models were used to make predictions for a set ofl st
data compiled at Bayer Schering Pharma. Initially, the @rpental data
for the blind test data were not available to the modelliragrte They were
revealed after the model performance had turned out to lieisut.

2.6 Molecular descriptors

Initially, we used the full set of 1664 Dragon descriptorfie$e include, among
others, constitutional descriptors, topological degorgy walk and path counts,
eigenvalue-based indices, functional group counts anu-aentered fragments.
A full list of these descriptors including references carfdaend online3!



After a first modeling stage using all descriptors, it turreed that a large
number of descriptors can be omitted without significanttpacting the mod-
els performance. In particular, it was possible to omit tbmputationally most
expensive blocks, Dragon blocks 5 and 13. The models destthibreafter are
based on all or subsets of the descriptors from Dragon blbcRs 6, 9, 12, 15,
16, 17, 18, 20. (Most of these Dragon descriptors only dementhe 2D struc-
ture of the molecule, while some actually take 3D informaiioto account.) In
Sec. B we describe the influence of different strategiesdtmcsing a set of rele-
vant descriptors (feature selection) on ranking quality@mquality of confidence
estimates.

2.7 Choice of Models

Based on the available experimental data (per-cent regafeer 30 min) it is
possible to build either regression models that predicptrecent recovery, or to
build classification models that predict whether a compoisrnstable (recovery
> 50%). We investigated both strategies, a quick summaryeofeébults is given
in Sec. B.

With the actual application scenario at Bayer Scheringiidaan mind, we de-
cided to choose a Gaussian Process classification (GPC)l.ntidssification is
appropriate here as the model is typically used in earlyldpweent stages, where
a distinction between compounds with moderate and highlisyadioes not (yet)
need to be made. Another aspect is that the output of a GPClicertesadily be
used for compound ranking. Since GPC is a Bayesian methedutiput incorpo-
rates already a measure for the prediction uncertaintyporain of applicability
(DOA). Thus, compounds that are stable and in the DOA areaicblefore those
that are outside the DOA. If we were to use a regression madehhking, we
would need to fuse the model output (per-cent recovery) amasure for the
DOA into a single number that determines the compound rankhkmother point
in favor of GPC models is the possibility for fully automatitodel building (see
the list of criteria at the end of Sec. 1.2).

2.8 Gaussian Process Models

We start here with a short overview of the key ideas of Gand3racess classifi-
cation. For an in-depth treatment we refer to a recent Bdok.

Building a GP classification model follows, in principle, theds such as lo-
gistic (linear) regression:
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e We introduce a “latent” (unobserved) function that couldemdially model
the dependence of metabolic stability from the descriptothe case of lo-
gistic regression, this latent function depends lineanyhe descriptors. In
the case of a GP classifier, a nonlinear function is used #melbe described
by a Gaussian stochastic process. Mind that these funaiensever actu-
ally observed, and will later be “removed” by an integral iGtion.

e The latent function is then transformed nonlinearly by acfion that maps
from the real numbers to a probability in the range betweendla This
transformation plays a role similar to the transfer funesion neural net-
works, or the link function in logistic regression.

These ideas and the process of inference are summarizegureR. It is impor-

tant to note here that we use random variables as latentidmsctand thus also
obtain a random quantity after the (deterministic) tranmsfation. Only from such
a model, we can expect to obtain a meaningful quantificatidheoclassification

uncertainty.

2.8.1 Modeling

We consider data foN compounds, each described by a vector of descriptors
X1,...,XN. Each compound is assigned to either of two classes, whiclabe
+1 and—1. The class assignment is denotedyiy. ..,yn, with y; € {+1, —1}.
For classification, our goal is to model the probability digition of the class
labely for a given data pointp(y|x).

For the sake of model building, we introduce a latent (unoles function.
As oura priori information about this function, we assume that it followGaus-
sian stochastic process. The latent function is then ma@pgdashed”) through
a transfer functior®, that gives an output in the range [ 1]. As a trans-
fer function, we choose the Gaussian cumulative distrsutunction, ®(z) =
2.2 (x;0,1)dx. Learning with such a model essentially amounts to infgrrin
the behavior of the latent functiohn or solving a “hidden” regression problem.

This gives as the basic classification model

p(y = +1[x) = ®(f(x)), (1)

equivalently this likelihood term can be written péy| f(x)) = ®(yf(x)). Fur-
thermore, we assume thé¢x) follows a Gaussian Process, described by a mean
function (which we assume to be zero) and covariance fum&ti®@y assuming a
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Figure 3: Classification with Gaussian Process priors ferl#tentf. Left: 40
samples from a Gaussian Process prior over functions, dattegpasy = f(X).
For illustration, we only consider functions for one-dirsemal inputx. The
probability of membership in class1 is obtained by squashing each of these
functions through the transfer function and averaging bynéegral operation.
Without data, the probability is.B throughout. Right: We observe seven data
points, marked by for class+1, ando for class—1. We weight each function
(in latent space) according to the degree to which they catagxthe data (in
observation space). Well matching functions are shown ik daading, poorly
matching functions in light shading. After transforminglantegrating, we obtain
the learned class membership information.
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GP, we can reduce the burden of dealing with a probabilityidigion over func-
tions to a (Gaussian) probability distribution on functiadues at the points of
interest, that is, the points in descriptor space corredipgrto the experimental
data and the test compound on which the model is evaluatadedet of theN
observations at han¥,= {x1, ...,Xn}, we have one latent function value. Denote
the latent function values at th¢ training data points a= (f(X1),..., f(Xn)).
These follow a joint multivariate Gaussian distribution,

p(f|X) = 2 (0,K), (2)

where theN x N covariance matriX can be computed by pairwise evaluations of
the covariance functiok, with Kjj = k(xi,X;).

With these prerequisites, we can use Bayesian inferencd#dpothe distribu-
tion of the latent function on a test point, denotedXyy This inference step is
summarized in the appendix Sec. A. In the inference step stmmate the latent
function valuef, on the test point, given all the observed (training) datais @h
posterioribelief aboutf, is described by the probability distributiquf, | X,y, X).

To obtain the class membership probability, we averagednate) over the trans-
formed function, weighted by the degree of belief:

ply=+1/x.) = [ ®(F.)p(f. X,y x.)d .. 3

With our particular choice of transfer functigh and a Gaussian distribution for
p(f.|X,y,Xs), this integral can be solved analytically.

2.8.2 Predictions

In the inference step, we obtain the distribution of latemiction values, depen-
dent on the location of the test poit. Effectively, this describes what the upper
right graphics in Figure 3 looks like. It turns out that th@osterioridistribution

of latent function values on the test poxitfollows a Gaussian distribution with
meanf, and variance vaf,,

n

f(x.) = _Zlorik(x*,xi) 4)
varf(x,) = k(X*,X*)—i;jzll((X*,Xi)k(X*,Xj)Lij (5)

13



From the inference step (see Sec. A) we obtain a veotand a matrixS, which
in turn allows us to compute the coefficierts by the matrix expression =
(K+9S)~!m. Ljj denote the elements of matilix= (K +S)~1.

From that, the final output of the GP classification model fthabability that
a test compound falls into classl) is given by

p(y: = +1) = ®(f(x,)//1+varf(x,)) (6)

2.8.3 Adapting Parameters

In our model to predict metabolic stability, we use a covas@function of the
form

d -V
K(x,X) = <1+Zwi ( —»4)2> 7)

(the “rational quadratic” covariance functi. k(x,x’) describes the “similarity”
(covariance) in the behavior of two compounds, given byrtlescriptor vectors
x andx’. The contribution of each descriptor to the overall siniijais weighted
by a factorw; > 0 that effectively describes the importance of itiedescriptor
for the modeling task.

In order to set the weights; and the parameter, we consider a Bayesian
criterion called the evidence (marginal likelihood), tlretomputed by averaging
over all possible values for the latent function on the iragndata. It can be
seen as a measure of how well the data can be explained by rilemicolass of
latent functions, irrespective of the (unknown) actuatiealfor the latent function.
This allows for a fully automatic optimization of the critem with respect to the
evidence, thus all of model parameters can be chosen witrsautintervention.
A brief summary of this procedure is given in Sec. A.1.

3 Results

We evaluate the resulting modes with respect to the follgwiiteria:

Quiality of ranking: The main application area for the developed models at Bayer
Schering Pharma is compound ranking. We will use receiperating-
characteristics (ROC) curves to measure the quality ofdh&ing, results
will be presented in Sec. 3.2.
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Probabilistic output: We aim at intuitively understandable classifier outputd, an
thus want to achieve a well calibrafedassifier. For a well calibrated sys-
tem, a prediction “probability of 0.9 for being stable” meahat 9 out of 10
such compounds should indeed be stable. Calibration igidedan more
detail in Sec. 3.3, along with the calibration curves forfihal model.

When evaluating the ranking performance, it is importartiate “don’t know”
predictions and experimental values into account in a nmggni way. Consider a
compound with an experimental value of 48% recovery, andssdier prediction
“stable with probability 0.52”. Shall we count that as a rakg? After all, we
must expect that when repeating the lab experiment, theiexpetal value might
as well be 40% or 60%.

Thus, when evaluating only the confident parts of a compoand#ing, we
exclude both compounds with an unclear experimental outcfualues around
the stable/unstable threshold in the interfgdl— g, 50+ g]) and compounds with
an unsure prediction (values around the “don’t know” predicin the interval
[0.5—r1,0.5+Tr]). A graphical summary of the procedure is given in Figure 4.
From the remaining compounds, ROC curves to assess thengap&rformance
can be computed as usual.

Subsequently, we will evaluate the ranking performancenndusidering all
data §=r = 0), when focussing on the moderately confident predictiqas 15,

r = 0.15) and when focussing on confident predictiogs-(30,r = 0.3).

3.1 Model Selection

We investigated a large number of modeling approachesdlmseegression and
classification, built with different parameter settingsheTcriteria to select be-
tween the models were ranking quality (measured by areariheddROC curve)
and, when applicable, shape of the calibration curve. Bathsures were evalu-
ated in 2-fold cross-validation on the training data.

Model selection details are given in the appendix, Sec. Burlied out that
optimal results could be achieved by

e using all available descriptors without feature selectibany kind.

¢ including compounds that have an experimental value ar60f@l(the cho-
sen threshold for stable compounds).
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Figure 4: Evaluating a classifier rates when assuming wmogytfor both la-
bels and predictions. Only compounds where the experirhealize is far from
50%, and where the predicted probability is far from 0.5ualty contribute to
the computation of TP (true positive), TN (true negativé) (FRalse positives), and
FN (false negative) rates

The result on feature selection seems to contradict colmreitwisdom, yet is in
agreement with other wo?k33 on feature selection for QSAR modelling. As de-
scribed in Sec. B, we found that, for most methods, the diffee in ranking qual-
ity between filter-based feature selection and using alufea is non-significant.
This holds in particular for the kernel-based methods, wllbe number of de-
scriptors is independent of the number of model parametersept for GP meth-
ods with a covariance function that has a width parametdor each descriptor
in Eg. (7)). When also considering the confidence estimatéstned out that
stronger feature selection tends to make models over-anifidince we wish to
achieve both high ranking quality and reliable confidendemneges, we chose to
not perform feature selection.

In the subsequent sections, we only list the performanceaath by the “fi-
nal” model (GP classification, no feature selection) thatas/ implemented at
Bayer Schering Pharma.

3.2 Ranking Performance

Figure 5 shows receiver-operating-characteristics (R&@)es for the final mod-
els for each of the four assays, both when evaluated on timenigadata (2-fold
cross-validation) and on the blind test data (predictidrisefinal model). A sum-
mary of the performance in terms of area under the ROC curW{As listed in

16



Assay All data Moderately confident Confident
AUC % of data AUC % ofdata AUC

Human 85.0 58.2% 94.4 29.1% 99.4
Mouse female 83.2 51.7% 93.9 19.0% 98.2
Mouse male 82.7 50.6% 93.0 18.0% 98.5
Rat male 85.0 54.3% 94.4 24.1% 98.5

Table 3: Evaluating the ranking performance: Area (AUC)earttie ROC curves
shown in Figure 5 fo2-fold cross-validation on the training data In column

“All data” we evaluate the performance on the full list of goounds, “Moderately
confident” is the performance on the subset of data with 15r = 0.15 (see
Sec. 3), and “Confident” evaluates the subset of data witlidem outcomes
(g=30,r =0.30)

Assay All data Moderately confident Confident
AUC % of data AUC %ofdata AUC
Human 71.8 50.7% 80.7 17.0% 92.8
Mouse female 69.0 59.5% 80.6 18.7% 95.0
Mouse male 83.5 55.2% 93.7 21.3% 100.0
Rat male 76.4 37.5% 93.8 15.9% 92.7

Table 4: Evaluating the ranking performance: Area (AUC)anttie ROC curves
shown in Figure 5 for thélind test data. The subsets of data with moderately
confident and confident outcomes are defined as in Table 3

Table 3 and Table 4. In each case, we investigate the penfmenan all data, on
the subset of data with moderate confidence for experimentabme and pre-
diction (g = 15r = 0.15 in Figure 4), and on the subset of data with confident
experimental value and predictiog € 30,r = 0.30).

When comparing the results on the training data and on thel éist data
(536 drug candidates from recent projects at Bayer Schéthrayma), we can
observe a small drop in performance. Still, the performarogains promisingly
high. Note that the blind test data stems from new projectd, taus follows
a different distribution than the training data. Thus, thecfion of compounds
inside the model’s domain of applicability is smaller, leagto smaller number
of compounds that can be predicted with high confidence.
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Figure 5: Evaluating the ranking performance: ROC curvegietabolic stability
predictions in 2-fold cross-validation on the training @eft column) and on the
blind test data (right column). We plot ROC curves for allajdor the subset of
data with moderate confidenag-£ 15,r = 0.15, see Sec. 3 and Figure 4) and for
the subset of data with confident outcomes=(30,r = 0.30). A summary of the
performance in terms of AUC (area under the ROC curve) isgndable 3 and
Table 4
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3.3 Probabilistic Outputs

Our choice of Gaussian Process models was (amongst ottesiasrsee Sec. 2.7)
guided by their beneficial properties when it comes to unideding the classi-
fication results: The model output is the probability thataatipular compound
belongs to the class of stable compounds. The closer thalpitdlp is to O or
1, the more certain the model is about its prediction. In taidito the actual
classification performance, we thus also need to evaluagthehthe predicted
probability reflects the confidence of the result. Our go&biachieve a well cal-
ibrated classifief: For a well calibrated system, a prediction “probability 00
for being stable” means that 9 out of 10 such compounds shiodéstd be stable.
When using the model output for compound ranking, calibratias an intuitive
counterpart: Among the compounds with high probability eing stable, there
should be a larger fraction of compounds that actually alst than among the
compounds with low probability of being stable.

We evaluate the calibration property by means of a calibnaturve. Here,
we consider groups of compounds for which the predictedaiiity ppreqis in
bins centered aroun@.1,0.2,...,0.9]. For each group, we compute the within-
bin fraction of stable compoundpemp Ideally, the within-bin fraction of stable
compounds should be 1 out of 10 (for the birpglq= 0.1) up to 9 out of 10 (for
the bin atpyreq= 0.9). In the calibration curve, we plot predicted probabifityeq
on thex-axis versus empirical probabilitgemp On they-axis. Ideally, the result
should be a diagonal line.

It should also be noted here that classifier performance ahldration are
antagonist quantities: An error free classifier resultspoar calibration curve (a
horizontal line atpemp= 0 for all unstable compounds, then a horizontal line at
Pemp= 1 for all stable compounds).

The calibration curves for the training data, evaluatedfol@ cross-validation,
are listed in Figure 6. All the curves show very good agredrbetween predicted
and empirical probabilities. The according plots for thadktest data are shown
in Figure 7. The curves for the models “Human” and “Rat malej\8 acceptable
agreement between predicted and empirical probabilitik,the model for “Rat
male” being slightly over-confident for some compounds Hrat correctly pre-
dicted to be unstable. The curve for “Mouse female” showsomatmal behavior
in the regions aroungpreq = 0.35 andppreg= 0.7. This is mainly due to a cluster
of highly similar compounds that are all falsely predictede stable.

As a last remark, note that pseudo-probabilities can alscobgputed from
methods such as SVMs, by fitting a sigmoid function to the S\MNpat2? How-

19



nDDDDDDDDDDDDDDDDDDH

b | 8] S R [n[uls|s|s[s[8[[s]s]s[s]s[a)s}

0 0.2 0.4 0.6 0.8 1

Predicted p(stable)

(&) Human m/f

0 0.2 0.4 0.6 0.8 1

Predicted p(stable)

(b) Mouse female

pINEERENENEEREREREE

aflinienEnEnnEnEnEEE

0 0.2 0.4 0.6 0.8 1
Predicted p(stable)

(c) Mouse male

0 0.2 0.4 0.6 0.8 1
Predicted p(stable)

(d) Rat male

Figure 6: Calibration curves (see Sec. 3.3) of metaboligilgta predictions on
the training set, evaluated in 2fold cross-validation. @lrves show excellent
agreement between predicted and empirical probabilifidse small histogram
bars show the relative frequency of compounds that attd@ssifier output in the
respective bin

ever, this comes at the price of having to sacrifice a partetitita only for fitting
the parameters of the sigmoid functions.

4 Comparison With Existing Work

To our knowledge, only two publicatiofédeal with directly modeling metabolic
stability. Sheret al® used in-house data from GSK, whereas Jerse’ used
a set of data that is publicly available. In the following ts&t, we test our mod-
elling method on the data provided by Jenséal. They structured their work as
follows:

1. A set of 130 compounds was randomly split into a training(8& com-
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Figure 7: Calibration curves of metabolic stability preaios on the blind test
data. See Sec. 3.3 for further discussion
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pounds) and a validation set (42 compounds). Four outlyorgpounds
were removed from the training set, and one compound waswveshfoom
the validation set by visual inspection. Initial experirteeere done in
cross-validation on the training set, followed by a perfante evaluation
on the validation set. Feature selection was done in 5 diftevays, each
time followed by building a model using partial least sqedifeLS) regres-
sion.

2. Using the five feature selection techniques, models waieusing all 125
compounds from step one, and used to predict the metabalidist of 240
compounds for which no measurements existed.

3. From this set of 240 new compounds, 20 compounds weretselatere
the agreement of the five models built in step two was larJést.metabolic
stability of these compounds was measured and comparee poedictions
of the “consensus model” built from the five regression medel

To facilitate a fair comparison with the method used by Jeesal., we followed
the above steps as closely as possible. Jensen and co-svevidumate their mod-
els in terms of the root mean square error RMSE or as a 3-ctdssbregression
task (low, medium, and high metabolic stability). Both ntiare not suitable for
use with the GP classification model we had used on the inendata provided
by BSP, we thus chose a GP regression model. Also, we usedrtieedescriptor
set that Jenseet al. had used.

Jenseret al. investigated only one single random split of their inii&b (130
compounds minus 5 outliers) compounds into training anatlaabn set. Their
models yield an RMSE between 21 and 16 on the validation setth® same
single split a GP model yields an RMSE of.20 To find out whether the split
used by Jenseet al. is particularly “easy”, we generated 100 new random splits
built models for each split, and found an average RMSE of ,24ith a standard
deviation of 1.12. We conclude that the performance on thglsisplit chosen
by Jenseret al. is better that one would expect on average, but still withrie
standard deviation as calculated from 100 random splits.

Finally, we trained a model on the whole set of 125 compoumdisagplied
it to the 20 compound external validation set used by Jeasah A scatterplot
of predicted stability vs. measured stability can be founBigure 8. Overall, we
achieve an RMSE of 12.4.

Jensen and co-workers report that their model makes thregradictions
out of the 20 compound test set (with a slightly optimistitenpretation of mea-
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Figure 8: Scatterplot for predicted stability vs. measistadility on Jensen’s20
compound external validation set. The vertical and hotialoimes correspond
to the regions of low, medium, and high metabolic stabilitgttwere used in the
original work

surement uncertainty, that is, the model prediction is rgslicorrect when it
falls within experimental value plus/minus experimentahslard deviation). This
evaluation was done with a 3-class ordinal regression mitdelpredicts low,
medium, or high stability. To allow a comparison with that wan partition the
predictions of the GP regression model into 3 regions, uiisgsgame thresholds
that Jenseemt al. had used. When now counting errors the same way as Jehsen
al. did, we see that the Gaussian Process model mis-predigt®oa out of the
20 validation set compounds (compound M, experimental S9 loit predicted as
17). The mis-predictions for other compounds are still itine intervals given
by the experimental measurement uncertainty (Jeasah assume 5% standard
deviation).

Summing up, the performance of our model on the 125 compoatabet is
similar to the performance of Jensen’s models. Applying @ehtrained on all
125 compounds to Jensen’s 20 compound external validagipme find that our
model generalizes very well. However, it should be notec hieat Jensen and
co-workers chose the validation set as compounds whernefireemodels agreed
on, thus it probably contains compounds that are relatieay to predict.
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S5 Summary

The availability of computer based models to predict propgiof chemical com-
pounds has shown a tremendous impetus on many areas of eheasearch.
Models to predict physico-chemical properties, such aPlag water solubility,
have been developed to high standards already. Still, ig dasign, there is a
large need also for models that predict ADME properties. u@e complexity
of these endpoints, only few off-the-shelf tools are aldda

In this work, we presented a novel machine learning methoohfiking com-
pounds with respect to their metabolic stability in diffieren vitro assays. Data
stem from drug design projects at Bayer Schering Pharmas,Ttha developed
models are tailored to the classes of compounds that Bayerigg Pharma typ-
ically considers. Our evaluations showed that the developedels provide a
highly accurate compound ranking, both when checked withsswalidation and
on a validation set that was not known at the time of modeldmgl. Results
werde confirmed using a set of publicly avaible data. Conmgawiith the work
of Jenseret al.,” we find that the performance of our Gaussian Process models is
competitive.

One of the main features of the developed models is an aecanak intuitive
notion for the “domain of applicability”. The model is fullgrobabilistic, and
outputs the probability for a compound to be metabolicalfbke. Outside the
range spanned by training data, and in regions of conflictiegsurements, the
probability gets closer to 0.5, indicating that the pradictis most likely not ac-
curate. The model implicitly conflates its prediction andeasure for the domain
of applicability into a single quantity that can be direaitsed for compound rank-
ing. Furthermore, we showed that the model output is cdiblraallowing for an
intuitive understanding of the model output.

The final GPmet model has been implemented as a batch pnealinttas fully
integrated into the working environment at Bayer Scherihgrfha. The model
can produce around 50 predictions per second on a single 2Rerzum CPU.
Along with the GPmet model, a fully automatic re-traininglthas been devel-
oped, that allows for a model extension whenever new datarbes available,
and thus constantly enlarges the models’ domain of applittab
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A Inference for Gaussian Process Classification

The predictions in a GP classification model are essentialtgribed by the latent
function valued, on the test poink,, given all training data with their labelsy.

To compute this distributiop( . | X,y, X.), we first consider the joint distribution
of latent function values on teand training data. By an integral operation, we
can “remove” the unobserved function values on the traidiaig.. The joint dis-
tribution, in turn, can be factorized into a term relatihgo f, and a term relating
f to the experimental data:

(R 1X,y.x:) = [ P(EFIX,y.x)df = [ p(t, [£x)PEIX.y)f  (8)

The probability distribution of the latent function valuesn the training data are
obtained directly by Bayes’ rule as
p(y[f)p(f|X)
fIX,y) = 9

PEXCY) = Tty 1) plf )t ©)
For GP classification models, the major problem is computinegterm in the
denominator of Eq. (9). With the chosen likelihoqaly; | f(xi)) = ®(yi f(xi)),
the integral can not be solved analytically. Different apgmations have been
proposed in the literature, in our implementation we usediethod of “expecta-
tion propagation”, EP# to obtain a local Gaussian approximation for each of the
likelihood terms,

plyi | f(xi)) = ZaC (f(x)|mi,s) (10)
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The parameters of this approximation are found in an itezgtrocedure, by
matching mean and variance of the exact and the approxirkalidbod. The out-
come of this approximation procedure is summarized by avett (my, ..., my)
and a diagonal matri$with parameters; along the diagonal.

A.1 Learning the Family of Latent Functions

The most important decision in modelling with Gaussian Bsscclassification
is of course the choice of the family of latent functions. Goamly, this is re-
ferred to as setting the “hyper parametetf$ince the latent functions are solely
described by the covariance function, which in turn has spar@ameters. To
facilitate choosing these parameters, we consider theinaitdelihood:

£ = ply|X.0) = [ ply[Dp(F|X,O)c CEY

We usep(f| X, 0) to explicitly denote that the distribution of latent furanivalues
depends on a set of paramet@isf the covariance function (in the case of Eq. (7),
6= {v,wy,...,wy} for a total ofd descriptors). A gradient ascent method, such as
the Broyden-Fletcher-Goldfarb-Shanno metf®dan now be used to maximize
£ with respect to covariance function parametgrs

B Choice of Models

A large number of experiments was run to evaluate the pedoom of different
types of models, and with different setups. The most impbdaestions that had
to be addressed were:

e Can aregression model provide a better compound rankimgtbkassifica-
tion model? After all, the classification model is only traihon the (coarse)
stable/unstable information. We investigate two clasaiioe models (Sup-
port Vector Machines SV and Gaussian Process classification GPC, see
Sec. 2.8) and three regression models (linear ridge régreRRK Y Gaussian
Process regression GPRand Support Vector regression S¥R For the
non-Bayesian models, parameters were chosen in nestesh@aldation
on the respective training sets with depth search in gocahpeter regions.
For the Bayesian models, we performed a maximization of mardjkeli-
hood.
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e Which type of feature selection shall be used? We investthtitree differ-
ent choices:

— No feature selection at all, using all descriptors in Dradpocks
{1,2,6,9,12,15,16,17,18 20}

— Filter-based feature selection using a non-parametrielaiion test,
discarding those features that are uncorrelated with tlepemt at
high p-values

— Model-based feature selection via the automatic releveetermina-
tion procedure for GPC and GPR modélsyhere each descriptor is
assigned a weighw; in Eq. (7) that is subsequently found by maxi-
mizing marginal likelihood

e Furthermore, we investigated the influence of conformadiependent de-
scriptors. In our work, we used Coritfato predict one conformation of the
molecule, which in turn is used in Dragtrto compute conformation de-
pendent 3D descriptors. The 3D descriptors are thus onlgoappations,
and might mislead the model.

e Shall the models be built on all data, or only on those thatleulear ex-
perimental outcome? For classification approaches, wgrassimpounds
with an experimental valug 50% to class “stable”, the others to class un-
stable. Due to the high measurement noise, some compougtistmis be
mis-labelled and bring wrong information into the classifiehus, it might
be helpful to exclude data with an experimental value arci(td.

Table 5 summarizes the full results for each pair of featetection method
and modelling approach. Note that, for most methods, tlsepaly a minor (non-
significant) difference in performance between no featwlecsion and filter-
based feature selection. Furthermore, the regressioroahethat are trained on a
more fine-grained data can only achieve a small gain in pedoce over the clas-
sification methods. Amongst the classification methods, I@gsification usually
outperforms the SVM.

The result on feature selection seems to contradict theriexpe of most peo-
ple working in QSAR modelling, but also in machine learnimdyere most text
books advocate the use of descriptor (feature) selectiashamsms. However,
methods based on kernel functions (such as Support Vectohikkes) or, equiv-
alently, covariance functions (such as Gaussian Procedslg)are known to be
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Human RR SVR SVM GP GPC

None 823+0.2 855+0.3 835+04 862+01 850+0.3
Filter based 838+0.2 857+0.3 838+04 863+0.1 852+0.2
Model based n/a n/a nfa &4-0.2 8574+0.3
Mouse female RR SVR SVM GP GPC

None 796+0.4 840+04 821+03 841+03 832+05
Filter based 88+0.2 840+0.3 822+05 846+04 835+0.5
Model based n/a n/a na 404 8304+0.6
Mouse male RR SVR SVM GP GPC

None 8104+0.6 842404 810+04 842404 827+04
Filter based 82+04 837+05 806+02 846+04 834+0.3
Model based n/a n/a nfa 8304 820404
Rat male RR SVR SVM GP GPC

None 805+04 854+0.1 835+0.2 861+01 850+0.3
Filter based 8D»+0.3 851+0.3 838+01 865+£0.2 855+0.3
Model based n/a n/a nfa 86+0.2 8444+0.6

Table 5: Ranking quality, evaluated in terms of area undeiROC curve for 2-
fold cross-validation on the training data, for differeyyppés of models and feature
selection methods. The table lists the average performawvee5 runs of cross-
validation+ standard deviation

31



guite robust with respect to the presence of a large numbdesdriptors, even
if these do not carry information. This may be attributedhe fact that extra
descriptors do not increase the dimensionality of the meg@arameter space: In
a linear model, each extra descriptor requires an extranpea to be estimated,
whereas usually only one shared “width” parameter has tdhbsen in an SVM

kernel function (irrespective of whether there are 10 00Q0,descriptors). In a
Gaussian Process model, a width parameter can be introfturoealch descriptor
dimension, but here the Bayesian framework provides a geligble framework

to choose each width parameter without running risk of diténg.

We find our results in line with previous wotk®3 on descriptor selection in
QSAR modelling with SVMs. Excellent results can be achiewdtth an SVM
with 2934 descriptofS or even more than 10000 descriptor§? By using dif-
ferent methods of feature selection (genetic algorittiner filter based meth-
ods*d) it is possible to reduce the number of features drasticatlpwever, at
least for SVMs, this reduction usually has a negative impadatlassification per-
formance3? Reported performance gaiishave large standard errors, hence the
gains are not statistically significant.

So far, the focus was only on the impact of feature selectiothe ranking
quality. Figure 9 plots the calibration curves for a GPC niedth different meth-
ods of feature selection. We have chosen the assay “Mousad&imere, since
the corresponding results for ranking quality (shown inl&dh top) are essen-
tially identical. However, the calibration curves showtth@odel-based feature
selection leads to slightly over-optimistic predictioAs. shown by the histogram
bars, more compounds are (wrongly) predicted to be stahlestable with high
certainty. A numerical comparison of the three methodsédature selection can
be made by considering the cross-entropy loss fundorwhere actual class
yi € {+1,—1} and predicted probabilitp; are compared via

Yitl e 1oy

2 2
Smaller loss indicates a better model fit. ValuesHoare listed in Figure 9 along
with the calibration curves. Just as the calibration curttes values oH show
that feature selection does have an adverse effect on thgygpidghe probabilistic
predictions.

As suggested by one of the reviewers, we also investigatedrtpact of 3D
(and therefore conformation dependent) descriptors. iScetind, we built models
using both Support Vector Machines and Gaussian Procesisal four species,
once with and once without 3D descriptors. Results are ptedan Table 6. To

H(yi, pi) = logpi — log(1— pi). (12)
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Figure 9: Calibration curves of a GPC model with differermittee selection meth-
ods. The small histogram bars show the relative frequencpipounds that at-
tain a classifier output in the respective bin. We also listaterage cross-entropy
lossH, as defined in Eq. (12). Low values fét indicate good model fit. The
plots shown here are for a GPC model for the assay “Mouse &malaluated
in 2-fold cross-validation on the training data. Resultsdther assays showed
similar behavior

allow a meaningful comparison, no feature selection wad.ugéhen comparing
the performance with and without 3D descriptors, only ngmi§icant differences
can be observed (thel standard deviation intervals overlap in all eight cases).
We conclude that the impact of conformation dependent Dr&8j® descriptors

on the prediction performance of our models is negligible.

In Table 7, we list the ranking quality of methods that eithrenlude or ex-
clude data where the experimental value is around 50%. Wesfoaly on two
exemplary methods, SVR (regression, non-Bayesian) and (@R&sification,
Bayesian). Clearly, including the data with experiment&ues around 50% is
beneficial, in particular for the regression method SVR.

33



Assay SVR:incl. 3D SVR: excl. 3D GP:incl. 3D GP: excl. 3D
Human 84 +0.3 859+0.3 862+0.3 867+0.2
Mouse female 83 +0.6 829+05 841+0.8 837+05
Mouse male 8¥+1.0 841+0.5 842+09 844+0.7
Rat male 8%+0.4 851+0.5 862+0.3 86.1+0.3

Table 6: Does the performance change when including or dxeju3D descrip-
tors? Experiments were conducted without feature selgcéind on all data in-
cluding those with an experimental value of 50% stabilityeTable lists the aver-
age performance (area under the ROC curve, AUC) over 5 rurress$-validation

4+ standard deviation.

Assay SVR: all data SVR: omit [35 65] GPC: all data GPC: onit 5]
Human 857+0.3 844+0.2 852+0.2 849+0.2
Mouse female  840+0.3 824+0.2 835+0.5 837+04
Mouse male 83 +0.5 825+0.4 834+0.3 830+0.3
Rat male 851+0.3 842+0.2 855+0.3 84.7+0.3

Table 7: Model selection: Shall the models be built on albdat only on those
that have a clear experimental outcome? The table listswtrage performance
(area under the ROC curve, AUC) over 5 runs of cross-vabdati standard

deviation
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