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Abstract

Metabolic stability is an important property of drug molecules that should—
optimally—be taken into account early on in the drug design process. Along
with numerous medium or high throughput assays being implemented in
early drug discovery, a prediction tool for this property could be of high
value. However, metabolic stability is inherently difficult to predict, and no
commercial tools are available for this purpose. In this work we present
a machine learning approach to predicting metabolic stability, that is tai-
lored to compounds from the drug development process at Bayer Schering
Pharma. For four differentin vitro assays, we develop Bayesian classifica-
tion models to predict the probability of a compound being metabolically
stable. The chosen approach implicitly takes the “domain ofapplicability”
into account. The developed models were validated on recentproject data
at Bayer Schering Pharma, showing that the predictions are highly accu-
rate and the domain of applicability is estimated correctly. Furthermore, we
evaluate the modelling method on a set of publicly availabledata.
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1 Introduction

In the drug development process, 50% of the failures1 in late development stages
are due to an unfavorable ADMET profile (Absorption, Distribution, Metabolism,
Excretion & Toxicity). A lot of research effort has been invested in obtainingin
silico predictions for properties that are closely related to the ADMET profile,
like aqueous solubility2,3 or lipophilicity.4,5 Commercial tools are available for a
number of properties relevant to the drug development process. Along with the op-
timized high and medium throughput methods in early pharmacokinetics, predic-
tive tools for metabolic stability are called for. For this property, however, building
general-purpose models that are accurate over a large number of structural classes
is virtually impossible, since a plethora of not fully understood mechanisms is
involved in metabolizing a chemical compound for example inthe human liver.

Furthermore, experimental protocols and assays can vary widely, such that
tool predictions and actual experimental outcome may exhibit large differences.
Only when the classes of compounds are limited, one can hope to establish Quan-
titative Structure Property/Activity Relationship (QSPR) models that reliably pre-
dict a property like metabolic stability. To date, there is only little published work
about such approaches,6,7 despite development efforts by various pharmaceutical
companies.

In this work we investigate the use of different regression and classification
methods to develop assay-specific models for metabolic stability. The approach
we finally chose was a Bayesian method, namely nonlinear classification with
Gaussian Process priors. Each of the models (for human, malemouse, female
mouse, and male rat) predicts the probability of a compound being metabolically
stable in thein vitro assay. Models are based on experimental data collected in
the drug development process at Bayer Schering Pharma, where the percentage of
compound remaining after incubation with liver microsomesfor 30min is mea-
sured. During model fitting, the statistical fine structure of the molecular de-
scriptor space is learned, allowing the model to predict thestability for unseen
compounds.

A particular strength of our approach is to provide an implicit check for the
“domain of applicability”. The model is fully probabilistic, and outputs the prob-
ability (between 0 and 1) for the compound to be stable. If themodel is queried
outside its range of expertise, or in areas of conflicting data, a model output close
to 0.5 indicates that it is equally likely for the compound tobe stable or unsta-
ble. A blind test of the final models confirmed this behavior for compounds from
new projects and shows that performance clearly increases when focussing on the
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compounds that can be predicted with high confidence by the model. Also, the
developed models are, in a statistical sense, well calibrated:8 the predicted prob-
ability does correlate with the empirical probability for acompound being stable.
The absolute value of the model output thus carries an intuitive meaning.

1.1 Background: Machine Learning

Machine learning subsumes a family of algorithmic techniques with a solid sta-
tistical foundation that aim to find reliable predictions byinferring from a limited
set of experimental data. In computational chemistry, thiscould be measurements
from which we seek to derive, e.g., a predictor for the property “metabolic stabil-
ity”, or for the water solubility of a compound.2,3 A large variety of techniques
has been developed in the machine learning and statistics communities to account
for different prediction tasks and application areas.9,10

The use of machine learning techniques for computational chemistry is of
course not new. Neural Networks,11,12 for example, have a long history in com-
putational chemistry.13,14 Recently, the successful application of Support Vector
Machines10,15,16in many domains has also initiated their use for predicting prop-
erties of chemical compounds.17–19

In virtually all application scenarios for such QSAR models, it is a key require-
ment to provide confidence estimates.20,21 Users of QSAR models need to be able
to assess whether they can trust the predictions made by the model. With that in
mind, SVMs are not ideal for applications in computational chemistry, since they
can not provide theoretically well founded confidence estimates (only heuristics
such as “Platt scaling”22 are available).

We find that Bayesian modeling approaches are more suitable for computa-
tional chemistry. In a Bayesian approach, one strives to treat all quantities in-
volved in model building as uncertain, and describe them viaprobability distri-
butions. In such a framework, the model output is also a probability distribution,
which includes the required confidence estimates. Bayesianapproaches can be
applied to different forms of models. In this work, we use a specific Bayesian
nonlinear classification model, a Gaussian Process (GP) model.23,24

The authors have demonstrated in recent work how Gaussian Process regres-
sion models can be used to accurately predict the water solubility 2,3 and the
lipophilicity4,5 of drug discovery molecules. The main advantages of GP mod-
els in this context are error bars for each individual prediction, and a fully au-
tomatic procedure for model selection that allows for simple re-training of the
model whenever new data becomes available. In this paper, weshow how a re-

3



lated approach can be used to predict the metabolic stability of drug candidates,
using a Bayesian classification method. Again, our focus is not only on accurate
predictions, but also onmeaningful probabilistic outcomes.

1.2 Background: Metabolic Stability

Measuring the metabolic stability is part of the firstin vitro studies on drug dis-
covery molecules in the pharmaceutical industry, aiming atpredicting thein vivo
pharmacokinetics.25 This, in turn, determines important factors like how much
and often the drug will need to be given. Metabolic stabilityis considered one of
the properties of a compound that are critical for its marketpotential.25

Metabolic stability provides information about the extentof metabolic clear-
ance of a compound. When administered orally, the elimination during the first
passage through the liver can be calculated (first pass effect), which—under cer-
tain assumptions—leads to an estimate of the oral bioavailability of the com-
pound. In general, the process of metabolizing a compound can be divided into
phase I and phase II metabolic enzymes.26 Investigations from this work were per-
fomed using liver microsomal preparations, hence cover only oxoreductive phase
I metabolism, involving enzymes like cytochrome P450, flavine monooxidases,
esterases and epoxide hydrolases. A overview of the involved enzymes and pro-
cesses depending on the biological matrix can e.g. be found in the work of Cash-
manet al.27 Details on the correlations betweenin vitro andin vivo clearance are
given by Masimirembwaet al.25

The metabolism of a compound depends on a large number of variables related
to both the chemical itself and the biological system. Even when the metabolism
can be attributed to a specific enzyme (for example, one in thecytochrome P450
family), modeling can be difficult due to the promiscuous nature of the enzyme.26

A large variety of approaches has been developed in order to address the is-
sue of metabolic stability by in silico methods. Two recent reviews26,28 give an
overview. Following the nomenclature of Gombaret al.,28 the approaches can be
grouped as follows:

• Rule-based systems apply a large number of programmed bio-transformations
to the molecule, in order to directly predict metabolites.

• Oxidation by a CYP enzyme is one of the most common early processes
in metabolism. One can therefore estimate the likelihood ofapplying a
one-electron oxidation to each site in the molecule, and thus identify the
metabolically labile “hot spots”.
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• By predicting substrate binding, it is possible to estimatewhether a molecule
can dock into the active site of the (CYP) enzyme.

• Prediction of metabolism inhibition and enzyme induction can help to es-
timate potential drug-drug interactions, by estimating whether a compound
can change the pharmacokinetics of co-administered drugs.

• The last class of approaches aims at directly predicting theoverall metabolic
stability, via a descriptor-based statistical modeling ofexperiments that mea-
sure stability inin vitro assays.

The work presented in this paper falls into the last category.
To date, there is only little published work on models to directly predict the

metabolic stability. Bursiet al.29 present results on a small data set of 32 steroidal
androgens, modeled using a decision tree approach. As the authors note, the gen-
eralization ability seemed to be rather poor (around 50% forclassifying stable
versus non-stable). A set of 130 calcitriol analogs is used by Jensen et al.7 to
build partial least squares (PLS) models, combined with methods for feature se-
lection. On a set of 20 validation compounds, an accuracy of 85% was achieved.
Shen et al.6 use modified nearest neighbor approach, including a distance-based
heuristic to estimate the domain of applicability20 on a set of 631 compounds. The
most recent reference describes the process of building metabolic stability models
at Eli Lilly. 28 Also, the application of the developed models in new drug discovery
projects is described.

In our work, we aim at improving upon the previous work in the following
aspects:

• The modeling approach should correctly take the domain of applicability
(DOA) into account, and thus detect when the model is queriedoutside its
range of data. Many of the currently used measures for the DOAare quite
difficult to interpret.3 Thus, we wish to achieve a measure for the DOA that
conveys an intuitive meaning to the user.

• Ideally, the process of model building should be fully automatic and not
require user intervention for choosing parameters. Thus, whenever new ex-
perimental data becomes available, an improved model can beconstructed
easily.
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2 Methods and Data

2.1 Methodology overview

For each molecule, the 3D structure of one conformation is predicted using the
program Corina.30 From the 2D structure and the predicted 3D structure, a set
of Dragon31 descriptors is generated. Based on the descriptor and measurements
of the percentage of each compound remaining after incubation with liver micro-
somes for 30min, a Gaussian Process classification model is fitted. When ap-
plying this model to a previously unseen compound, descriptors are calculated as
described above and passed on to the trained model. The modelin turn predicts
the probability that the compound in question is metabolically stable, i.e., after
incubation for 30min, more than 50% of the compound remains.

2.2 Experimental Protocol

The experimental protocol used to measure in-vitro metabolic stability is as fol-
lows: Liver microsomes were adjusted to a cytochrome P450 concentration of
0.2µM. Sodium phosphate buffer was used at 100mM at pH 7.4. The cofactors
were glucose-6-phosphate (8mM), MgCl (4mM), NADP (0.5mM), and G-6-P
dehydrogenase (1IU/ml).

Compounds were tested at 3µM. Two samples were incubated at 37◦C and
constant shaking for 30min and were stopped by addition of icecold methanol
(1+1). 0min samples were stopped by icecold methanol beforeadding the test
compound. All samples were stored in the freezer (−20◦C) over night and thawed
during centrifugation at 2000g before taking an aliquot forHPLC-UV/Vis analy-
sis.

Experimental outcome is the per-cent recovery at 30min, given as peak area
of the parent compound in relation to the 0min value. Testosterone was used
as metabolic reference compound at 100µM. All incubations were perfomed in
duplicate.

2.3 Experimental Data

The Bayer Schering Pharma in-house data used for model building includes mea-
surements of metabolic stability using microsomes of human, female mouse, male
mouse and male rat liver. The number of measurements for eachassay is listed in
Table 1. After model selection and building, a set of compounds from recent drug
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Assay # experimental data # data for model building

Human 2196 1931 (1172 stable, 759 unstable)
Mouse female 1268 1134 (560 stable, 574 unstable)
Mouse male 1022 904 (408 stable, 496 unstable)
Rat male 1647 1459 (758 stable, 701 unstable)

Table 1: Number of available experimental data for each assay. The middle col-
umn lists the number of raw data per assay, the right column lists the number of
data after merging multiple measurements and removing outliers

Assay # experimental data # data for blind test

Human 700 631 (361 stable, 270 unstable)
Mouse female 358 326 (139 stable, 187 unstable)
Mouse male 194 183 (98 stable, 85 unstable)
Rat male 290 264 (148 stable, 116 unstable)

Table 2: Number of blind test data for each assay. The middle column lists the
number of raw data per assay, the right column lists the number of data after
merging multiple measurements and removing outliers. Experimental values for
these compounds were only available to FIRST/idalab after model building had
been completed

discovery projects were used as blind test data for the final models. These data are
summarized in Table 2.

2.4 Multiple Measurements

For a number of compounds, several experimental data are available for a specific
assay (for example, if a compound has been measured several times in mouse
liver microsomes). Thus, it is necessary to fuse multiple measurements into a
consensus value.

The set of measurement values is noisy and contains large outliers. Com-
pounds where the spread of experimental values is larger than 30% were removed
completely. To merge multiple measurements into a consensus value, we proceed
as follows: We consider the histogram of measured values. Such a histogram can
be characterized by two quantities, the spread of experimental values (y-spread)
and the spread of the bin heights (z-spread).
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Figure 1: Visualization of training and blind test data for the assay “mouse female”
by principal component analysis (PCA). The blind test data covers recent projects,
and thus follows a distribution that is different from the training data
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Figure 2: Histograms of raw experimental values for training and blindtest data,
with all assays pooled
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Several cases arise regularly: For smally-spreads (all measured values are
similar), taking the median value is the most sensible choice. On the other hand,
largey-spread with largez-spread hints at outliers. In such a case, we use the
median of the values in the higher of the two bins as the consensus value. The
worst case is given by two far apart bins of equal height (highy-spread and zero
z-spread). In this case we omit the compound altogether, since we have equally
strong evidence for the conflicting measurements. Our analysis suggests that 25%
is a suitable threshold between small and large spreads.

2.5 Training and Validation Setups

To build machine learning models from the data sets described in Sec. 2.2, we
used the following protocol:

Training: In order to choose the right descriptors, model structure, and also to
estimate model performance, we used 2fold cross-validation on the training
data for each assay. The training data is split in two halves.A GP classi-
fication model is built on the first half, and evaluated on compounds in the
second half. This is repeated with the roles of the two halvesexchanged.
The overall procedure is then repeated 5 times with different random splits.
Thus, in each of the 5 runs, model predictions for the full training set are
generated, where each prediction is an out-of-sample prediction, made by a
model that has not seen the particular compound in its training data. Based
on the cross-validation performance, optimal model settings were chosen,
and used to build final models from all training data.

Blind test: The final models were used to make predictions for a set of blind test
data compiled at Bayer Schering Pharma. Initially, the experimental data
for the blind test data were not available to the modelling team. They were
revealed after the model performance had turned out to be sufficient.

2.6 Molecular descriptors

Initially, we used the full set of 1664 Dragon descriptors. These include, among
others, constitutional descriptors, topological descriptors, walk and path counts,
eigenvalue-based indices, functional group counts and atom-centered fragments.
A full list of these descriptors including references can befound online.31
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After a first modeling stage using all descriptors, it turnedout that a large
number of descriptors can be omitted without significantly impacting the mod-
els performance. In particular, it was possible to omit the computationally most
expensive blocks, Dragon blocks 5 and 13. The models described hereafter are
based on all or subsets of the descriptors from Dragon blocks1, 2, 6, 9, 12, 15,
16, 17, 18, 20. (Most of these Dragon descriptors only dependon the 2D struc-
ture of the molecule, while some actually take 3D information into account.) In
Sec. B we describe the influence of different strategies for selecting a set of rele-
vant descriptors (feature selection) on ranking quality and on quality of confidence
estimates.

2.7 Choice of Models

Based on the available experimental data (per-cent recovery after 30min) it is
possible to build either regression models that predict theper-cent recovery, or to
build classification models that predict whether a compoundis stable (recovery
> 50%). We investigated both strategies, a quick summary of the results is given
in Sec. B.

With the actual application scenario at Bayer Schering Pharma in mind, we de-
cided to choose a Gaussian Process classification (GPC) model. Classification is
appropriate here as the model is typically used in early development stages, where
a distinction between compounds with moderate and high stability does not (yet)
need to be made. Another aspect is that the output of a GPC model can readily be
used for compound ranking. Since GPC is a Bayesian method, the output incorpo-
rates already a measure for the prediction uncertainty, or domain of applicability
(DOA). Thus, compounds that are stable and in the DOA are ranked before those
that are outside the DOA. If we were to use a regression model for ranking, we
would need to fuse the model output (per-cent recovery) and ameasure for the
DOA into a single number that determines the compound ranking. Another point
in favor of GPC models is the possibility for fully automaticmodel building (see
the list of criteria at the end of Sec. 1.2).

2.8 Gaussian Process Models

We start here with a short overview of the key ideas of Gaussian Process classifi-
cation. For an in-depth treatment we refer to a recent book.23

Building a GP classification model follows, in principle, methods such as lo-
gistic (linear) regression:
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• We introduce a “latent” (unobserved) function that could potentially model
the dependence of metabolic stability from the descriptor.In the case of lo-
gistic regression, this latent function depends linearly on the descriptors. In
the case of a GP classifier, a nonlinear function is used that can be described
by a Gaussian stochastic process. Mind that these functionsare never actu-
ally observed, and will later be “removed” by an integral operation.

• The latent function is then transformed nonlinearly by a function that maps
from the real numbers to a probability in the range between 0 and 1. This
transformation plays a role similar to the transfer functions in neural net-
works, or the link function in logistic regression.

These ideas and the process of inference are summarized in Figure 3. It is impor-
tant to note here that we use random variables as latent functions, and thus also
obtain a random quantity after the (deterministic) transformation. Only from such
a model, we can expect to obtain a meaningful quantification of the classification
uncertainty.

2.8.1 Modeling

We consider data forN compounds, each described by a vector of descriptors
x1, . . . ,xN. Each compound is assigned to either of two classes, which welabel
+1 and−1. The class assignment is denoted byy1, . . . ,yN, with yi ∈ {+1,−1}.
For classification, our goal is to model the probability distribution of the class
labely for a given data point,p(y|x).

For the sake of model building, we introduce a latent (unobserved) function.
As oura priori information about this function, we assume that it follows aGaus-
sian stochastic process. The latent function is then mapped(“squashed”) through
a transfer functionΦ, that gives an output in the range of[0,1]. As a trans-
fer function, we choose the Gaussian cumulative distribution function,Φ(z) =
R z
−∞N (x;0,1)dx. Learning with such a model essentially amounts to inferring

the behavior of the latent functionf , or solving a “hidden” regression problem.
This gives as the basic classification model

p(y = +1|x) = Φ( f (x)), (1)

equivalently this likelihood term can be written asp(y| f (x)) = Φ(y f(x)). Fur-
thermore, we assume thatf (x) follows a Gaussian Process, described by a mean
function (which we assume to be zero) and covariance function k. By assuming a
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Figure 3: Classification with Gaussian Process priors for the latent f . Left: 40
samples from a Gaussian Process prior over functions, each plotted asy = f (x).
For illustration, we only consider functions for one-dimensional inputx. The
probability of membership in class+1 is obtained by squashing each of these
functions through the transfer function and averaging by anintegral operation.
Without data, the probability is 0.5 throughout.Right: We observe seven data
points, marked by+ for class+1, and◦ for class−1. We weight each function
(in latent space) according to the degree to which they can explain the data (in
observation space). Well matching functions are shown in dark shading, poorly
matching functions in light shading. After transforming and integrating, we obtain
the learned class membership information.
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GP, we can reduce the burden of dealing with a probability distribution over func-
tions to a (Gaussian) probability distribution on functionvalues at the points of
interest, that is, the points in descriptor space corresponding to the experimental
data and the test compound on which the model is evaluated. For each of theN
observations at hand,X = {x1, . . . ,xN}, we have one latent function value. Denote
the latent function values at theN training data points asf = ( f (x1), . . . , f (xN)).
These follow a joint multivariate Gaussian distribution,

p(f |X) = N (0,K), (2)

where theN×N covariance matrixK can be computed by pairwise evaluations of
the covariance functionk, with Ki j = k(xi,x j).

With these prerequisites, we can use Bayesian inference to infer the distribu-
tion of the latent function on a test point, denoted byx∗. This inference step is
summarized in the appendix Sec. A. In the inference step, we estimate the latent
function valuef∗ on the test point, given all the observed (training) data. This a
posterioribelief aboutf∗ is described by the probability distributionp( f∗ |X,y,x∗).
To obtain the class membership probability, we average (integrate) over the trans-
formed function, weighted by the degree of belief:

p(y = +1|x∗) =
Z

Φ( f∗)p( f∗ |X,y,x∗)d f∗. (3)

With our particular choice of transfer functionΦ and a Gaussian distribution for
p( f∗ |X,y,x∗), this integral can be solved analytically.

2.8.2 Predictions

In the inference step, we obtain the distribution of latent function values, depen-
dent on the location of the test pointx∗. Effectively, this describes what the upper
right graphics in Figure 3 looks like. It turns out that thea posterioridistribution
of latent function values on the test pointx∗ follows a Gaussian distribution with
mean f̄∗ and variance varf∗,

f̄ (x∗) =
n

∑
i=1

αik(x∗,xi) (4)

var f (x∗) = k(x∗,x∗)−
n

∑
i=1

n

∑
j=1

k(x∗,xi)k(x∗,x j)Li j (5)
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From the inference step (see Sec. A) we obtain a vectorm and a matrixS, which
in turn allows us to compute the coefficientsαi by the matrix expressionα =
(K +S)−1m. Li j denote the elements of matrixL = (K +S)−1.

From that, the final output of the GP classification model (theprobability that
a test compound falls into class+1) is given by

p(y∗ = +1) = Φ( f̄ (x∗)/
√

1+var f (x∗)) (6)

2.8.3 Adapting Parameters

In our model to predict metabolic stability, we use a covariance function of the
form

k(x,x′) =

(

1+
d

∑
i=1

wi(xi −x′i)
2

)−ν

(7)

(the “rational quadratic” covariance function23). k(x,x′) describes the “similarity”
(covariance) in the behavior of two compounds, given by their descriptor vectors
x andx′. The contribution of each descriptor to the overall similarity is weighted
by a factorwi > 0 that effectively describes the importance of theith descriptor
for the modeling task.

In order to set the weightswi and the parameterν, we consider a Bayesian
criterion called the evidence (marginal likelihood), thatis computed by averaging
over all possible values for the latent function on the training data. It can be
seen as a measure of how well the data can be explained by the current class of
latent functions, irrespective of the (unknown) actual values for the latent function.
This allows for a fully automatic optimization of the criterion with respect to the
evidence, thus all of model parameters can be chosen withoutuser intervention.
A brief summary of this procedure is given in Sec. A.1.

3 Results

We evaluate the resulting modes with respect to the following criteria:

Quality of ranking: The main application area for the developed models at Bayer
Schering Pharma is compound ranking. We will use receiver-operating-
characteristics (ROC) curves to measure the quality of the ranking, results
will be presented in Sec. 3.2.
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Probabilistic output: We aim at intuitively understandable classifier outputs, and
thus want to achieve a well calibrated8 classifier. For a well calibrated sys-
tem, a prediction “probability of 0.9 for being stable” means that 9 out of 10
such compounds should indeed be stable. Calibration is described in more
detail in Sec. 3.3, along with the calibration curves for thefinal model.

When evaluating the ranking performance, it is important totake “don’t know”
predictions and experimental values into account in a meaningful way. Consider a
compound with an experimental value of 48% recovery, and a classifier prediction
“stable with probability 0.52”. Shall we count that as a mistake? After all, we
must expect that when repeating the lab experiment, the experimental value might
as well be 40% or 60%.

Thus, when evaluating only the confident parts of a compound ranking, we
exclude both compounds with an unclear experimental outcome (values around
the stable/unstable threshold in the interval[50−q,50+q]) and compounds with
an unsure prediction (values around the “don’t know” prediction in the interval
[0.5− r,0.5+ r]). A graphical summary of the procedure is given in Figure 4.
From the remaining compounds, ROC curves to assess the ranking performance
can be computed as usual.

Subsequently, we will evaluate the ranking performance when considering all
data (q= r = 0), when focussing on the moderately confident predictions (q= 15,
r = 0.15) and when focussing on confident predictions (q = 30, r = 0.3).

3.1 Model Selection

We investigated a large number of modeling approaches, based on regression and
classification, built with different parameter settings. The criteria to select be-
tween the models were ranking quality (measured by area under the ROC curve)
and, when applicable, shape of the calibration curve. Both measures were evalu-
ated in 2-fold cross-validation on the training data.

Model selection details are given in the appendix, Sec. B. Itturned out that
optimal results could be achieved by

• using all available descriptors without feature selectionof any kind.

• including compounds that have an experimental value around50% (the cho-
sen threshold for stable compounds).
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bels and predictions. Only compounds where the experimental value is far from
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The result on feature selection seems to contradict conventional wisdom, yet is in
agreement with other work32,33on feature selection for QSAR modelling. As de-
scribed in Sec. B, we found that, for most methods, the difference in ranking qual-
ity between filter-based feature selection and using all features is non-significant.
This holds in particular for the kernel-based methods, where the number of de-
scriptors is independent of the number of model parameters (except for GP meth-
ods with a covariance function that has a width parameterwi for each descriptor
in Eq. (7)). When also considering the confidence estimates,it turned out that
stronger feature selection tends to make models over-confident. Since we wish to
achieve both high ranking quality and reliable confidence estimates, we chose to
not perform feature selection.

In the subsequent sections, we only list the performance achieved by the “fi-
nal” model (GP classification, no feature selection) that isnow implemented at
Bayer Schering Pharma.

3.2 Ranking Performance

Figure 5 shows receiver-operating-characteristics (ROC)curves for the final mod-
els for each of the four assays, both when evaluated on the training data (2-fold
cross-validation) and on the blind test data (predictions of the final model). A sum-
mary of the performance in terms of area under the ROC curve (AUC) is listed in
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Assay All data Moderately confident Confident

AUC % of data AUC % of data AUC

Human 85.0 58.2% 94.4 29.1% 99.4
Mouse female 83.2 51.7% 93.9 19.0% 98.2
Mouse male 82.7 50.6% 93.0 18.0% 98.5
Rat male 85.0 54.3% 94.4 24.1% 98.5

Table 3: Evaluating the ranking performance: Area (AUC) under the ROC curves
shown in Figure 5 for2-fold cross-validation on the training data. In column
“All data” we evaluate the performance on the full list of compounds, “Moderately
confident” is the performance on the subset of data withq = 15, r = 0.15 (see
Sec. 3), and “Confident” evaluates the subset of data with confident outcomes
(q = 30, r = 0.30)

Assay All data Moderately confident Confident

AUC % of data AUC % of data AUC

Human 71.8 50.7% 80.7 17.0% 92.8
Mouse female 69.0 59.5% 80.6 18.7% 95.0
Mouse male 83.5 55.2% 93.7 21.3% 100.0
Rat male 76.4 37.5% 93.8 15.9% 92.7

Table 4: Evaluating the ranking performance: Area (AUC) under the ROC curves
shown in Figure 5 for theblind test data. The subsets of data with moderately
confident and confident outcomes are defined as in Table 3

Table 3 and Table 4. In each case, we investigate the performance on all data, on
the subset of data with moderate confidence for experimentaloutcome and pre-
diction (q = 15, r = 0.15 in Figure 4), and on the subset of data with confident
experimental value and prediction (q = 30, r = 0.30).

When comparing the results on the training data and on the blind test data
(536 drug candidates from recent projects at Bayer ScheringPharma), we can
observe a small drop in performance. Still, the performanceremains promisingly
high. Note that the blind test data stems from new projects, and thus follows
a different distribution than the training data. Thus, the fraction of compounds
inside the model’s domain of applicability is smaller, leading to smaller number
of compounds that can be predicted with high confidence.
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Figure 5: Evaluating the ranking performance: ROC curves for metabolic stability
predictions in 2-fold cross-validation on the training set(left column) and on the
blind test data (right column). We plot ROC curves for all data, for the subset of
data with moderate confidence (q = 15, r = 0.15, see Sec. 3 and Figure 4) and for
the subset of data with confident outcomes (q = 30, r = 0.30). A summary of the
performance in terms of AUC (area under the ROC curve) is given in Table 3 and
Table 4
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3.3 Probabilistic Outputs

Our choice of Gaussian Process models was (amongst other criteria, see Sec. 2.7)
guided by their beneficial properties when it comes to understanding the classi-
fication results: The model output is the probability that a particular compound
belongs to the class of stable compounds. The closer the probability is to 0 or
1, the more certain the model is about its prediction. In addition to the actual
classification performance, we thus also need to evaluate whether the predicted
probability reflects the confidence of the result. Our goal isto achieve a well cal-
ibrated classifier:8 For a well calibrated system, a prediction “probability of 0.9
for being stable” means that 9 out of 10 such compounds shouldindeed be stable.
When using the model output for compound ranking, calibration has an intuitive
counterpart: Among the compounds with high probability of being stable, there
should be a larger fraction of compounds that actually are stable, than among the
compounds with low probability of being stable.

We evaluate the calibration property by means of a calibration curve. Here,
we consider groups of compounds for which the predicted probability ppred is in
bins centered around[0.1,0.2, . . . ,0.9]. For each group, we compute the within-
bin fraction of stable compounds,pemp. Ideally, the within-bin fraction of stable
compounds should be 1 out of 10 (for the bin atppred= 0.1) up to 9 out of 10 (for
the bin atppred= 0.9). In the calibration curve, we plot predicted probabilityppred
on thex-axis versus empirical probabilitypemp on they-axis. Ideally, the result
should be a diagonal line.

It should also be noted here that classifier performance and calibration are
antagonist quantities: An error free classifier results in apoor calibration curve (a
horizontal line atpemp= 0 for all unstable compounds, then a horizontal line at
pemp= 1 for all stable compounds).

The calibration curves for the training data, evaluated in 2-fold cross-validation,
are listed in Figure 6. All the curves show very good agreement between predicted
and empirical probabilities. The according plots for the blind test data are shown
in Figure 7. The curves for the models “Human” and “Rat male” show acceptable
agreement between predicted and empirical probabilities,with the model for “Rat
male” being slightly over-confident for some compounds thatare correctly pre-
dicted to be unstable. The curve for “Mouse female” shows non-optimal behavior
in the regions aroundppred= 0.35 andppred= 0.7. This is mainly due to a cluster
of highly similar compounds that are all falsely predicted to be stable.

As a last remark, note that pseudo-probabilities can also becomputed from
methods such as SVMs, by fitting a sigmoid function to the SVM output.22 How-
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(d) Rat male

Figure 6: Calibration curves (see Sec. 3.3) of metabolic stability predictions on
the training set, evaluated in 2fold cross-validation. Allcurves show excellent
agreement between predicted and empirical probabilities.The small histogram
bars show the relative frequency of compounds that attain a classifier output in the
respective bin

ever, this comes at the price of having to sacrifice a part of the data only for fitting
the parameters of the sigmoid functions.

4 Comparison With Existing Work

To our knowledge, only two publications6,7 deal with directly modeling metabolic
stability. Shenet al.6 used in-house data from GSK, whereas Jensenet al.7 used
a set of data that is publicly available. In the following section, we test our mod-
elling method on the data provided by Jensenet al. They structured their work as
follows:

1. A set of 130 compounds was randomly split into a training set (87 com-
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Figure 7: Calibration curves of metabolic stability predictions on the blind test
data. See Sec. 3.3 for further discussion
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pounds) and a validation set (42 compounds). Four outlying compounds
were removed from the training set, and one compound was removed from
the validation set by visual inspection. Initial experiments were done in
cross-validation on the training set, followed by a performance evaluation
on the validation set. Feature selection was done in 5 different ways, each
time followed by building a model using partial least squares (PLS) regres-
sion.

2. Using the five feature selection techniques, models were built using all 125
compounds from step one, and used to predict the metabolic stability of 240
compounds for which no measurements existed.

3. From this set of 240 new compounds, 20 compounds were selected where
the agreement of the five models built in step two was largest.The metabolic
stability of these compounds was measured and compared to the predictions
of the “consensus model” built from the five regression models.

To facilitate a fair comparison with the method used by Jensen et al., we followed
the above steps as closely as possible. Jensen and co-workers evaluate their mod-
els in terms of the root mean square error RMSE or as a 3-class ordinal regression
task (low, medium, and high metabolic stability). Both metrics are not suitable for
use with the GP classification model we had used on the in-house data provided
by BSP, we thus chose a GP regression model. Also, we used the same descriptor
set that Jensenet al. had used.

Jensenet al. investigated only one single random split of their initial125 (130
compounds minus 5 outliers) compounds into training and validation set. Their
models yield an RMSE between 21 and 16 on the validation set. On the same
single split a GP model yields an RMSE of 20.3. To find out whether the split
used by Jensenet al. is particularly “easy”, we generated 100 new random splits,
built models for each split, and found an average RMSE of 21.0, with a standard
deviation of 1.12. We conclude that the performance on the single split chosen
by Jensenet al. is better that one would expect on average, but still withinone
standard deviation as calculated from 100 random splits.

Finally, we trained a model on the whole set of 125 compounds and applied
it to the 20 compound external validation set used by Jensenet al. A scatterplot
of predicted stability vs. measured stability can be found in Figure 8. Overall, we
achieve an RMSE of 12.4.

Jensen and co-workers report that their model makes three mis-predictions
out of the 20 compound test set (with a slightly optimistic interpretation of mea-
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Figure 8: Scatterplot for predicted stability vs. measuredstability on Jensen’s7 20
compound external validation set. The vertical and horizontal lines correspond
to the regions of low, medium, and high metabolic stability that were used in the
original work

surement uncertainty, that is, the model prediction is assumed correct when it
falls within experimental value plus/minus experimental standard deviation). This
evaluation was done with a 3-class ordinal regression modelthat predicts low,
medium, or high stability. To allow a comparison with that, we can partition the
predictions of the GP regression model into 3 regions, usingthe same thresholds
that Jensenet al. had used. When now counting errors the same way as Jensenet
al. did, we see that the Gaussian Process model mis-predicts only one out of the
20 validation set compounds (compound M, experimental S9 of5, but predicted as
17). The mis-predictions for other compounds are still within the intervals given
by the experimental measurement uncertainty (Jensenet al. assume 5% standard
deviation).

Summing up, the performance of our model on the 125 compound dataset is
similar to the performance of Jensen’s models. Applying a model trained on all
125 compounds to Jensen’s 20 compound external validation set, we find that our
model generalizes very well. However, it should be noted here that Jensen and
co-workers chose the validation set as compounds where their five models agreed
on, thus it probably contains compounds that are relativelyeasy to predict.
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5 Summary

The availability of computer based models to predict properties of chemical com-
pounds has shown a tremendous impetus on many areas of chemical research.
Models to predict physico-chemical properties, such as logP or water solubility,
have been developed to high standards already. Still, in drug design, there is a
large need also for models that predict ADME properties. Dueto the complexity
of these endpoints, only few off-the-shelf tools are available.

In this work, we presented a novel machine learning method for ranking com-
pounds with respect to their metabolic stability in different in vitro assays. Data
stem from drug design projects at Bayer Schering Pharma. Thus, the developed
models are tailored to the classes of compounds that Bayer Schering Pharma typ-
ically considers. Our evaluations showed that the developed models provide a
highly accurate compound ranking, both when checked with cross-validation and
on a validation set that was not known at the time of model building. Results
werde confirmed using a set of publicly avaible data. Comparing with the work
of Jensenet al.,7 we find that the performance of our Gaussian Process models is
competitive.

One of the main features of the developed models is an accurate and intuitive
notion for the “domain of applicability”. The model is fullyprobabilistic, and
outputs the probability for a compound to be metabolically stable. Outside the
range spanned by training data, and in regions of conflictingmeasurements, the
probability gets closer to 0.5, indicating that the prediction is most likely not ac-
curate. The model implicitly conflates its prediction and a measure for the domain
of applicability into a single quantity that can be directlyused for compound rank-
ing. Furthermore, we showed that the model output is calibrated, allowing for an
intuitive understanding of the model output.

The final GPmet model has been implemented as a batch predictor and is fully
integrated into the working environment at Bayer Schering Pharma. The model
can produce around 50 predictions per second on a single 2 GHzPentium CPU.
Along with the GPmet model, a fully automatic re-training tool has been devel-
oped, that allows for a model extension whenever new data becomes available,
and thus constantly enlarges the models’ domain of applicability.
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A Inference for Gaussian Process Classification

The predictions in a GP classification model are essentiallydescribed by the latent
function valuesf∗ on the test pointx∗, given all training dataX with their labelsy.
To compute this distributionp( f∗ |X,y,x∗), we first consider the joint distribution
of latent function values on testand training data. By an integral operation, we
can “remove” the unobserved function values on the trainingdata. The joint dis-
tribution, in turn, can be factorized into a term relatingf∗ to f, and a term relating
f to the experimental data:

p( f∗ |X,y,x∗) =

Z

p( f∗, f |X,y,x∗)df =

Z

p( f∗, | f,x∗)p(f |X,y)df (8)

The probability distribution of the latent function valuesf on the training data are
obtained directly by Bayes’ rule as

p(f |X,y) =
p(y | f)p(f |X)

R

p(y | f)p(f |X)df
(9)

For GP classification models, the major problem is computingthe term in the
denominator of Eq. (9). With the chosen likelihood,p(yi | f (xi)) = Φ(yi f (xi)),
the integral can not be solved analytically. Different approximations have been
proposed in the literature, in our implementation we used the method of “expecta-
tion propagation”, EP,34 to obtain a local Gaussian approximation for each of the
likelihood terms,

p(yi | f (xi)) ≈ ZiN ( f (xi) |mi ,si) (10)
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The parameters of this approximation are found in an iterative procedure, by
matching mean and variance of the exact and the approximate likelihood. The out-
come of this approximation procedure is summarized by a vectorm =(m1, . . . ,mN)
and a diagonal matrixSwith parameterssi along the diagonal.

A.1 Learning the Family of Latent Functions

The most important decision in modelling with Gaussian Process classification
is of course the choice of the family of latent functions. Commonly, this is re-
ferred to as setting the “hyper parameters”,23 since the latent functions are solely
described by the covariance function, which in turn has someparameters. To
facilitate choosing these parameters, we consider the marginal likelihood:

L = p(y |X,θ) =
Z

p(y | f)p(f |X,θ)df (11)

We usep(f |X,θ) to explicitly denote that the distribution of latent function values
depends on a set of parametersθ of the covariance function (in the case of Eq. (7),
θ = {ν,w1, . . . ,wd} for a total ofd descriptors). A gradient ascent method, such as
the Broyden-Fletcher-Goldfarb-Shanno method,35 can now be used to maximize
L with respect to covariance function parametersθ.

B Choice of Models

A large number of experiments was run to evaluate the performance of different
types of models, and with different setups. The most important questions that had
to be addressed were:

• Can a regression model provide a better compound ranking than a classifica-
tion model? After all, the classification model is only trained on the (coarse)
stable/unstable information. We investigate two classification models (Sup-
port Vector Machines SVM10 and Gaussian Process classification GPC, see
Sec. 2.8) and three regression models (linear ridge regression RR,9 Gaussian
Process regression GPR23 and Support Vector regression SVR10). For the
non-Bayesian models, parameters were chosen in nested cross-validation
on the respective training sets with depth search in good parameter regions.
For the Bayesian models, we performed a maximization of marginal likeli-
hood.
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• Which type of feature selection shall be used? We investigated three differ-
ent choices:

– No feature selection at all, using all descriptors in Dragonblocks
{1,2,6,9,12,15,16,17,18,20}

– Filter-based feature selection using a non-parametric correlation test,
discarding those features that are uncorrelated with the end-point at
high p-values

– Model-based feature selection via the automatic relevancedetermina-
tion procedure for GPC and GPR models,23 where each descriptor is
assigned a weightwi in Eq. (7) that is subsequently found by maxi-
mizing marginal likelihood

• Furthermore, we investigated the influence of conformationdependent de-
scriptors. In our work, we used Corina30 to predict one conformation of the
molecule, which in turn is used in Dragon31 to compute conformation de-
pendent 3D descriptors. The 3D descriptors are thus only approximations,
and might mislead the model.

• Shall the models be built on all data, or only on those that have a clear ex-
perimental outcome? For classification approaches, we assign compounds
with an experimental value≥ 50% to class “stable”, the others to class un-
stable. Due to the high measurement noise, some compounds might thus be
mis-labelled and bring wrong information into the classifier. Thus, it might
be helpful to exclude data with an experimental value around50%.

Table 5 summarizes the full results for each pair of feature selection method
and modelling approach. Note that, for most methods, there is only a minor (non-
significant) difference in performance between no feature selection and filter-
based feature selection. Furthermore, the regression methods that are trained on a
more fine-grained data can only achieve a small gain in performance over the clas-
sification methods. Amongst the classification methods, GP classification usually
outperforms the SVM.

The result on feature selection seems to contradict the experience of most peo-
ple working in QSAR modelling, but also in machine learning,where most text
books advocate the use of descriptor (feature) selection mechanisms. However,
methods based on kernel functions (such as Support Vector Machines) or, equiv-
alently, covariance functions (such as Gaussian Process models) are known to be
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Human RR SVR SVM GP GPC

None 82.3±0.2 85.5±0.3 83.5±0.4 86.2±0.1 85.0±0.3
Filter based 82.8±0.2 85.7±0.3 83.8±0.4 86.3±0.1 85.2±0.2
Model based n/a n/a n/a 87.2±0.2 85.7±0.3

Mouse female RR SVR SVM GP GPC

None 79.6±0.4 84.0±0.4 82.1±0.3 84.1±0.3 83.2±0.5
Filter based 82.8±0.2 84.0±0.3 82.2±0.5 84.6±0.4 83.5±0.5
Model based n/a n/a n/a 84.6±0.4 83.0±0.6

Mouse male RR SVR SVM GP GPC

None 81.0±0.6 84.2±0.4 81.0±0.4 84.2±0.4 82.7±0.4
Filter based 82.2±0.4 83.7±0.5 80.6±0.2 84.6±0.4 83.4±0.3
Model based n/a n/a n/a 83.7±0.4 82.0±0.4

Rat male RR SVR SVM GP GPC

None 80.5±0.4 85.4±0.1 83.5±0.2 86.1±0.1 85.0±0.3
Filter based 82.0±0.3 85.1±0.3 83.8±0.1 86.5±0.2 85.5±0.3
Model based n/a n/a n/a 86.1±0.2 84.4±0.6

Table 5: Ranking quality, evaluated in terms of area under the ROC curve for 2-
fold cross-validation on the training data, for different types of models and feature
selection methods. The table lists the average performanceover 5 runs of cross-
validation± standard deviation
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quite robust with respect to the presence of a large number ofdescriptors, even
if these do not carry information. This may be attributed to the fact that extra
descriptors do not increase the dimensionality of the model’s parameter space: In
a linear model, each extra descriptor requires an extra parameter to be estimated,
whereas usually only one shared “width” parameter has to be chosen in an SVM
kernel function (irrespective of whether there are 10 or 10,000 descriptors). In a
Gaussian Process model, a width parameter can be introducedfor each descriptor
dimension, but here the Bayesian framework provides a quitereliable framework
to choose each width parameter without running risk of over-fitting.

We find our results in line with previous work32,33 on descriptor selection in
QSAR modelling with SVMs. Excellent results can be achievedwith an SVM
with 2934 descriptors33 or even more than 100,000 descriptors.32 By using dif-
ferent methods of feature selection (genetic algorithms33) or filter based meth-
ods32) it is possible to reduce the number of features drastically. However, at
least for SVMs, this reduction usually has a negative impacton classification per-
formance.32 Reported performance gains33 have large standard errors, hence the
gains are not statistically significant.

So far, the focus was only on the impact of feature selection on the ranking
quality. Figure 9 plots the calibration curves for a GPC model with different meth-
ods of feature selection. We have chosen the assay “Mouse female” here, since
the corresponding results for ranking quality (shown in Table 5, top) are essen-
tially identical. However, the calibration curves show that model-based feature
selection leads to slightly over-optimistic predictions.As shown by the histogram
bars, more compounds are (wrongly) predicted to be stable orunstable with high
certainty. A numerical comparison of the three methods for feature selection can
be made by considering the cross-entropy loss functionH, where actual class
yi ∈ {+1,−1} and predicted probabilitypi are compared via

H(yi , pi) = −
yi +1

2
logpi −

1−yi

2
log(1− pi). (12)

Smaller loss indicates a better model fit. Values forH are listed in Figure 9 along
with the calibration curves. Just as the calibration curves, the values ofH show
that feature selection does have an adverse effect on the quality of the probabilistic
predictions.

As suggested by one of the reviewers, we also investigated the impact of 3D
(and therefore conformation dependent) descriptors. To this end, we built models
using both Support Vector Machines and Gaussian Processes for all four species,
once with and once without 3D descriptors. Results are presented in Table 6. To
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(a) No feature selection:H =
2.07
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(b) Filter-based feature se-
lection:H = 2.11
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(c) Model-based feature se-
lection:H = 2.44

Figure 9: Calibration curves of a GPC model with different feature selection meth-
ods. The small histogram bars show the relative frequency ofcompounds that at-
tain a classifier output in the respective bin. We also list the average cross-entropy
lossH, as defined in Eq. (12). Low values forH indicate good model fit. The
plots shown here are for a GPC model for the assay “Mouse female”, evaluated
in 2-fold cross-validation on the training data. Results for other assays showed
similar behavior

allow a meaningful comparison, no feature selection was used. When comparing
the performance with and without 3D descriptors, only non-significant differences
can be observed (the±1 standard deviation intervals overlap in all eight cases).
We conclude that the impact of conformation dependent Dragon 3D descriptors
on the prediction performance of our models is negligible.

In Table 7, we list the ranking quality of methods that eitherinclude or ex-
clude data where the experimental value is around 50%. We focus only on two
exemplary methods, SVR (regression, non-Bayesian) and GPC(classification,
Bayesian). Clearly, including the data with experimental values around 50% is
beneficial, in particular for the regression method SVR.

33



Assay SVR: incl. 3D SVR: excl. 3D GP: incl. 3D GP: excl. 3D

Human 85.4±0.3 85.9±0.3 86.2±0.3 86.7±0.2
Mouse female 83.7±0.6 82.9±0.5 84.1±0.8 83.7±0.5
Mouse male 83.7±1.0 84.1±0.5 84.2±0.9 84.4±0.7
Rat male 85.5±0.4 85.1±0.5 86.2±0.3 86.1±0.3

Table 6: Does the performance change when including or excluding 3D descrip-
tors? Experiments were conducted without feature selection, and on all data in-
cluding those with an experimental value of 50% stability. The table lists the aver-
age performance (area under the ROC curve, AUC) over 5 runs ofcross-validation
± standard deviation.

Assay SVR: all data SVR: omit [35 65] GPC: all data GPC: omit [35 65]

Human 85.7±0.3 84.4±0.2 85.2±0.2 84.9±0.2
Mouse female 84.0±0.3 82.4±0.2 83.5±0.5 83.7±0.4
Mouse male 83.7±0.5 82.5±0.4 83.4±0.3 83.0±0.3
Rat male 85.1±0.3 84.2±0.2 85.5±0.3 84.7±0.3

Table 7: Model selection: Shall the models be built on all data, or only on those
that have a clear experimental outcome? The table lists the average performance
(area under the ROC curve, AUC) over 5 runs of cross-validation ± standard
deviation
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