
Hierarchical Feature Extraction for Compact

Representation and Classification of Datasets

Markus Schubert and Jens Kohlmorgen

Fraunhofer FIRST.IDA
Kekuléstr. 7, 12489 Berlin, Germany
{markus,jek}@first.fraunhofer.de
http://ida.first.fraunhofer.de

Abstract. Feature extraction methods do generally not account for hi-
erarchical structure in the data. For example, PCA and ICA provide
transformations that solely depend on global properties of the overall
dataset. We here present a general approach for the extraction of feature
hierarchies from datasets and their use for classification or clustering.
A hierarchy of features extracted from a dataset thereby constitutes a
compact representation of the set that on the one hand can be used to
characterize and understand the data and on the other hand serves as a
basis to classify or cluster a collection of datasets. As a proof of concept,
we demonstrate the feasibility of this approach with an application to
mixtures of Gaussians with varying degree of structuredness and to a
clinical EEG recording.

1 Introduction

The vast majority of feature extraction methods does not account for hierarchical
structure in the data. For example, PCA [1] and ICA [2] provide transformations
that solely depend on global properties of the overall data set. The ability to
model the hierarchical structure of the data, however, might certainly help to
characterize and understand the information contained in the data. For example,
neural dynamics are often characterized by a hierarchical structure in space and
time, where methods for hierarchical feature extraction might help to group
and classify such data. A particular demand for these methods exists in EEG
recordings, where slow dynamical components (sometimes interpreted as internal
“state” changes) and the variability of features make data analysis difficult.

Hierarchical feature extraction is so far mainly related to 2-D pattern anal-
ysis. In these approaches, pioneered by Fukushima’s work on the Neocognitron
[3], the hierarchical structure is typically a priori hard-wired in the architecture
and the methods primarily apply to a 2-D grid structure. There are, however,
more recent approaches, like local PCA [4] or tree-dependent component analysis
[5], that are promising steps towards structured feature extraction methods that
derive also the structure from the data. While local PCA in [4] is not hierarchical
and tree-dependent component analysis in [5] is restricted to the context of ICA,
we here present a general approach for the extraction of feature hierarchies and



their use for classification and clustering. We exemplify this by using PCA as
the core feature extraction method.

In [6] and [7], hierarchies of two-dimensional PCA projections (using proba-
bilistic PCA [8]) were proposed for the purpose of visualizing high-dimensional
data. For obtaining the hierarchies, the selection of sub-clusters was performed
either manually [6] or automatically by using a model selection criterion (AIC,
MDL) [7], but in both cases based on two-dimensional projections. A 2-D pro-
jection of high-dimensional data, however, is often not sufficient to unravel the
structure of the data, which thus might hamper both approaches, in particular,
if the sub-clusters get superimposed in the projection. In contrast, our method is
based on hierarchical clustering in the original data space, where the structural
information is unchanged and therefore undiminished. Also, the focus of this
paper is not on visualizing the data itself, which obviously is limited to 2-D or
3-D projections, but rather on the extraction of the hierarchical structure of the
data (which can be visualized by plotting trees) and on replacing the data by
a compact hierarchical representation in terms of a tree of extracted features,
which can be used for classification and clustering. The individual quantity to
be classified or clustered in this context, is a tree of features representing a set of
data points. Note that classifying sets of points is a more general problem than
the well-known problem of classifying individual data points. Other approaches
to classify sets of points can be found, e.g., in [9, 10], where the authors define
a kernel on sets, which can then be used with standard kernel classifiers.

The paper is organized as follows. In section 2, we describe the hierarchical
feature extraction method. In section 3, we show how feature hierarchies can
be used for classification and clustering, and in section 4 we provide a proof
of concept with an application to mixtures of Gaussians with varying degree
of structuredness and to a clinical EEG recording. Section 5 concludes with a
discussion.

2 Hierarchical Feature Extraction

We pursue a straightforward approach to hierarchical feature extraction that
allows us to make any standard feature extraction method hierarchical: we per-
form hierarchical clustering of the data prior to feature extraction. The feature
extraction method is then applied locally to each significant cluster in the hi-
erarchy, resulting in a representation (or replacement) of the original dataset in
terms of a tree of features.

2.1 Hierarchical Clustering

There are many known variants of hierarchical clustering algorithms (see, e.g.,
[11, 12]), which can be subdivided into divisive top-down procedures and ag-

glomerative bottom-up procedures. More important than this procedural aspect,
however, is the dissimilarity function that is used in most methods to quantify
the dissimilarity between two clusters. This function is used as the criterion to



determine the clusters to be split (or merged) at each iteration of the top-down
(or bottom-up) process. Thus, it is this function that determines the clustering
result and it implicitly encodes what a “good” cluster is. Common agglomerative
procedures are single-linkage, complete-linkage, and average-linkage. They differ
simply in that they use different dissimilarity functions [12].

We here use Ward’s method [13], also called the minimum variance method,
which is agglomerative and successively merges the pair of clusters that causes
the smallest increase in terms of the total sum-of-squared-errors (SSE), where
the error is defined as the Euclidean distance of a data point to its cluster mean.
The increase in square-error caused by merging two clusters, Di and Dj , is given
by

d (Di, Dj) =

√

ninj

ni + nj

‖mi −mj‖, (1)

where ni and nj are the number of points in each cluster, and mi and mj are
the means of the points in each cluster [12]. Ward’s method can now simply
be described as a standard agglomerative clustering procedure [11, 12] with the
particular dissimilarity function d given in Eq. (1). We use Ward’s criterion,
because it is based on a global fitness criterion (SSE) and in [11] it is reported
that the method outperformed other hierarchical clustering methods in several
comparative studies. Nevertheless, depending on the particular application, other
criteria might be useful as well.

The result of a hierarchical clustering procedure that successively splits or
merges two clusters is a binary tree. At each hierarchy level, k = 1, ..., n, it defines
a partition of the given n samples into k clusters. The leaf node level consists of
n nodes describing a partition into n clusters, where each cluster/node contains
exactly one sample. Each hierarchy level further up contains one node with edges
to the two child nodes that correspond to the clusters that have been merged.

The tree can be depicted graphically as a dendrogram, which aligns the leaf
nodes along the horizontal axis and connects them by lines to the higher level
nodes along the vertical axis. The position of the nodes along the vertical axis
could in principle correspond linearly to the hierarchy level k. This, however,
would reveal almost nothing of the structure in the data. Most of the structural
information is actually contained in the dissimilarity values. One therefore usu-
ally positions the node at level k vertically with respect to the dissimilarity value
of its two corresponding child clusters, Di and Dj ,

δ(k) = d (Di, Dj) . (2)

For k = n, there are no child clusters, and therefore δ(n) = 0 [11]. The function
δ can be regarded as within-cluster dissimilarity. By using δ as the vertical scale
in a dendrogram, a large gap between two levels, for example k and k+1, means
that two very dissimilar clusters have been merged at level k.

2.2 Extracting a Tree of Significant Clusters

As we have seen in the previous subsection, a hierarchical clustering algorithm
always generates a tree containing n − 1 non-singleton clusters. This does not



necessarily mean that any of these clusters is clearly separated from the rest of
the data or that there is any structure in the data at all. The identification of
clearly separated clusters is usually done by visual inspection of the dendrogram,
i.e. by identifying large gaps. For an automatic detection of significant clusters,
we use the following straightforward criterion

δ(parent(k))

δ(k)
> α, for 1 < k < n, (3)

where parent(k) is the parent cluster level of the cluster obtained at level k and
α is a significance threshold. If a cluster at level k is merged into a cluster that
has a within-cluster dissimilarity which is more than α times higher than that
of cluster k, we call cluster k a significant cluster. That means that cluster k

is significantly more compact than its merger (in the sense of the dissimilarity
function). Note that this does not necessarily mean that the sibling of cluster k is
also a significant cluster, as it might have a higher dissimilarity value than cluster
k. The criterion directly corresponds to the relative increase of the dissimilarity
value in a dendrogram from one merger level to the next. For small clusters that
contain only a few points, the relative increase in dissimilarity can be large just
because of the small sample size. To avoid that these clusters are detected as
being significant, we require a minimum cluster size M for significant clusters.

After having identified the significant clusters in the binary cluster tree, we
can extract the tree of significant clusters simply by linking each significant
cluster node to the next highest significant node in the tree, or, if there is none,
to the root node (which is just for the convenience of getting a tree and not a
forest). The tree of significant clusters is generally much smaller than the original
tree and it is not necessarily a binary tree anymore. Also note that there might
be data points that are not in any significant cluster, e.g., outliers.

The criterion in (3) is somewhat related to the criterion in [14], which is used
to take out clusters from the merging process in order to obtain a plain, non-
hierarchical clustering. The criterion in [14] accounts for the relative change of
the absolute dissimilarity increments, which seems to be somewhat less intuitive
and unnecessarily complicated. This criterion might also be overly sensitive to
small variations in the dissimilarities.

2.3 Obtaining a Tree of Features

To obtain a representation of the original dataset in terms of a tree of features,
we can now apply any standard feature extraction method to the data points in
each significant cluster in the tree and then replace the data points in the cluster
by their corresponding features. For PCA, for example, the data points in each
significant cluster are replaced by their mean vector and the desired number
of principle components, i.e. the eigenvectors and eigenvalues of the covariance
matrix of the data points. The obtained hierarchy of features thus constitutes
a compact representation of the dataset that does not contain the individual
data points anymore, which can save a considerable amount of memory. This



representation is also independent of the size of the dataset. The hierarchy can
on the one hand be used to analyze and understand the structure of the data,
on the other hand – as we will further explain in the next section – it can be
used to perform classification or clustering in cases where the individual input
quantity to be classified (or clustered) is an entire dataset and not, as usual, a
single data point.

3 Classification of Feature Trees

The classification problem that we address here is not the well-known problem
of classifying individual data points or vectors. Instead, it relates to the classifi-
cation of objects that are sets of data points, for example, time series. Given a
“training set” of such objects, i.e. a number of datasets, each one attached with a
certain class label, the problem consists in assigning one class label to each new,
unlabeled dataset. This can be accomplished by transforming each individual
dataset into a tree of features and by defining a suitable distance function to
compare each pair of trees. For example, trees of principal components can be re-
garded as (hierarchical) mixtures of Gaussians, since the principal components
of each node in the tree (the eigenvectors and eigenvalues) describe a normal
distribution, which is an approximation to the true distribution of the underly-
ing data points in the corresponding significant cluster. Two mixtures (sums) of
Gaussians, f and g, corresponding to two trees of principal components (of two
datasets), can be compared, e.g., by using the the squared L2-Norm as distance
function, which is also called the integrated squared error (ISE),

ISE(f, g) =

∫

(f − g)2 dx. (4)

The ISE has the advantage that the integral is analytically tractable for mixtures
of Gaussians.

Note that the computation of a tree of principal components, as described
in the previous section, is in itself an interesting way to obtain a mixture of
Gaussians representation of a dataset: without the need to specify the number
of components in advance and without the need to run a maximum likelihood
(gradient ascent) algorithm like, for example, expectation–maximization [15],
which is prone to get stuck in local optima.

Having obtained a distance function on feature trees, the next step is to
choose a classification method that only requires pairwise distances to classify
the trees (and their corresponding datasets). A particularly simple method is
first-nearest-neighbor (1-NN) classification. For 1-NN classification, the tree of
a test dataset is assigned the label of the nearest tree of a collection of trees
that were generated from a labeled “training set” of datasets. If the generated
trees are sufficiently different among the classes, first- (or k-) nearest-neighbor
classification can already be sufficient to obtain a good classification result, as
we demonstrate in the next section.



In addition to classification, the distance function on feature trees can also
be used to cluster a collection of datasets by clustering their corresponding
trees. Any clustering algorithm that uses pairwise distances can be used for this
purpose [11, 12]. In this way it is possible to identify homogeneous groups of
datasets.

4 Applications

4.1 Mixtures of Gaussians

As a proof of concept, we demonstrate the feasibility of this approach with an
application to mixtures of Gaussians with varying degree of structuredness. From
three classes of Gaussian mixture distributions, which are exemplarily shown in
Fig. 1(a)-(c), we generated 10 training samples for each class, which constitute
the training set, and a total of 100 test samples constituting the test set. Each
sample contains 540 data points. The mixture distribution of each test sample
was chosen with equal probability from one of the three classes.

Next, we generated the binary cluster tree from each sample using Ward’s
criterion. Examples of the corresponding dendrograms for each class are shown
in Fig. 1(d)-(f) (in gray). We then determined the significant clusters in each
tree, using the significance factor α = 3 and the minimum cluster size M = 40. In
Fig. 1(d)-(f), the significant clusters are depicted as black dots and the extracted
trees of significant clusters are shown by means of thick black lines. The cluster
of each node in a tree of significant clusters was then replaced by the principle
components obtained from the data in the cluster, which turns the tree of clusters
into a tree of features. In Fig. 1(g)-(i), the PCA components of all significant
clusters are shown for the three example datasets from Fig. 1(a)-(c).

Finally, we classified the feature trees obtained from the test samples, using
the integrated squared error (Eq. (4)) and first-nearest-neighbor classification.
We obtained a nearly perfect accuracy of 98% correct classifications (i.e.: only
two misclassifications), which can largely be attributed to the circumstance that
the structural differences between the classes were correctly exposed in the tree
structures. This result demonstrates that an appropriate representation of the
data can make the classification problem very simple.

4.2 Clinical EEG

To demonstrate the applicability of our approach to real-world data, we used
a clinical recording of human EEG. The recording was carried out in order to
screen for pathological features, in particular the disposedness to epilepsy. The
subject went through a number of experimental conditions: eyes open (EO), eyes
closed (EC), hyperventilation (HV), post-hyperventilation (PHV), and, finally,
a stimulation with stroboscopic light of increasing frequency (PO: photic on).
During the photic phase, the subject kept the eyes closed, while the rate of light
flashes was increased every four seconds in steps of 1 Hz, from 5 Hz to 25 Hz.



The obtained recording was subdivided into 507 epochs of fixed length (1s).
For each epoch, we extracted four features that correspond to the power in
specific frequency bands of particular EEG electrodes.1 The resulting set of
four-dimensional feature vectors was then analyzed by our method. For the hi-
erarchical clustering, we used Ward’s method and found the significant clusters
depicted in Fig. 2. The extracted tree of significant clusters consists of a two-
level hierarchy. As expected, the majority of feature vectors in each sub-cluster
corresponds to one of the experimental conditions. By applying PCA to each
sub-cluster and replacing the data of each node with its principle components,
we obtain a tree of features, which constitutes a compact representation of the
original dataset. It can then be used for comparison with trees that arise from
normal or various kinds of pathological EEG, as outlined in section 3.

5 Discussion

We proposed a general approach for the extraction of feature hierarchies from
datasets and their use for classification or clustering. The feasibility of this ap-
proach was demonstrated with an application to mixtures of Gaussians with
varying degree of structuredness and to a clinical EEG recording. In this paper
we focused on PCA as the core feature extraction method. Other types of feature
extraction, like, e.g., ICA, are also conceivable, which then should be comple-
mented with an appropriate distance function on the feature trees (if used for
classification or clustering). The basis of the proposed approach is hierarchical
clustering. The quality of the resulting feature hierarchies thus depends on the
quality of the clustering. Ward’s criterion tends to find compact, hyperspheri-
cal clusters, which may not always be the optimal choice for a given problem.
Therefore, one should consider to adjust the clustering criterion to the problem
at hand. Our future work will focus on the application of this method to classify
normal and pathological EEG. By comparing the different tree structures, the
hope is to gain a better understanding of the pathological cases.

Acknowledgements: This work was funded by the German BMBF under grant
01GQ0415 and supported in part by the IST Programme of the European Com-
munity, under the PASCAL Network of Excellence, IST-2002-506778.

1 In detail: (I.) the power of the α-band (8–12 Hz) at the electrode positions O1 and
O2 (according to the international 10–20 system), (II.) the power of 5 Hz and its
harmonics (except 50 Hz) at electrode F4, (III.) the power of 6 Hz and its harmonics
at electrode F8, and (IV.) the power of the 25–80 Hz band at F7.



−30 −20 −10 0 10 20 30 40 50 60
−40

−30

−20

−10

0

10

20

30

40

50

(a)

0

100

200

300

400

500

data

di
ss

im
ila

rit
y

(d)

−30 −20 −10 0 10 20 30 40 50 60
−40

−30

−20

−10

0

10

20

30

40

50

(g)

−30 −20 −10 0 10 20 30 40 50 60
−40

−30

−20

−10

0

10

20

30

40

50

(b)

0

100

200

300

400

500

data

di
ss

im
ila

rit
y

(e)

−30 −20 −10 0 10 20 30 40 50 60
−40

−30

−20

−10

0

10

20

30

40

50

(h)

−30 −20 −10 0 10 20 30 40 50 60
−40

−30

−20

−10

0

10

20

30

40

50

(c)

0

100

200

300

400

500

600

data

di
ss

im
ila

rit
y

(f)

−30 −20 −10 0 10 20 30 40 50 60
−40

−30

−20

−10

0

10

20

30

40

50

(i)

Fig. 1. (a)-(c) Example datasets for the three types of mixture distributions used in the
application. (d)-(f) The corresponding dendrograms for each example dataset (gray)
and the extracted trees of significant clusters (black). Note that the extracted tree
structure exactly corresponds to the structure in the data. (g)-(i) The PCA components
of all significant clusters. The components are contained in the tree of features.



82% (EC) 69% (PHV) 92% (EO) 88% (PO) 76% (HV) 90% (HV)
0

5

10

15

20

25

di
ss

im
ila

rit
y

Fig. 2. The tree of significant clusters (black), obtained from the underlying dendro-
gram (gray) for the EEG data. The data in each significant sub-cluster largely cor-
responds to one of the experimental conditions (indicated in %): eyes open (EO),
eyes closed (EC), hyperventilation (HV), post-hyperventilation (PHV), and ‘photic on’
(PO).



Bibliography

[1] Jolliffe, I.: Principal Component Analysis. Springer-Verlag, New York
(1986)

[2] Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis.
Wiley (2001)

[3] Fukushima, K.: Neural network model for a mechanism of pattern recog-
nition unaffected by shift in position — neocognitron. Transactions IECE
62-A(10) (1979) 658–665

[4] Bregler, C., Omohundro, S.: Surface learning with applications to lipread-
ing. In Cowan, J., Tesauro, G., Alspector, J., eds.: Advances in Neural
Information Precessing Systems. Volume 6., San Mateo, CA, Morgan Kauf-
mann Publishers (1994) 43–50

[5] Bach, F., Jordan, M.: Beyond independent components: Trees and clusters.
Journal of Machine Learning Research 4 (2003) 1205–1233

[6] Bishop, C., Tipping, M.: A hierarchical latent variable model for data visu-
alization. IEEE Transactions on Pattern Analysis and Machine Intelligence
20(3) (1998) 281–293

[7] Wang, Y., Luo, L., Freedman, M., Kung, S.: Probabilistic principal compo-
nent subspaces: A hierarchical finite mixture model for data visualization.
IEEE Transactions on Neural Networks 11(3) (2000) 625–636

[8] Tipping, M., Bishop, C.: Probabilistic principal component analysis. Jour-
nal of the Royal Statistical Society: Series B 61(3) (1999) 611–622

[9] Kondor, R., Jebara, T.: A kernel between sets of vectors. In Fawcett, T.,
Mishra, N., eds.: Proceedings of the ICML, AAAI Press (2003) 361–368

[10] Desobry, F., Davy, M., Fitzgerald, W.: A class of kernels for sets of vectors.
In: Proceedings of the ESANN. (2005) 461–466

[11] Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Inc.
(1988)

[12] Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley–Interscience
(2000)

[13] Ward, J.: Hierarchical grouping to optimize an objective function. Journal
of the American Statistical Association 58 (1963) 236–244

[14] Fred, A., Leitao, J.: Clustering under a hypothesis of smooth dissimilarity
increments. In: Proceedings of the ICPR. Volume 2. (2000) 190–194

[15] Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series
B 39 (1977) 1–38


