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Abstract

We investigate a new kernel–based classifier: the Kernel Fisher Discrim-
inant (KFD). A mathematical programming formulation based on the ob-
servation that KFD maximizes theaverage marginpermits an interesting
modification of the original KFD algorithm yielding the sparse KFD. We
find that both, KFD and the proposed sparse KFD, can be understood
in an unifying probabilistic context. Furthermore, we show connections
to Support Vector Machines and Relevance Vector Machines. From this
understanding, we are able to outline an interesting kernel–regression
technique based upon the KFD algorithm. Simulations support the use-
fulness of our approach.

1 Introduction

Recent years have shown an enormous interest in kernel-based classification algorithms,
primarily in Support Vector Machines (SVM) [2]. The success of SVMs seems to be trig-
gered by (i) their good generalization performance, (ii) the existence of a unique solution,
and (iii) the strong theoretical background: structural risk minimization [12], supporting
the good empirical results. One of the key ingredients responsible for this success is the
use of Mercer kernels, allowing for nonlinear decision surfaces which even might incorpo-
rate some prior knowledge about the problem to solve. For our purpose, a Mercer kernel
can be defined as a functionk : Rn × Rn → R, for which some (nonlinear) mapping
Φ : Rn → F into afeature spaceF exists, such thatk(x,y) = (Φ(x) ·Φ(y)). Clearly, the
use of such kernel functions is not limited to SVMs. The interpretation as a dot–product
in another space makes it particularly easy to develop new algorithms: take any (usually)
linear method and reformulate it using training samples only in dot–products, which are
then replaced by the kernel. Examples thereof, among others, are Kernel–PCA [9] and the
Kernel Fisher Discriminant (KFD [4]; see also [8, 1]).
In this article we consider algorithmic ideas for KFD. Interestingly KFD – although ex-
hibiting a similarly good performance as SVMs – has no explicit concept of a margin. This
is noteworthy since the margin is often regarded as explanation for good generalization
in SVMs. We will give an alternative formulation of KFD which makes the difference
between both techniques explicit and allows a better understanding of the algorithms. An-
other advantage of the new formulation is that we can derive more efficient algorithms for
optimizing KFDs, that have e.g. sparseness properties or can be used for regression.



2 A Review of Kernel Fisher Discriminant

The idea of the KFD is to solve the problem of Fisher’s linear discriminant in a kernel
feature spaceF , thereby yielding a nonlinear discriminant in the input space. First we
fix some notation. Let{xi|i = 1, . . . , `} be our training sample andy ∈ {−1, 1}` be
the vector of corresponding labels. Furthermore define1 ∈ R` as the vector of all ones,
11,12 ∈ R` as binary(0, 1) vectors corresponding to the class labels and letI, I1, andI2

be appropriate index sets over` and the two classes, respectively (with`i = |Ii|).
In the linear case, Fisher’s discriminant is computed by maximizing the coefficientJ(w) =
(w>SBw)/(w>SWw) of between and within class variance, i.e.SB = (m2−m1)(m2−
m1)> andSW =

∑
k=1,2

∑
i∈Ik(xi −mk)(xi −mk)>, wheremk denotes the sample

mean for classk. To solve the problem in a kernel feature spaceF one needs a formulation
which makes use of the training samples only in terms of dot–products. One first shows
[4], that there exists an expansion forw ∈ F in terms of mapped training patterns, i.e.

w =
∑
I αiΦ(xi). (1)

Using some straight forward algebra, the optimization problem for the KFD can then be
written as [5]:

J(α) =
(α>µ)2

α>Nα
=
α>Mα

α>Nα
, (2)

whereµi = 1
`i
K1i, N = KK> −

∑
i=1,2 `iµiµ

>
i , µ = µ2 − µ1, M = µµ>, and

Kij = (Φ(xi) · Φ(xj)) = k(xi,xj). The projection of a test point onto the discriminant
is computed by(w · Φ(x)) =

∑
I αi k(xi,x). As the dimension of the feature space is

usually much higher than the number of training samples` some form of regularization
is necessary. In [4] it was proposed to add e.g. the identity or the kernel matrixK to N ,
penalizing‖α‖2 or ‖w‖2, respectively (see also [3]).
There are several equivalent ways to optimize (2). One could either solve the generalized
eigenproblemMα = λNα, selecting the eigenvectorα with maximal eigenvalueλ, or
computeα ≡ N−1(µ2−µ1). Another way which will be detailed in the following exploits
the special structure of problem (2).

3 Casting KFD into a Quadratic Program

Although there exist many efficient off-the-shelve eigensolvers or Cholesky packages
which could be used to optimize (2) there remain two problems: for a large sample size`
the matricesN andM become unpleasantly large and the solutionsα are non-sparse (with
no obvious way to introduce sparsity in e.g. the matrix inverse). In the following we show
how KFD can be cast as a convex quadratic programming problem. This new formulation
will prove helpful in solving the problems mentioned above and makes it much easier to
gain a deeper understanding of KFD.
As a first step we exploit the facts that the matrixM is only rank one, i.e.α>Mα =
(α>(µ2 − µ1))2 and that withα any multiple ofα is an optimal solution to (2). Thus we
may fixα>(µ2 −µ1) to any non–zero value, say2 and minimizeα>Nα. This amounts to
the following quadratic program:

min
α

α>Nα+ C P(α) (3)
subject to: α>(µ2 − µ1) = 2. (3a)

The regularization formerly incorporated inN is made visible explicitly here through the
operatorP, whereC is a regularization constant. This program still makes use of the
rather un–intuitive matrixN . This can be avoided by our final reformulation which can
be understood as follows: Fisher’s Discriminant tries to minimize the variance of the data
along the projection whilst maximizing the distance between the average outputs for each



class. Considering the argumentation leading to (3) the following quadratic program does
exactly this:

min
α,b,ξ

‖ξ‖2 + C P(α) (4)

subject to: Kα+ 1b = y + ξ (4a)

1>iξ = 0 for i = 1, 2 (4b)

for α, ξ ∈ R
`, and b, C ∈ R, C ≥ 0. The constraint (4a), which can be read as

(w ·xi) + b = yi + ξi for all i ∈ I, pulls the output for each sample to its class–label. The
term‖ξ‖2 minimizes the variance of the error committed while the constraints (4b) ensure
that the average output for each class is the label, i.e. for±1 labels the average distance of
the projections is two. The following proposition establishes the link to KFD:

Proposition 1. For givenC ∈ R, any optimal solutionα to the optimization problem(3)
is also optimal for(4) and vice versa.

The formal, rather straightforward but lengthy, proof of Proposition 1 is omitted here. It
shows (i) that the feasible sets of (3) and (4) are identical with respect toα and (ii) that the
objective functions coincide. Formulation (4) has a number of appealing properties which
we will exploit in the following.

4 A Probabilistic Interpretation

We would like to point out the following connection (which is not specific to the formu-
lation (4) of KFD): The Fisher discriminant is the Bayes optimal classifier for two normal
distributions with equal covariance (i.e. KFD is Bayes optimal for two Gaussian in feature
space.). To see this connection to Gaussians consider a regression onto the labels of the
form (w · Φ(x)) + b, wherew is given by (1). Assuming a Gaussian noise model with
varianceσ the likelihood can be written as

p(y|α, σ2) ≡ exp(− 1
2σ2

∑
i

((w · Φ(xi)) + b− yi)2) = exp(− 1
2σ2
‖ξ‖2).

Now, assume some priorp(α|C) over the weights with hyper-parametersC. Comput-
ing the posterior we would end up with the Relevance Vector Machine (RVM) [11]. An
advantage of the RVM approach is that all hyper-parametersσ andC are estimated auto-
matically. The drawback however is that one has to solve a hard, computationally expen-
sive optimization problem. The following simplifications show how KFD can be seen as
an approximation to this probabilistic approach. Assuming the noise varianceσ is known
(i.e. dropping all terms depending solely onσ) and taking the logarithm of the posterior
p(y|α, σ2)p(α|C), yields the following optimization problem

min
α,b
‖ξ‖2 − log(p(α|C)), (5)

subject to the constraint (4a). Interpreting the prior as a regularization operatorP, intro-
ducing an appropriate weighting factorC, and adding the two zero–mean constraints (4b)
yields the KFD problem (4). The latter are necessary for classification as the two classes
are independently assumed to be zero–mean Gaussians. This probabilistic interpretation
has some appealing properties which we outline in the following:

Interpretation of outputs The probabilistic framework reflects the fact, that the outputs
produced by KFD can be interpreted as probabilities, thus making it possible to assign a
confidence to the final classification. This is in contrast to SVMs whose outputs can not
directly be seen as probabilities.



Noise models In the above illustration we assumed a Gaussian noise model and some yet
unspecified prior which was then interpreted as regularizer. Of course, one is not limited
to Gaussian models. E.g. assuming a Laplacian noise model we would get‖ξ‖1 instead of
‖ξ‖22 in the objective (5) or (4), respectively. Table 1 gives a selection of different noise
models and their corresponding loss functions which could be used (cf. Figure 1 for an
illustration). All of them still lead to convex linear or quadratic programming problems in
the KFD framework.

Table 1: Loss functions
for the slack variablesξ
and their corresponding
density/noise models in
a probabilistic frame-
work [10].

loss function density model

ε-ins. |ξ|ε 1
2(1+ε) exp(−|ξ|ε)

Laplacian |ξ| 1
2 exp(−|ξ|)

Gaussian 1
2ξ

2 1√
2π

exp(− ξ
2

2 )

Huber’s

{
1

2σ ξ
2

|ξ| − σ
2

{
exp(− ξ2

2σ ) if |ξ| ≤ σ
exp(σ2 − |ξ|) otherwise

Regularizers Still open in this probabilistic interpretation is the choice of the prior or
regularizerp(α|C). One choice would be a zero–mean Gaussian as for the RVM. Assum-
ing again that this Gaussians’ varianceC is known and a multiple of the identity this would
lead to a regularizer of the formP (α) = ‖α‖2. Crucially, choosing a single, fixed variance
parameter for allα we would not achieve sparsity as in RVM anymore. But of course any
other choice, e.g. from Table 1 is possible. Especially interesting is the choice of a Lapla-
cian prior which in the optimization procedure would correspond to al1–loss on theα’s,
i.e. P (α) = ‖α‖1. This choice leads to sparse solutions in the KFD as thel1–norm can
be seen as an approximation to thel0–norm. In the following we call this particular setting
sparse KFD(SKFD).

Figure 1: Illustration of Gaussian, Laplacian, Huber’s robust andε–insensitive loss func-
tions (dotted) and corresponding densities (solid).

Regression and connection to SVM Considering the program (4) it is rather simple to
modify the KFD approach for regression. Instead of±1 outputsy we now have real–valued
y’s. And instead of two classes there is only one class left. Thus, we can use KFD for
regression as well by simply dropping the distinction between classes in constraint (4b).
The remaining constraint requires the average error to be zero while the variance of the
errors is minimized.
This as well gives a connection to SVM regression (e.g. [12]), where one uses theε–
insensitive loss forξ (cf. Table 1) and aK–regularizer, i.e.P (α) = α>Kα = ‖w‖2.
Finally, we can as well draw the connection to a SVM classifier. In SVM classification one
is maximizing the (smallest) margin, traded off against the complexity controlled by‖w‖2.
Contrary, besides parallels in the algorithmic formulation, in KFD is no explicit concept of
a margin. Instead, implicitly theaveragemargin, i.e. the average distance of samples from
different classes, is maximized.

Optimization Besides a more intuitive understanding, the formulation (4) allows for de-
riving more efficient algorithms as well. Using a sparsity regularizer (i.e. SKFD) one could



employ chunking techniques during the optimization of (4). However, the problem of se-
lecting a good working set is not solved yet, and contrary to e.g. SVM, for KFD all samples
will influence the final solution via the constraints (4a), not just the ones withαi 6= 0. Thus
these samples can not simply be eliminated from the optimization problem. Another in-
teresting option induced by (4) is to use a sparsity regularizerand a linear loss function,
e.g. the Laplacian loss (cf. Table 1). This results in a linear program which we call linear
sparse KFD (LSKFD). This can very efficiently be solved by column generation techniques
known from mathematical programming. A final possibility to optimize (4) for the stan-
dard KFD problem (i.e. quadratic loss and regularizer) is described in [6]. Here one uses
a greedy approximation scheme which iteratively constructs a (sparse) solution to the full
problem. Such an approach is straight forward to implement and much faster than solving
a quadratic program, provided that the number of non–zeroα’s necessary to get a good
approximation to the full solution is small.

5 Experiments

In this section we present some experimental results targeting at (i) showing that the KFD
and some of its variants proposed here are capable of producing state of the art results
and (ii) comparing the influence of different settings for the regularizationP(α) and the
loss–function applied toξ in kernel based classifiers.

The Output Distribution In an initial experiment we compare the output distributions
generated by a SVM and the KFD (cf. Figure 2). By maximizing the smallest margin and
using linear slack variables for patterns which do not achieve a reasonable margin, the
SVM produces a training output sharply peaked around±1 with Laplacian tails inside the
margin area (theinsidemargin area is the interval[−1, 1], theoutsidearea its complement).
Contrary, KFD produces normal distributions which have a small variance along the dis-
criminating direction. Comparing the distributions on the training set to those on the test
set, there is almost no difference for KFD. In this sense the direction found on the training
data is consistent with the test data. For SVM the output distribution on the test set is signif-
icantly different. In the example given in Figure 2 the KFD performed slightly better than
SVM (1.5% vs. 1.7%; for both the best parameters found by 5-fold cross validation were
used), a fact that is surprising looking only on the training distribution (which is perfectly
separated for SVM but has some overlap for KFD).

SVM training set

−2 −1 0 1 2

SVM test set

−2 −1 0 1 2

KFD training set

−2 −1 0 1 2

KFD test set

−2 −1 0 1 2

Figure 2: Comparison of output distributions on training and test set for SVM and KFD for
optimal parameters on the ringnorm dataset (averaged over100 different partitions). It is
clearly observable, that the training and test set distributions for KFD are almost identical
while they are considerable different for SVM.

Performance To evaluate the performance of the various KFD approaches on real data
sets we performed an extensive comparison to SVM1. The results in Table 2 show the

1Thanks to M. Zwitter and M. Soklic for the breast cancer data. All data sets used in the experi-
ments can be obtained viahttp://www.first.gmd.de/˜raetsch/ .



average test error and the standard deviation of the averages’ estimation, over100 runs
with different realizations of the datasets. To estimate the necessary parameters, we ran
5-fold cross validation on the first five realizations of the training sets and took the model
parameters to be the median over the five estimates (see [7] for details of the experimental
setup).
From Table 2 it can be seen that both, SVM and the KFD variants on average perform
equally well. In terms of (4) KFD denotes the formulation with quadratic regularizer, SKFD
with l1–regularizer, and LSKFD withl1–regularizer andl1 loss onξ. The comparable
performance might be seen as an indicator, that maximizing the smallest margin or the
average margin does not make a big difference on the data sets studied. The same seems
to be true for using different regularizer and loss functions. Noteworthy is the significantly
higher degree of sparsity for KFD.

Regression Just to show that the proposed KFD regression works in principle, we con-
ducted a toy experiment on the sinc function (cf. Figure 3). In terms of the number of
support vectors we obtain similarly sparse results as with RVMs [11], i.e. a much smaller
number of non–zero coefficients than in SVM regression. A thorough evaluation is cur-
rently being carried out.
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Figure 3: Illustration of KFD regression. The left panel shows a fit to the noise–free sinc
function sampled on100 equally spaced points, the right panel with Gaussian noise of
std. dev.0.2 added. In both cases we used RBF–kernelexp(−‖x−y‖2/c)of width c = 4.0
andc = 3.0, respectively. The regularization wasC = 0.01 andC = 0.1 (small dots
training samples, circled dots SVs).

SVM KFD SKFD LSKFD
Banana 11.5±0.07 (78%) 10.8±0.05 11.2±0.48 (86%) 10.6±0.04 (92%)
B.Cancer 26.0±0.47 (42%) 25.8±0.46 25.2±0.44 (88%) 25.8±0.47 (88%)
Diabetes 23.5±0.17 (57%) 23.2±0.16 23.1±0.18 (97%) 23.6±0.18 (97%)
German 23.6±0.21 (58%) 23.7±0.22 23.6±0.23 (96%) 24.1±0.23 (98%)
Heart 16.0±0.33 (51%) 16.1±0.34 16.4±0.31 (88%) 16.0±0.36 (96%)
Ringnorm 1.7±0.01 (62%) 1.5±0.01 1.6±0.01 (85%) 1.5±0.01 (94%)
F.Sonar 32.4±0.18 (9%) 33.2±0.17 33.4±0.17 (67%) 34.4±0.23 (99%)
Thyroid 4.8±0.22 (79%) 4.2±0.21 4.3±0.18 (88%) 4.7±0.22 (89%)
Titanic 22.4±0.10 (10%) 23.2±0.20 22.6±0.17 (8%) 22.5±0.20 (95%)
Waveform 9.9±0.04 (60%) 9.9±0.04 10.1±0.04 (81%) 10.2±0.04 (96%)

Table 2: Comparison between KFD, sparse KFD (SKFD), sparse KFD with linear loss
on ξ (LSKFD), and SVMs (see text). All experiments were carried out with RBF–kernels
exp(−‖x−y‖2/c). Best result in bold face, second best in italics. The numbers in brackets
denote the fraction of expansions coefficients which were zero.



6 Conclusion and Outlook

In this work we showed how KFD can be reformulated as a mathematical programming
problem. This allows a better understanding of KFD and interesting extensions: First, a
probabilistic interpretation gives new insights about connections to RVM, SVM and regu-
larization properties. Second, using a Laplacian prior, i.e. al1 regularizer yields the sparse
algorithm SKFD. Third, the more general modeling permits a very natural KFD algorithm
for regression. Finally, due to the quadratic programming formulation, we can use tricks
known from SVM literature like chunking or active set methods for solving the optimiza-
tion problem. However the optimal choice of a working set is not completely resolved and
is still an issue of ongoing research. In this sense sparse KFD inherits some of the most ap-
pealing properties of both, SVM and RVM: a unique, mathematical programming solution
from SVM and a higher sparsity together with interpretable outputs from RVM.
Our experimental studies show a competitive performance of our new KFD algorithms if
compared to SVMs. This indicates that neither the margin nor sparsity nor a specific out-
put distributionaloneseem to be responsible for the good performance of kernel–machines.
Further theoretical and experimental research is therefore needed to learn more about this
interesting question. Our future research will also investigate the role of output distribu-
tions and their difference between training and test set.
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