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Abstract. In image retrieval system, images can be represented by sin-
gle feature vectors or by clouds of points. A cloud of points offers a more
flexible description but suffers from class overlap. We propose a novel
approach for describing clouds of points based on support vector data
description (SVDD). We show that combining SVDD-based classifiers
improves the retrieval precision. We investigate the performance of the
proposed retrieval technique on a database of 368 texture images and
compare it to other methods.

1 Introduction

In the problem of image database retrieval, we look for a particular image in a
huge collection of images. If an example, or a query image is available, we would
like to find images, similar to the query, according to our (human) perception.
Making an automated system for such a search, would, therefore, require ad-
vanced matching methods in order to approximate this. In the paper, we discuss
two approaches how images may be represented in an image retrieval system.
We propose to represent images by support vector data description (SVDD) for
clouds of feature vectors. We show that combining the SVDD representations
helps to find good description of the data.

A number of approaches has been investigated how to represent images for
image database retrieval [3, 5, 1] Usually, an image is encoded in a single feature
vector containing different color-, texture-, or shape-based information about
the whole image. This feature vector is computed for all images in the database.
To retrieve images resembling the query image, a suitable distance measure be-
tween the image feature vectors is needed. The images with smaller distances are
then considered to be more similar to the query. This method provides a global
description, which does not take into account possible image substructures.

The other, more robust, way to represent images is to encode an image as a
set of feature vectors (or a cloud of pixel objects). Usually, simple features like
average intensities in small image patches are used. Each image patch is again



encoded by a feature vector, storing information about color and texture. The
complete image is represented by a set of vectors. We propose to describe this
cloud of points by the SVDD method. In order to find the resembling images in
the database, a boundary around the image cloud is fitted. Images, whose pixel
clouds lie within this boundary, are then the most resembling ones.

Although in this cloud representation the stor-
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Fig. 1. Graphical represen-
tation of the (hyper)sphere
around some training data.
One object xi is rejected by
the description (i.e. an error).

age and computation costs are much higher, it
is much simpler to detect substructures in the
original images. Two clearly distinct objects in
the image (for instance, a sculpture and a back-
ground) will appear as two separate clouds in
the feature space. In the ’single-vector’ represen-
tation it is much harder to detect substructures
in the original image.

Another complication of the proposed ap-
proach is, that the pixel clouds of two different
images may overlap. It might even happen, that
one of the clouds is completely covered by an-
other cloud. Although all the pixels lie within
the description of the query image, their distri-
bution is completely different. For similar images, the fraction of pixels lying
outside and within the the boundary, will be (roughly) the same.

The SVDD method, employed to represent the cloud of points, is explained
in section 2. In section 3, we present the image retrieval problem and two ap-
proaches to image representation. The first one uses single feature vectors, while
the second method is based on a cloud of points. Later, the combination of indi-
vidual SVDD one-class classifiers is described. In section 4, the experiments on
texture images are presented. Conclusion are summarized in section 5.

2 Support vector data description

First, we give a short derivation of the SVDD [8]. To describe the domain of
a dataset, we enclose the data with a hypersphere with minimum volume. By
minimizing the volume of the captured feature space, we hope to minimize the
chance of accepting outlier objects. Assume we have a dataset containing M data
objects, {xi, i = 1, ..,M} and that the hypersphere is described by the center a
and the radius R. A graphical representation is shown in figure 1.

To allow the possibility of outliers in the training set, the distance from
xi to the center a must not be strictly smaller than R2, but larger distances
should be penalized. Therefore, we introduce slack variables ξi which measure
the distance to the boundary, if an object is outside the description. An extra
parameter C has to be introduced for the trade-off between the volume of the
hypersphere and the errors. Now, we minimize an error L containing the volume
of the hypersphere and the distance from the boundary of the outlier objects.
We constrain the solution with the requirement that (almost) all data is within
the hypersphere:



L(R,a,γ) = R2 + C
∑

i

ξi (1)

‖xi − a‖2 ≤ R2 + ξi, ∀i (2)

The constraints (2) can be incorporated in the error (1) by applying Lagrange
multipliers [2] and optimizing the Lagrangian. This allows to determine the cen-
ter as a =

∑
i αixi with 0 ≤ αi ≤ C, ∀i, and the problem can be changed into

maximizing the Lagrangian with respect to α:

L =
∑

i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj), 0 ≤ αi ≤ C and
∑

i

αi = 1 (3)

This error function is in a standard quadratic form, and combined with the
constraints, it gives rise into a quadratic optimization problem. In practice, it
appears that a large fraction of the αi becomes zero. For a small fraction, αi > 0,
and the corresponding objects are called support objects. These objects appear
to lie on the boundary (in figure 1 these are the three light gray objects on
the boundary). Therefore, the center of the hypersphere depends just on a few
support objects. The objects with αi = 0 can be disregarded in the description
of the data. An object z is then accepted by the description when:

‖z− a‖2 = (z · z)− 2
∑

i

αi(z · xi) +
∑
i,j

αiαj(xi · xj) ≤ R2, (4)

where the radius R can be determined by calculating the distance from the
center a to a support vector xi on the boundary.

Here, the model of a hypersphere is assumed and this will not be satisfied
in the general case. Analogous to the method of Vapnik [10], we can replace the
inner products (x · y) in equations (3) and in (4) by kernel functions K(x,y)
which gives a much more flexible method. When we replace the inner products
by Gaussian kernels, for instance, we obtain:

(x · y) → K(x,y) = exp(−‖x− y‖2/s2) (5)

Equation (3) now changes into:

L = 1−
∑

i

αi
2 −

∑
i 6=j

αiαjK(xi,xj) (6)

The maximization of (6), gives α, which are used in the computation of the cen-
ter. It can now be checked if a new object z lies within the boundary (from (4)):

∑
i

αiK(z,xi) ≤
1
2

1−R +
∑
i,j

αiαjK(xi,xj)

 (7)

This Gaussian kernel contains one extra free parameter, the width parameter
s in the kernel (from definition (5)). For small values of s the SVDD resembles



a Parzen density estimation, while for large s the original hypersphere solution
is obtained [9]. As shown in [9], this parameter can be set by setting a priori the
maximal allowed rejection rate of the target set, i.e. the error on the target set.

Secondly, we also have the trade-off parameter C. We can define a new vari-
able ν = 1

MC , which describes an upper bound for the fraction of objects outside
the description [7]. When the user specifies beforehand a fraction of the target
objects which can be rejected by the description, just one of the parameters s or
ν can be determined. In this paper, we choose, therefore, to set ν to a fixed, small
value of 1%. The value of s is optimized such that the user-specified fraction of
the data is rejected.

3 Image database retrieval

Let us denote by ID an image database with N images Ii, i = 1, ..., N . The
image retrieval problem is formulated as a selection of a subset of images, similar
to a given query image Q. In our application, images in the database can be
assigned to classes, which describe images coming from the same origin, e.g.
grain textures, sky images, images with flowers etc. Therefore, whenever we
speak about a class, we mean a group of similar images. In this way, an image
retrieval strategy can be tested in a more objective way. Such a strategy is defined
in two steps: image representation and a similarity measure between the query
image and images stored in the database.

3.1 Image representation

For the sake of image discrimination, images should be represented in a feature
space such that the class differences could be emphasized. A convenient way to
extract good features is to apply a bank of filters to each image in a database.
These filters may be, for example, wavelets, Gabor filters or other texture detec-
tors. In many cases, the filters will give response values which are incomparable
to each other. To avoid that one filter with large variance will dominate, the data
is preprocessed by weighting individual features on the basis of a dataset mean
and standard deviation. We use a scaling that emphasizes differences between
individual images in the database.

Assume we have constructed a dataset F containing N K-dimensional feature
vectors, representing all images in the database. The weight vector w is computed
element-wise in the following way:

wk =
1

mean(Fk)
std

(
Fk

mean(Fk)

)
, (8)

where Fk is the k-th feature in the dataset F . All features of all images are
rescaled according to this weight vector.

3.2 Single pixel or cloud representation

If we choose to represent one image by one feature vector, the filter responses
have to be converted, in one way or another, into a single feature vector. This
can be, for example, the average of the filter response over the whole image. All



images are then represented by points in a feature space. The similarity between
a query image Q and the image Ii from a database may be defined in various
ways. For example, Rui et al. [6] proposed to use a cosine similarity:

Sim(Q, Ii) =
xT

Q xIi

||xQ|| ||xIi ||
, (9)

where xQ and xIi
are vector representations of the query and the image Ii

respectively and || · || is the L2-norm. The large Sim value for two vectors in the
feature space, the more similar the corresponding images.

Depending on the conversion from an image to a feature vector, it is very hard
to retain the individual characteristics of substructures present in the image.
For instance, when the original image contains sky and sand in two different
parts, the image feature vector will represent the average of the sand and sky
characteristics. Only for homogeneous images, the single feature will capture the
structure well.

A more flexible image representation can be defined by using a cloud of
points, instead. A cloud Ci, representing the image Ii, consists of Mi feature
vectors, storing the information on Mi single points or patches in the image. The
more compact the cloud, the simpler its separation from the other clouds (im-
ages). Such a representation becomes more robust to noise when image patches
are used instead of raw pixel intensities.

Such a cloud of points can be used in a number of ways for the image re-
trieval. For instance, if the assumption of normality holds approximately, the
Mahalanobis distance can serve to estimate the similarity between clouds of
points. For a good performance, this approach requires also images, homoge-
neous in the structure.

An another possibility, proposed by us, is to fit the SVDD around the cloud of
points. As explained in section 2, the user has to define the percentage of target
objects (points) that will lie on the boundary. Given this fraction, a one-class
classifier is constructed for the query cloud.

To be more specific, let us introduce the formal notation. Let Ci
SVDDbe a

one-class classifier constructed for the image Ii. For a vector x, coming from the
cloud of points Ci, representing the image Ii, i.e. x ∈ Ci, it is defined as:

Ci
SVDD(x) = I (x is accepted by the SVDD), (10)

where I is the indicator function (i.e. I(A) = 1 if the condition A is true and is
equal to 0, otherwise) and the acceptance of the vector x is defined by formulae
(4) or (7), depending on the kernel used. It means that

Ci
SVDD(x) =

{
1 if x is accepted by the SVDD

0 if x is rejected by the SVDD

This classifier is trained such that the fraction of p = 0.2 target vectors lie on
the boundary, i.e.:

Prob
(
Ci
SVDD(x) = 0 & x is on the boundary | x ∈ Ci

)
= 0.2, (11)



which means that the boundary vectors are here considered to be outliers.
An image Ij is classified by the Ci

SVDD, taking into account the fraction of
vectors from the cloud representation Cj , which are rejected by the description,
i.e. the fraction Si of the retained outliers:

Si (Ij) =
1

Mj

∑
x∈Cj

(1− Ci
SVDD(x)), (12)

where Mj is the size of the cloud Cj . So, the clouds representing other images
in the database can now be classified by this one-class classifier, counting the
number of outliers for each of them. The smaller the percentage of outliers, the
more similar the two images.

3.3 Image similarity by combining one-class classifiers

If only one classifier is used, the performance may suffer from a large overlap
between individual clouds of points. For instance, if one cloud completely con-
tains another one, originating from a different class, the percentage of outliers
can still be zero. Such an image is then considered to be more similar to the
query image than to other images from the same class. This, of course, lowers
the performance of the whole image retrieval system.

To prevent such inconvenient situations, we propose to use a set of one-class
classifiers, i.e. a combined classifier profile. This profile is then built for the query
Q as follows:

S(Q) = [S1(Q), S2(Q), . . . , SN (Q)], (13)

which is the vector of N individual SVDD’s responses Si, defined by (12) for
the image Q. Now, our proposal is to compare the query profile with the profiles
of the images in the database, on the basis of their similarity. For this purpose,
different dissimilarity measures can be used, for instance the Euclidean distance
DE(Q, Ii) = ||S(Q) − S(Ii)||, i = 1, . . . , N . In this way, the responses of the
individual one-class classifiers are combined to express the dissimilarity between
the query image and the images in the database. The images, most similar to
the query image, are then retrieved by ranking the dissimilarities DE(Q, Ii)
for i = 1, . . . , N . In this way, the combination rule of the individual SVDD’s
becomes the trained nearest neighbor combiner. This approach is similar to the
decision based on multiple classifiers, proposed by Kuncheva et al. [4] where the
decision templates are created by averaging over all training objects in a class.
In our approach, individual classifiers are constructed for a single image in the
database.

4 Experiments

In this section, we describe a set of experiments performed on a dataset of
texture images. Our dataset is based on 23 images obtained from MIT Media
Lab4. Each original image is cut into 16 128×128 non-overlapping pieces. These
represent a single class. Therefore, we use a database with 23 classes and 368
4 ftp://whitechapel.media.mit.edu/pub/VisTex/



images. Note that these images are mostly homogeneous and should represent
one type of a texture. In this case, it is to be expected that the single feature
vector representation performs well.
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(a) Single feature vectors in 2D fea-
ture space
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(b) Two clouds of points and corre-
sponding SVDD boundaries. Bold
markers denote corresponding sin-
gle feature vectors

Fig. 2. Two different image representations.

The images are, one by one, considered as queries. The retrieval precision is
computed using all 368 images. The presence of the query image in the train-
ing set leads to a slightly optimistic performance estimate. We decided for this
approach because it allowed us to work with the complete distance matrices.
For each query image, 16 most similar images are found. The retrieval precision
for each query is then defined as the percentage of returned images, originating
from the same class as the query. The total precision of the retrieval method is
then the average precision of all 368 individual queries, i.e.:

P =
1

368

∑
I∈ID

# images of the same class as I in the first 16 retrieved
16

· 100%

(14)
The absolute values of responses of 10 different Gabor filters are used as fea-

tures. These 10 features were chosen by a backward feature selection from the
larger set of 48 Gabor filters with different smoothing, frequency and direction
parameters. We have used the retrieval precision computed on the vector repre-
sentation as the feature selection criterion. We used the same set of 10 Gabor
filters for all experiments presented in this paper.

4.1 Experiment 1: Image representation by a single feature vector

In this experiment we investigate as a reference the performance of the image
retrieval system representing images by single feature vectors. Each vector is
computed as the average vector of the corresponding Gabor filter responses.



The data is weighted as described in section 3.1. For an illustration, the scatter-
plot of the first two features is shown in figure 2(a). Each point corresponds to
a single image; classes are denoted by different markers. As it can be observed,
images of the same class are often grouped together. Two dissimilarity measures:
cosine distance (9) and Euclidean distance are used for the image retrieval, for
which the total precision is presented in the first two rows of table 4.2.

4.2 Experiment 2: Image representation by a cloud of points

In the second set of experiments, we investigate a retrieval system, where the
images are represented by clouds of points. An image is described by the average
intensities in 9 × 9 pixel neighborhoods. Each cloud consists of 500 patches
randomly selected from the image. The choice of 500 is a compromise between
a higher standard deviation (noise sensitive) for small number of patches, and
a computational complexity. An example of clouds of points in a 2D space is
given in figure 2(b). Different markers are used to denote images originating
from different classes.

We built an SVDD for the cloud of points, setting 20% of points to the
boundary; see (11). Exemplar resulting boundaries in the 2D case are shown in
figure 2(b), for which a clear difference in distribution characteristics of the two
clouds can be observed.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

10

30

50

70

90

images

p
e
rc

e
n
ta

g
e
 o

f 
o
u
tli

e
rs

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

10

30

50

70

90

images

p
e
rc

e
n
ta

g
e
 o

f 
o
u
tli

e
rs

Fig. 3. Percentage of outliers of a query classifier applied to all images. Image from
the class 4 is used in the left and image from the class 9 in the right graph.

First, we use a single SVDD, trained on the query cloud and we apply it
to other images, represented by clouds. It follows from table 4.2 that the total
precision is 67.85% which is worse than 73.44%, obtained by using the single
feature vector representation. This can be explained by a heavy overlap between
clouds of points, as illustrated in figure 3. This figure shows the percentage of
outliers for a classifier trained by a particular query image and applied to all
368 images. The left graph presents the case when a class, containing the query
image, is separated from all the other classes. In the right graph, the classifier,
trained on the query image (from the class 9), entirely overlaps with several



other classes. We judge that, in such cases, combining the responses of a number
of one-class classifiers may improve the overall retrieval precision.

The classifier responses form a combined classifier profile, as described in
section 3.3. Different approaches may be used to measure the similarity between
the query image and other images from a database. In the most obvious attempt,
the most similar images to the query Q can be directly found by ranking the
elements of the query profile vector. This is achieved by sorting the S(Q) and
choosing those individual SVDD’s for which the responses are the smallest. This
heavily relies on the performance of the single SVDD, which, for highly overlap-
ping classes, is not the optimal approach. Our experiments confirm that, in fact,
the total precision is 56.76%.

This motivated us to combine these SVDD’s further, by using the trained
nearest neighbor combiner, as described in section 3.3. This leads to a decision
based on the (dis)similarities between combined classifier profiles for the query
and other images. Two different distance measures are considered here: the Eu-
clidean distance and the cosine distance. For the query Q and the image Ii,
the latter, based on the inner product between classifier profiles, is computed as
Dcos = 1

2 (1− Sim(S(Q),S(Ii))), where Sim is defined by (9).

Image representation Method Precision [%]

Single feature vector Euclidean dist. 67.44
cosine dist. 73.44

Cloud of points Mahalonobis 19.06

SVDD target classifier 67.85

SVDD combined Euclidean dist. 79.11
cosine dist. 79.40
ranking 56.76

Table 1. Experimental results: Precisions of different retrieval methods.

5 Summary and Conclusions

The performance of image retrieval systems depends on the selection of an ap-
propriate representation of image data. Usually, an image is represented by a
single feature vector. It is an efficient, but sometimes oversimplifying way of in-
formation encoding. This type of representation is averaging out details in the
images. Other, more complex image representations may be defined, e.g. such as
a cloud of points. This is more robust to noise and, at the same time, sensitive
to substructures in the data.

To apply this type of a representation, a convenient way of measuring sim-
ilarity between images must be defined. It should take into account possible
multimodality of the data. We have found out that simple methods, such as Ma-
halonobis distance between clouds of points, suffer because the corresponding
assumptions are not fulfilled.

We propose to describe a cloud of points by the support vector data descrip-
tion (SVDD) method. On the contrary to other methods based on the probabilis-
tic approach, SVDD describes the data domain. By this approach, images can



be easily matched, based on the fraction of the points rejected by the description
(the smaller, the better). It appears that this type of image representation is a
flexible tool for image retrieval. However, the retrieval performance of a single
SVDD classifier is often badly affected by a large overlap between clouds. To
overcome this problem, we propose to combine the one-class classifiers of the
database images into a profile of classifiers’ responses. An image retrieval is then
based on a trained nearest-neighbor combiner.

We have performed a set of experiments on a dataset of 368 texture images. It
appears, that a representation by single feature vectors leads to a good retrieval
performance, which was expected because of relatively homogeneous images in
our database.

In our study, we have investigated different ways of using the SVDD, de-
scribing a cloud of points. We have found out that for a single SVDD used, the
retrieval performance is worse than for a single vector representation. Therefore,
our proposal was to combine the information given by different one-class clas-
sifiers, encoded in a vector of their individual responses. Direct ranking in the
query profile gives a poor performance, because the outcome is again based on a
single pair of clouds. We have found that computing distances between complete
classifier profiles is a better strategy. It follows from our experiments that this
method outperforms single feature vector-based methods. Moreover, it employs
more flexible image representation.

References

1. S. Antani, R. Kasturi, and R. Jain. Pattern recognition methods in image and
video databases: past, present and future. In Advances in Pattern Recognition,
Proceedings of SPR’98 and SSPR’98, pages 31–53, Berlin, 1998. IAPR, Springer-
Verlag.

2. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, 1995.

3. T. Huang, Y. Rui, and S.-F. Chang. Image retrieval: Past, present, and future. In
International Symposium on Multimedia Information Processing, 1997.

4. Ludmila I Kuncheva, James C Bezdek, and Robert P W Duin. Decision templates
for multiple classifier fusion: an experimental comparison. Pattern Recognition,
34(2):299–314, 2001.

5. K. Messer and J. Kittler. A region-based image database system using colour and
texture. Pattern Recognition Letters, 20:1323–1330, 1999.

6. Y. Rui, T. Huang, and S. Mehrotra. Content-based image retrieval with relevance
feedback in MARS, 1997.

7. B. Schölkopf, P. Bartlett, A.J. Smola, and R. Williamson. Shrinking the tube: A
new support vector regression algorithm. M. S. Kearns, S. A. Solla, and D. A.
Cohn, editors, Advances in Neural Information Processing Systems, 1999.

8. D.M.J. Tax. One-class classification. PhD thesis, Delft University of Technology,
http://www.ph.tn.tudelft.nl/˜davidt/thesis.pdf, June 2001.

9. D.M.J. Tax and R.P.W Duin. Support vector domain description. Pattern Recog-
nition Letters, 20(11-13):1191–1199, December 1999.

10. Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons., 1998.


