
Abstract. We present a novel framework for the analysis
of time series from dynamical systems that alternate
between di�erent operating modes. The method simul-
taneously segments and identi®es the dynamical modes
by using predictive models. In extension to previous
approaches, it allows an identi®cation of smooth tran-
sition between successive modes. The method can be
used for analysis, diagnosis, prediction, and control. In
an application to EEG and respiratory data recorded
from humans during afternoon naps, the obtained
segmentations of the data agree with the sleep stage
segmentation of a medical expert to a large extent.
However, in contrast to the manual segmentation, our
method does not require a priori knowledge about
physiology. Moreover, it has a high temporal resolution
and reveals previously unclassi®ed details of the transi-
tions. In particular, a parameter is found that is
potentially helpful for vigilance monitoring. We expect
that the method will generally be useful for the analysis
of nonstationary dynamical systems, which are abun-
dant in medicine, chemistry, biology and engineering.

1 Introduction

The analysis of time series from nonlinear dynamical
systems made considerable progress during the last
decades (Mayer-Kress 1986; Kantz and Schreiber 1997).
In particular, the notion of deterministic chaos, concepts
like the fractal dimensionality of attractors, andmeasures
of predictability and complexity (Badii and Politi 1997)
allowed a deeper understanding of complex phenomena.
A major breakthrough came with the discovery that a
measured time series carries the information necessary to
estimate the above-mentioned quantities (Takens 1981).
In particular, the method of embedding using time-delay
coordinates, ®rst introduced by Packard et al. (1980),

provided a general tool for the identi®cation and analysis
of complex systems in terms of low-dimensional chaotic
systems. Besides the fact that the statistical techniques in
this regard need a reasonable amount of data, they also
generally assume stationarity: they require that the
underlying system is autonomous and does not change
its parameters over time. If, however, the parameters of
the system are drifting or externally switched from time to
time, then an analysis of the system can become very
di�cult. One approach to solve this problem is the
application of algorithms to short segments of the data,
thereby monitoring possible changes in the characteristic
quantities. However, such methods may su�er from the
curse of dimensionality and other statistical problems
that arise when estimating from few data points.

Here we suggest a di�erent approach. We assume that
the dynamics observed from a given system can be
described by a discrete set of di�erent dynamics, which
we call modes, and by transitions between these modes.
This is the case when parameters drift or switch among
these modes, or, for example, in high-dimensional sys-
tems that exhibit moderately complex dynamics most of
the time, intermittently disrupted by irregular bursts
(Kaneko 1989), after which a di�erent but again rela-
tively simple dynamics is exhibited. We believe that
similar nonstationarities are present in many complex
systems.

As an intuitive example consider speech. The speech
signal is given by time-varying air pressure originating
from a dynamical system, the articulatory organ, which
is `externally' driven through a sequence of con®gura-
tions. Given the signal, it would be very useful to iden-
tify those segments that are well characterized by a
particular mode and by transitions between them
(MuÈ ller et al. 1995). Another example is provided by
physiological data from humans in di�erent stages of
wakefulness. In particular, the electroencephalogram
(EEG) exhibits a complex dynamics that contains dif-
ferent characteristic waveforms during di�erent stages of
wakefulness and sleep.

Nonstationarities of this kind constitute the problem
this work aims to solve: to ®nd segments in the data thatCorrespondence to: J. Kohlmorgen (e-mail: jek@®rst.gmd.de)
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are well described by a quasi-stationary dynamics and to
characterize the transitions between these modes. Once
the segmentation is found, the estimated modes can be
interpreted, for example, as phonemes in the above
example of speech, or as sleep stages in the case of
physiological data from a sleep laboratory.

In previous work we developed an approach for an-
alyzing change points in switching dynamics from speech
(MuÈ ller et al. 1994, 1995a), medical (MuÈ ller et al.
1995b), and chaotic signals (Kohlmorgen et al. 1994,
1995; Kohlmorgen 1998). Analysis of switching
dynamics has also been considered by several other au-
thors (Cacciatore and Nowlan 1994; Hamilton 1994;
Bengio and Frasconi 1995; Weigend and Mangeas 1995;
Kehagias and Petridis 1997; Shi and Weigend 1997). In
our present study, we propose a novel unsupervised
technique with a high time resolution for the analysis of
time series that include drifts: with this method it is
possible to describe a mode change not simply as an
abrupt switching, but, if appropriate, also as a smooth
transition from one dynamics to another. In Sect. 2, we
address the unsupervised analysis of drifting time series
within the framework of competing prediction experts.
In Sect. 3, we apply the algorithm to synthetic data and
show that the method reveals the dynamical structure
that is hidden in the data and yields the desired repre-
sentation of the dynamics. The analysis of physiological
data from the sleep onset in Sect. 4 demonstrates that
our method reveals drifts also in natural data. More-
over, the unsupervised extraction of dynamical structure
in physiological recordings may contribute to a better
understanding of the transient behavior that emerges
when falling asleep. Finally, we discuss the results and
give an outlook.

2 A method for the detection of drifting dynamics

The analysis of drifting dynamics is performed in two
steps. First, an unsupervised hard segmentation method,
the Annealed Competition of Experts algorithm (ACE)
(Pawelzik et al. 1996; Kohlmorgen 1998), is applied. In
this approach, an ensemble of competing prediction
experts fi; i � 1; . . . ;N , is trained on a given time series.
The optimal choice of function approximators fi de-
pends on the speci®c application. In this work, we use
radial basis function (RBF) networks of the Moody-
Darken type (Moody and Darken 1989) as predictors,
because they o�er a fast and robust learning method.
The second step consists in the application of a drift
segmentation algorithm that is based on a hidden
Markov model.

2.1 Training the experts

Consider a time series that consists of pairs of input and
target data, f�~xt; yt�g. In particular, the target data might
be a future value of a scalar time series fxtg, for example,
yt � xt�s, and the input data might be a vector of past
values ~xt � �xt; xtÿs; . . . ; xtÿ�dÿ1�s�. This is the usual

formulation of a time series prediction problem. The
parameter d is called the embedding dimension and s is
called the delay parameter. Note that the extension to
multivariate time series is straightforward. For readabil-
ity, however, we restrict ourselves to the scalar notation
in the following.

At each time step t; 1 � t � T , each expert i provides a
prediction ŷi

t � fi�~xt� for the target yt. In our applica-
tions, we use normalized RBF networks (Moody and
Darken 1989) as prediction experts,

fi�~x� �
PH

h�1 wihgh�~x�PH
h�1 gh�~x�

; �1�

where each gh�~x� is a Gaussian basis function,

gh�~x� � exp ÿk~xÿ~lhk2
2r2

h

 !
: �2�

The number of basis functions, H , determines the
complexity of the model and has to be set in advance.
As suggested in Moody and Darken (1989), the centers
~lh are determined by a clustering algorithm on the input
data,1 and the widths rh are then computed for each ~lh
as the distance to the nearest neighboring cluster center.
The wih are adapted during the training process, which
will be derived in the following.

Under a Gaussian assumption, the probability that a
particular predictor i might have produced the observed
data yt is given by

p�ytji� �
���
b
p

r
exp�ÿb�yt ÿ fi�~xt��2� : �3�

If we assume that the experts are mutually exclusive and
exhaustive, we can write p�yt� �

PN
i�1 p�ytji�p�i�. We

further assume that the experts are ± a priori ± equally
probable,

p�i� � 1=N : �4�
To train the experts, we want to maximize the likelihood
that the ensemble would have generated the time series.
This can be done by a gradient method. For the
derivative of the log-likelihood log L � log�p�yt�� with
respect to the output of an expert, we get

o log L
ofi

/ exp�ÿb�yt ÿ fi�~xt��2�PN
j�1 exp�ÿb�yt ÿ fj�~xt��2�

" #
�yt ÿ fi�~xt�� : �5�

According to Bayes' rule the term in brackets is the
posterior probability that expert i is the correct choice
for the given data, yt, that is, p�ijyt�,

p�ijyt� � p�ytji�p�i�PN
j�1 p�ytjj�p�j�

; �6�

where p�ytji� and p�i� are given by (3) and (4). Therefore,
we can simply write (5) as

1 We use an on-line variant of the K-means algorithm (Duda and
Hart (1973)).
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o log L
ofi

/ p�ijyt��yt ÿ fi�~xt�� : �7�

The experts are trained by expectation-maximization
(EM) (Dempster et al. 1977). The E-step consists in
estimating the probabilities p�ijyt�. The M-step then
adapts the parameters of the experts by a gradient ascent
on the log-likelihood function to maximize the likeli-
hood of the model. Since in the M-step the p�ijyt� are
considered to be constant, the computation of the
derivative of the log-likelihood with respect to the
expert's parameters is much simpler. The learning rule
for the wih in the normalized RBF case, for example, is
given by

Dwih / o log L
ofi

ofi

owih
�8�

Dwih � gp�ijyt��yt ÿ fi�~xt�� gh�~x�PH
k�1 gk�~x�

: �9�

In each M-step, the learning rule is applied successively
for each data point in the training set. The rule can
be interpreted as a weighting of the learning rate g by
the expert's relative prediction performance p�ijyt�: the
expert with the best prediction is allowed to make
the largest training step.

The learning rule in (9), however, can often be
insu�cient for obtaining the correct segmentation and
therewith a low prediction error. Without explicitly in-
corporating an assumption about the switching fre-
quency of the dynamical modes, a variety of switching
dynamical systems are conceivable as the origin of a
given time series. For example, one can imagine a system
that is switching to a new mode at each time step. In the
current framework, the choice of models is already
limited by the number of predictors, and the predictors
typically only allow for relatively simple and smooth
mappings. Yet, it is often still possible to ®t the data in
various ways and the training process is likely to select a
wrong model and to get stuck in local minima of the
error function (Pawelzik et al. 1996; Kohlmorgen 1998).
Constraining the training process to ®nd only those
models with a relatively low switching rate solves the
problem in cases where the dynamics does indeed switch
at low rates. We do this by incorporating some inertia
into the predictor weighting scheme in the learning rule
in (7), thereby introducing the concept of memory into
the framework. We simply replace the probability that a
particular predictor has generated a single data point,
p�ijyt�, by the probability that the predictor has gener-
ated all the data points in a temporal neighborhood of the
current data point, p�ijyD

t �, with yD
t � �ytÿD; . . . ; yt�D�.

Using Bayes' rule, we get

p�ijyD
t � �

p�yD
t ji�p�i�

p�yD
t �

; �10�

where

p�yD
t � �

XN

j�1
p�yD

t jj�p�j� : �11�

For simplicity, we assume p�yD
t ji� � Pt�D

t0�tÿD p�yt0 ji�.
Using (3, 4), we get

p�ijyD
t � �

exp�ÿb
Pt�D

t0�tÿD�yt0 ÿ fi�~xt0 ��2�PN
j�1 exp�ÿb

Pt�D
t0�tÿD�yt0 ÿ fj�~xt0 ��2�

: �12�

Thus, instead of using individual prediction errors
et

i � �yt ÿ fi�~xt��2 [in (5)], the incorporation of a low
switching rate assumption leads to the use of low-pass
®ltered errors in the learning rule

Et
i �

Xt�D

t0�tÿD

et0
i : �13�

In (11) we actually assume at each time step that the
whole sequence yD

t was generated by exactly one
predictor. This simpli®cation, that is, assuming proba-
bility 0 for sequences of length D that contain a
switching event, leads to the box-type ®lter, which might
be replaced by a weighted low-pass ®lter

Et
i �

Xt�D

t0�tÿD

G�t0 ÿ t�et0
i �14�

to model the switching probabilities more realistically.
Yet, without any knowledge about the switching char-
acteristics of the time series, (13) seems to be the simplest
and at the same time computationally least expensive
way to include memory. Heuristically, (13) is in analogy
to evolutionary inertia, since once a predictor has
performed better than its competitors, it also has an
advantage for temporally adjacent data points. Note that
to use this framework for forecasting, the proposed a-
causal ®lter needs to be replaced by a causal ®lter that
only uses error information from the past. An alternative
approach was presented, for example, in Liehr et al.
(1999), where memory was included into a system of
competing predictors by means of a Markov process.

For the purpose of segmentation, it might seem to be
most desirable to choose b large. Indeed, one could
consider b � 1, which corresponds to a hard competi-
tion (winner-takes-all) and guarantees an unambiguous
segmentation (Kohlmorgen et al. 1994; MuÈ ller et al.
1994, 1995a). We found, however, that the use of hard
competition right from the beginning of the training
process does not always lead to a su�cient diversi®ca-
tion of the predictors. The ®nal result might strongly
depend on the choice of initial parameters, which may
lead to poor local optima in the likelihood L (Pawelzik
1996; Kohlmorgen 1998).

We solve this initialization problem by adiabatically
increasing the degree of competition. For b � 0, the
predictors equally share all the data for training. In-
creasing b enforces the competition, thereby driving the
predictors to a specialization on di�erent subsets of the
data. Diversi®cation occurs at particular `temperatures'
h � 1=b and the network parameters separate abruptly,
resolving the underlying structure to more detail (Paw-
elzik 1996; Kohlmorgen 1998). These phase transitions
are indicated by a drop of the weighted root mean
squared error (RMSE),
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E �
���������������������������������XT

t�1

XN

i�1
p�ijyD

t �et
i

vuut �15�

and have been described within a statistical mechanics
formalism in the context of hierarchical clustering (Rose
et al. 1990). Note that a careful increase of b is crucial
when ®ne di�erences of underlying functions need to be
resolved.

As a prerequisite of this method, mode changes
should occur infrequently, that is, between two mode
changes the dynamics should operate stationarily in one
mode for a certain number of time steps. The application
of this method then yields a (hard) segmentation of a
time series into di�erent operating modes together with
prediction experts for each mode. In case of a drift
between two modes, the respective segment tends to be
subdivided into several parts, because a single predictor
is not able to handle the nonstationarity (cf. Fig. 1 in
Sect. 3.1). In the next section, we present a method that
is able to deal more appropriately with such drifts.

2.2 A hidden Markov model for drift segmentation

The second stage of the algorithm takes the drift into
account. We propose a segmentation algorithm that
allows us to model drifts between two stationary modes
by combining the two respective predictors, fi and fj.
The drift is modeled by a weighted superposition

f �~xt� � a�t�fi�~xt� � �1ÿ a�t��fj�~xt�; 0 � a�t� � 1 ;

�16�
where a�t� is a mixing coe�cient. We will now de®ne a
hidden Markov model (HMM) that allows us to use the
Viterbi algorithm (cf. Rabiner 1990) for the detection of
this kind of drifting dynamics. For this purpose, however,
a discretization of the mixing proportions is necessary.

An HMM consists of (1) a set S of states, (2) a matrix
A � fpŝ;sg of state transition probabilities, (3) an
observation probability distribution p�yjs� for each state
s, which is a continuous density in our case, and (4) the
initial state distribution p � fpsg. For a thorough
introduction to HMMs, see Rabiner (1990) and the
references therein.

The construction of S, the set of states, is the crucial
point of this approach. The set S consists of `pure' states,
which represent single predictors, and mixture states,
which represent particular mixtures of two predictors.
We ®rst consider the subset P of pure states. Each state
s 2 P ; jP j � N , represents one of the predictors fk�s�
trained in the ®rst step. The function k�s� simply returns
the index of a predictor assigned to a given state. The
predictions in P -states are thus performed by single pre-
dictors. Next, consider the subset M of mixture states.
Each state s 2 M represents a linear mixture of two pre-
dictors fi�s� and fj�s�.2 Given a state s 2 S; S � P [M , the
prediction of the overall system is then performed by

gs�~xt� � fk�s��~xt�; if s 2 P
a�s�fi�s��~xt� � b�s�fj�s��~xt�; if s 2 M .

�
�17�

For each mixture state s 2 M , the coe�cients a�s� and
b�s� need to be determined together with the respective
network indices i�s� and j�s�. For computational
feasibility, the number of mixture states has to be
restricted. Our intention is to allow for drifts between
any two network outputs of the previously trained
ensemble. We choose a�s� and b�s� such that
0 < a�s� < 1 and b�s� � 1ÿ a�s�. Next, a discrete set of
a�s� values needs to be chosen. For simplicity, we use
equally distant steps,

ar � r
R� 1

; r � 1; . . . ;R ; �18�

where R is the number of intermediate mixture levels. A
given resolution R between any two out of N nets yields
a total number of mixed states jM j � RN�N ÿ 1�=2. If,
for example, the resolution R � 32 is used and we
assume N � 8, then there are jM j � 896 mixture states,
plus jP j � N � 8 pure states.

As a second step, the transition matrix A � fpŝ;sg has
to be chosen. It determines the transition probability for
each pair of states. In principle, this matrix can be found
using a training procedure, as, for example, the Baum-
Welch method (Rabiner 1990). However, this is hardly
feasible in this case, because of the immense size of the
matrix. In the above example, the matrix A has
�896� 8�2 � 817; 216 elements that would have to be
estimated. Such an exceeding number of free parameters
is practically intractable for adaptive methods given only
a limited amount of data. Therefore, we use a ®xed
matrix. In this way, prior knowledge about the dynam-
ical system can be incorporated. In our applications, we
either allow for switches or smooth drifts between two
predictors, such that a (monotonous) drift from one net
to another is a priori as likely as a switch. All the other
transitions are disabled by setting pŝ;s � 0. The de®ni-
tions for p�yjs� and p are straightforward. Following (3)
and (4), we again assume Gaussian noise

p�yjs� �
���
b
p

r
exp�ÿb�y ÿ gs�2� �19�

and equally probable initial states, ps � 1=jSj.
The Viterbi algorithm (Rabiner 1990) can now be

applied to the above HMM without any further training
of the HMM parameters. It directly yields the drift
segmentation of a given time series, that is, the most
likely state sequence (the sequence of predictors or linear
mixtures of two predictors) that might have generated
the time series ± in our case, using the assumption that
mode changes occur either as (smooth) drifts or as
infrequent switches.

2.3 The drift segmentation algorithm

In the following, we present a dynamic programming
technique, which is equivalent to the Viterbi algorithm,

2 Note that, in principle, each state might also represent a non-
linear mixture of arbitrarily many predictors.
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and which computes the sequence of nets and linear
mixtures of nets much more e�ciently. Instead of
computing the most likely HMM state sequence in terms
of probabilities p, we compute the state sequence in terms
of costs C � ÿ log�p�. In this way, we can replace
products by sums and avoid numerical problems
(Rabiner 1990). To this end, we compute the cost
function C�, which is the sum of squared prediction
errors plus transition costs for the best matching state
sequence. This sequence can be obtained between two
points in time, t0 and tmax, by recursively computing, for
all s 2 S and all t � t0; . . . ; tmax, the cost Cs�t� of the most
likely state sequence that might have produced the part
of the time series considered so far, fxt0 ; . . . ; xtg, and
whose state at time t is s. By using the squared prediction
error of the pure or mixed network output, es�t� �
�yt ÿ gs�~xt��2, the recursion can be formulated as follows:

Cs�t0� � es�t0� ; �20�
Cs�t� � es�t� �min

ŝ2S
fCŝ�t ÿ 1� � T �ŝ; s�g;

t � t0 � 1; . . . ; tmax �21�
C� � min

s2S
fCs�tmax�g : �22�

Here, T �ŝ; s� is the transition cost for jumping from state
ŝ to state s. Note that the transition costs are in analogy
to the transition probabilities in the HMM, that is, the
choice of the transition matrix T determines the
transition probabilities between the states. The resulting
segmentation sequence is obtained by backtracking
through the sequence of states that make up C� (cf.
Rabiner 1990).

3 Detecting drifts in synthetic data

To illustrate the basic idea of our learning algorithm, we
®rst discuss a simple example of drifting chaotic

dynamics. It is followed by an application to a drifting
system of the Mackey-Glass model of blood cell
regulation.

3.1 Drifting chaos

Consider a chaotic time series fxtg, where xt�1 � f �xt�,
Fig. 1a. Four operating modes are established by using
four di�erent chaotic maps:

f1�x� � 4x�1ÿ x�; x2 �0;1� �logistic map�
f2�x� � f1�f1�x�� �double logistic map�
f3�x� � 2x; if x2 �0;5� �tent map�

and 2�1ÿ x�; if x2 �:5;1�
f4�x� � f3�f3�x�� �double tent map�
For the ®rst 50 time steps, f1 is applied recursively,
starting with x0 � 0:5289. After t � 50 time steps, the
dynamics is drifting from f1 to f2 using

f �xt� � �1ÿ a�t��f1�xt� � a�t�f2�xt�; a�t� � t ÿ ta
tb ÿ ta

;

�23�
with ta � 50 and tb � 100. The drift is linear in time and
takes another 50 time steps. Then, the system runs
stationarily in mode f2 for the following 50 time steps,
whereupon it is drifting to f3 in the same fashion as
before, and so on. At t � 350, the system starts to drift
back from f4 to f1 and the cycle starts again at t � 400.

The ®rst step of analysis consists in applying the ACE
approach, described in Sect. 2.1, to the ®rst 1,200 data
points of the generated time series. An ensemble of six
RBF predictors competes for the data during the train-
ing phase. Each predictor contains 20 Gaussian basis
functions. After training, four predictors have special-
ized each on a di�erent chaotic map, and the other two

Fig. 1. a A part of the training data, generated by the chaotic return
maps f1 and f4. First, f4 is iterated from t � 300 to t � 350. Then,
there is a drift to f1 between t � 350 and t � 400. After t � 400, f1 is
iterated. b The ®nal segmentation into training subsets, obtained by
the competitive training procedure. Shown are the ®rst 450 data

points. This segmentation cannot represent the drift. The stationary
parts, f1 in [0, 50] and [400, 450], f2 in [100, 150], f3 in [200, 250], f4 in
[300, 350], are predicted by nets 6, 2, 4, and 3, respectively. The
nonstationary drift parts in between are shared among all predictors,
including nets 1 and 5
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predictors appear to have specialized on the drift parts.
This can be observed in the ®nal segmentation of the
competition procedure, shown in Fig. 1b. Clearly, the
true dynamical structure of the system cannot be rep-
resented by the switching model.

Next, the drift segmentation algorithm is applied to
the next 1,200 data points (test data set) using all six
previously trained networks. It perfectly reproduces the

behavior of the dynamics, as seen in Fig. 2a for the
resolution R � 32: a linear drift between four stationary
operating modes is extracted from the data in an unsu-
pervised manner. Figure 2b is included to demonstrate
the e�ect of a lower resolution.

3.2 A drifting Mackey-Glass system

Consider a high-dimensional chaotic system generated
by the Mackey-Glass equation, which originally was
developed as a model for respiratory regulation and
haematopoiesis (Mackey and Glass 1977)

dx�t�
dt
� ÿ0:1x�t� � 0:2x�t ÿ td�

1� x�t ÿ td�10
: �24�

Two stationary operating modes, A and B, are estab-
lished by using di�erent delays, td � 17 and 23, respec-
tively. After operating 100 time steps in mode A (with
respect to a subsampling step size s � 6), the dynamics
drifts to mode B. The drift takes another 100 time steps.
It is performed by mixing the equation for td � 17 and
23 during the integration of (24). The mixture is
generated according to (16), using an exponential drift

a�t� � exp
ÿ4t
100

� �
; t � 1; . . . ; 100 : �25�

After the drift, the system runs stationarily in mode B
for the next 100 time steps, whereupon it switches back
to mode A at t � 300, and the loop starts again
(Fig. 3a). The competing experts algorithm is applied
to the ®rst 1,500 data points of the generated time series,

Fig. 2. a The segmentation obtained by the drift algorithm on the test
data, using the resolution R � 32. Shown is the sequence of nets as a
function of time. The dotted line indicates the evolution of the mixing
coe�cient a�t� of the respective nets. For example, between t � 1350
and 1400 it denotes a drift from net 2 to net 4, which in this case turns
out to be a linear drift, as expected. The segmentation almost perfectly
reproduces the behavior of the dynamical system. b A segmentation
with a low resolution, R � 3, can only traverse the drift parts in three
steps

Fig. 3. a The drifting Mackey-
Glass time series. The dynamical
system operates in mode A for
the ®rst 100 time steps. Then, the
dynamics drifts to mode B
during the next 100 steps and
remains stationary in B. After
t � 300, the system switches
back to mode A and the cycle
starts again. b The resulting drift
segmentation invokes four nets.
This is because two nets became
experts for mode A, and two
others for mode B. c Increase
of the prediction error when
predictors are successively
removed. Although no further
training has been performed, up
to four predictors can be
removed without a signi®cant
increase of the prediction error.
d The two remaining predictors
model the dynamics of the time
series properly
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using an ensemble of six predictors. The input to each
predictor is a vector ~xt of time-delay coordinates of the
scalar time series fxtg. The embedding dimension is
d � 6 and the delay parameter is s � 1 on the subsam-
pled data. The RBF predictors consist of 40 basis
functions each.

After training, nets 2 and 3 have specialized on mode
A, nets 5 and 6 on mode B. This can be seen in the drift
segmentation in Fig. 3b. Moreover, the removal of four
nets does not increase the RMSE of the prediction
signi®cantly (Fig. 3c), which correctly indicates that two
predictors completely describe the dynamical system.
The sequence of nets to be removed is obtained by
repeatedly computing the RMSE of all n subsets with
nÿ 1 nets each and selecting the subset with the lowest
RMSE of the respective drift segmentation. The seg-
mentation of the remaining nets, 2 and 5, nicely repro-
duces the evolution of the dynamics, as shown in
Fig. 3d.

4 Analysis of physiological data

In this section, we present results on the analysis of
physiological recordings from afternoon naps of healthy
humans. We analyzed the EEG and the respiratory
signal using the method presented in Sect. 2. We used
single-channel recordings for the computer-based anal-
ysis and did not incorporate any medical expert
knowledge into the algorithm. We compare the results
with a manual segmentation performed by a medical
expert, which is based on eight physiological signals
(EEG: O1, O2, F3, EOG, ECG, heart rate, blood
pressure, respiration).

4.1 Physiological background

In the past decades, the impact of sleep on physiological
and pathophysiological functions of humans has been
established. Relevant sleep disorders have been identi-
®ed, in which the transitions between wakefulness and
di�erent sleep stages are a�ected. From the neurophys-
iological point of view, a re-organization of the neuronal
network in the reticular formation of the brain stem
prevails (Steriade and McCarley 1990). Here, the crucial
structures are found that regulate and integrate cardio-
vascular, respiratory, and somatomotor systems and
vigilance (Langhorst et al. 1983). Recent studies have
shown that the discharge behavior of reticular neurons,
that is, their mode of neuronal processing, depends
strongly on their level of activity (Lambertz and
Langhorst 1995). To keep in line with the arguments
of the paper, the reorganization during sleep onset thus
could be thought of as a `switching to a di�erent mode'
of neuronal processing.

The typical ®ndings during falling asleep comprise ±
besides blurring of consciousness ± a slowing of cortical
activity and heart rate, a decrease of the arterial blood
pressure, reduction and instability (Trinder et al. 1992)
of respiration, a decrease in metabolic rate, reduction of

muscle tone, and the occurrence of slow eye movements
(SEM) mainly in the horizontal plane. Consequently,
modern sleep polysomnography comprises EEG, elec-
trocardiogram (ECG), a respiratory trace, electroculo-
gram (EOG), and, if possible, the measurement of
arterial blood pressure.

Much of the analysis of sleep recordings is based on a
good segmentation of the recordings and classi®cation
to di�erent sleep stages (Rechtscha�en and Kales 1968).
Methods for segmentation and classi®cation of EEG
have been proposed, for example, in (Praetorius et al.
1977; Creutzfeldt et al. 1985; Kemp et al. 1987). For the
physiological understanding of the process of sleep
onset, but possibly also for the diagnosis of sleep dis-
orders, it would be highly desirable to access not only
the occurrence, but also the time course of the transi-
tions. Several techniques using time-varying linear
models were suggested for tracking the signal charac-
teristics in EEG (Isaksson and Wennberg 1976; Bohlin
1977; Kaipio and Karjalainen 1997; Hiltunen et al.
1999). Here we present a di�erent approach: we ®rst
determine dynamical basis modes in an unsupervised
manner, using nonlinear models, and, in a second step,
estimate the drift between these modes. We apply our
method to EEG recordings and respiration data and
obtain both a segmentation into dynamical modes and
the time course of the drift between them.

4.2 Analysis of respiratory data

We analyzed recordings of ®ve healthy persons, all of
them 20±40 years old and nonsmokers. For each of them
the thoracic excursions from three successive afternoon
naps were recorded with an extrathoracic strain belt.
The training method described in Sect. 2 was applied to
each of the 15 time series using the embedding dimen-
sion d � 4 and the delay parameter s � 7 on the given
10-Hz data. We took eight RBF networks with 20
Gaussian basis functions as prediction experts. After
training, all 15 trained ensembles of predictors were used
for the segmentation of all 15 data sets, which thus can
be subdivided into three di�erent classes: (1) segmenta-
tion of the recording that was used for training,
(2) segmentation of the 2 other recordings from the
same subject (sleeper dependent), and (3) segmentation
of the 12 recordings from the other subjects (sleeper
independent). Moreover, the agreement of the hand
labeling with the machine segmentation is measured on
di�erent levels of resolution. The coarsest resolution is a
segmentation into wakefulness (W) and sleep (S), ®ner
resolutions also distinguish between two di�erent wake
states, eyes open (W1) and eyes closed (W2), and sleep
stage I (S1) and sleep stage II (S2). Other sleep stages do
not occur in the recorded afternoon naps.

The results are depicted in Table 1. Considering the
segmentation of the training set data, 69.7% of the data
points are segmented in agreement with the manual
segmentation; if we consider only the segmentation into
wake and sleep phase the agreement is 86.33%. This is
remarkable, considering the fact that the two segmen-
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tations were obtained in rather di�erent ways: the
manual segmentation is based on standard criteria
de®ned in Rechtscha�en and Kales (1968) using all
available physiological signals, mainly EEG and EOG,
whereas the machine segmentation is purely data driven
using only the respiration signal and no additional ex-
pert knowledge. Systematic deviations may also arise
from this fact, since the typical signs of sleep onset in
cortical activity and in other organ systems may not be
fully simultaneous (Koella 1982).

It also must be remembered that standard segmen-
tation criteria were not formulated on the basis of
physiological ®ndings that clearly separate the stages
from each other. Therefore, manual segmentation of
sleep recordings depends on the persons who convey it;
the inter-personal agreement is in the same order as
between machine and human expert in our study
(Kubicki et al. 1982).

The distinction between wake and sleep, for example,
the detection of the sleep onset, can clearly be made by
our algorithm. As expected, it is not possible for our
method to distinguish between sleep stages I and II from
respiratory data. A separation of stages I and II on
the basis of the respiratory signal is also not de®ned in
the standard criteria, and, in fact, for a human expert the
distinction between sleep stage I and II cannot be made
given only respiratory data.

The results in Table 1 show that the dynamic models
obtained from a certain recording cannot be used for the
segmentation of new recordings without a signi®cant
loss of performance, especially if applied to recordings
from other subjects. Obviously, the respiration during
sleep changes for the same individual on di�erent days,
but even more striking are the di�erences between sev-
eral individuals. Thus, it is preferable to adapt the
prediction experts to each recording individually. In
practice, this should not be a problem, since training the
experts on 12,000 data points can be performed in about
20 seconds on a SUN Ultrasparc-I.

A sample segmentation is depicted in Fig. 4. The
upper line shows the segmentation that is obtained when
only switching between experts (nets) is allowed. As the
result of the segmentation algorithm, net 2 is responsible
for the W1 state (eyes open) at the beginning of the
recording. Net 1 corresponds to W2 (eyes closed), nets
3 and 4 are active during sleep stages I and II (S1 and
S2), and net 6 is responsible for the W1 dynamics after
the arousal. The transition from S2 to S1 after t � 8000
comes along with a broad but temporary increase of
respiration activity (shown in the data), which is
captured by net 5. It is, however, not represented in the
manual segmentation. Apart from that we can conclude
that the switch segmentation is in good agreement with

Table 1. Average percentage of agreement between manual and
machine segmentation of respiratory data. `Training set' denotes
the segmentation of the training set, `sleeper dependent' denotes the
segmentation of test data of the same sleeper. `Sleeper independent'
corresponds to the segmentation of recordings from other sleepers.
The percentage of agreement with respect to four categories ± eyes
open (W1), eyes closed (W2), sleep stage I (S1), and sleep stage II
(S2) ± is quoted in the left column. The agreement is signi®cantly
larger if no distinction between S1 and S2 is required (middle
column). The results for merging also W1 and W2 into one class,
that is distinguishing only between wakefulness and sleep, are
reported in the right column

Respiration W1-W2-S1-S2 W1-W2-S W-S

Training set 69.70 79.08 86.33
Sleeper dependent 51.80 63.92 75.24
Sleeper independent 34.02 45.72 59.53

Fig. 4. Comparison of switch
segmentation �top�, drift
segmentation �middle�, and a
manual segmentation by a
medical expert �bottom� of
respiration data from a single
experiment (time scale: 100 ms).
W 1 and W 2 indicate two wake
states in the manual analysis;
S1 and S2 indicate sleep stages I
and II, respectively (n:a: no
assessment, art: artifacts)
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the manual reference segmentation, even though, as
expected, no clear-cut distinction can be made between
S1 and S2 in this example.

The drift segmentation shown in Fig. 4 (middle) gives
more detailed information about the evolution of the
dynamics. In the beginning, it shows a long-term drift
from the wake state predictor, net 2, towards the sleep
predictor, net 3: the dotted line indicates the evolution of
the mixing coe�cient a�t� between the two predictors
denoted by solid horizontal lines.

At the sleep onset before t � 4000, there is a fast
change in the mixing proportion in favor of net 3. At
t � 4500, net 3 represents the dynamics solely. The ®nal
arousal before t � 10; 000 is represented as a drift from
sleep state predictor 3 to wake state predictor 6, with a
fast change of the mixing coe�cient at the arousal point.
Both transitions nicely comply with the manual seg-
mentation. On the other hand, only the second inter-
mediate arousal after t � 6000 is indicated (there is a
slight drift towards net 5) whereas the ®rst one, before
t � 6000, is not.

After having obtained very reasonable segmentations
into wake and sleep states, we now consider the
dynamics that the competing predictors have learned. In
other words, how well has the nonlinear dynamics of the
signal been captured by the predictors, that is, was it
possible to identify the inherent dynamics of the physi-
ological states? To illustrate the prediction performance
of the method for the respiratory signal, the predictors
for the wake and sleep phase are iterated autonomously
from a point in the wake or sleep state, respectively. The
iteration yields the long-term prediction for 500 time
steps (50 seconds) shown in Fig. 5a and b. Although the
networks are only trained to predict the next data point,
they have captured the underlying dynamics to such an
extent that reliable predictions are possible for 180 time
steps (18 seconds) into the future for the wake state, and
for 350 time steps (35 seconds) for the sleep state.

4.3 EEG analysis

The EEG allows us to determine the sleep onset more
accurately and easily than the respiratory signal. This is
because EEG is a very informative signal measured with
a high time resolution of typically 100 Hz up to
1000 Hz. In this study we analyzed EEG signals from
O1 (occipital-1), recorded from a single subject. We used
a set of eight RBF predictors with six radial basis
functions and the embedding d � 4 and s � 2 on the raw
100-Hz data. Such an ensemble was trained for each
data set (eeg11, eeg12, eeg13) and it was then used for
the segmentation of all three recordings. As expected,
the deviation from the manual segmentation is less than
in the case of respiration data (Table 2).

For the switch segmentation of the EEG we found
that the predictor ensemble did not distinguish well be-
tween sleep stage I and II; in most cases only a single
predictor was responsible for both stages. This result is
re¯ected in Table 2. The leftmost column, which asks for
the distinction of the two sleep stages, shows signi®cantly

Fig. 5. Iterating the predictors responsible a for the wake state and
b for the sleep state (solid lines) results in a good accordance with the
true continuation (dashed lines) of the respiratory signal for a 180 and
b 350 time steps (time scale: 100 ms)

Table 2. Percentage of agreement between manual and machine
segmentation for three EEG recordings from a single subject. A set
of RBF prediction experts was trained for each of the recordings
(subtables eeg11, eeg12, eeg13). Each set was then used for the
segmentation of all three recordings (11, 12, 13). The agreement of
the hand labeling with our machine segmentation is again
measured on di�erent levels of resolution (cf. Table 1)

EEG W1-W2-S1-S2 W1-W2-S W-S

eeg11
11 70.87 92.12 96.44
12 67.31 77.82 91.09
13 60.93 82.40 90.67
eeg12
11 67.04 94.55 98.99
12 83.63 86.19 89.21
13 57.65 84.04 91.58
eeg13
11 72.77 94.22 98.51
12 69.82 77.97 80.18
13 73.92 86.78 95.10
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less agreement with the hand labeling than the column in
the middle, which does not make this distinction.

The drift segmentations, however, provide a di�erent
view (Figs. 6, 7). In contrast to the switch segmentations
(upper lines), the drift segmentations (middle) distin-
guish between sleep stage I and II as follows: in both
®gures the sleep stage II dynamics is represented by net
4, whereas sleep stage I is not represented by an indi-
vidual net but simply by a linear mixture of net 4 and a
wake state predictor, net 7. Note, however, that net 4
has a much larger contribution to the mixture, which
explains why it is selected for both stages in the switch
segmentation.

In detail, Fig. 6 shows switch and drift segmentation
of eeg11 using experts that were trained on this data set.
The sleep onset at t � 4000 and the ®nal arousal before
t � 10; 000 are indicated correctly in both segmenta-
tions. The drift segmentation, however, reveals a much
more detailed dynamical structure of the EEG data. The
sleep onset is represented as a kind of exponential drift
from a wake state predictor, net 7, to the sleep state
predictor, net 4. The arousal is introduced at t � 9000 by
a slight drift back towards net 7. This mixing proportion
holds until the arousal point at t � 9500 is reached.
There, a jump-like change in the mixing proportion gives
signi®cantly more weight to wake state net 7. Finally, at

Fig. 6. Switch segmentation �top� and
drift segmentation �middle� for a
single-channel EEG recording of an
afternoon nap (eeg11, time scale:
100 ms). The manual segmentation by a
medical expert is shown at the bottom

Fig. 7. Segmentation results for EEG
recording eeg13 using predictors trained
on recording eeg11 (same sleeper)
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t � 10; 000, a mixture of two wake state nets, 2 and 7,
represents the dynamics. The two intermediate arousals
are likewise indicated by drifts towards net 7. Clearly,
the segmentation is in good agreement with the human
expert, and, due to the ability to represent mixture
states, interesting structure in the dynamics of transi-
tions is found.

The prediction performance of the experts, however,
is poor. Therefore, in contrast to the respiratory signal,
long-term predictions do not yield reasonable results.
We found that the predictors trained on the EEG can
only be used to discriminate between di�erent modes;
they did not capture the individual dynamics properly.
This result, however, is not surprising, since the EEG is a
very complex signal.

To assess the generalization ability of the set of pre-
dictors with respect to its segmentation capability, we
used the ensemble that was trained on eeg11 for the
segmentation of eeg13. As shown in Fig. 7, the overall
structure of the obtained switch and drift segmentation
is again in good agreement with the hand labeling. In
particular, two short intermediate arousals before and
after t � 10; 000 are nicely represented in the drift seg-
mentation. Moreover, nets 2 and 7, previously identi®ed
as wake state predictors in the drift segmentation, are
again selected for modeling the wake states. Likewise,
net 4 is again responsible for sleep stage II. Thus, one
advantage of reusing previously trained experts is that
one only has to label the experts once, after training,
instead of labeling the experts each time a new data set
needs to be segmented. On the other hand, if the experts
are trained on each data set, the segmentation perfor-
mance is clearly better (cf. Table 2).

5 Summary and discussion

A method for the unsupervised segmentation and
identi®cation of nonstationary drifting dynamics was
presented. It applies to time series of dynamical systems
that drift or switch among various operating modes. The
method needs neither prior information on whether the
time series contains multiple modes that switch or drift
in time, nor on what the dynamics of the operating
modes look like. Instead of using a single but complex
predictor, we apply a divide-and-conquer strategy that
forces a set of competing predictors to specialize on sub-
sequences of the data. Thereby, a segmentation of the
data and an identi®cation of the individual dynamics are
developed simultaneously.

An application to physiological wake/sleep data
demonstrated that drifting dynamics can be found in
natural systems. We therefore believe that it is important
to consider this aspect of data description. In the case of
wake/sleep data, the results are so far encouraging, as a
mathematical model was capable of identifying wake-
fulness, sleep stage I, and with certain reservations also
stage II, from the EEG after the standard criteria by
Rechtscha�en and Kales (1968) without using any
medical expert knowledge. The errors of the model were
in the same order of magnitude as they would occur

when the data are subjected to analysis by a human
expert. Most interestingly, a fairly good segmentation
was possible by analysis of the respiratory recordings
alone.

The obtained drift segmentations reveal many more
details of the dynamical structure than hard segmenta-
tions. In particular, the criteria of Rechtscha�en and
Kales do not consider transitions between stages at all.
The extracted drift curve may be interpreted as a high-
resolution vigilance curve. To verify this and to ®nd out
how individual the vigilance curve is or whether a vigi-
lance curve can be used as a diagnostic tool to distin-
guish between sleep disorders is subject to further
investigations and experiments. Potential applications to
vigilance monitoring are numerous. For example, the
extracted drift might be used to give an alarm below a
certain vigilance level of, for example, human controllers
performing their tasks.

Sleep concerns all organ systems, but not all organ
systems change their state in the same manner (Rittwe-
ger 1999). In the future it may therefore be another
fruitful ®eld for investigations to analyze di�erential
transitions in di�erent organ systems. Combined with
parameters extracted from the model (e.g. drift velocity),
clinically useful information may be obtained.

We would like to emphasize that our method is not
restricted to sleep data; it can be applied as well to other
physiological data like EEG recordings during epileptic
seizures, ECG data in various diagnostic contexts, hor-
mone levels, and so forth, where interesting dynamical
transitions take place in relation to functional state
changes. We also expect useful applications of our
algorithm in other ®elds where complex, nonstationary
dynamics plays an important role, for example, in
climatology, in industrial applications, or in ®nance.
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