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Abstract. We present a method for the analysis of time series
from drifting or switching dynamics. In extension to existing ap-
proaches that identify switches or drifts between stationary dynam-
ical modes, the method allows to analyze even continuously varying
dynamics and can identify mixtures of more than two dynamical
modes. The architecture is based on a mixture of self-organizing
Nadaraya-Watson kernel estimators. The mixture model is trained
by barrier optimization, a technique for constrained optimization
problems. We apply the proposed method to artificially generated
data and EEG recordings from the wake/sleep transition.

INTRODUCTION

Time series from alternating dynamics are ubiquitous in real-world systems
like, for example, speech, climatological data, physiological recordings (EEG,
MEG), and financial markets. It is therefore important to find methods that
can deal with time-varying dynamical systems, which possibly might also be
nonlinear.

In [9, 14], we introduced the annealed competition of experts (ACE)
method for time series from nonlinear switching dynamics, where an ensem-
ble of neural network predictors specializes on different dynamical regimes
by increasing the competition among the predictors using a deterministic an-
nealing scheme. Related approaches for switching dynamics can be found,
e.g., in [1, 3, 5, 8, 12, 15]. In [10], we extended the ability to describe a mode
change not only as a switching, but, if appropriate, also as a continuous drift



from one predictor to another, and found that physiological signals can be
modeled more appropriately by a drifting dynamics model [11].

In this paper we present a different and, compared to [10, 11], rather sim-
ple and straightforward approach for the analysis of switching and drifting
dynamics. Furthermore, the method is even able to analyze continuously
varying dynamics that do not contain any stationary segments, and the mix-
ture dynamics may consist of more than two components. In the following,
we present the new method, which is based on a mixture of self-organizing
kernel estimators, and apply this approach to artificially generated data and
EEG recorded from the wake/sleep transition of a human subject.

THE ALGORITHM

Consider a time series from a nonstationary dynamical system that consists
of pairs of input and target data, {(~xt, yt)}, 1 ≤ t ≤ T . In particular,
the target data might be a future value of a scalar time series {xt}, that is
yt = xt+τ , and the input data might be a d-dimensional vector of past values
~xt = (xt, xt−τ , . . . , xt−(d−1)τ ). This is the typical formulation of a time series
prediction problem. The parameter d is called the embedding dimension and
τ is called the delay parameter. Note that the extension to multivariate time
series is straightforward. For simplicity, however, we restrict ourselves to the
scalar notation.

The model

The basic idea of this approach is to model the dynamical system by a time-
varying mixture of potentially nonlinear predictors fs,

ŷ(t) =
N
∑

s=1

ps,t fs(~xt), (1)

where ŷ(t) is an estimate for the target yt. Without any constraints regarding
the mixing coefficients ps,t and the predictors fs, there are infinitely many,
qualitatively different solutions for fitting the data. For example, given ar-
bitrary predictors fs and N − 1 arbitrarily chosen values for all except one
ps,t at time t, one can still find a perfect fit for yt simply by solving (1)
for the single remaining parameter ps,t. In all previous approaches to this
problem, the ps,t were therefore not simply parameters to be estimated but
time-independent, parameterized functions gs (called gating functions) of ei-
ther the input ~xt [7], the input ~xt and some internal state st [1, 3, 15], the
prediction performance (yt − fs(~xt))

2 of the individual predictors [5, 8, 14],
or even all of these quantities [12]. The above methods consider a switching

model and assume that only a single predictor is responsible for generating
the data at each time step. Moreover, the functions gs have interpretations
as probability functions, namely the conditional probability that expert s



exclusively has generated the data at time t, given the respective quantities.
In [10, 11], the actual mixing coefficients are therefore determined separately
in a second stage, in order to model mixing dynamics.

We now present a more straightforward, one-stage approach for estimating
mixing dynamics: for a given time series {(~xt, yt)}, 1 ≤ t ≤ T , and a number
of experts s = 1 . . .N , the mixing proportions ps,t are simply parameters to be
estimated by an optimization procedure, subject to the following constraints:

N
∑

s=1

ps,t = 1, ∀t and 0 ≤ ps,t ≤ 1, ∀s, t. (2)

These constraints are applied in order to restrict the space of possible solu-
tions, as already discussed. Furthermore, they permit to model the convex

hull of the underlying multi-modal dynamical system. It includes the cases of
switching and drifting dynamics considered in previous work, and, in exten-
sion to [10, 11], it allows us to represent mixtures of more than two predictors
and is not restricted to a fixed number of discrete mixture states. It even
allows us to analyze continuously drifting dynamics without any stationary
periods. Note that in the context of mixtures, the ps,t are mixing factors
and not probabilities of the individual experts. However, this framework can
also be used for merely a switching model, and then the ps,t again have a
probabilistic interpretation. Due to the limited space, we will not consider
this variant here.

Before we discuss the optimization technique, let us first consider the
second part of the model, the function approximators fs. They represent
the set of base dynamics of the model. In general, function approximators
contain parameters that need to be adapted to the data. In our case, these
parameters would add to the typically already large number of parameters
ps,t, making the optimization problem much harder. We found, however,
an elegant way to introduce function approximators without introducing any
new adaptive parameters: we use Nadaraya-Watson kernel estimators [2],

f(~x) =

∑T

t=1 yt Kσ(~x, ~xt)
∑T

t=1 Kσ(~x, ~xt)
, (3)

with a Gaussian kernel for each data point in the training set {(~xt, yt)},

Kσ(~x, ~xt) = exp

(

−
(~x − ~xt)

2

2σ2

)

. (4)

The kernel width σ determines the smoothness of the estimator. It is the
only free parameter of the estimator and we use it in the following as a fixed
smoothness prior. In principle, it might also be adapted during training. In
that case, however, care has to be taken to prevent σ from getting too small,
which clearly would lead to overfitting.

Since we do not want to estimate a single global predictor but individual
prediction experts for different dynamical modes in the data set, we obtain



individual experts by weighting each data point in the kernel estimator with
the respective mixing proportion ps,t,

fs(~x) =

∑T

t=1 yt Kσ(~x, ~xt)ps,t
∑T

t=1 Kσ(~x, ~xt)ps,t

. (5)

This corresponds to a self-organization of the experts during the optimiza-
tion of the parameters ps,t. In the case of switching dynamics, the estimators
would contain exactly the subset of data points they are assigned to, and
therefore would simultaneously represent the prediction functions for the re-
spective modes. The more a data point represents a mixture of two or more
dynamics, however, the less it is suited to contribute to any of the predictors,
since it contains “noise” from the other components. In fact, it turned out
that the linear weighting of the data points in (5) is not sufficient to suppress
the contribution of mixed (“noisy”) data in the estimators. Therefore, we
introduced a nonlinearly weighted estimator,

fs(~x) =

∑T

t=1 yt Kσ(~x, ~xt)(ps,t)
α

∑T

t=1 Kσ(~x, ~xt)(ps,t)α
. (6)

Hence, the contribution of data points from mixtures, ps,t < 1, becomes
smaller, the larger α is chosen. In our experiments, α = 2 turned out to be
a good choice for the analysis of mixture dynamics. Note that for switching
dynamics, α = 1 is already sufficient.

Optimization

Fitting the set of parameters θ = {ps,t : s = 1, . . . , N ; t = 1, . . . , T} of the
above mixture model for a given data set, can be formulated as a constrained
optimization problem. The objective function to be minimized is given by

E(θ) =

T
∑

t=1

(

yt −

N
∑

s=1

ps,t fs(~xt)

)2

+ C

T−1
∑

t=1

N
∑

s=1

(ps,t+1 − ps,t)
2. (7)

It is the sum of squared prediction errors plus an additional regularization
term, weighted by the constant C, that penalizes changes of the mixing co-
efficients in time. This is necessary to avoid local minima of the objective
function and imposes another smoothness prior: solutions with a simple tem-
poral structure are more likely than those with frequent changes. In fact, our
goal is not only to minimize the prediction error of the training data, but
also to find a simple model with respect to the dynamical structure.

Minimizing E(θ) is subject to the constraints in (2). This constrained
optimization problem can be solved by a technique called barrier optimiza-
tion [4, 6]. To this end, the constraints need to be transformed into a set of
inequalities of the form ci(θ) ≤ 0, i = 1, . . . , m,

−1 +
∑N

s=1 ps,t ≤ 0, 1 −
∑N

s=1 ps,t ≤ 0, ∀t

−ps,t ≤ 0, ps,t − 1 ≤ 0, ∀s, t.



The constrained optimization problem can now be solved by using the so-
called barrier (or penalty) error function

Eβ(θ) = E(θ) +

m
∑

i=1

κβ(−ci(θ)), (8)

where κβ is a suitable barrier function and β > 0 is the penalty parameter.
Typical choices for κβ are κβ(t) = −β log(t) [6] or κβ(t) = β exp(−t/β)
[4]. Note that by using the log-barrier, the optimization has to start with
a feasible θ, i.e. with all inequalities already being satisfied, while the exp-
penalty does not need this condition [4]. Although it is not a problem to find
a feasible θ to start with in our case, we nevertheless prefer the exp-penalty.

For a given starting value of β, the function Eβ(θ) is minimized using an
unconstrained optimization technique. We use the conjugate gradient (CG)
method with line-search [2]. After the optimization step, β is decreased
according to β := βr, r > 1, and the optimization procedure restarts with
the decreased β and the solution θ found in the previous step until a stopping
criterion, e.g. an error threshold or a final value of β, has been reached.

In the case of our mixture model, the resulting θ = {ps,t} represents
the drift/switch/mix-segmentation of the time series, and, at the same time,
the set of Nadaraya-Watson prediction experts for the extracted dynamical
modes.

APPLICATIONS

To illustrate our approach, two examples of artificially generated drifting
dynamics are discussed first. We then present an application to real-world
data: an EEG recording of the wake/sleep transition of a human subject.

Drifting Dynamics of a Mackey-Glass System

We generated time series from drifting dynamics using the Mackey-Glass
delay differential equation,

dx(t)

dt
= γtd

= −0.1x(t) +
0.2x(t − td)

1 + x(t − td)10
. (9)

It is a high-dimensional chaotic system that was originally introduced as
a model of blood cell regulation [13]. In the first example, three stationary
operating modes, A, B and C, are established by using different delays, td =
17, 23, and 30, respectively. After operating 100 time steps in mode A (with
respect to a subsampling step size ∆ = 6), the dynamics switches to a mixture
of modes A, B, and C. The mixture dynamics is generated for the next 100
time steps by mixing the equations for td = 17, 23, and 30,

dx(t)

dt
= a γ17 + b γ23 + c γ30, (10)



using a = 0.6, b = 0.3, and c = 0.1. Thereafter, the system runs stationary
in mode B for the following 100 time steps (t = 201, . . . , 300), whereupon it
switches to a new mixture, a = 0.2, b = 0.3, and c = 0.5, until it reaches
t = 400. Finally, from t = 401, . . . , 500, it runs stationary in mode C.

Next, we applied the barrier optimization method for the mixture model,
using (7) and N = 3 predictors. The input to each predictor is a vector
~xt of time-delay coordinates of the scalar time series {xt}. The embedding
dimension is d = 6 and the delay parameter is τ = 1 on the subsampled
data. The penalty parameter is annealed from β = 0.5 to 0.001. The other
parameters are α = 2, C = 0.75, σ = 0.25.

The result of the optimization is depicted in Fig. 1a. The three pre-
dictors have specialized on the prediction of the dynamics of modes A, B,
and, C, respectively. The two intermediate mixture parts are represented
as mixtures of the predictors and the found mixing proportions nicely agree
with the real coefficients from t = 100, . . . , 200. In the second mixture part,
t = 300, . . . , 400, the coincidence is similar, but not so perfect. However,
considering the fact that only 500 data points of a rather complicated dy-
namical mixture system are given, the overall result is remarkably good. The
long-term prediction performance by feeding back the single-step predictions
into the predictors is shown in Fig. 1b,c. In Fig. 1b, the prediction starts
at t = 60 (mode A). We iterated the predictors individually (thin black line,
dash-dotted line, dashed line) and the whole ensemble, for which we used the
mixing proportions found at t = 60 (grey line). Since the dashed predictor
clearly dominates the mixture, its output is almost identical to that of the
ensemble. Both generated continuations are similar to the target dynamics
(thick line), whereas the continuations of the two other predictors are not.
Fig. 1c shows the respective predictions for the mixed dynamics at t = 150.
As expected, only the ensemble yields a good long-term prediction and the
individual predictors do not. In fact, we found that the ensemble of predictors
is able to reconstruct the dynamics of all five modes very well.

Next, we consider the case of continuously drifting dynamics. We used
(10) with time-varying mixing factors a(t) = 0.5 + 0.5 sin(πt/100), b(t) =
1 − a(t), and c(t) = 0. Thus, the generated time series is a continuous, sine-
shaped drift between two modes A and B with the period 200. We used
two experts and T = 400 data points. The other parameters were chosen as
before. The respective result is shown in Fig. 2. The sine-shape was nicely
found and the predictors even captured the dynamics of mode A and B,
respectively, although there were no stationary parts of A or B in the data.

Wake/Sleep EEG

In [11], we analyzed EEG data recorded from the wake/sleep transition of
humans. The objective was to provide an unsupervised method to detect the
sleep onset and to give an approximation of the signal dynamics, ultimately
to be used in diagnosis and treatment of sleep disorders. We applied the
method proposed in this paper to the data in order to find out whether we
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Figure 1: (a) Segmentation of a Mackey-Glass time series with two mixture states
between t = 100 and 200, and t = 300 and 400. The prediction of the ensemble
(thin grey line) is printed on top of the data (black dots). The obtained mixing
proportions ps,t of the three expert predictors are plotted as dashed, dash-dotted,
and solid line, respectively. They nicely correspond to the original proportions.
(b) Iterated predictions of the individual experts (thin black line, dash-dotted line,
dashed line) and of the whole ensemble (grey line) starting at t = 60 (mode A). The
dashed predictor, and therewith the ensemble, fits the dynamics of mode A (thick
line) very well. (c) Same as (b), but for t = 150 (mixture dynamics). Only the
ensemble (grey line) properly predicts the long-term behavior of the system (thick
line), whereas the individual predictors do not.
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Figure 2: (a) Segmentation of a Mackey-Glass time series with a continuous sine-
shaped drift between two operating modes. The prediction of the ensemble (thin
line) is printed on top of the data (black dots). The obtained mixing proportions
ps,t of the two experts are drawn as dashed and solid line. They largely agree with
the sine-drift in the data. (b) Iterated predictions of the individual experts (dashed
and thin solid line) for data that were not in the training set: a stationary time
series from mode A (thick line). The dashed curve clearly resembles the dynamics
of mode A. (c) Iterated predictions for a stationary time series from mode B. Here,
the thin solid line is very similar to the dynamics of mode B (thick line).
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Figure 3: Segmentation of EEG data (thin line) from the wake/sleep transition. The
obtained segmentation (above) is in good agreement with a manual segmentation
by a medical expert and our previous analysis (see text).



could get similar results as in [11], which would support our previous findings.
The data was measured during an afternoon nap of a healthy human

subject. As in [11], we analyzed data from a single-channel EEG recording
from position O1. The embedding for the predictors was τ = 2 and d = 4 on
the raw 100 Hz data. In order to reduce the amount of data, we subsampled
the obtained training data set by the factor 10 and chose a sequence of
T = 3000 data points, such that the sleep onset is roughly at t = 1000. We
applied the new method to this data set using two predictors. The penalty
parameter was annealed from β = 0.5 to 0.001. The other parameters were
σ = 0.3, α = 2, and C = 6.

The resulting segmentation is depicted in Fig. 3. Roughly the first 1000
points are mainly assigned to one predictor (thick solid line). This corre-
sponds to the wake phase. The next 2000 points are mainly assigned to
the second predictor (dashed line), which corresponds to the sleeping phase.
Moreover, there is a clear transition at the sleep onset at t = 1000, first
to a mixture level of about 50%, then there is a decay of the first mixing
proportion (solid line) to zero at t ≈ 1550. This transition behavior nicely
coincides with the results in [11]. However, the subsequent drift back to the
wake-state predictor at t ≈ 1700 is neither indicated in [11] nor in a manual
segmentation by a medical expert, where t = 1000, . . . , 2000 is assigned to
sleep stage I. On the other hand, the more prominent transition to the wake-
state predictor at t = 2700, is clearly indicated in the manual segmentation
as an intermediate arousal. Note that the interval between t = 50 and 200,
where the mixing proportions indicate a drift from the wake- towards the
sleep-state predictor, is marked as artifact in the manual segmentation.

To summarize, except at t ≈ 1700, the obtained segmentation of the
EEG data is in good agreement with both the manual segmentation and
the previous analysis in [11]. It demonstrates that our approach can find
meaningful structure in complex real-world data.

SUMMARY AND DISCUSSION

A method for the unsupervised segmentation and identification of nonstation-
ary drifting dynamics was presented. It applies to time series of dynamical
systems that drift or switch among various operating modes. In contrast to
previous approaches, a given time series does not necessarily need to contain
stationary periods. Moreover, mixtures of more than two predictors are pos-
sible. On the other hand, if one uses more prediction experts than necessary,
then the model has too many degrees of freedom and may fit the data in vari-
ous ways. How to find the appropriate number of predictors efficiently is still
an open question and so far requires the repeated application of the method
with different numbers of predictors and then choosing the least complex
ensemble among the solutions with the lowest error E(θ).

The application to wake/sleep EEG demonstrated that meaningful struc-
ture in real-world data can be found by this approach. We also expect useful



applications of this method in other fields where complex, nonstationary
dynamics plays an important role, like e.g. in climatology, in industrial ap-
plications, or in finance.
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