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Abstract. Most real-world systems exhibit a non-stationary be-
havior, e.g., slow drifts due to wear or fast changes due to external
influences. Extracting and quantifying these phenomena is often
difficult due to the lack of a precise mathematical model of the un-
derlying system. We here propose to model such high-level changes
of a dynamical system solely on the basis of the observed measure-
ments rather than by modeling the underlying system itself. In
particular, we present a method to track and visualize changes in
general data distributions. We approach the problem of how to
represent continuous changes in high-dimensional non-parametric
distributions by identifying anchor distributions and we model the
transitions between those anchor distributions by defining a suit-
able similarity measure. Applications to a high-dimensional chaotic
system and to a sleep-onset detection task in EEG demonstrate the
efficiency of this approach.

INTRODUCTION

Non-stationary behavior is ubiquitous in many real-world systems like, for
example, speech, climatological data, physiological recordings (EEG/MEG),
industrial processes or financial markets. Methods for the analysis of time-
varying dynamical systems are therefore important in many application areas.
In [11], we introduced a method for time series from non-linear switching dy-
namics, where an ensemble of radial basis function predictors specializes on
different dynamical regimes by increasing the competition among the pre-
dictors through a deterministic annealing scheme. Related approaches for
switching dynamics were presented, e.g., in [1, 2, 3, 8, 12]. In [6], we ex-
tended the ability of the competing predictors method to describe a mode
change not only as a switching, but, if appropriate, also as a continuous drift
from one predictor to another, and found that physiological signals (EEG
and respiration) can be modeled more appropriately by a drifting dynamics



model [7]. Prediction of EEG signals, however, is a difficult task, which led
us to the development of a segmentation method that does not depend on
the predictability of the system but merely on time-dependent variations of
the underlying density function of the data [5]. In [5], these changes are
the criterion to find a segmentation in terms of a sequence of prototypical
(static) density function estimates, each one optimally approximating the
time-dependent density function in the corresponding segment.

Instead of providing merely a discrete segmentation, we here explore the
possibility of extracting and visualizing the exact time course of the density
changes. To this end, we propose a measure that quantifies the changes in
the data distribution based on the obtained prototypical density estimates.
The resulting “soft” segmentation is similar to the drift concept of the afore-
mentioned prediction-based approach [6] and we illustrate the method by
applications to artificially generated data and to an EEG sleep-onset detec-
tion task.

DENSITY TRACKING

Consider the problem of tracking a high-dimensional non-parametric density
given just a sequence of data points that are drawn from an unknown time-
varying density function. In order to quantify and visualize the evolution
of such a high-dimensional system, it is desirable to obtain a scalar time-
dependent quantity that represents its characteristic behavior. To this end,
we propose to make use of the segmentation method in [5] and utilize the
sequence of prototypical density estimates provided by that method as anchor
points in the space of density functions. Density functions estimated between
these prototypes can then be represented by a measure that indicates the
relative distance to their preceding and succeeding anchor densities. In this
way, the time course of the transition between the anchor densities can be
modeled.

We first give a brief review of the segmentation approach in [5] and then
introduce the distance measure that quantifies the drift between the anchor
distributions. Let �x1, �x2, . . . , �xT , with �xt ∈ Rd, be a sequence of data points
that are drawn from an unknown time-varying density function. In order to
track the changing density distribution of the data, we estimate a probability
density function (pdf) in a sliding window of length W by using a Parzen
window density estimator [10] with multivariate Gaussian kernels, centered
on the data points1 in the window {�xt−w}W−1

w=0 ,

pt(x) =
1
W

W−1∑

w=0

1
(2πσ2)d/2

exp
(
− (x − �xt−w)2

2σ2

)
. (1)

The kernel width σ acts as a smoothing parameter and its value is important
1In the following we use �x to denote a specific vector-valued point and x to denote a

vector-valued variable.



to obtain a good representation of the underlying distribution. We choose σ
proportional to the mean distance of each �xt to its first k nearest neighbors,
averaged over a sample set {�xt}. We typically choose k = d, and – somewhat
surprising – we didn’t find the choice of k to be a critical issue in our sim-
ulations, where the k nearest neighbors averaging turned out to be a robust
way to obtain a reasonable σ.

For the given data sequence, {�xt}T
t=1, we can obtain the corresponding

sequence of pdfs, {pt(x)}T
t=W , according to Eq. (1). The unsupervised seg-

mentation approach in [5] then yields a compact representation of this se-
quence of pdfs by extracting a small subset of pdfs, whose elements are called
prototypes, and a sequence s = {s(t)}T

t=W with s(t) ∈ {W, ..., T}, called seg-
mentation, that assigns each pdf in the sequence to a prototype pdf, such
that the cost function

o(s) =
T∑

t=W

d(pt, ps(t)) + C n(s) (2)

is minimized. The function d quantifies the difference between a pdf pt and its
assigned prototype ps(t). In [5], the squared L2-Norm, also called integrated
squared error (ISE), d(pt, pt̄) =

∫
(pt(x) − pt̄(x))2 dx, is used, which has the

advantage that it can be calculated analytically, if – as in our case – pt and
pt̄ are mixtures of Gaussians. By using Eq. (1), we obtain

d (pt, pt̄) =
1

W 2 (4πσ2)d/2

W−1∑

w,v=0

[
exp

(
− (�xt̄−w − �xt̄−v)2

4σ2

)

−2 exp
(
− (�xt̄−w − �xt−v)2

4σ2

)
+ exp

(
− (�xt−w − �xt−v)2

4σ2

)]
(3)

The function n in Eq. (2) denotes the number of prototype changes in the
sequence:2 n(s) =

∑T−1
t=W (1−δs(t),s(t+1)). Thus, the cost function o penalizes

the number of prototype changes in a sequence to an extent that is controlled
by the regularization parameter C > 0. As a result, the cost function is biased
towards large segments in the segmentation and in this way it favors compact
representations. An appropriate value for the hyperparameter C, which thus
controls the number of prototype pdfs, can be found by the method described
in [4]. The optimal segmentation s∗ with minimal costs o(s∗) = mins{o(s)}
can be computed efficiently in O(T 2) time by dynamic programming [4]:

Optimal C–Segmentation Algorithm

1. Initialization (t = W ):

∀s ∈ {W, ..., T} : os(t) := d(pt, ps) (4)

2In the following definition, δi,j denotes the Kronecker delta function, i.e. δi,j = 1, if
i = j, and δi,j = 0 otherwise.



2. Recursion (for t = W + 1, ..., T ):

h := min
s∈{W,...,T}

{
os(t − 1)

}
+ C (5)

∀s ∈ {W, ..., T} : os(t) := d(pt, ps) + min
{

os(t − 1), h
}

(6)

3. Termination:
o∗ := min

s∈{W,...,T}

{
os(T )

}
(7)

The segmentation s∗ that corresponds to the minimal costs o∗ must then be
obtained by backtracking through the sequence of states s that make up o∗.

We then use the resulting prototype pdfs as anchor distributions and
quantify the evolution of the density function between two consecutive pro-
totypes, pa and pb, in terms of the distance to the intermediate pdfs, pt,

r[a,b](t) =
d(pt, pa) − d(pt, pb)

2 d(pa, pb)
+

1
2

(8)

We call r[a,b](t) the drift coefficient . Its value is zero, if pt = pa, and it
is one, if pt = pb. If an intermediate pdf has the same distance to both
prototypes, pa and pb, then r[a,b](t) = 0.5. Note that the drift coefficient can
also assume negative values, namely if the distance of pt to pb is so large that
d(pt, pb) > d(pt, pa)+d(pa, pb). This can be interpreted as pt being “beyond”
pa rather than “between” pa and pb. Vice versa, the drift coefficient is larger
than one, if pt is “beyond” pb, i.e. if d(pt, pa) > d(pt, pb) + d(pa, pb).

In the following section, we apply the proposed drift measure to artificial
and EEG data and illustrate its use.

APPLICATIONS

Drifting Uniform Distribution.
We start with a simple example to demonstrate the properties of the pro-

posed drift measure. To this end, we generated a scalar time series drawn
from a uniform distribution in the interval [0, 1]. After drawing 800 points, a
linearly growing offset is added to the data, such that the sampling interval
moves linearly towards [3, 4] while another 800 points are drawn. Thereafter,
800 points are drawn from [3, 4] (see Fig. 1). We then run the segmentation
algorithm on the obtained time series, consisting of 2400 points, using a pdf
window size W = 100. The resulting segmentation with two prototypes is
shown in Fig. 1: the location of the two prototype pdf windows is depicted
by thick black dots (indicating the center of the window) and the black line
between the dots indicates the value of the drift coefficient for the interme-
diate pdf estimates. There is a gap in the line, which indicates that the pdf
estimates in this region moved out of the neighborhood of both prototype
pdfs. This condition is given by

d(pt, pa) > 0.95 d(pa, pb) and d(pt, pb) > 0.95 d(pa, pb), (9)
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Figure 1: Drift segmentation of a drifting uniform distribution (lower curve): data
drawn from a uniform distribution was shifted by a time-varying offset (top) and
subsequently analyzed by the algorithm (middle curve). The drift coefficient (black
line) indicates the deviation of intermediate pdf estimates in relation to the two
obtained reference pdfs (black dots). The gap in the middle of the plot indicates
that the pdf estimates moved out of the scope of both reference densities.

which we found to be a useful heuristic to indicate a drift away from both
reference pdfs. In the example, all data points in the gap area are within the
interval [1, 3] and thus do not have any overlap with the data that make up
the reference pdfs. Both prototype pdfs then have approximately the same
(large) distance to the pdf estimates in the gap area and the drift coefficient
therefore has a value close to 0.5. We found the blank-out rule in (9) a useful
feature to distinguish this “out-of-range” situation from a real “in-between”
density that also has a value of 0.5. This also highlights a property of the
ISE: if the densities are non-overlapping, its value is independent of how far
the probability masses actually are apart. Gaps occurring in the drift curve,
due to the rule in (9), therefore suggests to use more anchor distributions in
order to avoid that intermediate densities are totally disconnected from their
corresponding anchor distributions. Fig. 2 shows the respective drift curve
when using three anchor distributions for the given task. This solution was
obtained by using a smaller regularization parameter C.

As can be seen in both Figures, 1 and 2, there is a systematic, almost
linear increase of the drift coefficient in the vicinity of the prototype pdfs.
This is due to the fact that the sequence of pdfs is estimated from overlapping
windows of size W , which are shifted by just one data point at a time. Thus,
only those pdfs that are at least W time steps away from each other are
estimated from disjoint data sets. The drift coefficient for pdfs that are
more than W time steps away from the prototypes, but still estimated from
the same underlying distribution, indicates the sample variance – for pdfs
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Figure 2: Drift segmentation as in Fig. 1, but with 3 reference pdfs: the central
pdf estimates are now covered by the additional anchor pdf (indicated by the dot
in the center) and the gap (Fig. 1) is closed.

that are closer, it indicates the window overlap. The actual drift of the
data distribution is indicated between t = 800 and t = 1600. In Fig. 1, it
is disrupted by the gap (due to the missing anchor pdf), and in Fig. 2 it
is somewhat distorted by the window effect close to the central prototype
(between t = 1100 and t = 1300).

Drifting Mackey-Glass Dynamics.
After having illustrated some properties and peculiarities of the new

method, we now discuss a more realistic example that involves high-dimen-
sional densities. It therefore cannot be analyzed by simply looking at the
data as it might have been sufficient in the previous example. To this end,
we generated a time series by using the Mackey-Glass delay differential equa-
tion,

dx(t)
dt

= −0.1x(t) +
0.2x(t − td)

1 + x(t − td)10
. (10)

It describes a high-dimensional chaotic system that is used as a model of
blood cell regulation [9]. In our example, two stationary operating modes
are established by using different delay parameters, td = 17 and 28. The
transition between these two modes is performed by successively increasing
(resp. decreasing) the delay parameter of the differential equation by ∆td = 1
after every 80 time steps.3 The drift from one stationary mode to the other
thus takes 800 time steps in total (td = 18, 19, ..., 27, or vice versa). Each
stationary mode then continues for another 800 time steps, after which the

3The time index of the data points refers to down-sampled data using a sampling step
size ∆t = 6.



dynamics drifts back to the first mode. A total of 7200 data points with five
stationary segments and four drift segments was generated in this way (see
Fig. 3). We then embedded the time series into a six-dimensional phase space
by the method of time-delay coordinates [13]:

�xt = (x(t), x(t − 1), . . . , x(t − 5)). (11)

The embedding aims to reconstruct the phase space of the dynamical system.
Next, we applied the segmentation algorithm to the data using a pdf window
of size W = 200. The resulting segmentation is shown as a grey line in
Fig. 3. The location of the obtained prototype pdfs is again depicted by
thick black dots. The time course of the drift coefficient is plotted as a
black line between the dots and it reflects the evolution of the density of the
Mackey-Glass attractor in the reconstructed phase space (see Fig. 4). The
computed drift curve nicely resembles the time course of the time delay td
in the Mackey-Glass equation, plotted in the upper graph of Fig. 3, which
is remarkable given the fact that there exists only an indirect relationship
between the two quantities.

Wake/Sleep Transition in EEG.
In [7], we analyzed EEG data recorded from the wake/sleep transition of

humans. The objective was to provide an unsupervised method to detect the
sleep onset and to give an approximation of the signal dynamics, ultimately to
be used in diagnosis and treatment of sleep disorders. The data was measured
during an afternoon nap of a healthy human subject. As in [7], we analyzed
data from a single EEG channel, recorded at position O1 of the 10-20 system.
We embedded the raw 100 Hz signal into a 5-dimensional phase space,

�xt = (x(t), x(t − 2), x(t − 4), x(t − 6), x(t − 8)). (12)

To reduce the amount of data, we sub-sampled the embedded data by the
factor 10 and then applied the segmentation algorithm to the region of the
sleep onset using a pdf window of size W = 50.

Fig. 5 shows the resulting segmentation (top) and a manual segmentation
by a medical expert (middle), which was worked out by using six physiological
quantities (multi-channel EEG, EOG, ECG, heart rate, blood pressure, and
respiration). The first segment obtained by the algorithm (labeled as ‘1’)
coincides with the phase where the subject was awake with the eyes open.
The second segment (labeled as ‘2’), is assigned to the awake state with
the eyes closed. Segment 3 corresponds to sleep stage I. The drift between
the two prototype pdfs of segment 2 and 3 (black line between the dots)
therefore corresponds to the transition from wake to sleep. The drift curve
clearly resolves the changes in the EEG dynamics to much greater detail
than the manual segmentation.4 Note, however, that there is no ground-
truth reference curve that can be compared with the obtained drift curve,
which precludes a qualitative assessment.

4The segment labeled ’art.’ in the manual segmentation denotes an artifact in one of
the recorded channels.
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Figure 3: Analysis of a Mackey-Glass time series (bottom) that drifts between
two different operating modes by varying the delay parameter td of the differential
equation (top curve). The resulting drift curve (middle) nicely recovers the drift
characteristics of the time series: the black line shows the time course of the drift
coefficient between the obtained prototype pdfs (indicated by black dots).
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Figure 4: 3D-plot of three Mackey-Glass attractors, each one with a different delay
parameter td: 17 (black line), 23 (grey line), and 28 (light grey). Each line covers
a 200-points sequence used for the pdf estimates. The plot clearly indicates that
the attractor is expanding when td is increasing. The pdf estimates stretch out
accordingly.
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Figure 5: EEG analysis of an afternoon nap of a healthy human subject. The
computer-generated drift segmentation (top) is performed on a single EEG channel
(bottom: occipital-1), whereas the manual segmentation (middle) was worked out
using six physiological quantities (cf. text).

DISCUSSION

We presented a method to track and visualize changes in high-dimensional
non-parametric distributions. It was applied to artificially generated data and
to EEG data from the wake/sleep transition. The method identifies anchor
distributions and describes the transitions between those anchor distributions
by means of a suitable distance measure. The use of other distance measures
is certainly conceivable, but it might be computationally much more expen-
sive. Here, we simply reuse the d(pt, pt̄) values that are anyway computed for
finding the anchor distributions. The method requires that the underlying
data distribution changes sufficiently slowly, such that the relevant changes
are not already averaged out within the pdf windows. Moreover, the window
size should be large enough to sufficiently capture at least the spatial extent
of each underlying anchor distribution. The density estimate doesn’t have to
be very precise though, unless the problem at hand requires it to resolve very
fine-grained differences. In that case, a rather large window size would be
necessary. In high dimensions a precise estimation of the density will easily
become impractical though, since it requires an exceeding amount of data.

We expect useful applications of our method in fields where the analysis
of complex non-stationary dynamics is highly relevant, like, e.g., in neuro-
physiology (EEG, MEG), climatology, or industrial applications.
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