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Kekuléstr. 7, D-12489 Berlin, Germany
E-mail: jek@first.fraunhofer.de

Abstract. We present an algorithm that efficiently computes opti-
mal partitions of sequential data into 1 to N segments and propose
a method to determine the most salient segmentation among them.
As a by-product, we obtain a regularization parameter that can be
used to compute such salient segmentations – also on new data sets
– even more efficiently.

INTRODUCTION

Consider the problem of assigning each data point xt of a sequence of data
points [x1, ..., xT ] to a class st of a given set Ψ = {1, ..., S} such that the
resulting sequence of class labels [s1, ..., sT ] has minimal costs with respect
to the cost function

c([s1, ..., sT ]) =

T
∑

t=1

D[st, t], (1)

where D is a given S × T matrix with elements D[s, t] – or, equally well, a
given function of s and t – that assigns individual costs (or distances) for each
class s to each data point by way of the data point index t. The resulting
sequence should furthermore consist of exactly n segments, i.e. the number
of class label changes in the sequence should be exactly n − 1.

This problem is closely related to the well-known Viterbi algorithm for
hidden Markov models (HMMs) [5]. The Viterbi algorithm finds the optimal
state (class) sequence in an HMM that best represents a sequence of obser-
vations [x1, ..., xT ]. The difference to the problem considered in this work is
that there is no constraint in the Viterbi algorithm with respect to the exact
number of visited states, which is a global property of a sequence. Instead,
state changes are controlled by transition probabilities (or, equivalently, tran-
sition costs) and a local decision that is independent of the number of state
changes already performed before or to be performed after the transition.
Such a local Markovian decision process constitutes a typical dynamic pro-



gramming problem [1], which in this case is solved efficiently by the Viterbi
algorithm.

In contrast to the Viterbi problem, the task that we consider here exhibits
a global constraint, which at first sight does not allow for an incremental
dynamic programming approach. We will show, however, that the problem
can be transformed into a local decision problem. In addition, we consider
the more general case where optimal state sequences are to be returned for
all n in a given set {1, ..., N}. This allows us to quantify the robustness of
each of the N obtained segmentations in a subsequent step, which in turn
gives an indication which of the segmentations is the most salient one. Such
an evaluation is helpful in unsupervised tasks where the significance of a
segmentation can not be assessed otherwise, in particular if there is no target
segmentation available. Moreover, the method presented here provides a
segmentation mechanism that does not depend on any hyperparameter1, in
contrast to the Viterbi segmentation that depends – potentially to a large
extent – on the transition probability matrix that must be chosen in advance.
On the contrary: we show that the method can actually be used to determine

a hyperparameter such that a simpler, Viterbi-like algorithm produces the
same segmentation.

THE N–SEGMENTATIONS ALGORITHM

Let D be an S×T matrix with elements D[s, t], where s ∈ Ψ = {1, ..., S} and
t ∈ {1, ..., T}. Without loss of generality, we call s the state index and t the
time index of the matrix, and D[s, t] the cost of state s at time t. We consider
the problem of finding n = 1, ..., N shortest paths pn(T ) = [sn

1 , ..., sn
T ] through

the matrix D, with sn
t ∈ Ψ, such that (a) the n-th path consists of exactly n

segments, i.e. the number of state changes in the path is n − 1,

#{ sn
t | sn

t 6= sn
t−1} = n − 1, (2)

and (b) the sum of costs (the length of the path),

c([s1, ..., sT ]) =

T
∑

t=1

D[st, t], (3)

is minimal for each path. This combinatorial optimization problem can be
summarized as follows:

pn(T ) = argmin
[s1,...,sT ]

{

c([s1, ..., sT ])
}

(4)

s.t.
#{ st | st 6= st−1} = n − 1 (5)

1if we neglect N , which merely denotes the number of segmentations to be computed.



In principle, the problem can be solved in exponential time by evaluating
all possible S T paths through the matrix, for all n. This calculation is
computationally unfeasible however, even for small values of S and T , e.g. for
S = 10 and T = 100 one would need to evaluate 10100 paths. We here present
an algorithm that can be implemented with only O(TNS) time and space
complexity. To achieve this, we make use of the following property of a
shortest path with n segments.

Theorem1 (shortest-path property).
Let pn(t) = [s1, ..., st], t > 1, be the shortest path with n segments that ends

at time t. Then, if st−1 = st,

[s1, ..., st−1] is the shortest path with n segments that ends in state st−1

at time t − 1,

otherwise, i.e. if st−1 6= st,

[s1, ..., st−1] is the shortest path with n − 1 segments that ends in state

st−1 at time t − 1.

Proof. First case (st−1 = st):

– Because st−1 = st, the path [s1, ..., st−1] has the same number of seg-
ments as [s1, ..., st] (cf. Eq. (5)).

– Assume there exists a path [r1, ..., rt−1] with n segments that ends in
the state st−1 at time t − 1, i.e. rt−1 = st−1, and that is shorter than
[s1, ..., st−1]. Then, [r1, ..., rt−1, st] would be a path with n segments at
time t that is shorter than [s1, ..., st−1, st]. This would contradict the
premise of theorem 1, therefore [s1, ..., st−1] must be the shortest path.

Second case (st−1 6= st):

– Because st−1 6= st, the path [s1, ..., st−1] has one segment less than
[s1, ..., st] (cf. Eq. (5)).

– Assume there exists a path [r1, ..., rt−1] with n − 1 segments that ends
in state st−1 at time t − 1, i.e. rt−1 = st−1, and that is shorter than
[s1, ..., st−1]. Then, [r1, ..., rt−1, st] would be a path with n segments at
time t that is shorter than [s1, ..., st−1, st]. Again, this would contradict
the premise of theorem 1 and therefore [s1, ..., st−1] must be the shortest
path.

ut

Theorem 1 tells us that the shortest path pn(t) with n segments always
consists of a sub-path [s1, ..., st−1] that again is a shortest path, however,
only with respect to all paths that also end in the same state st−1 at time
t − 1. A way to construct the shortest path is therefore to track all shortest
paths constrained to particular ending states s = 1, ..., S at times t, denoted



by ps
n(t). We can then obtain the shortest unconstrained path pn(t) simply

by taking the minimum over all possible states,

pn(t) = argmin
s∈Ψ

{

c(ps
n(t))

}

. (6)

Theorem2 (recursion property).
The shortest-path property in theorem 1 also holds for a path ps

n(t) that is

the shortest path only with respect to all paths that exhibit the same ending

state s at time t.

Proof. Analogous to the proof of theorem 1. ut

Theorem 2 readily leads us to the following shortest-path algorithm. The
algorithm recursively computes the cost cs

n(t) for each constrained shortest
path ps

n(t), for all t = 1, ..., T and all n and s, and finally obtains the costs
cn(T ) of all unconstrained shortest paths pn(T ).

Optimal N–Segmentations Algorithm

1. Initialization (t = 1):

∀n, s : cs
n(1) :=

{

D[s, 1] ; if n = 1
∞ ; if 2 ≤ n ≤ N

(7)

Paths with only one element (t = 1) can contain only one segment and have
costs cs

1(1) = D[s, 1] (Eq. (3)). The costs of the (unrealizable) paths with
more than one segment are set to ∞, which is consistent with the following
recursion.

2. Recursion (for t = 2, ..., T ):

∀n, s :

cs
n(t) :=



















D[s, t] + cs
n(t − 1) ; if n = 1

D[s, t] + min
{

cs
n(t − 1),

min
s̄6=s

{cs̄
n−1(t − 1)}

}

; if 2 ≤ n ≤ N

(8)

Eq. (8) determines the shortest of all paths that might constitute ps
n(t) up

to time t − 1 (according to theorem 2) and adds the cost D[s, t] of the new
ending state s.

3. Termination:
∀n : cn(T ) := min

s∈Ψ

{

cs
n(T )

}

(9)

Eq. (9) finally determines the (costs of the) shortest unconstrained paths
pn(T ) through the matrix D. The actual state sequences pn(T ) must be
obtained by backtracking through the sequence of states that make up each
cn(T ).



The above algorithm has O(TNS2) time complexity due to the mins̄6=s-
operation that runs over all states except the current state s for (T−1)(N−1)S
evaluations of Eq. (8). We can, however, easily convert it into an O(TNS)
algorithm, if we instead use an unconstrained min-operation once for all s,
for a given n and t, and verify later if the condition s̄ 6= s applies. This is
how we actually implemented the algorithm. Finally note that the presented
algorithm should be applied for S ≥ 2 and N ≤ T . Otherwise it returns
cn(T ) = ∞ for all paths that are unrealizable.

CHOOSING THE BEST SEGMENTATION

After having obtained N optimal segmentations with 1 to N segments, the
question is how to decide which one of them is the most appropriate segmen-
tation of the underlying data sequence. If one can not make an assessment
by using additional external knowledge, it will in general not just be the one
with the smallest cost, minn{cn(T )}, because typically, as e.g. in [2], the costs
will simply monotonically decrease when n – the number of segments – is in-
creased, since a larger n provides more flexibility for modeling the data. This
criterion would then always favor the segmentation with the largest number
of segments, regardless of the sequential structure of the data. One therefore
needs to take the increasing model complexity into account. A common way
is to add a regularization term to the cost function c,

o(s) = c(s) + C n(s) (10)

which in this case explicitly penalizes the number of segments n(s) in a se-
quence, s = [s1, ..., sT ], weighted by a regularization parameter C > 0. The
point is then to choose a suitable regularization parameter. If we would
start with C = 0 and then successively increase C, one can easily see that
the number of segments in the segmentation that minimizes o would step-
wise increase until there is only one segment left. The interesting point is:
how stable are the intermediate segmentations, i.e. how large is each interval
in which C yields the same particular segmentation? In the following we
show that these intervals and the corresponding optimal segmentations can
be computed via the N–segmentations algorithm.

Theorem3. For any C, there is an n ∈ {1, ..., T} such that the sequence

pn(T ) minimizes the regularized cost function o.

Proof. For any given C, there is a sequence (at least one) that minimizes
the cost function o. Let us denote such a sequence as sC and its number of
segments as nC . The number nC necessarily must be an integer between 1 and
T . Then the sequence pnC

(T ) also minimizes o for the given C, since it has
the same number of segments as sC , and therewith the same regularization
term, and it has minimal costs c with respect to all sequences with the same
number of segments as pnC

(T ).2 ut

2Typically, there is only one global minimum, and thus pnC
(T ) = sC .



According to theorem 3, it is sufficient to consider all segmentations pn(T ),
n ∈ {1, ..., T}, of the N–segmentations algorithm – with N = T in this case
– in order to find the minimum of the regularized cost function o, for any C.
The optimization problem can therefore be reduced to finding the optimal n

for a given C:

o∗ = min
1≤n≤N

{

cn(T ) + C n
}

(11)

If required, one can easily constrain the optimization problem in Eq. (11)
to segmentations with not more than a certain number of segments, simply
by setting N to that number, instead of using N = T . This is actually
the situation where we started from. Also if no such restriction is required,
one might consider to set N to an expected maximum number of segments
(N � T ), since this largely reduces memory requirements and computation
time of the N–segmentations algorithm. One should be aware, however, that
all segmentations with more than N segments are ignored in that case, even
if they would have yielded lower costs.

The minimization problem in Eq. (11) consists of a set of linear func-
tions of C, one for each n ∈ {1, ..., N}, where n constitutes the slope of the
functions. Figures 1 and 2 illustrate this.
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Figure 1: An example of a set of linear
functions that constitute a minimization
problem according to Eq. (11). The task
is to determine the line segments at the
bottom.
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Figure 2: The intervals for the param-
eter C, in which the regularized mini-
mization task in Eq. (11) would yield a
segmentation with the depicted number
of segments, n.

An efficient way to determine the line segments that constitute the lower
border of the set is to traverse the lines from smallest to largest slope, starting
with n = 1, and to update the solution incrementally. At each update step,
the line with the next largest slope is added and previously obtained line
segments are removed, if they are completely above the newly added line (see,
e.g., line n = 2 in Fig. 1). The lines with the smallest and (currently) largest
slope, however, always constitute the outermost segments. The exclusion of
a line with a particular n means that the regularized minimization problem
(Eq. (10) or (11)) would never yield a segmentation with that particular
number of segments, no matter how large C is, because it is never optimal.



The following algorithm computes the sequence of lower intersections, more
precisely: the series of C-values, Ck, and the corresponding slopes, nk.

Lower Intersections Algorithm

(* k: number of intersections *)
k := 0
n0 := 1
for n = 2, ..., N

k := k + 1

Ck :=
cnk−1

(T ) − cn(T )
n − nk−1

while k > 1 and Ck > Ck−1

k := k − 1

Ck :=
cnk−1

(T ) − cn(T )
n − nk−1

end
nk := n

end

The algorithm runs in O(N) time: the inner part of the while–loop is executed
at most N − 2 times in total , since this is the maximum number of lines that
can possibly be excluded. All computed intersection points Ck are positive,
if (and only if) the segmentation with the largest number of segments has
the smallest unregularized cost, i.e. if cN (T ) = minn≤N{cn(T )}. Otherwise
at least the (smallest) Ck with the largest index is negative. In that case, all
negative Ck-values must henceforth be ignored, since we want to penalize the
number of segments and not reward it. We then propose to use the distance
between two successive and positive Ck-values to quantify how salient and
stable a segmentation is. The k-index of the segmentation with the largest
C-interval is given by

k∗ = argmax
1≤k<K

{

Ck − Ck+1

}

(12)

where K denotes the k-index of the smallest positive Ck. The number of
segments of this most robust segmentation is then given by nk∗ and the
segmentation itself is given by pnk∗

(T ). Furthermore, we can determine a
robust regularization parameter C∗ that would yield this segmentation with
maximum tolerance by taking the mean of the two corresponding boundary
values,

C∗ =
1

2
(Ck∗ + Ck∗+1). (13)

The computation of C∗ is very useful if one wants to compute segmentations
– at the same level of granularity – on related data sets of potentially different
size, since once we have obtained a suitable value for the hyperparameter C,
we can compute a segmentation that minimizes o(s) in Eq. (10) – for that
particular C – very efficiently without using the N–segmentations algorithm.



This can be accomplished by a standard dynamic programming approach,
namely by recursively computing the quantity os(t), which denotes the cost
of the sequence that minimizes Eq. (10) with respect to all sequences that
end in state s at time t. In the following, we present a formulation of the
algorithm that only has O(TS) time (and space) complexity:

Optimal C–Segmentation Algorithm

1. Initialization (t = 1):

∀s ∈ Ψ: os(1) := D[s, 1] (14)

2. Recursion (for t = 2, ..., T ):

h := min
s∈Ψ

{

os(t − 1)
}

+ C (15)

∀s ∈ Ψ: os(t) := D[s, t] + min
{

os(t − 1), h
}

(16)

3. Termination:
o∗ := min

s∈Ψ

{

os(T )
}

(17)

The actual state sequence that corresponds to the minimum o∗ must be
obtained by backtracking through the sequence of states that make up o∗.
An on-line variant of this algorithm, which is able to process unlimited data
streams on-the-fly, was recently proposed in [2, 3].

AN EXAMPLE

As a proof of concept, we apply the proposed method to a fundamental
problem in signal processing and statistics: the analysis of non-stationary
data. To this end, we employ a data set that was used in [3] for the purpose
of on-line segmentation. The data consists of a noisy time series from a
complex dynamical system with alternating modes of operation. It is based
on the Mackey-Glass delay differential equation [4],

dx(t)

dt
= −0.1x(t) +

0.2x(t − td)

1 + x(t − td)10
. (18)

Four stationary operating modes, A, B, C, and D, are established by using
four different delays, td = 17, 23, 30, and 35, respectively. The dynamical
system is run stationary in one mode for a certain number of time steps, which
is chosen at random between ∆t = 200 and 300 (referring to sub-sampled data
with a step size δ = 6). The system is then randomly switched to one of the
other modes with uniform probability. In addition, a relatively large amount
of “measurement” noise is added to the series: zero-mean Gaussian noise
with a standard deviation of 30% of the standard deviation of the original



signal. The task is then to detect the different operating modes in the very
noisy data sequence.

To keep the example clear, we only use the first four generated segments of
the time series. That sequence contains 875 data points from modes B, C, A,
and B (in that order). As a first step of preprocessing, the data is embedded
into a six-dimensional space (d = 6) by using time-delay coordinates with a
delay τ = 1 on the sub-sampled data,

~xt = (xt, xt−1, . . . , xt−5). (19)

The next step can be interpreted as feature extraction: a sequence of Parzen
window density estimates is obtained by shifting a window of size W = 50
stepwise over the embedded data,

pt(x) =
1

W

W−1
∑

w=0

1

(2πσ2)d/2
exp

(

−
(x − ~xt−w)2

2σ2

)

. (20)

Finally, a square matrix D of all pairwise distances between the obtained
density estimates is computed. To this end, the integrated squared error

(ISE) is used as distance measure (see [3] for further details),

D[s, t] =

∫

(ps(x) − pt(x))2 dx. (21)

This matrix D is the input to our algorithm. The segmentation task can
be interpreted as a search for n prototypical density estimates (the “states”
s) that best represent all density estimates in their corresponding segment,
i.e. in this case the sequence to be segmented is actually a sequence of den-
sity estimates and each density estimate in that sequence at the same time
constitutes a possible class or state.

Ideally, one would expect that the algorithm finds out that a segmenta-
tion with four segments is the most salient one, and that the three obtained
segment boundaries in that segmentation precisely match the true ones. Fig-
ure 3 shows the unregularized costs cn(T ) of N = 10 segmentations computed
by the N–segmentations algorithm. The costs are decreasing with increas-
ing n. Moreover, one can not see any preference for n = 4, because the
model complexity is not taken into account. Figure 2 shows which one of
the computed segmentations pn(T ) minimizes the regularized cost function
o, in dependence of C (compare also with Fig. 1). Clearly, the most salient
segmentation with the largest C-interval is the one with n = 4 segments.
The respective robust regularization parameter C∗ is in the middle of that
interval: C∗ = 1.85 · 105.

Figure 4 shows the actual segmentations obtained by the N–segmenta-
tions algorithm. For n = 4, the differences between true and estimated seg-
ment boundaries amount to only about one wavelength of the signal. Consid-
ering the large amount of noise in the data, this is an excellent result. It can
also be seen in Fig. 4 that a larger number of segments (n > 4) causes a finer
segmentation into sub-modes, whereas a smaller number of segments leads
to a pooling of neighboring modes and therewith to a coarser representation.
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Figure 4: The boundaries of the optimal
segmentations pn(T ), for n = 2, ..., 10
segments, computed by the N–segmen-
tations algorithm for the example data
set x(t). (True boundaries in grey.)

DISCUSSION

We presented an algorithm that efficiently computes optimal segmentations
of sequential data into 1 to N segments. It can be implemented with only
O(TNS) time and space complexity, and, to the best of our knowledge, it
has not been published so far, despite of the rather general nature of the
problem it solves. We furthermore showed how the result can be used to
determine the most salient segmentation among the obtained ones. As a
by-product, a robust regularization parameter can be obtained to compute
segmentations of new data sets – at the same level of granularity – even
more efficiently. We expect useful applications of this method in fields where
sequence segmentation plays an important role, like, e.g., in medicine (EEG,
MEG), bioinformatics, text segmentation, or industrial applications.
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