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Abstract. The blind separation problem where the sources are not independent,
but have variance-dependencies is discussed. Hyvarinen and Hurri[1] proposed
an algorithm which requires no assumption on distributions of sources and no
parametric model of dependencies between components. In this paper, we extend
the semiparametric statistical approach of Amari and Cardoso[2] under variance-
dependencies and study estimating functions for blind separation of such depen-
dent sources. In particular, we show that many of ICA algorithms are applicable
to the variance-dependent model as well. Our theoretical consequences were con-
firmed by artificial and realistic examples.

1 Introduction

Independent component analysis (ICA) is based on the assumption that the observed
signals are linear superpositions of mutually independent source signals. Let us denote
the n source signals by s(t) = (s1(t),...,sn(t))" in a vector formula, and the ob-
served signals by z(t) = (z1(t),...,2,(t))". The mixing process can be expressed
as the equation

x(t) = As(t), 1)

provided that it is not contaminated by any noise, where A = (a;;) denotes the mixing
matrix. For simplicity, we consider the case where the number of source signals equals
that of observed signals (n = m).

Among many extensions of the basic ICA models, several researchers have stud-
ied the case where the source signals are not independent [3-6]. The dependencies
either need to be exactly known beforehand, or they are simultaneously estimated by
the algorithms. Recently, a novel idea called double-blind approach was introduced
by Hyvérinen and Hurri[1]. In contrast to previous research, their method requires no
assumption on the distributions of the sources and no parametric model of dependen-
cies between the components. It is only assumed that the sources are dependent solely
through their variances and that the sources have temporal dependencies.

A statistical basis of ICA was established by Amari and Cardoso[2]. They pointed
out that the ICA model is an example of semiparametric statistical models[7, 8] and
studied estimating functions for it. In particular, they showed that the quasi maximum
likelihood (QML) estimation and the natural gradient learning give a correct solution
regardless of the true source densities. In this paper, we extend their approach to the



blind source separation (BSS) problem considered in [1]. Investigating estimating func-
tions for the model, we show that many of ICA algorithms based on the independence
assumption work properly, even if there exist variance-dependencies.

This paper is organized as follows. After explaining our framework in Section 2
and Section 3, estimating functions for the variance-dependent BSS model are studied
in Section 4. There, the quasi maximum likelihood estimation is taken as an example,
while properties of other ICA algorithms are summarized in Section 5. We carried out
numerical experiments with artificial and realistic examples (Section 6). Although only
the double-blind algorithm gave correct solutions in the example described in [1], many
ICA algorithms also worked for the other datasets.

2 Variance-dependent BSS model

Hyvérinen and Hurri[1] introduced the following framework. Let us assume that each
source signal s;(t) is a product of non-negative activity level v;(¢) and underlying i.i.d.
signal z;(t), i.e.

In practice, the activity levels v;’s are often dependent among different signals. In their
formulation, each observed signal is expressed as

zi(t) =Y aijoi(t)z(t),  i=1,...,n, ©)
j=1

where v;(t) and z; (¢) satisfy:

(i) v;’s and z;’s are independent,
(if) each z;(t) is i.i.d. in time, z; and z; are mutually independent,
(i) z;(t) have zero mean and unit variance.

No assumption on the distribution of z; is made except (iii). Regarding the general activ-
ity levels v;’s, v; (t) and v; (¢) are allowed to be statistically dependent, and furthermore,
no particular assumption on these dependencies are made (double-blind situation). We
refer to this framework as the variance-dependent BSS model in this paper.

They also proposed an algorithm which can separate the sources under the variance-
dependent BSS model. Let w(t) be the preprocessed signal of x(¢) by spatial whitening.
Their method maximizes the objective function

JW) = [eov(fw] ut)]?, [w] u(t — At)*)]?

7
%,

over an orthogonal matrix W = (w;,...,w,)", where cov denotes the sample co-
variance. It was proved that the objective function J is maximized when 1 A equals a
signed permutation matrix, if K;; = cov(s?(t), s7(t— At) ) is of full rank. This method
works quite well, provided that there exist temporal variance-dependencies and the data
is not spoiled by outliers.



3 Semiparametric statistical models and estimating functions

Amari and Cardoso[2] established a statistical basis of the ICA problem. They pointed
out that the standard ICA model

T n
p(X|B,ks) = |det BIT TTT] s, { 2(6)} ©

t=11i=1
is an example of semiparametric statistical models [7, 8], where X = (x(1),...,x(T))
is the whole data sequence B = (by,...,b,)" = Al is the demixing matrix to be

estimated and xs(s) = 1‘[ ks,; (s;) is the density of the sources s. As the function

ks in (4), semlparametrlc models contain infinite dimensional or functional nuisance
parameters which are difficult to estimate. Moreover, they even disturb inference on
parameters of interest.

In the variance-dependent BSS model, the sources s(t) are decomposed of two
components, the normalized signals z(t) = (z1(t),...,z,(t)) " and the general activ-
ity levels v(t) = (vy(t),...,v,(t))". Since the former have mutual independence in
the origin of ICA model, the density of the data X is factorized as

P(X|V:B, k) = \detB|THH1 {b ft())}, 6)

t=14=1
when V = (v(1),...,v(T)) is fixed. Therefore, the marginal distribution can be ex-
pressed as
p(X|Bkv) = [ XV Bou(V)aV, ©

where the density v of V' becomes an extra nuisance function.

Estimating functions are a tool for constructing valid estimators in such semipara-
metric models. Let us consider a general semiparametric model p(x|@, ), where 8 is an
r-dimensional parameter of interest and « is a nuisance parameter. An r-dimensional
vector valued function f(x, ) is called an estimating function, when it satisfies the
following conditions for any € and ,

E[f(mae) |07H] =0, (7)
| det Q| # 0, where Q@ = E [ %f(m,a) '0,4, (8)
E[|f(z,0)°|6,x] < oo, 9)

where E[-|6, ] means the expectation over x with the density p(x|0, x) and ||-|| denotes
Euclidean norm [9]. Suppose that i.i.d. samples (1),...,x(T) are obtained from the
model p(x|0*, x*). If such a function exists, an M-estimator is obtained by solving the

estimating equation
T
> F=(t),0) =0 (10)
t=1

The estimator 6 is consistent regardless of the true nuisance parameter «*, when the
sample size T' goes to infinity.



4 Estimating functionsfor blind separation

Estimating functions for the ICA model (4) were discussed by Amari and Cardoso[2]
and Cardoso[10]. In this case, the parameter of interest is the n xn matrix B = A~! and
hence it is convenient to write estimating functions in n xn matrix form F'(x, B). Amari
and Cardoso[2] showed that the quasi maximum likelihood method is a semiparametric
algorithm based on estimating functions.

In the variance-dependent BSS model, in contrast to the ICA model studied by
Amari and Cardoso[2], the data sequence X = (x(1),...,2(T)) is noti.i.d. in time,
but might have temporal dependencies . Therefore, we have to consider more general
functions F(X, B) of the whole sequence X. General estimating functions F'(X, B)
must satisfy

E[F(X,B)|B, x,v] =0, (11)
|det Q| #£0,  whereQ =E %((XB’)B)} ’B,/ﬁ,y] (12)
E[||F(X,B)|% |B,k,v] < o, (13)

forall (B, r, v). An M-estimator B is derived from the estimating equation
F(X,B)=0. (14)

Suppose that the data X is subject to p(X|B*, x*, v*) defined by (5) and (6). It is known
that the M-estimator B is consistent and asymptotically normal.

Theorem 1. If the function F(X, B) satisfies the conditions (11)~(13) and appropri-
ate regularity conditions, the M -estimator B derived from the equation (14) is asymp-

totically Gaussian distributed, i.e. vec(B) ~ N (vec(B*), Av), where

Av = Av(B* 8" 07) = QTR (QYT, (15)
Y =X(B*" k" V) =FE [VCC{F(X,B*)}VGC{F(X,B*)}T‘ B* k", v*],

[ dvec{F(X, B*)}

Q=Q(B* k", V") = B*,K;*,z/*] .

Ovec(B)

Now let us describe our main result. We can show that the function

T

F(X,B)=>_ F(z(t),B) (16)

t=1

constructed from an estimating function F'(x, B) for the ICA model becomes a candi-
date of estimating functions for the variance-dependent BSS model.

Theorem 2. The function F(X, B) defined in (16) satisfies the two conditions (11) and
(13), provided that F'(xz, B) is an estimating function for the ICA model (4).



Because it is difficult to check the other condition (12) in the general form, let us
consider the quasi maximum likelihood estimation

T
FOMMXB) = [T-¢{yt}y ()], (17)
t=1
as an example in the class (16), where (y) = (@1(41), - -, ¢n(yn)) ' is a vector of

nonlinear functions.

Theorem 3. Suppose that the conditions

T

Y Elmfui()}|+T #0, Vi, (18)
S E[ki{vi(t)}o} ()] T o
det t=1 T 7é 07 Vi 7é I (19)
T 2 E[k;j{v;(t)}oi (1) ]
hold, where
kifvi(t)} = E[ pi{vi(t)z:(t)} [ V; B, K], (20)
mi{vi(t)} = v (t) B [ @i{vi(t)z:(8)} 27 (8) | V; B, k] , (21)

and ¢; is the derivative of ;. Then, the function FOME (X B) satisfies the condi-
tions (11)~(13) and becomes an estimating function. Under appropriate regularity
conditions, the quasi maximum likelihood estimator BRM™ derived from the equation
FQML(x BAMLY — ( is consistent regardless of the true nuisance functions (r*, v*).

5 Statistical propertiesof ICA algorithms

Although we concentrated on estimating functions of the form (16) in the previous
section, we can deal with more general functions and investigate other ICA algorithms
within the framework of estimating functions or asymptotic estimating functions[10] as
well. Here we examined the unbiasedness condition (11) under the variance-dependent
BSS model (Results are summarized in Table 1). In fact, this condition holds at least
asymptotically in many algorithms. If the other conditions are satisfied, these algorithms
give valid solutions regardless of the nuisance densities (x*, v*). We remark that our
extension also enables us to analyze algorithms based on temporal structure such as
TDSEP/SOBI[11,12].

6 Numerical experiments

We carried out at first experiments with several artificial datasets. We applied the quasi
maximal likelihood methods QML-t and QML-3 (-t and -3 denote tanh and cubic non-
linearity, resp.), the double-blind algorithm DB’ [1], JADE, FastICA-t and FastICA-3,



Table 1. Unbiasedness condition of other ICA algorithms

algorithm || unbiasedness [ inapplicable cases |
FastICA[13] yes Gaussian sources.
double-blind[1] asymptotically | same variance-structures or

no temporal variance-dependency
JADE[14] asymptotically | Gaussian sources
TDSEP/SOBI[11,12] yes always
nonstationary[15] yes unclear

TDSEP/SOBI [11,12] and the "sepagaus’ algorithm for nonstationary signals[15], For
evaluating the results, we used the index defined in Amari et al.[16]

AmariIndex(B,A*)Z{Ql}wLZ{MI}, (22)
j=1

—1 maxyg Cik maxyg ij
1=

where A* is the true mixing matrix and C' = BA*. If B = PD(A*)~! with a permu-
tation matrix P and a diagonal matrix D, then Amarilndex(B, A*) = 0.

In all artificial datasets, five source signals of various types were generated and the
data were observed after mixing with multiplying a random 5 x 5 matrix. We prepared
eight artificial datasets ar subG, ar uni, sin. supG, sin subG, com supG, com subG,
exp_supG, and uni_subG. For the activity levels, the abbreviation *ar’ means that the
random vector v(¢) was the absolute value of a multivariate AR(1) process. The activity
levels of ’sin’ datasets were sinusoidal functions with different frequencies, while those
of ’com’ were ones with same frequency. In the case of exp’ and "uni’ datasets they
were linear transformations of i.i.d. Laplace and uniform random vectors, respectively.
For the normalized signals, "uni’ and ’supG’ denote uniform and Laplace random vari-
ables, while ’subG” sequences were signed fourth roots of uniform random variables.

Table 2. Amarilndex of the estimators. The values are the medians of 100 replications.

QML-t|QML-3| DB|JADE|FastlICA-t|FastiICA-3| TDSEP|sepagaus
ar_subG 8.25| 11.32| 0.52|10.79 9.25 12.52| 15.07 1.19
ar_uni 0.30| 27.77| 0.70| 0.66 0.38 0.73| 14.92 0.85

sin_supG 0.17| 29.97| 0.79| 0.43 0.23 0.41| 1531 0.08
sin_subG || 19.21| 0.32] 0.27| 0.31 0.68 0.33| 15.70 0.08
com_supG|| 0.39] 28.37| 6.45| 0.84 0.48 0.87| 16.02 1.28

com_subG|| 26.53| 0.14(22.05/26.49|  27.04|  26.65| 16.23| 27.08
expsupG || 0.35| 28.43| 7.63| 1.24 0.44 1.20| 16.47| 1.28

uni_subG | 27.38| 0.13|18.56| 0.17 0.18 0.18| 16.20| 27.08
SSS 0.03] 3.82| 0.02| 0.02 0.19 0.09/ 0.01 0.01
v12 0.01f 3.73] 0.21| 0.19 0.17 0.08| 0.14 0.01

As Hyvdrinen and Hurri[1] showed, almost all algorithms except DB did not give
a proper solution in ar_subG. However, DB showed poor performance, when (i) the



variance-structures are the same or (ii) there is no temporal dependency. As expected,
TDSEP did not work for any data, because there are no temporal correlations. QML-t is
applicable to supergaussian cases, while QML-3 can be used for subgaussian data. The
other algorithm returned acceptable results except in the difficult case com_subG.

Then, we also studied speech signals as more realistic examples. In the first example
sss’3, speakers counts from 1 to 10 in English and in Spanish, respectively (see the left
panels of Figure 1). In the second experiment *v12’#, we took two speech signals from
Japanese text, and modified the second so that the two sequences have large variance-
dependency(see the right panels of Figure 1). The correlation of the variances in each
example is substantially positive, i.e. 0.65 and 0.74, respectively. The results are shown
in Table 2, too. All algorithm except QML-3 gave a proper answer. On these realistic
examples, TDSEP also worked, because the statistical model (5) and (6) did not hold
perfectly.

40000 80000 120000 10000 20000 30000 40000
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(a) sss (b) v12

Fig. 1. The sources s(t) (upper panels) and the estimators v (¢) of their activity levels with an
appropriate smoother (lower panels).

7 Conclusions

In this paper, we discussed semiparametric estimation for blind separation, when sources
have variance-dependencies. Extending the semiparametric statistical approach[2] un-
der variance-dependencies, we investigated estimating functions for the variance-depend-
ent BSS model. In particular, we proved that the quasi maximum likelihood estimator
is derived from such an estimating function, and hence consistent regardless of the true
nuisance densities. Although we omitted details in this paper, we also analyzed other
ICA algorithms within the framework of (asymptotic) estimating functions and showed
that many of them can separate sources with coherent variances. The theoretical results

3http://inc2.ucsd.edu/~tewon/
‘http://www.islab_brain.riken.go.jp/ mura/ica/vil.wavand v2.wav



were confirmed by artificial and realistic examples with speech signals. Further research
aims necessary to find good applications of the current framework.
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