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Abstract
Blind separation problem is discussed, when sources are
not independent, but have spatial variance dependencies.
Hyvärinen and Hurri (2003) proposed an algorithm which
requires no assumption on distributions of sources and no
parametric model of dependencies between components.
In order to obtain semiparametric algorithms which give a
consistent estimator regardless of the source densities and
the dependency structure, we study estimating functions
for this model by the statistical approach of Amari and
Cardoso (1997). Unlike the ICA model, the maximum
likelihood estimation is not a semiparametric method in
this case. Therefore, we consider a class of estimating
functions which contain the quasi maximum likelihood
estimation of the ICA model and the nonstationary ICA
algorithm by Pham and Cardoso (2000). By modifying
the score function, we got an estimating function close
to it and proposed semiparametric algorithms based on
it. Our algorithms were compared to other BSS methods
with several artificial examples and speech signals.

1. Introduction

Blind methods of source separation have been success-
fully applied to many areas of science. For example, fac-
tors like receptive fields of simple cells were obtained by
an ICA algorithm in natural image analysis (Olshausen
and Field, 1996). The basic model assumes that the ob-
served signals are linear superpositions of underlying hid-
den source signals. Let us denote the n source signals by
s(t) = (s1(t), . . . , sn(t) )> in a vector formula, and the
observed signals by x(t) = (x1(t), . . . , xn(t) )>. The
mixing can be expressed as the equation

x(t) = As(t), (1)

where A = (aij) denote the mixing matrix. Both the
sources s(t) and the mixing matrix A are unknown, and
the goal is to estimate them based on the observationx(t)
alone.

In most blind source separation (BSS) methods, the
source signals are assumed statistically independent. Blind

source separation based on such model is called indepen-
dent component analysis (ICA). With nongaussianity of
the sources, the mixing matrix can be estimated and the
source signals can be extracted under appropriate condi-
tions. Temporal correlation and nonstationarity have also
been used for the basic BSS problem.

Among many extensions of the ICA models, several
researchers have studied the case where the source sig-
nals are not independent (e.g. Cardoso, 1998, Hyvärinen
et al., 2001a, Bach and Jordan, 2002, Valpola et al., 2003,
see also references in Hyvärinen and Hurri, 2003). The
dependencies either need to be exactly known before-
hand, or they have to be simultaneously estimated by al-
gorithms. Recently, a novel idea called double-blind ap-
proach was introduced by Hyvärinen and Hurri (2003). In
contrast to previous researches, their method requires no
assumption on distributions of the sources and no para-
metric model of dependencies between the components.
They also proposed an algorithm based on lagged 4th-
order cumulants and showed that it works well, provided
that the sources are dependent only through their vari-
ances and that the sources have temporal correlation.

In this paper, we discuss semiparametric estimation
in the double-blind case as Hyvärinen and Hurri (2003)
and propose new algorithms for the BSS problem with
variance-dependencies. The variance-dependentBSS model
are defined in section 2. We follow the semiparametric
statistical approach of Amari and Cardoso (1997). Esti-
mating functions which play a fundamental role for dis-
cussing semiparametric estimation are explained in sec-
tion 3. Then, in section 4, estimating functions for the
variance-dependent BSS model are discussed. We show
that the maximum likelihood method of this model does
not give a semiparametric estimator, i.e. the maximum
likelihood estimator is not consistent, if assumed densi-
ties and dependencies are wrong. Therefore, by modify-
ing the maximum likelihood estimation, we propose new
semiparametric algorithms for the model in section 5. In
section 6, we show results of numerical experiments in
order to compare the new algorithms to other semipara-
metric methods.



2. Variance-dependent BSS model

In this section, we explain the framework of Hyvärinen
and Hurri (2003). Let us assume that each source signal
si(t) is a product of non-negative activity level vi(t) and
underlying i.i.d. signal zi(t), i.e.

si(t) = vi(t)zi(t).

In practice, the activity levels vi(t) are often dependent
among different signals. In their formulation, each ob-
served signal is expressed as

xi(t) =

n∑

j=1

aijvj(t)zj(t), i = 1, . . . , n, (2)

where vi(t) and zi(t) satisfy:

(i) vi’s and zj’s are independent,

(ii) zi(t) is i.i.d. in time, zi and zj are mutually inde-
pendent,

(iii) zi(t) have zero mean and unit variance.

No assumption on the distribution of zi is made except
(iii). Regarding the general activity levels vi’s, vi(t) and
vj(t) are allowed to be statistically dependent, and fur-
thermore, no particular assumption on their dependencies
are made (double-blind situation). We refer this frame-
work to the variance-dependent BSS model in this paper.

Hyvärinen and Hurri (2003) proposed an algorithm
which can separate the sources under this situation. Let
u(t) be preprocessed signal of x(t) by spatial whitening.
Their method maximizes the objective function

J(W ) =
∑

i,j

[ĉov([w>
i u(t)]2, [w>

j u(t− ∆t)]2)]2,

where ĉov denotes the sample covariance, ∆t > 1 means
the lag and W = (w1, . . . ,wn)> is a orthogonal matrix.
It was proved that the objective function J is maximized
when WA equals a signed permutation matrix, if Kij =
cov(s2i (t), s

2
j (t−∆t) ) is of full rank. This method works

quite well, if there exist temporal variance dependencies
and no outliers.

3. Semiparametric statistical models and
estimating functions

Amari and Cardoso (1997) established a statistical basis
of the ICA problem. They pointed out that the basic ICA
model

p(X |B, κs) = | detB|T
T∏

t=1

n∏

i=1

κsi
{b>i x(t)} (3)

is an example of semiparametric statistical models (Bickel
et al.,1993, Amari and Kawanabe, 1997a,b), where B =
(b1, . . . , bn)> = A−1 is the demixing matrix to be esti-

mated and κs(s) =
n

Π
i=1

κsi
(si) is the unknown density

of the sources s. As the function κs in this model, semi-
parametric statistical models contain infinite dimensional
or functional nuisance parameters which are difficult to
estimate. Moreover, they even disturb inference on pa-
rameters of interest.

In the variance-dependent BSS model, the sources
s(t) are decomposed of two components, the normalized
signals z(t) = (z1(t), . . . , zn(t) )> and the general ac-
tivity levels v(t) = (v1(t), . . . , vn(t) )>. Since the com-
ponents of z(t) are mutually independent like the ICA
model, the density of the data X is factorized as

p(X |V ;B, κ)

= | detB|T
T∏

t=1

n∏

i=1

1

vi(t)
κi

{
b>i x(t)

vi(t)

}
, (4)

when V = (v(1), . . . ,v(T ) )> is fixed. Therefore, the
marginal distribution can be expressed as

p(X |B, κ, ν) =

∫
p(X |V ;B, κ)ν(V )dV, (5)

where the density ν of V becomes an extra nuisance func-
tion.

In order to construct valid estimators for such semi-
parametric models, estimating functions were introduced
by Godambe. Let us consider a general semiparametric
model p(x|θ, κ), where θ is r-dimensional parameter of
interest and κ is a nuisance parameter. An r-dimensional
vector valued function f (x,θ) is called an estimating
function, when it satisfies the following conditions for
any θ and κ (Godambe, 1991),

E[f(x,θ) |θ, κ] = 0, (6)

| detQ| 6= 0,

where Q = E

[
∂

∂θ
f (x,θ)

∣∣∣∣θ, κ
]

, (7)

E
[
‖f(x,θ)‖2

∣∣θ, κ
]
<∞, (8)

where E[·|θ, κ] means the expectation over x with the
density p(x|θ, κ) and ‖ · ‖ denotes Euclidean norm. Sup-
pose i.i.d. samples x(1), . . . ,x(T ) are obtained from
the model p(x|θ∗, κ∗). If such a function exists, an M-
estimator θ̂ is obtained by solving the estimating equation

T∑

t=1

f(x(t), θ̂) = 0. (9)

The estimator θ̂ is consistent regardless of the true nui-
sance parameterκ∗, when the sample size T goes to infin-
ity. Moreover, it asymptotically distributes with Gaussian



N(θ∗,Av), where

Av = Av(θ∗, κ∗)

=
1

T
Q−1E

[
f(x,θ)f>(x,θ)

∣∣∣θ∗, κ∗
]

(Q−1)>,

and Q = Q(θ∗, κ∗) = E
[

∂
∂θ
f(x,θ)

∣∣θ∗, κ∗
]
. How-

ever, it is not easy to find such estimating functions. Amari
and Kawanabe (1997b) studied this problem from geo-
metrical point of view and gave a guideline for discussing
estimating functions.

4. Estimating functions for blind separation

Estimating functions for the ICA model (3) were dis-
cussed by Amari and Cardoso (1997), Cardoso (1997). In
case of the BSS problem, the parameter of interest is the
n×nmatrixB = A−1 and hence it is convenient to write
estimating functions in n×n matrix form F (x, B). This
function should satisfy the same conditions as (6)∼(8).

As an example, we explain the quasi maximum like-
lihood method which maximizes the likelihood function
under a prefixed density κ0. We remark that the assumed
function κ0 can be different from the true density. The
estimator B̂ is derived from the equation

T∑

t=1

[
I −ϕ{ŷ(t)}ŷ>(t)

]
= 0, (10)

where ŷ(t) = B̂x(t) is the estimator of the sources s(t),
ϕ(y) = (ϕ1(y1), . . . , ϕn(yn) )> and

ϕi(yi) = −
d

dyi

logκ0i(yi).

For the nonlinear function ϕi(yi),

ϕi(yi) = tanh(cyi), c > 0, (11)

ϕi(yi) = y3
i . (12)

are often employed.
In general, the quasi maximum likelihood estimator is

no longer consistent because of misspecified distribution.
However, in the ICA model, Amari and Cardoso (1997)
showed that the function

F (x, B) = I −ϕ(y)y>

in equation (10) becomes an estimating function, where
y = Bx. This leads to the fact that the quasi maxi-
mum likelihood method and its online version (the nat-
ural gradient learning) give an asymptotically consistent
estimator, even if the assumed distribution κ0 is not equal
to the true one. This research motivate us to investi-
gate such semiparametric procedures for the variance-
dependent BSS model (4) and (5). We have been studied

estimating functions for the extended model and showed
that many existing BSS algorithms including the quasi
likelihood method (10) still give consistent estimators un-
der the double-blind situation in our forthcoming paper.

In contrast to the ICA model, the data sequence X =
(x(1), . . . ,x(T ) ) is not i.i.d. in time, but might have
temporal dependencies in the variance-dependent BSS model.
Therefore, we have to consider more general functions
F̄ (X,B) of the whole sequence X . General estimating
functions F̄ (X,B) must satisfy

E[ F̄ (X,B) |B, κ, ν] = 0, (13)

| detQ| 6= 0,

where Q = E

[
∂vec{F̄ (X,B)}

∂vec(B)

∣∣∣∣B, κ, ν
]

, (14)

E
[
‖F̄ (X,B)‖2

F

∣∣B, κ, ν
]
<∞, (15)

for all (B, κ, ν). The operator

vec(F ) = (F11, . . . , Fn1, . . . , F1n, . . . , Fnn)>

means the vectorization of matrices and ‖ · ‖F denotes
Frobenius norm. It should be noted that scales and orders
of the sources cannot be determined, i.e., two matrices
B and PDB indicate the same distribution, when P and
D are a permutation and a diagonal matrix, respectively.
Therefore, we can pick up any matrix in such equivalence
class without loss of generality.

An M -estimator B̂ derived from the estimating equa-
tion

F̄ (X, B̂) = 0. (16)

Suppose that the dataX is subject to p(X |B∗, κ∗, ν∗) de-
fined by (4) and (5). If appropriate regularity conditions
hold, we can calculate the asymptotic distribution of the
M -estimator B̂.

Theorem 1. If the function F̄ (X,B) satisfies the con-
ditions (13)∼(15) and appropriate regularity conditions
also hold, the M -estimator B̂ derived from the equation
(16) is asymptotically distributed with Gaussian

vec(B̂) ∼ N(vec(B∗),Av),

where

Av = Av(B∗, κ∗, ν∗) = Q−1 Σ (Q−1)>,

Σ = Σ(B∗, κ∗, ν∗)

= E
[
vec{F̄ (X,B∗)} vec{F̄ (X,B∗)}>

]
,

Q = Q(B∗, κ∗, ν∗)

= E

[
∂vec{F̄ (X,B∗)}

∂vec(B)

]
.

In this paper, we study functions of the form

F̄ (X,B)

=

T∑

t=1

[
C −ϕt{y(1), . . . ,y(T )}y>(t)

]
, (17)



where y(t) = Bx(t), C is an n× n diagonal matrix and

ϕt{y(1), . . . ,y(T )} = (ϕt1{y1(1), . . . , y1(T )},

. . . , ϕtn{yn(1), . . . , yn(T )} )>.

The quasi maximum likelihood estimator of the ICA model
is derived from the general estimating function

T∑

t=1

[
I −ϕ{y(t)}y>(t)

]
.

This is obviously an example of (17). Another example is
the ICA algorithm for nonstationary signals by Pham and
Cardoso (2000). Their method is based on a Gaussian
source model with blockwise constant variance. Let us
divide the whole sequence into L blocks, i.e. the l-th
block Tl consists of time points {(l− 1)T

L
+ 1, . . . , l T

L
}.

The estimator B̂ is derived from the equation

T∑

t=1

ŷi(t)
L
T

∑
τ∈Tl(t)

ŷ2
i (τ)

ŷj(t) = 0, i 6= j, (18)

where Tl(t) means the block which includes time t. Tak-
ing C = I and

ϕti{y1(1), . . . , y1(T )} =
ŷi(t)

L
T

∑
τ∈Tl(t)

ŷ2
i (τ)

,

we can see that the l.h.s. of (18) can be written in the
form as (17).

It is not difficult to show that functions of the form
(17) become candidates of estimating functions for the
variance-dependent BSS model.

Theorem 2. The function F̄ (X,B) defined in (17) sat-
isfies the conditions (13). If it also satisfies the other
conditions (14), (15), it becomes an estimating function.
Therefore, with appropriate regularity conditions, theM -
estimator B̂ derived from F̄ (X,B) = 0 is consistent re-
gardless of the nuisance densities (κ, ν).

5. New semiparametric algorithm

In the previous section, we derived a class of functions
(17) which are candidates of estimating functions for the
variance-dependent BSS model. Here we propose a semi-
parametric estimation procedure based on such an esti-
mating function.

Let us begin with the maximum likelihood estimation
of the model (4) and (5). The score function can be cal-

culated as

∂

∂B
log p(X |B, κ, ν)

= E

[
∂

∂B
log p(X |V ;B, κ)

∣∣∣∣X
]

=
T∑

t=1

[
I − E [ψ{y(t),v(t)}|X ] y>(t)

]
(B−1)>,

(19)

where ψ(y,v) = (ψ1(y1, v1), . . . , ψn(yn, vn) ),

ψi(yi, vi) = −
∂

∂yi

logκi

(
yi

vi

)
.

The conditional expectation

E [ψi{yi(t), vi(t)}|X ]

= E [ψi{yi(t), vi(t)}|y(1), . . . ,y(T )] (20)

depends not only on i-th component yi(1), . . . , yi(T ) but
also on the other components yj(1), . . . , yj(T ) (j 6= i),
that is, the score function (19) does not belong to the class
(17). This means that in general the maximum likelihood
estimator based on (19) is not consistent, if the nuisance
functions (κ, ν) are misspecified.

It is known that estimating functions closer to the
score function show better performance (Godambe, 1991).
Therefore, by modifying the score function (19), we con-
sider the following estimating function of the form (17).

F̄ij(X,B)

=

T∑

t=1

[δij − ϕti{yi(1), . . . , yi(T )} yj(t)] (21)

ϕti{yi(1), . . . , yi(T )}

= E [ψi{yi(t), vi(t)}| yi(1), . . . , yi(T )] (22)

We remark that the function (22) depends only on the i-th
components yi(1), . . . , yi(T ), while the conditional ex-
pectation (20) is a function of all components.

Now we fix the nuisance densities (κ, ν) and compute
the explicit form of the functions (22). Unfortunately, it
is difficult to carry out the conditional expectations with-
out coarse approximation. Hence we use the following
simplification: (i) the sequences vi and vj are indepen-
dent (like naive Bayes), (ii) zi(t) ∼ N(0, 1/τi(t) ) where
τi(t) = 1/v2

i (t), and (iii) τi(t) is independent in time
with Gamma distribution Ga(λ, 1

αi(t)
). Then the condi-

tional expectation (22) turns out to be

E [ψi{yi(t), vi(t)}| yi(1), . . . , yi(T )]

=
yi(t)

2λ
1+2λ

αi(t) + 1
1+2λ

y2
i (t)

.



Because the parameter αi(t) controls magnitude of the
activity level v2

i (t), we replace αi(t) with an online esti-
mator

v̂2
i (t) = (1 − ε)v̂2

i (t− 1) + εy2
i (t− 1) (23)

where ε > 0 denotes the learning rate. We remark that
the estimator v̂2

i (t) is a function of the i-th component
yi(1), . . . , yi(T ). To sum up, we got an estimating func-
tion of the form (21) with

ϕti{yi(1), . . . , yi(T )}

=
yi(t)

2λ
1+2λ

v̂2
i (t) + 1

1+2λ
y2

i (t)
. (24)

You see that this estimating function is similar to the equa-
tion (18) of the algorithm by Pham and Cardoso (2000).

By regarding the conditional distribution
p(vi(t)|yi(1), . . . , yi(T ) ) as the delta function
δ{vi(t)− v̂i(t)}, we can get other estimating functions of
the type (21) with

ϕti{yi(1), . . . , yi(T )} = ψi{yi(t), v̂i(t)}

= −
∂

∂yi

logκi

(
yi(t)

v̂i(t)

)
,

where the estimator v̂i(t) is learned by the equation (23).
As an example, we took the nonlinear function

ϕti{yi(1), . . . , yi(T )} = tanh

(
yi(t)

v̂i(t)

)
, (25)

which is modified a little bit by practical reason. This
method looks similar to the quasi maximum likelihood
estimation (10) and (11), but the nonlinear function (25)
takes the scale estimator v̂i(t) into account.

6. Numerical experiments

We carried out experiments with several artificial data
sets and then dealt with variance-dependent speech sig-
nals as more realistic examples. We compared the algo-
rithms listed in Table 1. In our proposed methods, the
estimating equations were solved by the fixed point algo-
rithm. (Hyvärinen et al., 2001b)

For evaluating the results, we employed the index used
in Amari et al. (1996)

AmariIndex(B,A∗)

=
n∑

i=1

{∑n

j=1 Cij

maxk Cik

− 1

}
+

n∑

j=1

{ ∑n

i=1 Cij

maxk Ckj

− 1

}
,

where A∗ is the true mixing matrix and C = BA∗. If
B = PD(A∗)−1 with a permutation matrix P and a di-
agonal matrix D, then AmariIndex(B,A∗) = 0.

Table 1. ICA algorithms used in the experiments

EFr The proposed algorithm with (24), λ = 1
2

EFt The proposed algorithm with (25)
DB the double blind algorithm

by Hyvärinen and Hurri (2003)
FICt FastICA with tanh nonlinearity
Gau The nonstationary ICA

by Pham and Cardoso (2000)

6.1. Artificial data sets

In all artificial data sets, five source signals of various
types were generated and data after multiplying a ran-
dom 5 × 5 mixing matrix were observed. We prepared
seven datasets ar subG, ar uni, sin supG, sin subG,
com supG, exp supG and uni subG. In the first two
datasets, the activity levels v(t) were generated from a
multivariate AR(1) model, where outliers were excluded
in an appropriate manner (see Hyvärinen and Hurri, 2003).
The normalized signals zi’s were i.i.d. subgaussian ran-
dom variables which are signed fourth roots of zero-mean
uniform variables in ar subG, while i.i.d. uniform ran-
dom variables were used in ar uni. In the third and the
fourth datasets, the activity levels vi(t) were sinusoidal
functions with different frequencies

vi(t) = 1 + 0.9 sin

(
(13 + i)πt

8000

)
, (26)

for i = 1, . . . , 5. For the normalized signals zi’s, Laplace
(resp. the subgaussian) i.i.d. random variables were used
in sin supG (resp. sin subG). We also tested the case
where all activity levels vi(t) (i = 1, . . . , 5) were the
same sinusoidal function

vi(t) = 1 + 0.9 sin

(
πt

500

)
. (27)

As in the third example, Laplace i.i.d. random variables
were used for the normalized signals zi’s. Because all
algorithms did not work for the activity levels (27) com-
bined with the subgaussian random variables, we omit
the results here. In the last two datasets, the activity lev-
els v(t) were i.i.d. in time t. In exp supG, we trans-
formed 5 independent exponential random variables lin-
early such that vi and vj have correlation 0.9, and zi’s
were i.i.d Laplace random variables. On the other hand,
in uni subG, v(t) was generated from 5 uniform random
variables by the same linear transformation and zi’s were
the i.i.d subgaussian random variables.

We made 100 replications for each dataset and esti-
mated the demixing matrix B for each replication. The
results are summarized in Table 2. The proposed meth-
ods were comparable to or slightly better than FICt in



all cases. As reported in Hyvärinen and Hurri (2003),
all algorithms except DB did not work for ar subG, but
in other examples our algorithms were at least not worse
than DB. Although for the data with the activity levels
(26) Gau performed quite well, our algorithms were bet-
ter in four cases.

Table 2. AmariIndex of the estimators. The values are
the medians of 100 replications with the measure of de-
viation, (3rd-quantile− 1st-quantile)/2

ar subG ar uni sin supG
EFr 5.45 (1.03) 0.31 (0.04) 0.16 (0.02)
EFt 6.36 (1.76) 0.36 (0.05) 0.16 (0.02)
DB 0.52 (0.10) 0.70 (0.16) 0.79 (0.13)
FICt 9.25 (1.98) 0.38 (0.05) 0.23 (0.03)
Gau 1.19 (0.48) 0.85 (0.22) 0.08 (0.01)

sin subG com supG exp supG
EFr 0.38 (0.04) 0.37 (0.05) 0.39 (0.05)
EFt 0.22 (0.02) 0.42 (0.07) 0.43 (0.06)
DB 0.27 (0.03) 6.45 (1.56) 7.63 (1.88)
FICt 0.68 (0.14) 0.48 (0.07) 0.44 (0.06)
Gau 0.08 (0.01) 1.28 (0.19) 1.28 (0.20)

uni subG sss v12
EFr 0.17 (0.03) 0.01 0.04
EFt 0.19 (0.05) 0.01 0.04
DB 18.56 (1.66) 0.02 0.21
FICt 0.18 (0.03) 0.19 (0.04) 0.17 (0.02)
Gau 27.08 (0.33) 0.01 0.01

6.2. Variance-dependent speeches

We also dealt with more realistic data sets with speech
signals which have strong variance dependencies, even
though the mixing process is instantaneous. In the first
experiment, we took two speech signals, where one speaker
says digits from 1 to 10 in English, and the other counts
at the same time in Spanish 1. Figure 1 shows the sources
and the estimators of their activity levels with an appro-
priate smoother. We inserted one short pause at different
positions of both sequences to make the variances of the
modified signals more correlated (0.65). In the second
experiments, two speech signals from Japanese text were
used 2. Figure 2 shows the sources and the estimators
of the activity levels. We extended and shortened each
syllable of the second sequence and tuned its amplitude

1The signals were downloaded from
http://inc2.ucsd.edu/ tewon/. We used the separated
signals of their second demo as the sources, because they are good
enough

2The signals can be downloaded by
http://www.islab.brain.riken.go.jp/ mura/ica/v1.wav
and v2.wav

such that the two sources have high variance dependency.
Correlation of the variances becomes 0.74 in the arranged
signals.

40000  80000 120000

2

1

40000  80000 120000
2

1

Figure 1. The sources and the estimators of their activity
levels (dataset sss). The upper panel is the signals which
are counting from 1 to 10 in English and Spanish. The
lower panel shows their activity levels with an appropri-
ate smoother.
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Figure 2. The sources and the estimators of their activity
levels (dataset v12). The upper panel is the signals which
are Japanese sentences. The lower panel shows their ac-
tivity levels with an appropriate smoother.

A 2 × 2 mixing matrix A was randomly generated
100 times and 100 different mixtures of the source sig-
nals were made. Because most algorithms are equivari-
ant, we can get the same results for any mixing matrix
A in principle. In our result, except FICt this property
held. The proposed algorithms were comparable to Gau,
which showed the best performance.

7. Conclusions

In this paper, we discussed semiparametric estimation for
blind separation, when sources have spatial variance de-
pendencies. Hyvärinen and Hurri (2003) introduced the



double blind setting, where, in addition to source distri-
butions, dependencies between components are not re-
stricted by any parametric model. By the semiparametric
approach of Amari and Cardoso (1997), we discussed es-
timating functions for this variance-dependentBSS model.
We presented a class of estimating functions which con-
tain the quasi maximum likelihood estimation of the ICA
model and the nonstationary ICA algorithm by Pham and
Cardoso (2000). Then, we proved that the maximum like-
lihood estimation of the variance-dependent BSS model
is not a semiparametric methods, because the score func-
tion does not satisfy the unbiasedness property of estimat-
ing functions. Therefore, by modifying the score func-
tion, we got an estimating function close to it and pro-
posed semiparametric algorithms based on it. Our al-
gorithms were tested with several artificial examples and
speech signals with strong variance dependencies. They
gave at least comparable results to other BSS algorithms.

Our algorithm and Gau contain parameters which af-
fect their performance. In practice, it is important to dis-
cuss how to select the best method and such tuning pa-
rameters for specific data. We think that suitable algo-
rithms might be chosen with resampling method by Mei-
necke et al. (2002). Further works to this direction are
necessary. Finally, Interesting applications should also
be found.
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