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ABSTRACT wherex|[t] ands[t] aren x 1 column vectorsA is ann x n
In this work we propose a kernel-based blind source Sep_matnx andf is a nonlinear function that operates compo-

aration (BSS) algorithm that can perform nonlinear BSS nentvr\l/ise [20]. | i bl h il ad
for general invertible nonlinearities. For our KTDSEP al- The general nonlinear BSS problem, that we will ad-

gorithm we have to go through four steps: (i) adapting to dress in th'_s papet, has an even more challenging setup.
the intrinsic dimension of the data mapped to feature spaceHere' the mixing model reads
F, (i) finding an orthonormal basis of this submanifold, x[t] = £(s[t]) @)
(iif) mapping the data into the subspace Bfspanned by
this orthonormal basis, and (iv) applying temporal decorre- © ; X .
lation BSS (TDSEP) to the ;;pggdydagta. AF;ter demixing tion from k" to §R".. First algorithms for this p.roblehthat

we get a number of irrelevant components and the origi- are based on the idea of kernel based learning (cf. e.g. [22,

nal sources. To find out which ones are the components ofg' 16]) were iglégli;s oln t(_));]signacljs 2[38]|.' The (_1if|fer_en(r:]e
interest, we propose a criterion that allows to identify the etween our algorithm and [8] lies mainly in the

original sources. The excellent performance of KTDSEP is manner and_ the superior efficiency in which the. kernel fea-
ture space is constructed and used for unmixing (our ap-

demonstrated in experiments on nonlinearly mixed speech ) . .
data. proach considers temporal decorrelation). This eventually
allows to demix large, real-world data sets that are nonlin-
early mixed according to Eq. (2).
1. INTRODUCTION Let us first introduce the basic ideas of kernel based

Li blind tion has b ful i methods that are needed for our algorithm. For input vec-
inear blind source separation has been successful in Var'tor3x[t] € R (t = 1...T) from an input space a kernel

lous applicatiqns (12,5 4, 7,1, 2,19, 10, 25, 9]). Re- functionk : R x R — R that fulfills certain conditions
cently a new line of research has emerged that focuses Or‘(cf [16]) induces a mappin@ : R — 7 into some feature

nonlinear mixings. It has so far only been applied to indus- spaceF such that the dot product for points in the image of

trlall_pulp _ii_ata [9], but a _Iart%e clf_;\s_s of applications Wher_e ® can be simply calculated using the kernel function (often
nonlinearities can occur in the mixing process are Conceiv- ..o 4 1 L armel trick),

able, e.g. in the fields of telecommunications, array process-
ing, bic_)medical data anglysis (EEG, MEG, EMG,) and k(x[i],x[j]) = ®(x[7]) - (x[j]). 3)
acoustic source separation. Var.|o.us methods have begr) proBy using linear algorithms in feature space, nonlinear prob-
posed for solving nonlinear mixings, e.g. self-organizing |

maps [17, 13], extensions of GTM [18], neural networks

andf is an (at least approximately invertible) nonlinear func-

ems in input space can be solved efficiently and elegantly.
To solve nonlinear BSS problems one could apply along

[23, 14], ensemble learning [21] or correlation maximiza- these lines a linear BSS aldori .
. . gorithm to the mapped data in fea-
tion using ACE [24]. Note, that most methods except [24] ture space. This would give us some directiore F that

use high computational cost and depending on the algorlthmcorresponds to a nonlinear direction in input space. Such a

are prone to run into Ioc;al minima. The simplest scenario is direction is parameterized, as usual for kernel methods, by
the so-called post-nonlinear BSS aT x 1vectora = (ai,...,ar)" € %7 such that

x[t] = f(As]t]), @)

T
w=da = Zajé(x[j]) eF,
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DFG (JA 379/9-1, MU 987/1-1). arbitrary invertible transformation (cf. [11]).




whered, is the matrix with the column vectods(x[1]),.. .,
®(x[T]). Using the kernel trick (Eqg. (3)) we can calculate
the real valued” x T matrix
(k(xli], x[5]))s

oo, = wherei,j =1...T

which we use to compute the signal that corresponds to the P

nonlinear directiorw
d
ylt] = wio(x[t]) = a’ & &(x[t]) = Z ask(x[j],x[t])

without having actually to specify the mappidg How-
ever,T is the number of samples and siri€eis for BSS

problems quite large, such a parameterization leads to fea

sibility and stability problem. In this paper we introduce a

input space

arameter s

feature space

Fig. 1: Input data are mapped to some submanifoldrofrhich is

the span of somé-dimensional orthonormal basis Therefore
these mapped points can be parameterizeé%n The linear di-

new algorithm that overcomes these problems and that peryections in parameter space correspond to nonlinear directions in

forms nonlinear BSS.

2. ANEW ALGORITHM FOR NONLINEAR BSS

The image of the input spad®” under® is a manifold that
is contained in & dimensional subspace &f. The key for
our algorithm is to find an orthonormal basis for this sub-

space that enables us to parameterize the signals in feature

space efficiently with vectors in@dimensional parameter

spaceR? (cf. Fig. 1). Based on TDSEP that uses tempo-

input space.

input vectorsv for which the matrix<I>‘T<I>v has full column
rank. Note, that it is not important that the chosen vectors
are among the input vectaxsl], . .., x[T]. With the images
®,, of these vectors we construct an orthonormal basis,

2= 0y (d] D)3,

This basis enables us to parameterize the subspace that con-

ral decorrelation (cf. [25, 3]) we use this orthonormal basis tains the mapped input vectors in feature space with vectors

to construct a new nonlinear BSS algorithm. This new al-

from ad dimensional parameter spaé as we will see in

gorithm is denoted as kTDSEP (kernel TDSEP). KTDSEP the next step.

requires four steps:

(i) We start with determining/: randomly choosé in-
put vectorsv := vy, ...,v4 fromx[1], ...,x[T] and check
whether the columns of the matidx, := (®(vy),... 2(vqg))
form a maximally independent system A (i.e. whether
they form a basis for the image of the input space udger

(ii) After scaling the observed signals[t] such that
their absolute maximum is smaller than one (later in this
section we will see why this is useful) we employ this basis
to map the input signalg[¢] to real-valuedi dimensional
signals¥ (x[t]) in parameter space,

In order to do that we calculate the rank of the real-valued ¥ (x[t]) := 2" ®(x[t]) = ((I)I@V)_%(I)I(P(x[t])

d % d matrix

o) Dy = (k(vi,v;))i; fori,j=1,...,d

We repeat this random sampling process with varyirng-
til we have found al such that there are input vectorsv
for which the matrix®] @, has full column rank, i.e. has
rankd, and we can not find + 1 input vectorsv for which
the associated matrik ®, has full column rank as wéll

(i) Next we define an orthonormal basis for the sub-
space off that contains the image @f. Either use random
sampling like in (i) or use:-means clustering to obtaih

2Clearly, this is not possible for all kernel functions. However, through-
out this paper we consider only polynomial kernels.

= ((k(vi,v;))i)) "2 (k(vi,x[t])); forij=1,....d.

Note that by constructioi®] ®,,)~= is an invertible real
valuedd x d matrix and® ®(x[t]) is a real valued! x 1
vector. Both are computed using the kernel trick (Eq. (3))
without explicitely specifying the mapping : " — F.

(iv) Finally, we apply temporal decorrelation (TDSEP,
[25]) to ¥ (x[t]) which gives usl linear directions in param-
eter space that corresponddmonlinear directions in in-
put space. The solutions are parameterized by a real-valued
dxd matrixae € R¥*¢, The corresponding demixed signals
are simply the product ak and W (x[t]),

ylt]:

a¥(x[t]) € R4



Most of these signals are irrelevant. To pick the signals of N D D <
interest we use a heuristic: by ensuring < x[t] < 1 we = —,, 1
influence the variance of the unwanted signals because the=s 515
latter contain higher order versions of the source signals as s 08
we will see in the next section. Therefore, after normalizing $2
all signals (such that they have zero mean and their absolute s 0.6
maximum is one) the demixed source signals are the ones 12
with the highest variance. Sz 0.4
2
s Ez
0.2
3. ANALYSIS OF A TOY EXAMPLE E
51@2
0
To give some clue how our algorithm works we take a de-
tailed look at a toy example: for Fig. 22 Most quasi sources are pairwise correlated; the middle
panel shows the covariance matrix of the quasi sources resulting
—~1.2173 —1.1283 —0.2611 from a polynomial kernel of degree 2, the lower left panel for de-
A= —0.0412 —1.3493 andb = 0.9535 gree 4 and the upper left panel for degree 8. Note, that the quasi

sources can always be collocated into four groups.

let x[t] = A(s1[t],s2[t]) T + bs1[t]s2[t] be a simple non-
linear mixture (taken from [15]). For the kernel function arbitrary monomials i; ands; is
k(x,y) = (x"y+1)2, a polynomial kernel of degree 2, we

can explicitly write down the mapping from input space corr(s’flsg@gs’y s52) =

to feature space (cf. [16]),

k k
cov(sytsyt, s1285%)

<I>(x) = (l‘%, xr1Z2, \/51‘1, LL‘; \/il‘g)—r. Hi:l,Z Var(slf"'sgn"')
k1+ko myitmay kq ko my mo
Note, that we omitted the dimension in whidfx) is con- 2. }Ei;Q = } Eifrj L ,i sy meisz L
stant. Since the feature spacé¥swe do not have to con- [Licio VE{sT "} E{s; "} =(E{s;"} E{s;"})

sider an orthonormal basis Denote by Since the moments of normally distributed signalsndss
are (with mean zero and variance one)

E{S,f}:{lﬂ---(k—l) if kiseven

R 2.2 2 2 2 2 T
q:= (31527 5182, S1, S159, S1S82, S1, Sg, 82)

the monomials of the source signals that appear as linear
combinations in the feature space. We call these monomials
guasi sources. A simple calculation gives us a real-valuedwe get for such signals
5 x 8 matrix C = D Cg, where

0 if kis odd

corr(st s, sh252) = 0 (5)
b3 biby 0 b 0 ) ) ) )
2apbi ambitanbdy 0 2azby 0 if k1 + ko is odd orm; 4+ msy is odd. Therefore the quasi
ayy a11a21 0 a3, 0 : . )
CT — | 2a1mb1 assbrtarsbs 0 2asmbs 0 sources can be collocated into four groups Wlth no correla
0 2a11a12 azzaii+aizaz; by 2asiass bs tions between the groups; e.g. for a polynomial of degree 2
0 0 a1 a1 i
o2, 1o o a2, o the four groups are (cf. Fig. 2),
0 0 aiz 0 az2

{3%33’ 5%’ Sg}v {5%827 82}’ {81337 51}7 {3132}'
with A = (aij), b= (bL) andD = dlag(l, \@7 \@, 17 \/i)
such that we can expand the mixture in feature space lin-
early in terms of the quasi sources,

Consequently, the mixture in EqQ. (4) is not overcomplete.
Next we describe the signals that our algorithm extracts.

Consider two sinusoidal source signéls, s,)' that are

nonlinearly mixed using the above mixture. For a polyno-

®(x[f]) = Calt]. “) mial kernel function of degree 4,

At first view, this situation looks like a mixture of an over- k(x,y) = (x"y + 1),

complete basis that might hardly be solved by TDSEP. For-

tunately, most quasi sources are pairwise correlated: forthere are twenty-four quasi sources: all possible products of
two independent signals ands, the correlation between  si, s?, s3, s and their counterparts is,. Using Eq. (5)



v source signals observed signals demixed signals
7

S, [corr=-0.992] » corr= 0.995

2 2
0 0 0 i J}%Jr
v, N s, [corr=—0.98] 2 corr= 0.990 N f
2 2 2 Y
0 0 0 i AR ++
2 -2 -2
v, s s}, [corr= 0.603] s corr= 0.909 s
WNWWWMMWWWO “\(\/U\/VW“MW" 0 Fig. 4: The left panel shows a scatterplot of the source signals, the
yg :—, T oo 12 po— ;s middle panel a scat.terplot of the nonlinearly mixed signals and the
right panel the unmixed extracted components that were chosen by
WWMNWWW o J\h )\ JM 5 WWWWWM 0 calculating the variance of the normalized signals.
[ T YR Y]

Fig. 3: The extracted signals in the left panels (only four shown) not scale invariant which is, however, no real problem since
are tried to be matched with single quasi sources in the middle pan-,e can always ensurel < x < 1.

els and combinations of subgroups of quasi sources (right panels).

these quasi sources can also be arranged into four groups 4. EXPERIMENT WITH SPEECH DATA

with no correlations between the groups. Applying kTD-

SEP with that kernel function we computéd= 15 (dimen- Consider two speech signals (with 16,000 samples, sam-
sion of the parameter space) and extracted all fifteen signalspling rate 8 kHz, each ranging betweerl and+-1) that
Now we try to explain those signals using the quasi sourcesare nonlinearly mixed by

that belong to the used kernel. Four of the extracted signals

(y7,v4,y1,Yy9) are shown in the left panels of Fig. 3. The xi[t] = —(sa[t] + 1) cos(msy[t])

middle panels show the best matching quasi sources. Note, o] 1.5 (s2[t] + 1) sin(rs1[t).

that the true sources; andss, have a very high correlation

to their left neighborsy,; andy,, respectively. The other
extracted signalg;; andygy, do not have a very high corre-
lation to any of the quasi source signals: the best its;
andsjs3, are plotted in the two lower middle panels. The
extracted signals can better be explained with linear com-

This mixture is highly nonlinear (cf. Fig. 4; it transforms
polar into Cartesian coordinates), but KTDSEP succeeds be-
causes; appears linearly iy ands, appears linearly ino

(to see this expand cosine and sine into their series). Linear

binations of subsets of mutually correlated quasi sources.TDSEP fails to extract both signals: the second source (that

Therefore, we combined all quasi sources that are correlatePPears as the rad|u§ in the mlxture') can Ilnearly.not be re-
with s7s3 to reconstrucyy. The result is shown in the lower constructed. We applied KTDSEP with a polynomial kernel
right panel which reaches a good fit (cetr 0.960), simi- of degree 5,
larly for y; and the other not shown extracted signals. Note, k(x,y) = (x"y +1)°,
that fory, andy, that matched; ands, already reasonably
well more quasi sources do not improve the result notably. calculatedd = 21 to be the dimensionality of the param-

It remains the question why the sought-after source sig- eter space and obtained the vectois ..., vo; € %2 by
nals appear so well among the extracted signals withoutk-means clustering. These points are marked-da the
much interference from their correlated quasi sources. Themiddle panel of Fig. 4. An application of TDSEP to the
answer has two parts: to begin with,ands, usually have  twenty-one dimensional parameter space yields nonlinear
the largest variance among the other quasi sources of theicomponents whose projections to the input space are de-
respective groups. When this is not the case (e.g. for verypicted in Fig. 5. Note, that the third and the eighth ex-
largeb; andbs in our mixture) our algorithm can fail. Sec- tracted signals reach very high correlations withand s,
ondly, we experienced in our experiments problems i§ (corr = 0.963, corr = 0.989). To select these two sig-
not scaled betweer1 and1. We think the reason for this  nals among the twenty-one extracted components in an un-
behavior is that by scaling between—1 and1 we assure  supervised manner we use the above mentioned heuristic
that the higher order monomials introduced by most of the approach that calculates the variances of the normalized sig-
components ofb have smaller variance than the compo- nals (mean equal to zero and absolute maximum equal to
nents containing:; andzy and hereby also favorably in- one). In Fig. 5 the right column shows a horizontal bar plot
fluencing the ratio between the variancesspfand s and of these variances. The two signals of interest are clearly
other quasi sources. Note, that this implies that kTDSEP ishighlighted through their large variances.



extracted signals variance separation. In fact, our algorithm would allow a software-
based correction of sensors that have nonlinear characteris-
tics, e.g. due to manufacturing errors. Clearly, KTDSEP is
only one BSS algorithm that can perform nonlinear BSS;
kernelizing other ICA/BSS algorithms will be left for future
work.
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