
Optimal Dyadic Decision Trees

G. Blanchard1, C. Schäfer1, Y. Rozenholc2, K.-R. Müller3,1

1 Fraunhofer First (IDA)

Kékuléstr. 7, D-12489 Berlin, Germany.

2 Applied Mathematics Department (MAP5)

Université René Descartes, 45, rue des Saints-Pères, 75270 Paris Cedex, France.

3 Computer Science Department

Technical University of Berlin

Franklinstr. 28/29 10587 Berlin, Germany

Abstract

We introduce a new algorithm building an optimal dyadic decision tree (ODT).
The method combines guaranteed performance in the learning theoretical sense and
optimal search from the algorithmic point of view. Furthermore it inherits the ex-
planatory power of tree approaches, while improving performance over classical ap-
proaches such as CART/C4.5, as shown on experiments on artificial and benchmark
data.

1 Introduction

In this work, we introduce a new algorithm to build a single optimal dyadic decision tree
(ODT) for multiclass data. Although outperformed in terms of raw generalization error
by recent large margin classifiers or ensemble methods, single classification trees possess
important added values in practice: they are easy to interpret, they are naturally adapted
to multi-class situations and they can provide additional and finer information through
conditional class density estimation. In this paper, we start with the a priori that we
accept to lose a little on the raw performance side in order to get these advantages as a
counterpart. Naturally, it is still desirable to have a method performing as well as possible
under this requirement. From this point of view, we show that our method outperforms
classical single tree methods.

The best known decision tree algorithms are CART [9] and C4.5 [19]. These methods
use an “impurity” criterion to recursively split nodes along the coordinate axes. This is
done in a greedy manner, i.e., at each node the split which locally yields the best criterion
improvement is picked. A large tree is grown this way, and then pruned using a complexity
penalty. As we shall see, one crucial difference of our algorithm is that it is able to find a

1

tree that globally minimizes some penalized empirical loss criterion, where the loss function
can be arbitrary and the penalty must be additive over the leaves of the tree. This is an
essential difference because the greedy way that CART/C4.5 builds up the tree can be
shown to yield arbitrary bad results in some cases (see [12], Section 20.9). As a counterpart
for being able to perform global minimization, the trees we consider are restricted to split
nodes through their middle only (albeit along an arbitrary coordinate), hence the name
“dyadic”, while CART/C4.5 consider arbitrary cut positions. However, our experiments
show that this disadvantage is positively compensated by the ability to perform an exact
search.

A more recent method to build (dyadic) trees has been proposed in [21, 22]. In the
first paper, the authors consider dyadic trees like ODT; but in contrast to CART and to
our own approach, the direction and place of the node splits are fixed in advance: every
direction in turn is cut in half. In the most recent paper, the same authors also consider
arbitrary cut directions (inspired by the conference version of the present paper [7]), and
prove very interesting minimax results for classification loss and a particular penalization
scheme. In the present work, we consider a penalization scheme different from the above
method, and a more general setting covering several possible loss functions.

The present ODT algorithm is inspired by [13], where a similar method is proposed
for regression in 2D problems when the design is a regular grid; in this setting oracle
inequalities are derived for the L2 norm. Oracle-type inequalities are performance bounds
that exhibit a form of automatic tradeoff between approximation error and estimation
error. In the more recent work [16], a related dyadic partition based method is used for
density estimation and convergence results are shown (also for the L2 norm). Finally, some
general oracle inequalities for square loss and bounded regression methods are found in [15],
and oracle inequalities for the pruning stage of CART have been proved in [14]. For our
new method, we prove oracle-type inequalities for several setups: for a pure classification
task we consider the classification error; for estimating the conditional class probability
distribution, we consider L2 norm and Kullback-Leibler (KL) divergence; finally for density
estimation, we also consider KL divergence. Oracle inequalities in general allow notably
to prove that an estimator is adaptive with respect to some function classes that are well
approximated by the considered models. We illustrate this property by deriving precise
convergence rates in the case where the target function belongs to a certain anisotropic
regularity class, that is to say, is more regular in certain directions than others, in which
case the algorithm adapts to this situation; this is a direct consequence of considering
possibly all split directions at each node of the tree.

From an algorithmic point of view, our paper contributes an improved approach with
respect to [13] and [16], by using a dictionary-based search which considerably reduces the
computational burden (although the full algorithm is arguably still only applicable from
low to moderate-dimensional situations). We demonstrate the practical applicability of
our algorithm on benchmark data, for which it outperforms classical single tree methods.

The paper is organized as follows: in Section 2 we introduce dyadic decision trees,
and define the estimation procedure via penalized empirical loss minimization. We then
precisely describe the exact procedure to solve this optimization problem. Section 3 is

2

devoted to establishing statistical guarantees for the method in different settings, and
showing its adaptation to anisotropy. In Section 4 we give experimental results for artificial
and real benchmark datasets. We conclude with a short discussion.

2 Algorithm: Setup and implementation

In the following we will first collect the necessary ingredients and definitions to analyze
dyadic trees and formulate the estimating functions considered. A suitable tree is selected
by means of empirical penalized cost minimization; we give an exact algorithm based on
dynamic programming to solve the optimization problem.

Let us first introduce some framework and notation. We consider a multiclass classi-
fication problem modeled by the variables (X,Y) ∈ X × Y , where Y is a finite class set
Y = {1, . . . , S} and X = [0, 1]d (in practice, this can be achieved by suitable renormaliza-
tion; essentially we assume here that the data is bounded. We do not cover the cases where
the input data is structured or non-numerical.) A training sample (Xi, Yi)i=1,...,n of size n is
observed, drawn i.i.d. from some unknown probability distribution P (X,Y). We consider
different possible goals, such as finding a good classification function or estimating the
conditional class probability distribution (abbreviated as ccpd in the sequel) P (Y |X). We
will also consider the case of density estimation where there is no variable Y : in this case
we assume that the distribution of X on [0, 1]d has a density with respect to the Lebesgue
measure and we want to estimate it.

2.1 Dyadic decision trees

Our method is based on piecewise constant estimation of the function of interest on certain
types of partitions of the input space X . A dyadic partition is defined as a partitioning of
the hypercube [0, 1]d obtained by cutting it in two equal halves, perpendicular to one of
the axis coordinates and through the middle point, then cutting recursively the two pieces
obtained in equal halves again, and so on, and stopping at an arbitrary point along every
such branch. Every piece of the partition thus obtained is then a dyadic parallelepiped,
that is, a cartesian product of intervals of the form [i

2k

(i+1)
2k) . Such a parallelepiped will

just be called cell in the sequel for simplicity. We emphasize that the coordinate index for
each split is arbitrary, that is, there is no prescribed order for the splits to be made. In
particular, a same coordinate can be used several times in a row for splitting while other
directions may not be used at all.

This construction is best envisioned under the form of a binary labeled tree, where
each internal node is labeled with an integer i ∈ {1, . . . , d} representing the direction
perpendicular to which the next split is made. To each node (internal or leaf) of the tree
is naturally associated a cell: [0, 1]d is associated to the root node and to every other node
is associated the “right” or “left” part of their father’s cell after it is split. The dyadic
partition is then obtained as the set of cells attached to the leaves of the tree. Similarly, a
piecewise constant function on a dyadic partition can equally be seen as a function defined

3

by a dyadic decision tree (where each leaf of the tree also contains the value of the function
on the corresponding cell). In the following, we will identify dyadic partitions and dyadic
trees and use these terms indifferently, although we should remark that the correspondence
is not one-to-one: different trees can lead to the same partition (consider for example a
regular grid-like partition where the splits can be performed in any order). In the sequel,
mainly for practical reasons, we will assume that there is an a priori upper limit kmax on
the number of times we can cut in a given direction to obtain a cell. In other words, along
any branch of the corresponding decision tree, each index i ∈ {1, . . . , d} can appear at most
kmax times (and therefore the depth of the tree is upper bounded by dkmax). We denote
Bkmax

the set of dyadic partitions satisfying this property. Note that kmax has to be fixed
before looking at the data but can nevertheless depend on the sample size n (typically in
a logarithmic way).

Denoting B some partition obtained in this manner, we set to approximate the ccpd
P (Y |X) by a piecewise constant function on cells b ∈ B by defining the following frequentist
estimator:

∀b ∈ B, ∀x ∈ b, f̂B(x, y) =
Nb,y∑
y Nb,y

, (1)

where y ∈ {1, . . . , S} is the class and Nb,y denotes the number of training points of class y

falling in cell b. For classification, we consider the plug-in estimator associated to f̂B, that
is, we predict the estimated majority class in each cell.

In the case of density estimation, we define instead

∀b ∈ B, ∀x ∈ b, f̂B(x) =
Nb

λ(b)
, (2)

where λ(b) denotes the Lebesgue measure of cell b.

2.2 Loss functions and model selection

The most important point is now to pick a suitable partition, which is a problem of model
selection. Defining what is a “good” model depends on the criterion used to measure the
fit of the estimator to the proposed goal. This criterion takes the form of a loss function
`(f, x, y) ∈ R which we want to be as small as possible on average; hence the target function
is defined as

f ∗ = Arg Minf∈F E [`(f,X, Y)] , (3)

where the minimum is taken over some suitable subset F of all measurable functions
(namely, ccpd functions, classifiers or density functions, according to the goal). Then, for

an estimator f̂ selected using the training sample, it is coherent to measure the closeness
of f̂ to f ∗ by the means of its excess (average) loss:

L(`, f̂ , f ∗) = E
[
`(f̂ , X, Y)

]
− E [`(f ∗, X, Y)] .

In the sequel, we will consider several possible loss functions which seem natural can-
didates:

4

(1) Misclassification loss for classification: for a classifier f(x),

`class(f, x, y) = I{f(x)6=y}. (4)

In this case, the corresponding minimizer f ∗
class of the average loss among all functions from

X to Y is given by the Bayes classifier (see e.g. [12])

f ∗
class(x) = Arg Maxy∈Y P (Y = y|X = x).

(2a) Square loss for ccpd estimation: here, for a ccpd f(x, y), consider f(x, ·) as a
vector in R

S and for y ∈ Y , denote y the S-dimensional vector which has 1 as the y-th
coordinate and 0 elsewhere; we then define

`sq(f, x, y) = ‖f(x, ·)− y‖2 = (1− f(x, y))2 +
∑

j 6=y

f(x, j)2. (5)

In this case it is easy to see that the target is the true ccpd f ∗
ccpd(x, y) = P (Y = y|X = x).

The excess loss is then the averaged squared euclidian distance in R
S:

L(`sq, f, f ∗) = EP (X)

[
‖f(X, ·)− P (Y = ·|X)‖2

]
. (6)

(2b) Minus-log loss for ccpd estimation: for a ccpd f(x, y),

`ml(f, x, y) = − log(f(x, y)), (7)

(which can possibly take the value +∞); in this case, it can be checked easily that the
target is again the true ccpd f ∗

ccpd = P (Y = y|X = x). Furthermore, the excess loss is then
the conditional KL divergence:

L(`ml, f, f ∗
ccpd) = EP

[
log

(
P (Y |X)

f(X,Y)

)]
def
= KL(P, f |X). (8)

(3) Minus-log loss for density estimation: for a density function f(x), define

`mld(f, x) = − log(f(x));

then the target f ∗
dx is the true density dP/dλ(x) wrt. the Lebesgue measure and the excess

loss is the KL divergence:

L(`mld, f, f ∗
dx) = EP

[
log

(
dP/dλ(x)

f(x)

)]
= KL(P, f). (9)

When we fix a certain partition B, it can be readily checked that the estimator defined
by (1) corresponds to empirical loss minimization for cases (2a) and (2b) above, over
the set of piecewise constant ccpd functions on pieces of the partition B. This estimator
can therefore be seen either as a maximum likelihood or a least squares procedure (which

5

coincide on a fixed B). Similarly, the plug-in classifier derived from this estimator corre-
sponds to empirical classification loss minimization (case (1)) over the set of piecewise
constant classifiers on the pieces of the partition; and finally the density estimator (2) is
obtained by empirical loss minimization in the case (3) (here again maximum likelihood).

We now select a partition using the following penalized loss selection method: find

B̂ = Arg MinB∈Bkmax

1

n

n∑

i=1

`(f̂B, Xi, Yi) + γ|B|, (10)

where |B| denotes the number of elements of partition B (the number of leaves of the dyadic
tree), and γ is a regularization constant.

It is important to note that, while the estimators f̂B corresponding to empirical loss
minimization on a fixed B coincide in cases (1), (2a), (2b), the model selection procedure
will lead to choosing different partitions in these three cases because the loss functions are
different. Therefore, the partition selected is really adapted to the fitting criterion used.

In the next sections, we present an algorithm to solve exactly the minimization problem
(10) in practice; we then proceed to deriving theoretical properties ensuring the good
statistical behavior of this estimator. Namely, we prove that for the four choices of loss
functions mentioned above, choosing the regularization constant γ larger than a function
of the form c

n
(or c log n

n
depending on the setting), results in an adaptive choice of the

partition, in the sense that it finds an automatic tradeoff between approximation error and
estimation error.

2.3 Exact cost minimization algorithm

The CART algorithm and many of its variants also consider a minimization problem of
the form (10); however the cost function is not minimized globally, but only through an
approximate, step-wise greedy procedure where a large tree is constructed in a top-down
way by choosing at each node the split yielding the best local improvement in the loss
function. Note that case (2b) corresponds to the “entropy criterion” in CART and (2a)
to the “Gini criterion”. In CART, the penalized criterion (10) is then minimized over
subtrees of this large “greedy” tree by suitable pruning.

In contrast, by constraining our method to dyadic trees, we are able to propose an
algorithm to compute the exact optimum of eq. (10). The underlying idea of the method
was initially proposed by Donoho [13] in the case of 2D data, when the data points form a
regular grid. Here we put forward an additional improvement by considering a dictionary-
based approach to yield better computing efficiency for arbitrary data in higher dimension.

The principle of the algorithm is based on the fact that the function to be optimized –
the empirical loss plus the penalty – is additive over pieces of the partition:

1

n

n∑

i=1

`(f̂B, Xi, Yi) + γ|B| =
∑

b∈B

(
γ +

1

n

∑

i:Xi∈B

`(f̂b, Xi, Yi)

)
def
=
∑

b∈B

E({b}),

6

where we have denoted f̂b the constant value of f̂B on cell b; note that since this value only
depends on observations falling in cell b, it does not depend on the geometry of the rest
of the partition and thus makes it well-defined. In the equation above, we have implicitly
defined E({b}) as the (penalized) cost function restricted to a specific cell b, and more

generally for any family of disjoint cells B̃ ⊂ B, we define the cost function restricted to
this sub-partition as

E(B̃) =
∑

b∈ eB

E({b}).

Let us call the depth of a cell the number of cuts necessary to obtain that cell: it
effectively corresponds to the depth of the cell within any dyadic decision tree where this
cell can appear. To understand the principle of the method, let us assume for a moment
that we know, for every cell of depth 1, the optimal dyadic partition for the objective
function restricted to that cell. Then, because of the additivity property, the optimal
partition for the cell of depth 0 (i.e. [0, 1]d) is either [0, 1]d itself, or the union of the
optimal partitions of the two sub-cells of depth 1 obtained when the “father-cell” is cut
in half along one of the axes. We therefore only have to find the best among these d + 1
possibilities (no cut, or a cut along one direction among all possible d, in which case we
use our knowledge about the cells of depth 1 and the additivity property). In a similar
manner, if we know the optimal partitions for all the cells at a certain depth k, we can
compute the optimal partition for any cell at depth k − 1.

Now, we can reverse this reasoning and find the optimal partition by dynamic program-
ming. Remember we fixed a priori a maximum number of cuts kmax in a given direction
along any branch of the tree defining the partition. Then we obviously know the optimal
partitions for cells at depth dkmax since they cannot be divided further. Using a bottom-up
approach, it is therefore possible to compute partitions for cells of depth dkmax−1, dkmax−2,
and so forth, until we compute the optimal partition for the cell of depth 0, and we are
done.

This approach, however, requires to compute the optimal partitions for all cells at
all depths, which rapidly results in a combinatorial explosion: there are already 2dkmax

smallest cells at depth dkmax, and even more cells for intermediate depth values, due to
the combinatorics in the choice of cuts. On the other hand, we can observe that a lot
of these cells, in particular at higher depths, do not actually contain any training point,
simply because there are more cells than observations. For an empty cell, the optimal
partition is obviously trivial (it is reduced to the cell itself: naturally, no cut is necessary).
As a consequence, it is only necessary to keep track of the non-empty cells at each depth
level in the bottom-up procedure. This can be done by maintaining a dictionary Dk of
non-empty cells b of depth k along with their optimal partition T ∗

b , and iterating the
bottom-up procedures only on cells of Dk in order to build Dk−1. The resulting algorithm
is summarized in table 1.

It is straightforward to prove that at the end of each loop over b, DD−1 contains all
non-empty cells of depth D − 1 with the corresponding optimal local dyadic partitions.
Therefore at the end of the procedure D0 contains the tree minimizing the optimization

7

Initialization: construct dictionary Ddkmax
:

Loop on i = 1, . . . , n:

For observation Xi, find the minimal cell bi (hypercube of edge length 2−kmax) con-
taining Xi and store it in Ddkmax

along with the the trivial partition T ∗
bi

= {bi}.
Loop on depth, D = dkmax, . . . , 1:

Initialize DD−1 = ∅.
Loop on elements b ∈ DD:

Loop on dimensions k ∈ {1, . . . , d}
If it exists, let b′ denote the sibling of b along dimension k. If there is no such b′,
just jump directly to the next loop iteration.

Look up b′ in dictionary DD; if it is found, retrieve the optimal partition T ∗
b′ ;

otherwise we have T ∗
b′ = {b′}.

Let u denote the direct common ancestor-cell of b and b′ (i.e. u = b ∪ b′).

If u is already stored in DD−1 with a (provisional) T ∗
u , then replace

T ∗
u ←− Arg Min (E(T ∗

u), E(T ∗
b ∪ T ∗

b′) = E(T ∗
b) + E(T ∗

b′)) .

If u is not yet stored in DD−1, store it along with the provisional

T ∗
u ←− Arg Min (E({u}), E(T ∗

b ∪ T ∗
b′) = E(T ∗

b) + E(T ∗
b′)) .

Endloop on k

Endloop on b
Endloop on D

Table 1: The dictionary-based ODT algorithm. E(T) denotes the objective function re-
stricted to a sub-partition T .

8

Figure 1: Illustrative example of an optimal partition that contains an empty cell.

problem (10).
We want to emphasize that even if the dictionary at every depth only contains the opti-

mal partitions of non-empty cells, these partitions may themselves contain empty (sub)cells.
An example to illustrate this statement is given in Figure 1. In the classification case, for
these empty cells there is no natural class assignment. Several strategies like random
class assignment or majority vote of all neighbor cells can be implemented. In our own
implementation we gave any empty cell the same label as its parent node.

Note finally that it is straightforward to generalize this procedure to the case where
instead of a uniform kmax we want to fix a maximum number of cuts depending on the
direction, kmax(i), i = 1, . . . , d. From a practical point of view nevertheless, the determi-
nation of kmax(i) is a delicate problem, because this parameter plays a crucial role in the
computational resources required. On the other hand, the statistical analysis in Section
3 below shows that, since the penalization prevents overfitting, choosing large values for
kmax can only benefit the final accuracy. Therefore, as a general principle one should allow
kmax to be as high as available computational power allows. One should furthermore take
advantage of the structure of the data: for example, if dimension i takes only j (equis-
paced) discrete values, then one should choose (if possible) kmax(i) = dlog2 je, since this
value is sufficient to completely separate the data along this dimension, so that further
splitting will never be necessary.

A variation: monotone transform quasi-invariance via quantile rescaling. A
a nice characteristic of CART/C4.5 is that these algorithms are “quasi-invariant” with
respect to monotone transformation of the coordinates. There is no invariance in a strict
sense since the thresholds for the cuts in CART/C4.5 are picked as midpoints between
reordered successive coordinates of examples; while monotone transformations preserve the
order, they do not generally preserve midpoints. However, when the number of examples is
large, this gets very close to actual invariance, and is often cited as a quality of CART/C4.5.

A possible criticism of ODT is that it loses this quasi-invariance property. Furthermore,
if the data is initially only linearly rescaled to fit in the unit cube, then the dyadic cuts can
be badly adapted to the data. In particular, if along a certain direction the data distribution
is very skewed, the first splits along that direction can be quite uninformative if a majority

9

of the data remain on the same side of the split. To alleviate this difficulty, we propose a
variant of the algorithm where the split positions, instead of being arithmetically dyadic,
are initially fixed instead at the dyadic quantiles of the empirical distribution of the (whole)
training data along each direction. We call this preprocessing “quantile rescaling” (it is
essentially equivalent to performing what is called the uniform marginal transformation in
[12], Section 20.1). While we do not have theoretical support from a statistical point of
view for this procedure (the results of Section 3 below do not carry over immediately to
this variant since the position of the splits are now data-dependent), it has the interesting
feature of considering generally better balanced first splits and being quasi-invariant with
respect to monotone transforms of the coordinates. We point out, however, that, since
the possible split positions must be fixed initially from the whole training data before
constructing the tree, the balancedness of the splits is only strictly ensured for the first
split; the final tree is not a “median tree” (as defined for example in [12], Section 20.3).

For this variant, the choice of kmax = dlog2 ne ensures that the data can be totally
separated by splitting only along any one of the dimensions. Any larger value for kmax

cannot lead to any improvement; therefore this value should be picked if computational
resources permit it.

2.4 Algorithmic complexity

We now study the complexity of this procedure with the following result:

Proposition 1. For fixed training sample size n ≥ 1, input dimension d ≥ 1, maxi-
mum number of splits along each dimension kmax ≥ 1, the complexity C(n, d, kmax) of the
dictionary-based algorithm satisfies

O
(
dkd

max

)
≤ C(n, d, kmax) ≤ O

(
ndkd

max log(nkd
max)

)
. (11)

Proof. For a given training point (Xi, Yi), the exact number of cells (at any depth) that
contain this point is (kmax +1)d. To see this, note that there is a unique cell b0 of maximal
depth dkmax containing (Xi, Yi). This cell can be characterized by a set of binary lists of
length kmax, say Lk(b0), 1 ≤ k ≤ d. Each list encodes whether after each successive dyadic
cut in a given direction, the “left” or “right” part of the cell being cut is kept. Again, note
that the order of “interlacing” for the cuts along two different directions does not change
the final cell, so that only the set of lists characterizes the cell.

Then, any other cell b containing the same data point must be an “ancestor” of b0 in
the sense that for all 1 ≤ k ≤ d, Lk(b) must be a prefix list of Lk(b0). Cell b is therefore
uniquely determined by the length of the prefix lists |Lk(b)|, 1 ≤ k ≤ d; for each length
there are (kmax + 1) possible choices, hence the result.

Since the algorithm must loop at least through all of these cells, and makes an additional
loop on dimension for each cell, this gives the lower bound. For the upper bound, we bound
the total number of cells for all training points by O(nkd

max). Note that we can implement
a dictionary D such that search and insert operations are of complexity O(log(|D|)) (for

10

example an AVL tree, [1]). Coarsely upper-bounding the size of the dictionaries used by
the total number of cells, we get the announced upper bound.

Now reasoning in terms of logarithmic equivalence, we retain nkd
max as the leading

factor of the upper bound on complexity. We see that the complexity of the dictionary-
based algorithm is still exponential in the dimension d, although it is much better than
looping through every possible cell, which gives rise to a complexity of order 2d(kmax+1) .
(Note that a brute-force approach that would consider a loop on trees instead of cells would
have an even much higher complexity.)

To fix ideas, note that kmax should be, at most, the minimum integer value such that
the projection of the training set on any coordinate axis is totally separated by the regular
one-dimensional grid of size 2−kmax . If the distribution of X has a bounded density wrt.
Lebesgue measure, kmax should then be of order log(n) and the complexity of the algorithm
of order n logd(n) (in the sense of logarithmic equivalence). By comparison, looping through

every possible cell would yield in this setting a complexity of order 2d(kmax+1)
log≈ nd. Even

if this is a noticeable improvement, it means that the algorithm will only be viable for
low dimensional problems, or by imposing restrictions on kmax for moderate dimensional
problems. Note however that other existing algorithms for dyadic decision trees [21, 22, 16]
are all of complexity 2dkmax , but that the authors choose kmax of the order of d−1 log n. This
makes sense in [21], because the cuts are fixed in advance and the algorithm is not adaptive
to anisotropy. However, in [16] the author notices that kmax should be chosen as large as
the computational complexity permits to take full advantage of the anisotropy adaptivity.

3 Statistical guarantees

We now turn to a statistical study of penalized estimators of the form (10). Here we
consider only the simplest version of the algorithm, not the monotone quasi-invariant
variation.

3.1 Oracle-type inequalities

In this section we will show that the estimators we consider satisfy an oracle-type inequality,
that is to say, that they perform almost as well, in terms of excess loss L , as the best
attainable tradeoff between the penalty and the approximation of the target by piecewise
constant functions on a dyadic partition. Such a strong statistical guarantee depends
crucially on the fact that the algorithm uses an exact search strategy. It could not hold,
for example, for CART/C4.5 where the greedy algorithm used can lead to arbitrary bad
results in some situations (see [12], Section 20.9). Weaker forms of oracle-type bounds
have been shown for CART/C4.5 for regression in [14], but they concern only the pruning
stage of these algorithms: if the tree grown initially is very inadequate, then pruning it will
not yield any substantial performance improvement. In particular, the above cited weaker

11

inequalities do not allow to derive convergence rate results (or even consistency), which
can be inferred for ODT as will be shown below in Section 3.2.

We obtain these bounds by an application of a theorem of Massart [17], and a gener-
alization thereof appearing in [6]. As a consequence the bounds obtained for the different
types of loss functions all have a very similar form, but the assumptions and the constants
differ slightly, hence we thought best to sum up these properties in the form of the following
“theorem template”:
Theorem template. Denote f ∗ as in (3). Denote BK the set of dyadic partitions B such
that the number of cuts perpendicular to any fixed axis coordinate required to obtain any
cell of B is at most K. Then for a suitable choice of γ, the estimator f̂ defined by (10)
satisfies the following oracle-type inequality:

E
[
L(`, f̂ , f ∗)

]
≤ 2 inf

B∈BK

inf
f∈CB

(L(`, f, f ∗) + 2γ|B|) +
C

n
, (12)

where CB denotes the set of ccpd functions (resp. classifiers, density functions) that are
piecewise constant on the cells of B. The expectation on the left-hand side of the above
inequality is with respect to the drawing of the i.i.d. training sample (Xi, Yi)i=1,...,n.

This theorem is satisfied by the three mentioned loss functions under the following
sufficient conditions:

• Case (1), classification loss:
(A1) There exists η0 > 0 such that γ ≥ C1(log(d) + log(S))/(η0n) and the following
identifiability assumption holds:

∀x ∈ [0, 1]d, P (Y = f ∗
class(x)|X = x)− max

y 6=f∗(x)
P (Y = y|X = x) ≥ η0. (13)

• Case (2a), square loss for ccpd estimation:
(A2a) γ ≥ C2(S

2 + log(d))/n.

• Case (2b), minus log-likelihood loss for ccpd estimation:
This case requires somewhat particular treatment due to some technicalities arising
from the fact that the loss function could potentially be infinite if the estimated ccpd
can take the value zero. Put ρ = n−3 and assume n2

log n
≥ max(5, S). Replace f̂ by

the estimator obtained in the following way:

– For each i = 1, . . . , n, with probability ρ replace label Yi by an independent,
uniformly drawn label on Y .

– Define B̂ through (10) using the modified labels.

– Define the final estimator as f̂ρ = (1− Sρ)f̂ bB + ρ (still using modified labels).

Then the theorem is satisfied for f̂ρ with:

(A2b): γ ≥ C3(S + log(d)) log(n)/n, and the second factor 2 in (12) is replaced by
4.

12

• Case (3), minus log-likelihood loss for density estimation:
We make some modifications similar to case (2b). Put ρ = n−3 and assume n2 ≥ 5.

Replace f̂ by the estimator obtained the following way:

– For each i = 1, . . . , n, with probability ρ replace example Xi by an independent,
uniformly drawn datapoint on [0, 1]d.

– Define B̂ through (10) using the modified observations.

– Define the final estimator as f̂ρ = (1− ρ)f̂ bB + ρ (still using the modified data).

Then the theorem is satisfied for f̂ρ with:

(A3): γ ≥ C4(dK + log n) log(d)/n, and the second factor 2 in (12) is replaced by 4.

Remarks and comments.

• Recall that for classification loss (1), L(`class, f̂ , f ∗) is the excess loss with respect
to the Bayes classifier. For the log-likelihood loss (2b) (resp. (3)), it is the average
conditional KL divergence of the estimate to the true ccpd (resp. probability distri-
bution P , provided P ¿ λ, where λ is the Lebesgue measure); and for the square
loss (2b) it is the averaged square norm from the estimate to the true ccpd when
considered as vectors in R

S.

• Massart’s approach results in having a factor A > 1 in front of the bias term in the
right-hand side of (12). Here we decided to fix A = 2 for a simpler result. One could
make A as close to 1 as wished, but there is a tradeoff: the required lower bound on
the penalty goes to infinity as A→ 1 .

• Note that only in case (3) does the choice of K = kmax have an influence on the
choice of the regularization constant γ and hence on the final bound. In all the other
cases we could, at least in theory, choose K = ∞ without altering the result. In
general, it seems reasonable to choose K = kmax = O(log n). It is coherent with our
complexity analysis of Section 2.4; and for case (3), it ensures that the regularization
constant γ remains of order log(n)/n. Note that there is no contradiction in using
the above theorem with K = kmax depending on the sample size n, since the result
is non-asymptotic, hence holds for any fixed n.

• With the above choice for K(n), we ensure in particular the asymptotic consistency
of the procedure. This is because we can approximate any measurable function by a
piecewise constant function on a fine enough regular dyadic grid. For n big enough
this grid will belong to BK(n) . Hence for n big enough we can make both the bias and
the error terms in (12) as close to zero as wanted (in case (3), this holds provided the
probability density P has a density with respect to the Lebesgue measure, of course).

• However, the real interest of oracle inequalities is that they lead to much stronger
results than mere consistency: they state that our algorithm indeed catches in these

13

various cases a good tradeoff between approximation and estimation error. In fact,
this tradeoff is even optimal in order of |B| and n for cases (1) and (2), in the sense
that if the target f ∗ truly belongs to one of the dyadic partition models, the estimator
reaches the minimax convergence rate order O(|B|/n) (we miss this order by a log(n)
factor in the case of log-likelihood loss). More interestingly, when the target f ∗

does not belong to any of the models (which is to be expected in general), then the
oracle inequality allows us to derive convergence rates of the estimator towards its
target, which will depend on the behaviour of the bias inff∈CB L(`, f, f ∗) as the size
of B grows; that is, how well the dyadic partition models approximate the target
function. The important point here is that since the definition of the estimator itself
is independent of this information, the algorithm is adaptive to this regard.

• In particular, the most prominent consequence of these theoretical properties is that
our algorithm is adaptive to anisotropy, which means that if the target function
P (Y |X) is more regular in one axis direction than another, this property will be
“caught” by the algorithm – because the target is best approximated by dyadic trees
that have more cuts in the less regular direction (i.e. “elongated” cells) and the
selected tree will be of this type. We give a more formal argument for this claim in
the next section.

• In cases (2b) and (3), the modifications made to the algorithm are needed for techni-
cal reasons, mainly to avoid that the estimated probability takes a zero value (which
could lead to infinite loss). While this makes us lose somewhat on the esthetical side
of the result, note that the actual change to the algorithm is practically non-existent
since we take a very low value for ρ = n−3 – this exact value is somewhat arbitrary
and was chosen to illustrate that it is small; in particular the average number of
training datapoints altered by the procedure is then 1/n2.

• The results obtained for classification loss (1) and square loss (2a) should not be con-
sidered as utterly novel as related results were known (see [17] and [15]) for bounded
regression in more general settings. Still, it is worth noting that the penalty term
behaves in O(n−1), which is to be constrasted to uniform bounds approaches (such as
classical VC-theory in the noisy classification case) that result in a penalty of higher

order O(n− 1

2) . This improvement is due to a so-called “localized” approach in the
treatment of the estimation error in Massart’s theorem. (The localized approach has
also appeared in numerous recent works on statistical learning.) However, in the case
of the classification loss, this requires the additional identifiability assumption (13).

• Up to our knowledge the results for KL divergence (2b) and (3) are new insofar
they include the KL loss on both sides of the inequality whereas previous results
for density estimation using histograms [2, 10] only involved the Hellinger distance
on the left-hand side and had important additional restrictions on the true density
(such as being lower-bounded by some constant). Finally, we put all these cases

14

in the framework of Massart’s generic model selection theorem which allows us to
obtain more compact and elegant proofs.

3.2 Adaptation to anisotropy

In this section we demonstrate the adaptation of the algorithm to anisotropy by studying
its rate of convergence for some anisotropic smoothness function classes. For simplicity,
we will only consider here the case of square loss which is the easiest to study. Also to
lighten notation we will assume S = 2, so that in this case L(`sq, f, f ∗) = 2E [(f − f ∗)2] =
2 ‖f − f ∗‖22,P , identifying f with f(x, 1). We are therefore reduced to a problem of bounded
regression.

We consider the following anisotropy classes:

Definition 1. For a collection or positive numbers δ = (δi)i=1,...,d and x ∈ [0, 1]d, denote
B∞(x, δ) = {y ∈ [0, 1]d

∣∣ ∣∣y(i) − x(i)
∣∣ ≤ δi, i = 1, . . . , d}.

For a given distribution P on [0, 1]d, and p, q ∈ (0,∞], define

Hp,q(f, δ) = EX

[
EX′

[
(f(X)− f(X ′))

q |X ′ ∈ B∞(X, δ)
]p/q
]1/p

,

where X,X ′ are independent variables of with distribution P . Furthermore, for α ∈ (0, 1]d ,
define H(P, p, q, c, α) the set of measurable functions [0, 1]d → [0, 1] such that for any δ,

Hp,q(f, δ) ≤ c
∑

i

δαi

i .

Note how H(P, p, q, c, α) can be considered as a weak anisotropic Hölder class: if a
function f is Hölder with exponent αi as a function of the i-th coordinate variable, then
it belongs to H(P,∞,∞, c, α). Since H(P, p, q, c, α) ⊂ H(P, p′, q′, c, α) as soon as p ≥ p′

and q ≥ q′, the classes we consider are strictly larger than the “strong” anisotropic Hölder
class corresponding to p = ∞, q = ∞. We now establish that the rate of convergence of
our algorithm is adaptive to anisotropy in the sense that its convergence rate depends on
the anisotropy class of the target function, without knowing this class in advance.

Theorem 1. Let p ∈ [2,∞], c > 0, α ∈ (0, 1]d be fixed; suppose f ∗ ∈ H(P, p,∞, c, α).

Assume kmax = log2 n. Denote f̂ the estimator defined by (10) with the square loss function.
Then the following holds under assumption (A2b):

E

[∥∥∥f̂ − f ∗
∥∥∥

2

2,P

]
≤ Cdn

2ρ
1+2ρ , (14)

with ρ−1 =
∑

i α
−1
i and Cd in a factor depending only on d and γ.

Moreover, if P is absolutely continuous with respect to the Lebesgue measure λ, with
0 < m < dP

dλ
< M , then for any for any p, q ∈ [2,∞] such that f ∗ ∈ H(P, p, q, c, α),

the above property holds with the factor Cd replaced by M
m

C ′
d , where C ′

d is another factor
depending only on d and γ.

15

Comments. A related result (which inspired the present one) was obtained by Donoho
[13], who considered very closely related anisotropy classes in the case of regression with
Gaussian white noise, fixed equispaced design of datapoints, and when P is the Lebesgue
measure. In the above result the noise setting for classification is different and we consider
a more general case for P (X) which can be arbitrary, with random design of datapoints;
the price for this generality is some limitation on the parameters p, q. Using refined Haar
wavelet techniques that are quite dedicated to the Lebesgue measure, Donoho obtained
the same rate of convergence as the above for classes of functions comparable to ours,
with p, q > (ρ + 1/2)−1. In the case considered above we see that when P has bounded
density with respect to Lebesgue measure, we assume p, q ≥ 2 > (ρ + 1/2)−1 which is
stronger than Donoho’s condition but quite close. For arbitrary P , we have to assume
q = ∞, p ≥ 2 which is strictly stronger (but weaker than a Hölder condition). Donoho
also proves that this rate of convergence is minimax for the Gaussian noise setting and
we believe his argument for the lower bound can be carried over without much changes
to the ccpd estimation setting, which would entail that the rate is also minimax in the
present setting. The same rate of convergence has been shown to be minimax for density
estimation with Hellinger loss for strong anisotropic Hölder classes in [2].

Here we concentrated on rates of convergence that can be deduced from the oracle
inequality for the square loss. For classification loss, we note that very recently Scott and
Nowak [22] have obtained, for a related penalized dyadic tree method (with a penalty
function different from what we consider here), very interesting minimax results.

4 Experiments

We demonstrate the ODT method using first some artificial and then real-world benchmark
data. For the artificial data, we used the entropy loss criterion; for the other datasets, the
classification error loss.

4.1 Artificial data

Illustration of the general properties of ODT. We first present illustrative datasets
in 2D to explore the behavior of ODT in various different setups: ODT can handle equally
well

• multi-class problems (Fig. 2-left);

• unbalanced class priors (Fig. 2-middle);

• anisotropic situations as illustrated in Fig. 2-right.

These different examples highlight the versatility of ODT.

16

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2: Left: Solution in a four class setting. Middle: Solution obtained for an extremely
unbalanced problem. The small class of interest (8 points) is concentrated in two regions.
Right: Solution obtained for an anisotropic situation where the true boundary separating
the classes is defined by two straight lines with small, but non-zero, inverse slope.

Choice of γ. The only free parameter of the ODT is the penalization multiplier γ, that
is introduced in eq.(10). Unfortunately, a precise value of this constant cannot be directly
derived from our theoretical study, which only provides a lower bound for γ to ensure
rigorously that the oracle-type bound holds . What we expect qualitatively is that the
theoretical lower bound on γ – although it is only a sufficient condition, hence probably
too conservative – gives us at least the correct behavior for γ as a function of the sample
size n (in particular since it results in the minimax rates in n within each model) that
is, O(n−1) (we disregard here the additional log(n) in some of the settings in order to
make this qualitative discussion simpler). This suggests to pick a penalization multiplier
of the form γ = κ/n . In Fig.3-right we show the training and test error on an example as
a function of κ. Obviously, an unappropriate choice of κ yields over- resp. underfitting.
Fig.3-left depicts the tree solution at the optimal penalization level.

Of course, we do not expect that there exists a “universally good” optimal value for
κ : the lower bound in the theory suggests that κ should also possibly depend on other
factors. In practice, we follow the common use of selecting κ via cross-validation. If we
trust the qualitative interpretation of the theory exposed above, we nevertheless expect
that a ‘good’ choice for κ should be generally found at a similar range of values regardless
of the sample size.

In particular, it does not appear necessary in practice to scan the full potential param-
eter range of κ. In the case depicted in Fig.3-right one can see that the test error appears
stable and small for κ between 1 and 4 and in our other experiments the value for κ picked
by cross-validation was in that same range. For practical purposes, we simply recommend
the rule of thumb κ = 2 as default setting for a 2-class problem.

Robustness. We now investigate the robustness properties of ODT and compare it to
the results obtained using an SVM. For this we consider two different 2D classification

17

problems: in the first one the two classes are separated by a circle; this is a situation
favouring the SVM versus ODT since ODT must approximate the separating line only us-
ing rectangular boxes. In the second example the classes are configured in a checkerboard
pattern with dyadic boxes which should, on the contrary, favor ODT. These two examples
are displayed on Fig. 4. To test the robustness of both procedures we explore two kind
of data degradation: (i) adding nuisance dimensions of pure noise and (ii) flipping an in-
creasing number of training example labels. These two types of degradation are combined,
giving rise to 16 different setups for each classification problem.

Table 2 shows the results obtained for ODT and SVM with Gaussian RBF kernel. Note
that for the SVM, the free parameters (regularization constant C and kernel width σ2) were
optimized on the test set and separately for each setup, which gives a further advantage to
the SVM. By contrast, we used a fixed value of κ = 1.25 for ODT on all the setups; this
value was determined by a few preliminary test runs.

Unsurprisingly, in the noiseless setting SVM outperforms ODT for the ’circle’ example
and this situation is reversed in the ’checkerboard’ example. However, as expected ODT is
extremely robust to additional noisy dimensions: in fact for 4-6 additional noisy irrelevant
dimensions, ODT does as well or better than the SVM even in the circle example and for
low to moderate flipping noise. For a high flipping noise (20%) the SVM seems however
to gain again some edge over ODT in the circle example. In the checkerboard case, the
SVM outputs a completely irrelevant classifier as soon as there are extra noisy dimensions,
whereas ODT is as expected extremely robust with respect to these noisy dimensions. It
suffers more noticeable performance loss with increasing flipping noise but still outputs a
much more informative classifier than the SVM.

4.2 UCI repository data

After having studied the general properties of the ODT algorithm for illustrative artificial
settings, we will now study its properties on benchmark data. We choose 6 lower dimen-
sional data sets from the UCI repository1 and compared ODT with C4.5, Random Forest
[8] and prior results from [20]. Table 3 presents a summary of the datasets, the values of
kmax used for ODT and the computation times for ODT.

We consider 3 variations of ODT: the simplest version with a fixed value of the penal-
ization constant κ = 2; a version where we choose κ by cross-validation on a 11-point grid
ranging from 0.3 to 4; and a third version combining the quantile rescaling variation (see
Section 2.3) and cross-validated choice of κ.

From the result shown in Table 4 we can draw the following conclusions:

• The ODT method outperforms or is on par with C4.5 in all of the 6 tested bench-
marks when the regularization factor κ is chosen by cross-validation and the quantile

1We use some transormed versions of these datasets as used in [20] and available at
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm . The original datasets have
been transformed into binary classification tasks and 100 divisions of the data into training and test
samples are fixed for comparison purposes.

18

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
0

0.2

0.4
test error

0 1 2 3 4 5
0

0.2

0.4
train error

Figure 3: (Left:) One example of the structure of the classification problem that we use for
this experiment. The depicted solution is obtained for the optimal value of the penalization
constant κ = nγ. (Right:) For every value of κ we generate 250 observations of the setting
in the left plot for training and 5000 observations as test set. The plots show the training
and testing error as a function of the penalization constant κ. The solid lines denote the
means, whereas the dashed lines show standard deviations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4: The two artificial classification problems and an instance of the output of the
ODT algorithm: (left) ’circle’ example, (right) ’checkerboard’ setup. In the middle we
show a cameo of the true class separations.

19

Dataset Classifier # dim 0% flips 2% flips 10% flips 20% flips

Circular

SVM

2 2.0±0.6 2.5±0.8 4.2±1.4 6.7±2.6

4 4.8±0.8 6.2±1.0 8.2±1.3 12.5±2.2

6 9.0±1.0 9.7±1.2 13.2±1.4 19.1±2.0

8 12.7±1.2 13.8±1.3 17.8±2.0 24.0±2.3

ODT

2 7.3±2.0 8.1±2.7 11.2±3.3 18.3±2.9

4 7.9±2.2 8.8±2.7 13.2±3.9 23.7±5.0

6 8.5±2.7 9.2±3.0 15.0±4.5 27.1±4.1

8 9.1±2.9 10.4±3.1 17.2±4.4 32.0±6.1

Checkerboard

SVM

2 16.1±1.4 17.4±1.5 22.3±1.8 28.5±2.4

4 47.8±0.8 47.8±0.8 48.0±0.7 48.6±0.6

6 49.4±1.0 49.5±0.9 49.7±1.0 49.7±0.9

8 49.7±0.8 49.8±0.9 49.8±0.8 49.6±0.9

ODT

2 0.7±1.3 1.1±1.8 4.3±3.1 14.3±4.8

4 0.7±1.3 1.2±1.9 6.4±4.0 21.8±6.2

6 0.7±1.3 1.5±2.1 8.5±4.3 29.9±7.8

8 0.8±1.5 1.7±2.2 11.3±4.9 37.3±7.7

Table 2: Results of the ODT and of the SVM for two artificial examples, with degradation
of the data by extra noisy dimensions and label flipping on training examples. For each
setup, we consider 50 repetitions of a training set of size 250 and a test set of size 5000.
The two algorithms are trained and tested on the same data sets. Reported: mean error
and standard deviation in percent.

20

dim. train size kmax ODT comp. time log10(Nb of cells)
banana 2 400 14 0.2 s 4.8
breast cancer 9 200 1-4 30s 6.3
diabetes 8 468 3 180s 7.0
flare-solar 9 666 1-3 3s 5.3
thyroid 5 140 5-6 10s 6.0
titanic 3 150 1-2 0.02s 2.2

Table 3: Information on the datasets: dimensionality, training set size, value of kmax in the
experiments, computation time of one ODT run, decimal logarithm of the total number of
constructed cells in the run of the algorithm. When a range is present for kmax, it indicates
that we have chosen a dimension-dependent kmax(i) following the guidelines indicated at
the end of Section 2.3. The computation times have been obtained using a 2.2 Ghz AMD
Opteron processor.

rescaling version is used.

• When we use the fixed factor κ = 2, ODT outperforms or is on par with C4.5 in 4 out
of 6 tested benchmarks. Although this is certainly not enough evidence to conclude
a definite superiority of ODT in this case, it indicates at least that the default choice
for κ generally already provides very decent results.

• Cross-validation for κ and the quantile rescaling generally add a performance im-
provement; this is more or less significant depending on the datasets. The quantile
rescaling appears to yield a statistically significant improvement in two datasets. In
one dataset was the quantile rescaling slightly detrimental. In general we recommend
to use the default choice κ = 2 for preliminary results and getting an idea of how
ODT performs on a given dataset. This could be used for comparison purposes, for
example if one wishes to compare several possible feature selection methods as pre-
processing. Then cross-validation and possibly quantile rescaling shoud be used to
refine the final result.

• Both C4.5 and ODT tree methods are generally outperformed by the Random Forest
algorithm (results are not shown here, see [5] for some reference performance results),
which is in turn outperformed by kernel/large margin type methods (although the
best method in that family depends on the dataset). This is nothing new, and we
included these results for comparison purposes.

These results support our main message: if one is ready to lose a little on the raw
accuracy side in order to take advantage of the interpretability and visualization qualities
of single decision trees, then ODT provides a good alternative to C4.5 whenever the former
can be used, i.e. for datasets of dimensionality up to about 12 (up to 18 if there are only
binary features). One a priori disadvantage of ODT is that it is restricted to dyadic
cuts while CART/C4.5 considers arbitrary cuts, hence dyadic trees have a more rigid

21

best results C4.5 ODT
(κ = 2)

ODT
(cv.)

ODT
(qr. + cv.)

banana 10.7(1)±0.4 15.2±1.3 16.1±1.7 15.4±1.7 14.9±1.2

breast cancer 24.8(2)±4.6 30.8±4.9 27.6±4.2 27.0±4.3 28.7±4.2

diabetes 23.2(2)±1.6 27.9±2.6 26.7±2.2 26.7±2.4 26.0±2.3

flare-solar 32.4(3)±1.8 34.5±2.1 33.1±2.0 32.7±2.2 32.6±1.9

thyroid 4.2(2)±2.1 8.4±3.5 11.0±3.5 10.2±3.2 8.2±3.4

titanic 22.4(3)±1.0 23.0±1.1 22.7±1.1 22.5±1.2 22.5±1.2

Table 4: Mean test errors and standard deviations (in percent) over 100 repetitions achieved
with several methods on data sets coming from [20] and originally from the UCI repository.
For every data set there are 100 fixed divisions of the entire original data set into train
and test set, ensuring the comparability of the results. The best test error reported in [20]
is depicted in the second column. The index refers to the method that had achieved the
result. The third column shows the test errors obtained by applying C4.5. In the three
last columns the results of the proposed ODT method are shown, resp. for fixed default κ,
for cross-validated κ, for quantile rescaling of the data and cross-validated κ. [(1) LP Reg-
AdaBoost with RBF-Network, (2) Kernel Fisher Discriminant, (3) SVM with RBF-Kernel.
For a detailled discussion of the data sets, the methods (1)-(3) and the reported test errors
see [20, 18]].

structure. Nevertheless, the above results show that this can in most cases be positively
counterbalanced by the exact search algorithm of ODT.

4.3 Computational efficiency and choice of kmax

As noticed before, typically the algorithm is not suited to problems of dimensionality
greater than about a dozen, because of excessive requirements in computation time and
memory. The choice of kmax is generally dictated by these considerations: one should
choose the highest value for kmax such that the computation is feasible. Picking a lower
value for kmax results in reduced computation burden, but of course there is then a tradeoff
between computation and accuracy.

ODT is particularly well suited to datasets where the features are discrete or binary,
because in this case it is generally possible to choose a low kmax(i) for the correspond-
ing dimensions (as explained at the end of Section 2.3), hence reducing the computation
burden. In the above experiments we chose kmax(i) in this way when possible.

It should also be noted that the loop needed to build the cell dictionnary at a certain
depth can be easily parallelized, which can lead to a further speed-up. Finally, the proce-
dure can be faster for some datasets where the data is such that there are a higher number
of empty cells, resulting from strong structure in the data: this will be the case if the data
is stongly clustered or concentrated along a manifold of smaller dimension, as opposed to
uniformly distributed data.

22

4.4 Explanatory power and visualization

Our main argument for the use of optimal decision trees instead of black box methods is
the explanatory power of the first. We illustrate this on two small examples. The first one
is the breast cancer data from Table 4. Users like to be given more information than just
raw performance results and understand the ’how’ and ’why’ of the decision procedure.
Figure 4.4 shows the ODCTs obtained with κ = 2 for the first three training sets. In

6

9

62

113:25

138

5

39

7

23

19:9

28

2:9

11

8:3

11

0:12

12

9

6

153

7

47

5

37

99:17

116

15:7

22

3:12

15

16:9

25

5:17

22

6

9

63

113:24

137

2

42

7

21

5:13

18

17:7

24

8:2

10

0:11

11

Figure 5: The derived trees for the first three training data sets of the breast cancer data.
(The first split yields slightly different results in the leftmost and rightmost trees because
the training sets are different)

this case the structure and the size of the trained trees as well as the involved dimensions
are stable with low variability (this is confirmed on the other 97 training sets). We can
provide the user with the additional information that the dimensions 5,6,7, and 9 are the
most important for the prognosis of whether or not breast-cancer will recur. Dimension 5
contains the information if the cancer node in the first affection was encapsulated or not.
The degree of malignance from level 1 up to level 3 is given in dimension 6. Dimension 7
indicates if the left or the right breast was affected. And finally dimension 9 codes whether
irradiation was part of the treatment or not.

From the depicted trees (left and right) one can derive for example the conclusion that
if the degree of malignance of the first affection was on a high level, the probability of
cancer recurrence is lower than when the severity of the first affection was on a lower
niveau. This and the presence of dimension 7 (left or right side) in the decision rules may
appear counter-intuitive at first sight, but may reveal interesting insights to a physician
and suggest further directions of medical investigation.

As a second example, we depict the results obtained by ODT (still using κ = 2) on
a sociology dataset example which is a limited subpart of a panel study (1994-2000) of
socio-demographic factors influencing fertility in the german population2. In this case the
dataset concerns a sample of 122 german women in the 25-30 age range and having given
birth to a child; the features represent various responses to an itemized questionnaire in the

2Part of the “socio-economic panel” SOEP, http//www.diw.de/sop

23

years before the child is conceived. Using a clustering algorithm in an earlier preprocessing
stage, the sample was divided into 7 clusters representing typical subpopulations. We
were asked to apply the ODT algorithm to the task of separating the clusters in order to
gain understanding of how these clusters are characterized. First 17 binary features where
chosen by a feature selection algorithm among the available input features. Running ODT
on the data resulted in the output shown in Figure 4.4. The tree found by ODT has size 7
with a (training) error of 32%. By contrast, the best tree found by C4.5 (not shown here)
has size 9 for an error of 32.8%, so that the tree found by ODT is more economical. The
prominent features involved in the ODT concern whether the woman is married, whether
she has a full-time job, whether the housecleaning is shared in the couple, and the partner’s
age.

d4 = 0 d4 = 1

d5 = 0 d5 = 1

c3 (12/15)

d14 = 0 d14 = 1

d1 = 0 d1 = 1

c5 (13/20) c2 (9/23)

c4 (14/20)

d9 = 0 d9 = 1

c7 (7/14)

d10 = 0 d10 = 1

c1 (13/15) c6 (15/15)

Dimension Label
d1 Married (Y-2)
d4 Married (Y)
d5 Employed, 35-40 hrs/week (Y)
d9 Partner’s age is 25-30 (Y)
d10 Housecleaning shared (Y-1)
d14 Housecleaning shared (Y)

Figure 6: The derived trees for the german fertility dataset (122 examples, 7 classes, 17
binary dimensions). In each leaf the numbers x/z indicate the number of examples in
the majority class (x) and the total number of examples in the leaf (z). Each feature
corresponds to an answer to a questionnaire for a given year prior to the conception of the
child. In the feature description, Y is the year of conception of the child (birth minus 10
months).

5 Discussion

In this work we propose an optimal dyadic tree for classification, ccpd estimation or den-
sity estimation. It satisfies oracle convergence bounds that ensure a good behavior of the
algorithm from a statistical point of view; we deduce from these results that the algorithm
displays suitable adaptivity to anisotropy in terms of the convergence rates it can reach.
Its algorithmic implementation – the ODT method – exploits an exact search strategy
in the spirit of Donoho [13]. By introducing a dictionary technique for bookkeeping of

24

the cells, we gain a significant speed-up. Thus ODT combines optimality properties from
the statistical and algorithmic view point. We analyzed our algorithm for artificial and
benchmark data and observed its favorable characteristics: (i) robustness wrt. nuisance
dimensions and label noise, (ii) adaptivity to anisotropic data distributions, (iii) straight
forward application to multi-class problems and (iv) insensitivity to unbalanced situations.
Furthermore, ODT inherits common decision tree advantages such as explanatory power,
probabilistic interpretation and confidence levels. In practice, depending on the intended
application these advantages can outweigh the loss in classification accuracy when com-
pared to large margin classifiers. It should however be noted that ODT in its current
non-parallel implementation is limited to problems of dimensionality smaller than about
12 (up to 18 for binary features); for higher dimensional situations it is necessary to use
some feature selection algorithm as pre-processing.

From the practical point of view, the decision of whether to employ ODT in a clas-
sification problem or not, depends largely on the focus of the underlying data analysis
task. If explanation and statistical modeling is required on a comparably low-dimensional
problem, the use of ODT is recommended. If on the contrary only label information at an
ultimately high accuracy is demanded, the user should rather reside to an SVM or alike.

Future research will focus on partially greedy extensions that still preserve as much as
possible the combined optimality of ODT and which may eventually overcome dimension-
ality limitations.

Acknowledgments

This work is partly founded by an grant of the Alexander von Humboldt Foundation, the
PASCAL Network of Excellence (EU # 506778), and the Bundesministerium für Bildung
und Forschung FKZ 01—BB02A and FKZ 01-SC40A. The authors thank Mikio Braun
for valuable discussions, Nicolas Heeß for helping us with automatic tree drawing, and
Alexander Binder for running the experiments again in section 4.2 for the revision of the
paper.

References

[1] G. M. Adelson-Velskii and E.M. Landis. An algorithm for the organization of infor-
mation. Soviet Math. Doclady, 3:1259–1263, 1962.

[2] A. Barron, L. Birgé, and P. Massart. Risk bounds for model selection via penalization.
Probability theory and related fields, 113:301–413, 1999.

[3] A. Barron and C. Sheu. Approximation of density functions by sequences of exponen-
tial families. Annals of Statistics, 19:1347–1369, 1991.

[4] P. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Annals
of Statistics, 33(4):1497–1537, 2005.

25

[5] G. Blanchard. Different paradigms for choosing sequential reweighting algorithms.
Neural Computation, 16:811–836, 2004.

[6] G. Blanchard, O. Bousquet, and P. Massart. Statistical performance of Support Vector
Machines. Submitted manuscript.

[7] G. Blanchard, C. Schäfer, and Y. Rozenholc. Oracle bounds and exact algorithm
for dyadic classification trees. In J. Shawe-Taylor and Y. Singer, editors, Proceedings
of the 17th Conference on Learning Theory (COLT 2004), number 3210 in Lectures
Notes in Artificial Intelligence, pages 378–392. Springer, 2004.

[8] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[9] L. Breiman, J. Friedman, J. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth, 1984.

[10] G. Castellan. Histograms selection with an Akaike type criterion. C. R. Acad. Sci.,
Paris, Sér. I, Math., 330(8):729–732, 2000.

[11] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley series in
telecommunications. J. Wiley, 1991.

[12] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Number 31 in Applications of Mathematics. Springer, New York, 1996.

[13] D. Donoho. Cart and best-ortho-basis: a connection. Annals of Statistics, 25:1870–
1911, 1997.

[14] S. Gey and E. Nédélec. Model selection for CART regression trees. IEEE Transactions
on Information Theory, 51(2):658–670, 2005.

[15] L. Györfi, M. Kohler, and A. Krzyzak. A Distribution-Free Theory of Nonparametric
Regression. Springer series in statistics. Springer, 2002.

[16] J. Klemelä. Multivariate histograms with data-dependent partitions. Technical report,
Institut für angewandte Mathematik, Universität Heidelberg, 2003.

[17] P. Massart. Some applications of concentration inequalities in statistics. Ann. Fac.
Sci. Toulouse Math., 9(2):245–303, 2000.

[18] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant
analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors,
Neural Networks for Signal Processing IX, pages 41–48. IEEE, 1999.

[19] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,
1993.

26

[20] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learn-
ing, 42(3):287–320, March 2001. also NeuroCOLT Technical Report NC-TR-1998-021.

[21] C. Scott and R. Nowak. Near-minimax optimal classification with dyadic classification
trees. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances
in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

[22] C. Scott and R. Nowak. Minimax optimal classification with dyadic decision trees.
IEEE transactions on information theory, 52(4):1335–1353, 2006.

A Proofs of the theorems

In the sequel, we will sometimes use the notation Pf to denote the expectation of f under
distribution P (to emphasize the distribution P governing the expectation). Also, we
will denote Pn the empirical distribution associated to a sample of size n. The proofs
for our results are based on a general model selection theorem appearing in [6], which is
a generalization of an original theorem of Massart [17]. We quote it here in a slightly
modified and shortened form tailored for our needs. Below, we say that a function φ on
R+ is subroot if it is positive, nondecreasing and φ(r)/

√
r is nonincreasing for r > 0. It

can be shown that if φ is subroot, then is has a unique fixed point [4]. Consequently for
any R > 0 the equation φ(r) = x/R also has a unique solution.

Theorem 2. Let Z be a measured space, P a distribution on Z, F a set of measurable
real functions on Z. Let ` : F × Z → R be a real loss function, such that `(f, ·) ∈ L2(P)
for all f ∈ F . Denote f ∗ = Arg Minf∈F P`(f, Z) and L(f, f ∗) = P`(f, Z) − P`(f ∗, Z).
Let Z1, . . . , Zn be an i.i.d. sample of size n drawn from P , and Pn be the corresponding
empirical distribution. Let (Fm)m∈M, Fm ⊂ F be a countable collection of classes of
functions and assume that there exists

• a pseudo-distance d on F ;

• a sequence of sub-root functions (φm),m ∈M ;

• two positive constants b and R ;

such that
(H1) ∀f ∈ F , ∀z ∈ Z, |`(f, z)| ≤ b ;
(H2) ∀f, f ′ ∈ F , VarP [`(f, Z)− `(f ′, Z)] ≤ d2(f, f ′) ;
(H3) ∀f ∈ F , d2(f, f ∗) ≤ RL(f, f ∗) ;

and, if r∗m denotes the solution of φm(r) = r/R,

(H4) ∀m ∈M, ∀f0 ∈ Fm, ∀r ≥ r∗m

E


 sup

f∈Fm

d2(f,f0)≤r

(P − Pn)(`(f, Z)− `(f0, Z))


 ≤ φm(r).

27

Let (xm)m∈M be real numbers with
∑

m∈M e−xm ≤ 1. Let ε ≥ 0 and f̃ denote an ε-
approximate penalized minimum empirical loss estimator over the family (Fm) with the

penalty function pen(m), that is, such that there exists m̃ with f̃ ∈ F em and

1

n

n∑

i=1

`(f̃ , Zi) + pen(m̃) ≤ inf
m∈M

inf
f∈Fm

(
1

n

n∑

i=1

`(f, Zi) + pen(m) + ε

)
.

Given K > 1, there exist constants C1, C2, C3 (depending on K only) such that, if the
penalty function pen(m) satisfies for each m ∈M:

pen(m) ≥ C1
r∗m
R

+ C2
(R + b)xm

n
,

then the following inequality holds:

EL(f̃ , f ∗) ≤ K inf
m∈M

(
inf

f∈Fm

L(f, f ∗) + 2pen(m)

)
+

C3

n
+ ε.

Proof of oracle inequality for case (1).
In all of the proofs to follow we will denote `(f) as a shorthand notation for the function

(X,Y) 7→ `(f,X, Y). In case (1), F is the set of classifier functions. For a fixed partition
B, let us introduce the function class CB of piecewise constant classifiers on the cells of B,
that is, classifiers of the form

f(x) =
∑

b∈B

I{x∈b}yb ,

where yb ∈ Y .
We will now apply Theorem 2 to the set of models (CB) and loss function `class. Checking

for assumption (H1) is obvious. To check (H2)-(H3), we choose the distance d(f, g) =
E [(`class(f)− `class(g))2], so that (H2) is trivially satisfied. To check (H3), denote η(x, i) =
P (Y = i|X = x) and η∗(x) = maxi∈Y η(i, x); we then have

E
[
I{f(X)6=Y } − I{f∗(X)6=Y }

]
= E

[
(η∗(X)− η(X, f(X))) I{f(X)6=f∗(X)}

]

≥ η0E
[
I{f(X)6=f∗(X)}

]
,

where we have used assumption (13). On the other hand,

E
[
(I{f(X)6=Y } − I{f∗(X)6=Y })

2
]

= E
[
(η∗(X) + η(X, f(X))) I{f(X) 6=f∗(X)}

]

≤ 2E
[
I{f(X)6=f∗(X)}

]
,

which proves that (H3) is satisfied with R = 2/η0. Finally, in order to check assumption
(H4), it is possible to follow the same reasoning as in [17], p. 294-295; in this reference the
empirical shattering coefficient of the model is taken into account, but the present case is
even simpler since model CB is finite with cardinality S |B|.

However, for the sake of completeness, we also give here a self-contained proof using
slightly more elementary arguments for this simpler case.

28

Let us fix f0 and denote Z(f) = `(f,X, Y) − `(f0, X, Y). Note that Z(f) is a random
variable taking values in [0, 1]; furthermore if we assume d2(f, f0) ≤ r then Var

[
Z(f)

]
≤ r.

Then by the exponential form of Bennett’s inequality (see e.g. [12], chap. 8) it holds that

E
[
exp

(
λ
(
Z(f) − E

[
Z(f)

]))]
≤ exp

(
r
(
eλ − 1− λ

))
.

If we further assume λ ≤ 1 then it holds that eλ − 1 − λ ≤ eλ2/2 by Taylor’s expansion
with remainder. Denoting

ξ = E


 sup

f∈CB
d2(f,f0)≤r

(P − Pn)(`class(f)− `class(f0))




= E


 sup

f∈CB
d2(f,f0)≤r

1

n

n∑

i=1

(
Z

(f)
i − E

[
Z(f)

])

 ,

we have

exp (nλξ) ≤ E


 sup

f∈CB
d2(f,f0)≤r

exp

(
λ

n∑

i=1

(
Z

(f)
i − E

[
Z(f)

])
)


≤
∑

f∈CB
d2(f,f0)≤r

E

[
exp

(
λ

n∑

i=1

(
Z

(f)
i − E

[
Z(f)

])
)]

≤ |CB| exp
(
cnrλ2

)
,

where c ≥ 1 is a constant. Now choosing λ =
√

log |CB|/(nr) =
√
|B| log S/(nr) (which

satisfies our requirement λ ≤ 1 provided r ≥ |B| log S/n), we deduce that

ξ ≤ c′
√

r|B| log S

n
def
= φB(r) , (15)

for a constant c′ ≥ 1. The solution of the equation φB(r) = r/R is then r∗B = c′2R2|B| log S/n,
and since c′, R are larger than 1, inequality (15) is satisfied for r ≥ r∗B as required.

Finally we need to choose numbers xB such that
∑

B exp(−xB) ≤ 1. Lemma 2 below
asserts that xB = C ′|B| log d satisfies this condition. Now applying Theorem 2 and plugging
in the above values yields the conclusion.

Proof of oracle inequality for case (2a). We now consider the set F of ccpd
functions on X ×Y , and the model class FB of ccpd functions that are piecewise constant
on the cells of B:

FB =

{
f : f(x, y) =

∑

b∈B

I{x∈b}fb,y

∣∣∣∣∣0 ≤ fb,y ≤ 1 ;
∑

y

fb,y = 1

}
.

29

We apply Theorem 2 to the set of models (FB). For (H1), it is easy to check that

∀f ∈ F , `sq(f,X, Y) =
∥∥f(X, ·)− Y

∥∥2
= ‖f(X, ·)‖2 + 1− 2f(X,Y) ≤ 2.

For (H2), we note that `sq(f,X, Y)− `sq(g,X, Y) = ‖f(X, ·)‖2 − ‖g(X, ·)‖2 − 2(f(X,Y)−
g(X,Y)). The following then holds:

Var [`sq(f)− `sq(g)] ≤ E
[(
‖f(X, ·)‖2 − ‖g(X, ·)‖2 − 2(f(X,Y)− g(X,Y))

)2]

≤ 8E
[
(f(X,Y)− g(X,Y))2]+ 2E

[(
‖f(X, ·)‖2 − ‖g(X, ·)‖2

)2]

≤ 8E
[
(f − g)2

]
+ 2E

[
‖f(X, ·)− g(X, ·)‖2 ‖f(X, ·) + g(X, ·)‖2

]

≤ 16E
[
‖f(X, ·)− g(X, ·)‖2

] def
= d2(f, g) ;

this proves that (H2) is satisfied for the above choice of d; recalling (6), (H3) is then
satisfied with R = 1/16. Finally, for assumption (H4) we need to control the following
quantity:

Ξ = E


 sup

f∈FB

d2(f,f0)≤r

(P − Pn)(`sq(f)− `sq(f0))




= E


 sup

f∈FB

d2(f,f0)≤r

(P − Pn)

(
n∑

i=1

S∑

j=1

(
(f(Xi, j)− I{Y =j})

2 − (f0(Xi, j)− I{Y =j})
2
)
)


≤
S∑

j=1

E


 sup

f∈FB

d2(f,f0)≤r

(P − Pn)

(
n∑

i=1

(
(f(Xi, j)− I{Y =j})

2 − (f0(Xi, j)− I{Y =j})
2
)
)
 .

(16)

By a symmetrization technique it is possible to relate this quantity to a localized Rademacher
complexity. More precisely, Lemma 14 in [6], tells us that if ϕ is a 1-Lipschitz function,
then

E

[
sup
g∈G

(P − Pn)(ϕ(g)− ϕ(g0))

]
≤ 4E

[
sup
g∈G

1

n

n∑

i=1

σi(g(Xi)− g0(Xi))

]
,

where (σi) is a family of i.i.d. Rademacher variables. We apply it separately to each of the
terms in (16), considering, for a fixed j, the family of functions g(f, x, y) = f(x, j)−I{y=j} ∈
[0, 1], and ϕ(t) = t2 which is 2-Lipschitz on [0, 1]. Furthermore, for b ∈ B, 1 ≤ j ≤ S, denote
Pb = P [X ∈ b] and

ϕb(x) =
I{x∈b}√

Pb

.

30

Any function f ∈ FB can be written under the form

f(x, j) =
∑

b

αb,jϕb(x) ,

with d2(f, 0) =
∑

b,j α2
b,j. We then have for any fixed f0 ∈ FB:

Ξ ≤ 8
S∑

j=1

E


 sup

f∈FB

d2(f,f0)≤r

1

n

n∑

i=1

σi(f(Xi, j)− f0(Xi, j))




≤ 8
1

n

S∑

j=1

E


 sup

(αb,j):P
b,j α2

b,j≤r

(
∑

b

∑

i

αb,jσiϕb(Xi)

)



≤ 8S

√
r

n
E





∑

b

(
∑

i

σiϕb(Xi)

)2



1

2




≤ 8S

√
r

n

(
∑

b

E
[
ϕ2

b(X)
]
) 1

2

= 8S

√
r|B|
n

def
= φB(r) .

The solution of the equation φB(r) = r/R is then r∗B = cR2S2|B|/n. We choose xB =
C ′|B| log d as in the previous case. Applying Theorem 2 yields the conclusion.

Proof of oracle inequality in case (2b). Let f ∗(x, y) = P (Y = y|X = x). If we

replace the training labels Yi by Ỹi as described in the text, then the modified labels Ỹi are
in fact drawn according to the distribution

Pρ(Ỹ = y|X = x)
def
= (1− Sρ)P (Y = y|X = x) + ρ = (1− Sρ)f ∗(x, y) + ρ

def
= f ∗

ρ (X,Y) .

We will denote by Eρ the expectation taken with respect to this modified distribution,
and Pρ,n the empirical distribution with the modified training labels. Let F be the set of
ccpd functions f(x, y), i.e. satisfying f(x, y) ∈ [0, 1] and

∑
y∈Y f(x, y) = 1. In case (2b)

we will have to restrict slightly this space to functions being lower-bounded by ρ > 0 in
order to ensure boundedness of the loss and apply Theorem 2. More precisely, we define
the ambient space

Fρ = {f ∈ F|∀(x, y) ∈ X × Y , f(x, y) ≥ ρ}
and the models as Fρ

B = Fρ ∩ FB .
The effect of applying Theorem 2 on the modified label distribution Pρ and on the

restricted models Fρ
B will however have three side effects on the inequality obtained:

• Expectations will be under Pρ, not P .

31

• The target function is the minimizer of the expected (under Pρ) loss on Fρ instead
of F .

• The model-wise minimizers of the loss (in the right-hand side of the inequality) are
on Fρ

B instead of FB.

Keeping these issues in mind, we first turn to verifying the assumptions of Theorem 2.
However, an important preliminary remark concerning the second point above is that
since the modified labels Ỹi are drawn according to f ∗

ρ ≥ ρ, the minimizer of the expected
(under Pρ) loss on Fρ indeed coincides with f ∗

ρ , and therefore it still holds that L(f, f ∗
ρ) =

KL(f ∗
ρ , f |X).

The first step in the analysis is to check that, if model B̂ is defined by (10) for the

minus-likelihood loss (using the original models but the modified labels), then f̂ρ
bB = (1 −

Sρ)f̂ bB + ρ ∈ Fρ
bB is an approximate minimum penalized loss estimator on the family of

restricted models defined above and for the same penalty function. We have for any model
B :

Pρ,n(`ml(f̂
ρ
B)− `ml(f̂B)) = Pρ,n(log f̂B − log((1− Sρ)f̂B + ρ)) ≤ − log(1− Sρ).

Since for any model B, any f ∈ FB, Pρ,n`ml(f̂B) ≤ Pρ,n`ml(f), we conclude that ∀B, ∀f ∈
Fρ

B,

Pρ,n`ml(f̂
ρ
bB) + γ|B̂| ≤ Pρ,n`ml(f̂ bB) + γ|B̂| − log(1− Sρ) ≤ Pρ,n`ml(f) + γ|B| − log(1− Sρ),

so that f̂ρ
bB is a − log(1− Sρ)-approximate penalized estimator.

We now check the other main assumptions of the abstract model selection theorem.
• Check for (H1): boundedness of the loss on the models. Obviously, we have

∀f ∈ Fρ, ∀(x, y) ∈ X × Y 0 ≤ `ml(f, x, y) ≤ − log ρ .

• Check for (H2)-(H3): distance linking the risk and its variance. We choose the
distance d as the L2(Pρ) distance between logarithms of the functions:

d2(f, g) = Eρ

[
(`ml(f)− `ml(g))2

]
= Eρ

[
log2 f

g

]
.

Obviously we have Varρ[`ml(f) − `ml(g)] ≤ d2(f, g) with this choice; the problem is then

to compare Eρ

[
log2 Pρ(Y |X)

f

]
to Eρ

[
log

Pρ(Y |X)

f

]
. Denoting Z(x, i) = f(x, k)/Pρ(Y =

k|X = x), we therefore have to compare Eρ[log
2 Z] to Eρ[− log Z] with the expectation

taken wrt. Pρ, so that Eρ[Z] = 1. Note that Z ≥ ρ. Using Lemma 1 below, we deduce
that

d2(f ∗
ρ , f) ≤ log2 ρ

ρ− 1− log ρ
KL(f ∗

ρ , f |X).

32

Provided ρ ≤ 1/5 one can check that ρ − 1 − log ρ ≥ − 1
2
log ρ and hence we can choose

R = −2 log ρ in (H3).
• Check for (H4): d-local risk control on models. This is inspired by the work [10]. Let

GB be the set of real-valued functions which are piecewise constant on the cells of B. For

any f, g ∈ Fρ
B, F = log

f

g
∈ GB. For A ∈ B, i ∈ Y , denote P ρ

A,i = Pρ[X ∈ A, Y = i] and

ϕA,i(x, y) =
I {x ∈ A} I {Y = i}√

P ρ
A,i

;

note that the family (ϕ(A, i))A,i is an orthonormal basis (for the L2(Pρ) structure) of GB,
hence any function f ∈ GB can be written under the form

f =
∑

A,i

αA,iϕA,i ,

with Pρf
2 =

∑
α2

A,i. Putting νn = (Pρ − Pρ,n), we then have for any fixed f0 ∈ Fρ
B

Eρ


 sup

f∈Fρ
B

d2(f,f0)≤r

|νn(`ml(f)− `ml(f0))|


 ≤ Eρ


 sup

F∈GB

Eρ[F 2]≤r

|νnF |




= Eρ


 sup

(αA,i):P
A,i α2

A,i≤r

∣∣∣∣∣
∑

A,i

αA,i νnϕA,i

∣∣∣∣∣




≤ √rEρ



(
∑

A,i

(νnϕA,i)
2

) 1

2




≤ √rEρ

[(
∑

A,i

(νnϕA,i)
2

)] 1

2

=

√√√√r
∑

A,i

1

n

P ρ
A,i(1− P ρ

A,i)

P ρ
A,i

≤
√

rS|B|
n

def
= φB(r) .

The solution of the equation φB(r) = r/R is then r∗B = R2S|B|/n. We now choose the
value ρ = n−3 and assume n is big enough so that Sρ ≤ 1/2 and ρ ≤ 1/5. We then have
R = −2 log ρ ≤ 6 log n and − log(1− Sρ) ≤ 4S/n3.

We can now apply the model selection theorem with the same choice xB = c|B| log d
as in the other cases. As a conclusion, we obtain that exists a constant C such that, if

33

γ ≥ C(S + log d) log n, the model B̂ defined by (10) is such that

Eρ

[
KL(f ∗

ρ , f̂ρ
bB|X)

]
≤ 2 inf

B

(
inf

f∈Fρ
B

KL(f ∗
ρ , f |X) + 2C

(S + log(d))|B| log n

n

)
+

C ′

n
+

4S

n3
.

(17)
To finish the proof, we need to relate both sides of the inequality to the original ccpd f ∗

and the original models FB (On the other hand, the expectation over Pρ on the LHS is
fine, since it merely represents the fact that we have used the modified labels to define the
estimator f̂ρ

bB). To do so, we will prove the two following inequalities:

∀f ∈ F , KL(f ∗, f |X) ≤ (1− Sρ)−1KL(f ∗
ρ , f |X)− log(1− Sρ)− Sρ(1− Sρ)−1 log ρ;

(18)
∀B, inf

f∈Fρ
B

KL(f ∗
ρ , f |X) ≤ (1− Sρ) inf

f∈FB

KL(f ∗, f |X); (19)

To prove (18), we use the following chain of inequalities:

KL(f ∗
ρ , f |X) = Eρ

[
log
(
f ∗

ρ /f
)]

= EX

[
∑

y∈Y

(ρ + (1− Sρ)f ∗(x, y)) log

(
ρ + (1− Sρ)f ∗(x, y)

f(x, y)

)]

= EX

[
(1− Sρ)

∑

y∈Y

f ∗(x, y) log

(
ρ + (1− Sρ)f ∗(x, y)

f(x, y)

)

+ρ
∑

y∈Y

log

(
ρ + (1− Sρ)f ∗(x, y)

f(x, y)

)]

≥ (1− Sρ)KL(f ∗, f |X) + (1− Sρ) log(1− Sρ) + Sρ log ρ ,

from which we deduce (18). We now turn to prove (19). For any f ∈ FB, denote fρ =
ρ + (1− Sρ)f ∈ Fρ

B. It is a known property that (P,Q)→ KL(P,Q) is a convex function
of the couple (P,Q) (see e.g. [11], Theorem 2.7.2), hence

KL(f ∗
ρ , fρ|X) = KL(ρ + (1− Sρ)f ∗, ρ + (1− Sρ)f |X) ≤ (1− Sρ)KL(f ∗, f |X) ,

from which we deduce (19). Finally, using (18) for the left-hand side of (17) and (19) for
the right-hand side, we obtain the conclusion.

Proof of oracle inequality for case (3).
In this case F is the set of density functions over X . This case is quite similar to case

(2b), so we will shorten the almost identical parts. The modified training examples X̃i are
drawn i.i.d. according to the distribution

Pρ = (1− ρ)P + ρU ,

where U is the uniform (Lebesgue) distribution on [0, 1]d. Call BK the finest dyadic par-
tition available in the models considered, obtained by cutting in all possible directions K

34

times successively. Let GK be the set of piecewise constant functions on the pieces of BK .
We define the “ambient space” as

Gρ
K =

{
f ∈ GK

∣∣∣∣∣
∑

b∈BK

f(x) = 1;∀xf(x) ≥ ρ

}
,

and the models as Gρ
B = Gρ

K ∩ GB, where GB is the set of density functions which are
piecewise constant on the pieces of B. Note that because the pieces of BK are of Lebesgue
measure 2−dK , functions in Gρ

K are bounded from above by 2dK . We will apply the model
selection Theorem 2 to these modified models and examples, with similar issues to deal
with as in case (2b) to obtain a result for the orinal models and density.

With this ambient space, note that the target function (the minimizer over the ambient
space of the average loss under Pρ) is not the density of Pρ, f ∗

ρ = (1 − ρ)f ∗ + ρ, but the
projection thereof on Gρ

K , denoted f ∗
ρ,K . Note that f ∗

ρ,K is merely obtained by averaging
f ∗

ρ on the cells of BK . Furthermore, in the sequel we will only deal with functions in Gρ
K ,

which means that the expectation operator for these functions under the density f ∗
ρ or f ∗

ρ,K

are equal. In other terms, from now on we can reason as if the datapoints X̃i were really
drawn from f ∗

ρ,K instead of f ∗
ρ .

To apply the model selection theorem, we first check that f̂ρ
bB is an − log(1 − ρ)-

approximate empirical penalized estimator over the models Gρ
B, using an argument similar

to case (2b). We then proceed to check the other assumptions of the theorem.
• Assumption (H1), boundedness: obviously

∀f ∈ Gρ
K ,∀x ∈ X − dK log(2) ≤ `mld(f, x) ≤ − log ρ .

• Assumptions (H2)-(H3): similarly to case (2b) we choose d(f, g) as the L2(Pρ) dis-
tance between the logarithms of the functions. We apply the same type of reasoning based
on Lemma 1 for the variance/excess risk inequality, so that for any f ∈ Gρ

K ,

d2(f ∗
ρ,K , f) ≤ log2 η

η − 1− log η
KL(f ∗

ρ,K , f) ,

where η = ρ2−dK .
• Assumption (H4): a reasoning in all points similar to case (2b) leads to

Eρ


 sup

f∈Gρ
B

d2(f,f0)≤r

|(Pρ − Pρ,n)(`mld(f)− `mld(f0))|


 ≤

√
r|B|
n

def
= φB(r) .

Choosing ρ = n−3 and assuming ρ ≤ 1/5, we can then apply Theorem 2: there exists
a constant C > 0 such that, if γ ≥ C(log n + dK) log d, the following holds:

Eρ

[
KL(f ∗

ρ,K , f̂ρ
bB)
]
≤ 2 inf

B

(
inf

f∈Gρ
B

KL(f ∗
ρ,K , f) + 2C

|B|(dK + log n) log d

n

)
+

C ′

n
. (20)

35

Now, by the same property above that functions in Gρ
K have the same expectation under

f ∗
ρ and f ∗

ρ,K , the following “Pythagorean relation” holds for any f ∈ Gρ
K :

KL(f ∗
ρ , f) = KL(f ∗

ρ , f ∗
ρ,K) + KL(f ∗

ρ,K , f) ;

hence, by adding KL(f ∗
ρ , f ∗

ρ,K) once to the right-hand side of (20) and twice to its left-hand
side, we can replace f ∗

ρ,K by f ∗
ρ in (20). Finally, we can relate this inequality to the original

density and models using the following inequalities:

∀f ∈ GK , KL(f ∗, f |X) ≤ (1− ρ)−1KL(f ∗
ρ , f |X)− log(1− ρ)− ρ(1− ρ)−1 log ρ; (21)

∀B, inf
f∈Gρ

B

KL(f ∗
ρ , f |X) ≤ (1− ρ) inf

f∈GB

KL(f ∗, f |X) , (22)

obtained in a same way as in case (2b). This allows to conclude the proof similarly.
The following Lemma is needed for cases (2b) and (3) and is inspired by similar

techniques appearing in [10, 3].

Lemma 1. Let Z be a real, positive random variable such that E[Z] = 1 and Z ≥ η a.s.
Then the following inequality holds:

E
[
log2 Z

]

E [− log Z]
≤ log2 η

η − 1− log η
.

Proof. Let u = − log Z ≤ − log η; we have

E[− log Z] = E[u] = E[e−u − 1 + u] = E

[
u2 e−u − 1 + u

u2

]

≥ E
[
u2
] η − 1− log η

log2 η
,

where the first line comes from the fact that E [e−u] = E [Z] = 1, and the last inequality
from the fact that the function g(x) = x−2(e−x−1+x) is positive and decreasing on R.

Finally, the following combinatorial Lemma was used in our proofs:

Lemma 2. If B is the countable set of all dyadic partitions of [0, 1]d, then for some
universal constant C, the sequence

xB = C|B| log(d), (23)

satisfies ∑

B∈B

exp(−xB) ≤ 1.

36

Proof. The point here is only to count the number of partitions of size |B| = D. An upper
bound can be obtained the following way: the number of binary trees with D + 1 leaves is
given by the Catalan number Cat(D) = (D + 1)−1

(
2D
D

)
; such a tree has D internal nodes

and we can therefore label these nodes in dD different ways. It can be shown (for example
using Stirling’s formula) that Cat(n) ≤ C ′4n/n3/2 for some constant C ′; hence for C big
enough in (23),

∑
B exp(−xB) ≤ 1 is satisfied.

Proof of Theorem 1. Since assumption (A2b) is satisfied, the following oracle
inequality holds:

E

[∥∥∥f̂ − f ∗
∥∥∥

2

2,P

]
≤ 2 inf

B∈Bkmax

inf
f∈CB

(
‖f − f ∗‖22,P + γ|B|

)
+

C

n
.

We will now apply this inequality by choosing a suitable dyadic partition B. Consider a
partition obtained by considering all possible cells obtained by splitting k1 times in the
first direction, k2 times in the second, and so on. This partition is made of parallelepipeds
of length 2−ki along direction i and of cardinality |B| = 2

P
i ki . Let A > 0 a real number

to be fixed later, put K = log2 A and choose ki = bK/αic. Then |B| ≤ A
P

i α−1

i . Note that
we must have ki ≤ kmax = log2 n to ensure that the chosen partition belongs to Bkmax

.
Consider now the function f which is piecewise constant on the elements of B and

whose value on each cell is equal to the value of f ∗ on the center xb of the cell. Then we
have

‖f − f ∗‖22,P =
∑

b∈B

E
[
(f ∗(X)− f ∗(xb))

2
I{X∈b}

]

≤
∑

b∈B

E



(

sup
x′∈B∞(X,(2−ki)i)

f ∗(X)− f ∗(x′)

)2

I{X∈b}




= H2,∞(f ∗, (2−ki)i)
2 ≤ Hp,∞(f ∗, (2−ki)i)

2

≤
(

c
∑

i

2−kiαi

)2

≤ c(d)A−2,

so that finally we obtain

E

[∥∥∥f̂ − f ∗
∥∥∥

2

2,P

]
≤ c′(d, γ)

(
A−1 +

Aρ−1

n

)
.

Choosing A = n
ρ

1+2ρ , we obtain the result provided that this choice is compatible with the
requirement ki ≤ kmax. This is ensured by the following chain of inequalities:

ki = blog A/αic ≤ ρ−1 ρ

1 + 2ρ
log2 n ≤ log2 n = kmax .

For the second part of the result, we choose the same partition, and now define the
function f via

∀x ∈ b f(x) = EX′ [f(X ′)|X ′ ∈ b] .

37

We now have

‖f − f ∗‖22,P =
∑

b∈B

EX

[
(f ∗(X)− EX′ [f ∗(X ′)|X ′ ∈ b])

2
I{X∈b}

]

≤
∑

b∈B

EX

[
EX′

[
(f ∗(X)− f ∗(X ′))

2
∣∣∣X ′ ∈ b

]
I{X∈b}

]

=
∑

b∈B

EX

[
EX′

[
(f ∗(X)− f ∗(X ′))

2
I{X′∈b}

]
P [X ′ ∈ b]

−1
I{X∈b}

]

≤
∑

b∈B

EX

[
EX′

[
(f ∗(X)− f ∗(X ′))

2
I{X′∈B∞(X,(2−ki)i)}

]
P [X ′ ∈ b]

−1
I{X∈b}

]

≤ M

m
c (d) H2,2(f

∗, (2−ki)i)
2 ≤ M

m
c (d) Hp,q(f

∗, (2−ki)i)
2,

where the first inequality follows from Jensen’s inequality, and at the last line we have used
the fact that from the assumption on P

P
[
X ′ ∈ B∞(X, (2−ki)i)

]

P [X ∈ b]
≤ M

m

λ
(
B∞(X, (2−ki)i)

)

λ(b)
≤ M

m
2d.

The rest of the proof is the same as in the first case.

38

