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Abstract. We study generalized bootstrapped confidence regions for
the mean of a random vector whose coordinates have an unknown de-
pendence structure, with a non-asymptotic control of the confidence
level. The random vector is supposed to be either Gaussian or to have a
symmetric bounded distribution. We consider two approaches, the first
based on a concentration principle and the second on a direct boost-
rapped quantile. The first one allows us to deal with a very large class
of resampling weights while our results for the second are restricted to
Rademacher weights. However, the second method seems more accu-
rate in practice. Our results are motivated by multiple testing problems,
and we show on simulations that our procedures are better than the
Bonferroni procedure (union bound) as soon as the observed vector has
sufficiently correlated coordinates.

1 Introduction

In this work, we assume that we observe a sample Y := (Y1, . . . ,Yn) of n ≥ 2
i.i.d. observations of an integrable random vector Yi ∈ RKwith a dimension K
possibly much larger than n. Let µ ∈ RK denote the common mean of the Yi ;
our main goal is to find a non-asymptotic (1−α)-confidence region for µ , of the
form: {

x ∈ RK s.t. φ
(
Y − x

)
≤ tα(Y)

}
, (1)

where φ : RK → R is a measurable function fixed in advance by the user (mea-
suring a kind of distance), α ∈ (0, 1), tα :

(
RK
)n → R is a measurable data-

dependent threshold, and Y = 1
n

∑n
i=1 Yi is the empirical mean of the sample

Y.
The form of the confidence region (1) is motivated by the following multiple

testing problem: if we want to test simultaneously for all 1 ≤ k ≤ K the hy-
potheses H0,k = {µk ≤ 0} against H1,k = {µk > 0}, we propose to reject the
H0,k corresponding to

{1 ≤ k ≤ K s.t. Yk > tα(Y)} .



The error of this multiple testing procedure can be measured by the family-
wise error rate defined by the probability that at least one hypothesis is wrongly
rejected. Here, this error will be strongly (i.e. for any value of µ) controlled by
α as soon as the confidence region (1) for µ with φ = sup(·) is of level at least
1− α. Indeed, for all µ,

P
(
∃k s.t. Yk > tα(Y) and µk ≤ 0

)
≤ P

(
∃k s.t. Yk − µk > tα(Y)

)
= P

(
sup

k

{
Yk − µk

}
> tα(Y)

)
.

The same reasoning with φ = sup |·| allows us to test H0,k = {µk = 0} against
H1,k = {µk 6= 0}, by choosing the rejection set {1 ≤ k ≤ K s.t.

∣∣Yk

∣∣ > tα(Y)}.
While this goal is statistical in motivation, to tackle it we want to follow

a point of view inspired from learning theory, in the following sense: first, we
want a non-asymptotical result valid for any fixed K and n ; secondly, we do not
want to make any assumptions on the dependency structure of the coordinates
of Yi (although we will consider some general assumptions over the distribution
of Y, for example that it is Gaussian). Since the dimensionality K is possibly
larger than the number of observations n, it is not appropriate here to estimate
the dependency structure (e.g. the covariance matrix) via classical parametric
procedures to construct a confidence region.

The ideal threshold tα in (1) is obviously the 1− α quantile of the distribu-
tion of φ

(
Y − µ

)
. However, this quantity depends on the unknown dependency

structure of the coordinates of Yi and is therefore itself unknown.
We propose here to approach tα by some resampling scheme: the heuristics

of the resampling method (introduced by Efron [1], generalized to exchangeable
weighted bootstrap by Mason and Newton [2] and Praestgaard and Wellner [3])
is that the distribution of Y − µ is “close” to the one of

Y[W−W ] :=
1
n

n∑
i=1

(Wi −W )Yi =
1
n

n∑
i=1

Wi(Yi −Y) =
(
Y −Y

)
[W ]

,

conditionally to Y, where (Wi)1≤i≤n are real random variables independent of
Y called the resampling weights, and W = n−1

∑n
i=1 Wi . We emphasize that

the family (Wi)1≤i≤n itself need not be independent.
Following this idea, we propose two different approaches to obtain non-

asymptotic confidence regions:

1. The expectations of φ
(
Y − µ

)
and φ

(
Y[W−W ]

)
can be precisely com-

pared, and the processes φ
(
Y − µ

)
and E

[
φ
(
Y[W−W ]

) ∣∣Y] concentrate
well around their expectations.

2. The 1−α quantile of the distribution of φ
(
Y[W−W ]

)
conditionally to Y is

close to the one of φ
(
Y − µ

)
.

Method 1 above is closely related to the Rademacher complexity approach in
learning theory, and our results in this direction are heavily inspired by the work



of Fromont [4], who studies general resampling schemes in a learning theoretical
setting. It may also be seen as a generalization of cross-validation methods. For
method 2, we will restrict ourselves specifically to Rademacher weights in our
analysis, because we use a symmetrization trick.

Using resampling to construct confidence regions or tests is a vast field of
study in statistics (see e.g. [1–3, 5–9] and the references therein). Roughly speak-
ing, we can mainly distinguish between two types of results: asymptotic results
which are not adapted to the goals we have fixed here, and exact randomized
tests. The latter are based on an invariance of the null distribution under a
given transformation. In the setting considered in this paper, we will consider
symmetric distributions, allowing us to use symmetrization techniques. However,
because our first goal is to derive a confidence region, the vector of the means is
unknown and we cannot use directly exact randomized tests (this argument ap-
plies to the one-sided test setting as well where the mean is also unknown). Our
method 2 uses a symmetrization argument after having empirically recentred
the data. To our knowledge, this gives the first non-asymptotic approximation
result on resampled quantiles.

Finally, following [8], we note that all our multiple testing procedures can be
transformed into step-down procedures (this will be detailed in the long version
of this paper).

Let us now define a few notations that will be useful throughout this paper.

– Vectors, such as data vectors Yi = (Yi
k)1≤k≤K , will always be column vec-

tors. Thus, Y is a K × n data matrix.
– If µ ∈ RK , Y−µ is the matrix obtained by subtracting µ from each (column)

vector of Y. If c ∈ R and W ∈ Rn, W − c = (Wi − c)1≤i≤n ∈ Rn.
– If X is a random variable, D(X) is its distribution and Var(X)is its variance.
– The vector σ = (σk)1≤k≤K is the vector of the standard deviations of the

data: ∀k, 1 ≤ k ≤ K, σk = Var1/2(Y1
k).

– Φ is the standard Gaussian upper tail function.

Several properties may be assumed for the function φ : RK → R:

– Subadditivity: ∀x, x′ ∈ RK , φ (x + x′) ≤ φ(x) + φ (x′) .
– Positive-homogeneity: ∀x ∈ RK , ∀λ ∈ R+, φ (λx) = λφ(x) .
– Bounded by the p-norm, p ∈ [1,∞]: ∀x ∈ RK , |φ (x)| ≤ ‖x‖p, where ‖x‖p is

equal to (
∑K

k=1 |xk|p)1/p if p < ∞ and maxk{|xk|} otherwise.

Finally, different assumptions on the generating distribution of Y can be made:

(GA) The Gaussian assumption: the Yi are Gaussian vectors
(SA) The symmetric assumption: the Yi are symmetric with respect to µ i.e.

Yi − µ ∼ µ−Yi .
(BA)(p, M) The bounded assumption:

∥∥Yi − µ
∥∥

p
≤ M a.s.

In this paper, our primary focus is on the Gaussian framework (GA), because the
corresponding results will be more accurate. In addition, we will always assume
that we know some upper bound on a p-norm of σ for some p > 0.



The paper is organized as follows: Section 2 deals with the concentration
method with general weights. In Section 3, we propose an approach based on
resampling quantiles, with Rademacher weights. We illustrate our methods in
Section 4 with a simulation study. The proofs of our results are given in Section 5.

2 Confidence region using concentration

In this section, we consider a general Rn-valued resampling weight vector W ,
satisfying the following properties: W is independent of Y, for all i ∈ {1, . . . , n}
E
[
W 2

i

]
< ∞ , the (Wi)1≤i≤n have an exchangeable distribution (i.e. invariant

under any permutation of the indices) and the coordinates of W are not a.s.
equal, i.e. E

∣∣W1 −W
∣∣ > 0. Several examples of resampling weight vectors are

given in Section 2.3, where we also tackle the question of choosing a resampling.
Four constants that depend only on the distribution of W appear in the

results below (the fourth one is defined only for a particular class of weights).
They are defined as follows and computed for classical resamplings in Tab. 1:

AW := E
∣∣W1 −W

∣∣ (2)

BW := E

( 1
n

n∑
i=1

(
Wi −W

)2) 1
2
 (3)

CW :=
(

n

n− 1
E
[(

W1 −W
)2]) 1

2

(4)

DW := a + E
∣∣W − x0

∣∣ if ∀i, |Wi − x0| = a a.s. (with a > 0, x0 ∈ R) . (5)

Note that under our assumptions, these quantities are positive. Moreover, if
the weights are i.i.d., CW = Var(W1)

1
2 . We can now state the main result of this

section:

Theorem 2.1. Fix α ∈ (0, 1) and p ∈ [1,∞]. Let φ : RK → R be any function
subadditive, positive-homogeneous and bounded by the p-norm, and let W be a
resampling weight vector.

1. If Y satisfies (GA), then

φ
(
Y − µ

)
<

E
[
φ
(
Y[W−W ]

) ∣∣Y]
BW

+ ‖σ‖p Φ
−1

(α/2)
[

CW

nBW
+

1√
n

]
(6)

holds with probability at least 1 − α. The same bound holds for the lower
deviations, i.e. with inequality (6) reversed and the additive term replaced by
its opposite.

2. If Y satisfies (BA)(p, M) and (SA), then

φ
(
Y − µ

)
<

E
[
φ
(
Y[W−W ]

) ∣∣Y]
AW

+
2M√

n

√
log(1/α)



holds with probability at least 1 − α . If moreover the weights satisfy the
assumption of (5), then

φ
(
Y − µ

)
>

E
[
φ
(
Y[W−W ]

) ∣∣Y]
DW

− M√
n

√
1 +

A2
W

D2
W

√
2 log(1/α)

holds with probability at least 1− α .

If there exists a deterministic threshold tα such that P(φ
(
Y − µ

)
> tα) ≤ α,

the following corollary establishes that we can combine the above concentration
threshold with tα to get a new threshold almost better than both.

Corollary 2.2. Fix α, δ ∈ (0, 1), p ∈ [1,∞] and take φ and W as in Theo-
rem 2.1. Suppose that Y satisfies (GA) and that tα(1−δ) is a real number such
that P

(
φ
(
Y − µ

)
> tα(1−δ)

)
≤ α(1 − δ). Then with probability at least 1 − α,

φ
(
Y − µ

)
is upper bounded by the minimum between tα(1−δ) and

E
[
φ
(
Y[W−W ]

) ∣∣Y]
BW

+
‖σ‖p√

n
Φ
−1
(

α(1− δ)
2

)
+
‖σ‖p CW

nBW
Φ
−1
(

αδ

2

)
. (7)

Remark 2.3. 1. Corollary 2.2 is a consequence of the proof of Theorem 2.1,
rather than of the theorem itself. The point here is that E

[
φ
(
Y[W−W ]

) ∣∣Y]
is almost deterministic, because it concentrates at the rate n−1 (= o(n−1/2)).

2. For instance, if φ = sup(·) (resp. sup |·|), Corollary 2.2 may be applied with
tα equal to the classical Bonferroni threshold for multiple testing (obtained
using a simple union bound over coordinates)

tBonf,α :=
1√
n
‖σ‖∞ Φ

−1
( α

K

)(
resp. t′Bonf,α :=

1√
n
‖σ‖∞ Φ

−1
( α

2K

))
.

We thus obtain a confidence region almost equal to Bonferroni’s for small
correlations and better than Bonferroni’s for strong correlations (see simu-
lations in Section 4).

The proof of Theorem 2.1 involves results which are of self interest: the
comparison between the expectations of the two processes E

[
φ
(
Y[W−W ]

) ∣∣Y]
and φ

(
Y − µ

)
and the concentration of these processes around their means. This

is examinated in the two following subsections. The last subsection gives some
elements for a wise choice of resampling weight vectors among several classical
examples.

2.1 Comparison in expectation

In this section, we compare E
[
φ
(
Y[W−W ]

)]
and E

[
φ
(
Y − µ

)]
. We note that

these expectations exist in the Gaussian and the bounded case provided that φ is



measurable and bounded by a p-norm. Otherwise, in particular in Propositions
2.4 and 2.6, we assume that these expectations exist. In the Gaussian case, these
quantities are equal up to a factor that depends only on the distribution of W :

Proposition 2.4. Let Y be a sample satisfying (GA) and W a resampling
weight vector. Then, for any measurable positive-homogeneous function φ : RK →
R, we have the following equality

BW E
[
φ
(
Y − µ

)]
= E

[
φ
(
Y[W−W ]

)]
. (8)

Remark 2.5. 1. In general, we can compute the value of BW by simulation. For
some classical weights, we give bounds or exact expressions in Tab. 1.

2. In a non-Gaussian framework, the constant BW is still relevant, at least
asymptotically: in their Theorem 3.6.13, Van der Vaart and Wellner [10] use
the limit of BW when n goes to infinity as a normalizing constant.

When the sample is only symmetric we obtain the following inequalities :

Proposition 2.6. Let Y be a sample satisfying (SA), W a resampling weight
vector and φ : RK → R any subadditive, positive-homogeneous function.

(i) We have the general following lower bound :

AW E
[
φ
(
Y − µ

)]
≤ E

[
φ
(
Y[W−W ]

)]
. (9)

(ii) Moreover, if the weights satisfy the assumption of (5), we have the following
upper bound

DW E
[
φ
(
Y − µ

)]
≥ E

[
φ
(
Y[W−W ]

)]
. (10)

Remark 2.7. 1. The bounds (9) and (10) are tight for Rademacher and Random
hold-out (n/2) weights, but far less optimal in some other cases like Leave-
one-out (see Section 2.3).

2. When Y is not assumed to be symmetric and W = 1 a.s., Proposition 2 in
[4] shows that (9) holds with E(W1 − W )+ instead of AW . Therefore, the
symmetry of the sample allows us to get a tighter result (for instance twice
sharper with Efron or Random hold-out (q) weights).

2.2 Concentration around the expectation

In this section we present concentration results for the two processes φ
(
Y − µ

)
and E

[
φ
(
Y[W−W ]

) ∣∣Y] in the Gaussian framework.

Proposition 2.8. Let p ∈ [1,+∞], Y a sample satisfying (GA) and φ : RK →
R be any subadditive function, bounded by the p-norm.



(i) For all α ∈ (0, 1), with probability at least 1− α the following holds:

φ
(
Y − µ

)
< E

[
φ
(
Y − µ

)]
+
‖σ‖p Φ

−1
(α/2)

√
n

, (11)

and the same bound holds for the corresponding lower deviations.
(ii) Let W be some exchangeable resampling weight vector. does not depend on

(i, j), i 6= j and E(Wi − W )2 do not depend on i. Then, for all α ∈ (0, 1),
with probability at least 1− α the following holds:

E
[
φ
(
Y[W−W ]

) ∣∣Y] < E
[
φ
(
Y[W−W ]

)]
+
‖σ‖p CW Φ

−1
(α/2)

n
, (12)

and the same bound holds for the corresponding lower deviations.

The first bound (11) with a remainder in n−1/2 is classical. The last one (12) is
much more interesting since it enlights one of the key properties of the resampling
idea: the “stabilization”. Indeed, the resampling quantity E

[
φ
(
Y[W−W ]

)
|Y
]

concentrates around its expectation at the rate CW n−1 = o
(
n−1/2

)
for most of

the weights (see Section 2.3 and Tab. 1 for more details). Thus, compared to the
original process, it is almost deterministic and equal to BW E

[
φ
(
Y − µ

)]
.

Remark 2.9. Combining expression (8) and Proposition 2.8 (ii), we derive that
for a Gaussian sample Y and any p ∈ [1,∞], the following upper bound holds
with probability at least 1− α :

E
∥∥Y − µ

∥∥
p

<

E
[∥∥∥Y[W−W ]

∥∥∥
p

∣∣∣Y]
BW

+
‖σ‖p CW

nBW
Φ
−1

(α/2) , (13)

and a similar lower bound holds. This gives a control with high probability of
the Lp-risk of the estimator Y of the mean µ ∈ RK at the rate CW B−1

W n−1.

2.3 Resampling weight vectors

In this section, we consider the question of choosing some appropriate resam-
pling weight vector W when using Theorem 2.1 or Corollary 2.2. We define the
following classical resampling weight vectors:

1. Rademacher: Wi i.i.d. Rademacher variables, i.e. Wi ∈ {−1, 1} with equal
probabilities.

2. Efron: W has a multinomial distribution with parameters (n;n−1, . . . , n−1).
3. Random hold-out (q) (R. h.-o.), q ∈ {1, . . . , n}: Wi = n

q 1i∈I , where I is
uniformly distributed on subsets of {1, . . . , n} of cardinality q. These weights
may also be called cross validation weights, or leave-(n − q)-out weights. A
classical choice is q = n/2 (when 2|n). When q = n − 1, these weights are
called leave-one-out weights.



Efron 2
`
1− 1

n

´n
= AW ≤ BW ≤

q
n−1

n
CW = 1

Efr., n → +∞ 2
e

= AW ≤ BW ≤ 1 = CW

Rademacher 1− 1√
n
≤ AW ≤ BW ≤

q
1− 1

n
CW = 1 DW ≤ 1 + 1√

n

Rad., n → +∞ AW = BW = CW = DW = 1

R. h.-o. (q)
AW = 2

`
1− q

n

´
BW =

q
n
q
− 1

CW =
q

n
n−1

q
n
q
− 1 DW = n

2q
+

˛̨̨
1− n

2q

˛̨̨
R. h.-o. (n/2) (2|n) AW = BW = DW = 1 CW =

q
n

n−1

Leave-one-out 2
n

= AW ≤ BW = 1√
n−1

CW =
√

n
n−1

DW = 1

Table 1. Resampling constants for classical resampling weight vector.

For these classical weights, exact or approximate values for the quantities
AW , BW , CW and DW (defined by equations (2) to (5)) can be easily derived
(see Tab. 1). Now, to use Theorem 2.1 or Corollary 2.2, we have to choose a par-
ticular resampling weight vector. In the Gaussian case, we propose the following
accuracy and complexity criteria: first, relations (6), (7) and (8) suggest that
the quantity CW B−1

W can be proposed as accuracy index for W . Secondly, an
upper bound on the computational burden to compute exactly the resampling
quantity is given by the cardinality of the support of D(W ), thus providing a
complexity index.
These two criteria are estimated in Tab. 2 for classical weights. Since for any
exchangeable weight vector W , we have CW B−1

W ≥ [n/(n− 1)]1/2 and the cardi-
nality of the support of D(W ) is greater than n, the leave-one-out weights satisfy
the best accuracy-complexity trade-off among exchangeable weights.

Remark 2.10. Of course, for general weights (complex or not), the computation
of resampling quantities can be done by Monte-Carlo simulations, i.e. drawing
randomly a small number of independent weight vectors (see [9], appendix II
for a discussion). We did not yet investigate the analysis of the corresponding
approximation.

Remark 2.11. When the leave-one-out weights are too complex (if n is large),
we can use “piece-wise exchangeable” weights instead: consider a regular par-
tition (Bj)1≤j≤V of {1, . . . , n} (where V ∈ {2, . . . , n} and V |n), and define the
weights Wi = V

V−11i/∈BJ
with J uniformly distributed on {1, . . . , V }. These

weights are called the (regular) V -fold cross validation weights (V -f. c.v.).
Considering the process (Ỹj)1≤j≤K where Ỹj = V

n

∑
i∈Bj

Yi is the empirical
mean of Y on block Bj , we can show that Theorem 2.1 can be extended to (reg-
ular) V -fold cross validation weights with the following resampling constants 5:
AW = 2/V , BW = (V − 1)−1/2 , CW =

√
n(V − 1)−1 , DW = 1. Thus, while the

complexity index of V -f. c.v. weights is only V , we lose a factor [(n−1)/(V−1)]1/2

in the accuracy index.

5 When V does not divide n and the blocks are no longer regular, Theorem 2.1 can
also be generalized, but the constants have more complex expressions.



Remark 2.12 (Link to leave-one-out prediction risk estimation). Consider us-
ing Y for predicting a new data point Yn+1 ∼ Y1 (independent on Y =
(Y 1, . . . , Y n)). The corresponding Lp-prediction risk is given by E

∥∥Y −Yn+1
∥∥

p
.

For Gaussians, this prediction risk is proportional to the Lp-risk: E
∥∥Y − µ

∥∥
p

=

(n+1)
1
2 E
∥∥Y −Yn+1

∥∥
p
, so that the estimator of the Lp-risk proposed in Remark

2.9 leads to an estimator of the prediction risk. In particular, using leave-one-out
weights and noting Y

(−i)
the mean of the (Yj , j 6= i, 1 ≤ j ≤ n) , we have then

established that the leave-one-out estimator 1
n

∑n
i=1

∥∥∥Y(−i) −Yi
∥∥∥

p
correctly es-

timates the prediction risk (up to the factor (1− 1/n2)
1
2 ∼ 1).

Resampling CW B−1
W (accuracy) Card (suppL(W )) (complexity)

Efron ≤ 1
2

`
1− 1

n

´−n −−−−→
n→∞

e
2

`
2n−1
n−1

´
∝ n−

1
2 4n

Rademacher ≤
“
1− n−1/2

”−1

−−−−→
n→∞

1 2n

R. h.-o. (n/2) =
q

n
n−1

−−−−→
n→∞

1
`

n
n/2

´
∝ n−1/22n

Leave-one-out =
q

n
n−1

−−−−→
n→∞

1 n

Table 2. Choice of the resampling weight vectors : accuracy-complexity tradeoff.

3 Confidence region using resampled quantiles

In this section, we present a different approach: we approximate the quantiles of
the variable φ

(
Y − µ

)
by the quantiles of the corresponding resampled distri-

bution D
(
φ
(
Y[W−W ]

) ∣∣Y), in the particular Rademacher resampling scheme.
Let us define for a function φ the resampled empirical quantile:

qα(φ,Y) = inf
{
x ∈ R s.t. PW

[
φ(Y[W ]) > x

]
≤ α

}
,

wherein W is an i.i.d Rademacher weight vector. We now state the main technical
result of this section:

Proposition 3.1. Fix δ, α ∈ (0, 1). Let Y be a data sample satisfying assump-
tion (SA). Let f :

(
RK
)n → [0,∞) be a nonnegative (measurable) function on the

set of data samples. Let φ be a nonnegative, subadditive, positive-homogeneous
function. Denote φ̃(x) = max (φ(x), φ(−x)) . Finally, for η ∈ (0, 1) , denote

B(n, η) = min

{
k ∈ {0, . . . , n} s.t. 2−n

n∑
i=k+1

(
n

i

)
< η

}
,

the upper quantile function of a binomial (n, 1
2 ) variable. Then we have:

P
[
φ(Y − µ) > qα(1−δ)

(
φ,Y −Y

)
+ f(Y)

]
≤ α + P

[
φ̃(Y − µ) >

n

2B
(
n, αδ

2

)
− n

f(Y)

]



Remark 3.2. By Hoeffding’s inequality, n

2B(n, αδ
2 )−n

≥
(

n

2 ln( 2
αδ )

)1/2

.

By iteration of this proposition we obtain the following corollary:

Corollary 3.3. Fix J a positive integer, (αi)i=0,...,J−1 a finite sequence in (0, 1)
and β, δ ∈ (0, 1) . Let Y be a data sample satisfying assumption (SA). Let φ :
RK → R be a nonnegative, subadditive, positive-homogeneous function and f :(
RK
)n → [0,∞) be a nonnegative function on the set of data samples. Then the

following holds:

P

[
φ(Y − µ) > q(1−δ)α0(φ,Y −Y) +

J−1∑
i=1

γiq(1−δ)αi
(φ̃,Y −Y) + γJf(Y)

]

≤
J−1∑
i=0

αi + P
[
φ̃(Y − µ) > f(Y)

]
, (14)

where, for k ≥ 1, γk = n−k
k−1∏
i=0

(
2B
(

n,
αiδ

2

)
− n

)
.

The rationale behind this result is that the sum appearing inside the probability
in (14) should be interpreted as a series of corrective terms of decreasing order of
magnitude, since we expect the sequence γk to be sharply decreasing. Looking at
Hoeffding’s bound, this will be the case if the levels are such that αi � exp(−n) .

Looking at (14), we still have to deal with the trailing term on the right-hand-
side to obtain a useful result. We did not succeed in obtaining a self-contained
result based on the symmetry assumption (SA) alone. However, to upper-bound
the trailing term, we can assume some additional regularity assumption on the
distribution of the data. For example, if the data are Gaussian or bounded, we
can apply the results of the previous section (or apply some other device like
Bonferroni’s bound (8)). We want to emphasize that the bound used in this
last step does not have to be particularly sharp: since we expect (in favorable
cases) γJ to be very small, the trailing probability term on the right-hand side
as well as the contribution of γJf(Y) to the left-hand side should be very minor.
Therefore, even a coarse bound on this last term should suffice.

Finally, we note as in the previous section that, for computational reasons,
it might be relevant to consider a block-wise Rademacher resampling scheme.

4 Simulations

For simulations we consider data of the form Yt = µt +Gt , where t belongs to an
m×m discretized 2D torus of K = m2 “pixels”, identified with T2

m = (Z/mZ)2 ,
and G is a centered Gaussian vector obtained by 2D discrete convolution of an
i.i.d. standard Gaussian field (“white noise”) on T2

m with a function F : T2
m → R
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Fig. 1. Left: example of a 128x128 pixel image obtained by convolution of Gaussian
white noise with a (toroidal) Gaussian filter with width b = 18 pixels. Right: average
thresholds obtained for the different approaches, see text.

such that
∑

t∈T2
m

F 2(t) = 1 . This ensures that G is a stationary Gaussian process
on the discrete torus, it is in particular isotropic with E

[
G2

t

]
= 1 for all t ∈ T2

m .
In the simulations below we consider for the function F a “Gaussian” con-

volution filter of bandwidth b on the torus:

Fb(t) = Cb exp
(
−d(0, t)2/b2

)
,

where d(t, t′) is the standard distance on the torus and Cb is a normalizing
constant. Note that for actual simulations it is more convenient to work in the
Fourier domain and to apply the inverse DFT which can be computed efficiently.
We then compare the different thresholds obtained by the methods proposed in
this work for varying values of b . Remember that the only information available
to the algorithm is the bound on the marginal variance; the form of the function
Fb itself is of course unknown.

On Fig. 4 we compare the thresholds obtained when φ = sup |·| , which
corresponds to the two-sided multiple testing situation. We use the different
approaches proposed in this work, with the following parameters: the dimension
is K = 1282 = 16384 , the number of data points per sample is n = 1000
(much smaller than K, so that we really are in a non-asymptotic framework),
the width b takes even values in the range [0, 40] , the overall level is α = 0.05 .
For the concentration threshold (6) (’conc.’), we used Rademacher weights. For
the “compound” threshold of Corollary 2.2 (’min(conc.,bonf.)’), we used δ = 0.1
and the Bonferroni threshold t′Bonf,0.9α as the deterministic reference threshold.
For the quantile approach (14), we used J = 1 , α0 = 0.9α , δ = 0.1 , and
the function f is given either by the Bonferroni threshold (’quant.+bonf.’) or
the concentration threshold (’quant.+conc.’), both at level 0.1α . Each point
represents an average over 50 experiments. Finally, we included in the figure
the Bonferroni threshold t′Bonf,α, the threshold for a single test for comparison,
and an estimation of the true quantile (actually, an empirical quantile over 1000
samples).



The quantiles or expectation with Rademacher weights were estimated by
Monte-Carlo with 1000 draws. On the figure we did not include standard devia-
tions: they are quite low, of the order of 10−3 , although it is worth noting that
the quantile threshold has a standard deviation roughly twice as large as the
concentration threshold (we did not investigate at this point what part of this
variation is due to the MC approximation).

The overall conclusion of this preliminary experiment is that the different
thresholds proposed in this work are relevant in the sense that they are smaller
than the Bonferroni threshold provided the vector has strong enough correla-
tions. As expected, the quantile approach appears to lead to tighter thresholds.
(However, this might not be always the case for smaller sample sizes.) One ad-
vantage of the concentration approach is that the ’compound’ threshold (7) can
“fall back” on the Bonferroni threshold when needed, at the price of a minimal
threshold increase.

5 Proofs

Proof (Proof of Prop. 2.4). Denoting by Σ the common covariance matrix of
the Yi, we have D(Y[W−W ]|W ) = N

(
0, (n−1

∑n
i=1(Wi −W )2)n−1Σ

)
, and the

result follows because D(Y − µ) = N (0, n−1Σ) and φ is positive-homogeneous.
ut

Proof (Proof of Prop. 2.6). (i). By independence between W and Y, using the
positive homogeneity, then convexity of φ, for every realization of Y we have:

AW φ
(
Y − µ

)
= φ

(
E

[
1
n

n∑
i=1

∣∣Wi −W
∣∣ (Yi − µ

) ∣∣∣∣Y
])

≤ E

[
φ

(
1
n

n∑
i=1

∣∣Wi −W
∣∣ (Yi − µ

)) ∣∣∣∣Y
]

.

We integrate with respect to Y, and use the symmetry of the Yi with respect
to µ and again the independence between W and Y to show finally that

AW E
[
φ
(
Y − µ

)]
≤ E

[
φ

(
1
n

n∑
i=1

∣∣Wi −W
∣∣ (Yi − µ

))]

= E

[
φ

(
1
n

n∑
i=1

(
Wi −W

) (
Yi − µ

))]
= E

[
φ
(
Y[W−W ]

)]
.

We obtain (ii) via the triangle inequality and the same symmetrization trick. ut

Proof (Proof of Prop. 2.8). We denote by A a square root of the common co-
variance matrix of the Yi and by (ak)1≤k≤K the rows of A. If G is a K × m
matrix with standard centered i.i.d. Gaussian entries, then AG has the same



distribution as Y − µ . We let for all ζ ∈
(
RK
)n, T1(ζ) := φ

(
1
n

∑n
i=1 Aζi

)
and T2(ζ) := E

[
φ
(

1
n

∑n
i=1(Wi −W )Aζi

)]
. From the Gaussian concentration

theorem of Cirel’son, Ibragimov and Sudakov (see for example [11], Thm. 3.8),
we just need to prove that T1 (resp. T2) is a Lipschitz function with constant
‖σ‖p /

√
n (resp. ‖σ‖p CW /n), for the Euclidean norm ‖·‖2,Kn on

(
RK
)n. Let

ζ, ζ ′ ∈
(
RK
)n. Using firstly that φ is 1-Lipschitz (since it is subadditive and

bounded by the p-norm), and secondly Cauchy-Schwartz’s inequality coordinate-
wise and ‖ak‖2 ≤ σk, we deduce

|T1(ζ)− T1(ζ ′)| ≤
∥∥∥∥ 1

n

n∑
i=1

A (ζi − ζ ′i)
∥∥∥∥

p

≤ ‖σ‖p

∥∥∥∥ 1
n

n∑
i=1

(ζi − ζ ′i)
∥∥∥∥

2

.

Therefore, we get |T1(ζ)− T1(ζ ′)| ≤
‖σ‖p√

n
‖ζ − ζ ′‖2,Kn by convexity of x ∈ RK →

‖x‖22, and we obtain (i). For T2, we use the same method as for T1 :

|T2(ζ)− T2(ζ ′)| ≤ ‖σ‖p E
∥∥∥∥ 1

n

n∑
i=1

(Wi −W )(ζi − ζ ′i)
∥∥∥∥

2

≤
‖σ‖p

n

√√√√E
∥∥∥∥ n∑

i=1

(Wi −W )(ζi − ζ ′i)
∥∥∥∥2

2

. (15)

We now develop
∥∥∑n

i=1(Wi −W )(ζi − ζ ′i)
∥∥2

2
in the Euclidean space RK (note

that from
(∑n

i=1(Wi −W )
)2

= 0, we have E(W1 −W )(W2 −W ) = −C2
W /n) :

E
∥∥∥∥ n∑

i=1

(Wi −W )(ζi − ζ ′i)
∥∥∥∥2

2

= C2
W

n∑
i=1

‖ζi − ζ ′i‖
2
2 −

C2
W

n

∥∥∥∥ n∑
i=1

(ζi − ζ ′i)
∥∥∥∥2

2

.

Consequently,

E
∥∥∥∥ n∑

i=1

(
Wi −W

)
(ζi − ζ ′i)

∥∥∥∥2

2

≤ C2
W

n∑
i=1

‖ζi − ζ ′i‖
2
2 ≤ C2

W ‖ζ − ζ ′‖22,Kn . (16)

Combining expression (15) and (16), we find that T2 is ‖σ‖p CW /n-Lipschitz. ut

Proof (Proof of Thm. 2.1). The case (BA)(p,M) and (SA) is obtained by com-
bining Prop. 2.6 and McDiarmid’s inequality (see for instance [4]). The (GA)
case is a straightforward consequence of Prop. 2.4 and the proof of Prop. 2.8. ut

Proof (Proof of Cor. 2.2). From Prop. 2.8 (i), with probability at least 1 −
α(1 − δ), φ

(
Y − µ

)
is upper bounded by the minimum between tα(1−δ) and

E
[
φ
(
Y − µ

)]
+

‖σ‖pΦ
−1

(α(1−δ)/2)
√

n
(because these thresholds are deterministic).

In addition, Prop. 2.4 and Proposition 2.8 (ii) give that with probability at least

1−αδ, E
[
φ
(
Y − µ

)]
≤ E[φ(Y−µ)|Y]

BW
+

‖σ‖pCW

BW n Φ
−1

(αδ/2). The result follows by
combining the two last expressions. ut



Proof (Proof of Prop. 3.1). Remember the following inequality coming from the
definition of the quantile qα : for any fixed Y

PW

[
φ
(
Y[W ]

)
> qα(φ,Y)

]
≤ α ≤ PW

[
φ
(
Y[W ]

)
≥ qα(φ,Y)

]
, (17)

which will be useful in this proof. We have

PY

[
φ(Y − µ) > qα(φ,Y − µ)

]
= EW

[
PY

[
φ
(
(Y − µ)[W ]

)
> qα(φ, (Y − µ)[W ])

]]
= EY

[
PW

[
φ
(
(Y − µ)[W ]

)
> qα(φ,Y − µ)

]]
≤ α . (18)

The first equality is due to the fact that the distribution of Y satisfies assumption
(SA), hence the distribution of (Y − µ) invariant by reweighting by (arbitrary)
signs W ∈ {−1, 1}n . In the second equality we used Fubini’s theorem and the
fact that for any arbitrary signs W as above qα(φ, (Y − µ)[W ]) = qα(φ,Y − µ) ;
finally the last inequality comes from (17). Let us define the event

Ω =
{
Y s.t. qα(φ,Y − µ) ≤ qα(1−δ)(φ,Y −Y) + f(Y)

}
;

then we have using (18) :

P
[
φ(Y − µ) > qα(1−δ)(φ,Y −Y) + f(Y)

]
≤ P

[
φ(Y − µ) > qα(φ,Y − µ)

]
+ P [Y ∈ Ωc]

≤ α + P [Y ∈ Ωc] .
(19)

We now concentrate on the event Ωc . Using the subadditivity of φ, and the
fact that (Y − µ)[W ] = (Y −Y)[W ] +W (Y−µ) , we have for any fixed Y ∈ Ωc:

α ≤ PW

[
φ((Y − µ)[W ]) ≥ qα(φ,Y − µ)

]
≤ PW

[
φ((Y − µ)[W ]) > qα(1−δ)(φ,Y −Y) + f(Y)

]
≤ PW

[
φ((Y −Y)[W ]) > qα(1−δ)(φ,Y −Y)

]
+ PW

[
φ(W (Y − µ)) > f(Y)

]
≤ α(1− δ) + PW

[
φ(W (Y − µ)) > f(Y)

]
.

For the first and last inequalities we have used (17), and for the second inequality
the definition of Ωc. From this we deduce that

Ωc ⊂
{
Y s.t. PW

[
φ(W (Y − µ)) > f(Y)

]
≥ αδ

}
.

Now using the homogeneity of φ, and the fact that both φ and f are nonnegative:

PW

[
φ(W (Y − µ)) > f(Y)

]
= PW

[∣∣W ∣∣ > f(Y)
φ(sign(W )(Y − µ))

]
≤ PW

[∣∣W ∣∣ > f(Y)

φ̃(Y − µ)

]

= 2P

[
1
n

(2Bn, 1
2
− n) >

f(Y)

φ̃(Y − µ)

∣∣∣∣Y
]

,



where Bn, 1
2

denotes a binomial (n, 1
2 ) variable (independent of Y). From the two

last displays we conclude

Ωc ⊂

{
Y s.t. φ̃(Y − µ) >

n

2B
(
n, αδ

2

)
− n

f(Y)

}
,

which, put back in (19), leads to the desired conclusion. ut
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