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High-throughput density-functional calculations of solids are extremely time consuming. As an
alternative, we here propose a machine learning approach for the fast prediction of solid-state prop-
erties. To achieve this, LSDA calculations are used as training set. We focus on predicting metallic
vs. insulating behavior, and on predicting the value of the density of electronic states at the Fermi
energy. We find that conventional representations of the input data, such as the Coulomb matrix,
are not suitable for the training of learning machines in the case of periodic solids. We propose
a novel crystal structure representation for which learning and competitive prediction accuracies
become possible within an unrestricted class of spd systems. Due to magnetic phenomena learning
on d systems is found more difficult than in pure sp systems.

In recent years ab-initio high-throughput computa-
tional methods (HTM) have proven to be a powerful and
successful tool to predict new materials and to optimize
desired materials properties. Phase diagrams of multi-
component crystals [1–3] and alloys [4] have been suc-
cessfully predicted. High-impact technological applica-
tions have been achieved by improving the performance
of Lithium based batteries [5–7], by tailoring the non-
linear optical response in organic molecules [8] for optical
signal processing, by designing desired current-voltage
characteristics [9] for photovoltaic materials, by optimiz-
ing the electrode transparency and conductivity [10] for
solar cell technology, and by screening metals for the
highest amalgamation enthalpy [11] to efficiently remove
Hg pollutants in coal gasification.

However, the computational cost of electronic struc-
ture calculations poses a serious bottleneck for HTM.
Thinking of quaternary, quinternary, etc., compounds,
the space of possible materials becomes so large, and the
complexity of the unit cells so high that, even within ef-
ficient Kohn-Sham density functional theory (KS-DFT),
a systematic high-throughput exploration grows beyond
reach for present-day computing facilities. As a way out,
one would like to have a more direct way to access the
physical property of interest without actually solving the
KS-DFT equations. Machine learning (ML) techniques
offer an attractive possibility of this type. ML-based cal-
culations are very fast, typically requiring only fractions
of a second to predict a specific property of a given ma-
terial, after having trained the ML model on a represen-
tative training set of materials.

ML methods rely on two main ingredients, the learn-
ing algorithm itself and the representation of the input
data. There are many different ways of representing a
given material or compound. While, from the physicists
point of view, the information is simply given by the
charges and the positions of the nuclei, for ML algorithms

the specific mathematical form in which this information
is given to the machine, is crucial. Roughly speaking,
ML algorithms assume a nonlinear map between input
data (representing the materials or compounds in our
case) and the material-specific property to be predicted.
Whether or not a machine can approximate the unknown
nonlinear map between input and property well and effi-
ciently mainly depends on a good representation [12]. Re-
cently, ML has contributed accurate models for predict-
ing molecular properties [13, 14], transition states [15],
reaction surfaces [16], potentials [17] and self-consistent
solutions for DFT [18]. All these applications deal with
finite systems (atoms, molecules, clusters). For this type
of systems, one particular way of representing the mate-
rial, namely the so-called Coulomb matrix, has been very
successful.

In electronic-structure problems, the single most-
important property is the value of the density of states
(DOS) at the Fermi energy. Susceptibilities, transport
coefficients, the Siebeck coefficient, the critical temper-
ature of superconductors, are all closely related to the
DOS at the Fermi energy. Therefore, we have chosen
this quantity to be predicted by ML.

In this work, we shall report a fundamental step for-
ward in the application of machine learning to predict
the DOS at the Fermi energy. The two main questions
this work aims to answer are: (a) How can we describe
an infinite periodic system in a way that supports the
learning process well? (b) How large should the basis
for ML training be, i.e., the training set of calculations?
Answering these questions will provide us exactly with
the sought-after method of direct and fast prediction and
with the knowledge of whether such prediction is indeed
possible given the finite amount of training data compat-
ible with present day’s computing power.

We employ so-called kernel-based learning meth-
ods [19, 20] that are based on a mapping to a high-
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dimensional feature space such that an accurate predic-
tion can be achieved with a linear model in this space.
The so-called kernel trick allows to perform this map-
ping implicitly using a kernel function, e.g., the Gaussian
kernel k(x,y) = exp

(
−‖x− y‖2/σ2

)
. Kernels can be

viewed as a similarity measure between data, in our case
they should measure proximity between materials for a
certain property. The property to be predicted is com-
puted as a linear combination of kernel functions of the
material of interest and the training materials. There-
fore, constructing a structure representation in which
crystals have small distance when their properties are
similar is essential for the learning process (see below for
details).

For the insulator vs. metal classification, we use a
support vector machine (SVM) that finds a separating
hyperplane in feature space while maximizing the space
between the two classes [21]. In order to predict the
DOS, we employ kernel ridge regression (KRR), which is
a kernelized variant of least-squares regression with `2-
regularization.

We use nested cross-validation for the model selec-
tion process [22], i.e., the parameter selection and per-
formance evaluation are performed on separate held-out
subsets of the data that are independent from the set of
training materials. This ensures to find optimal parame-
ters for the kernel and the model regularization in terms
of generalization while avoiding overfitting.

In the solid state community crystals are convention-
ally described by the combination of the Bravais Matrix,
containing the primitive translation vectors, and the ba-
sis, setting the position and type of the atoms in the unit
cell. This type of description is not unique and thus not
a suitable representation for the learning process since it
depends on an arbitrary choice of the coordinate system
in which the Bravais matrix is given. Namely, there ex-
ists an infinite number of equivalent representations that
would be perceived as distinct crystals by the machine.
In principle, recognizing equivalent representations could
also be tackled by machine learning directly as done for
molecules in Ref. [14, 23, 24]. However, a significant com-
putational cost in terms of size of the training set had to
be paid, particularly in the case of crystals.

For the case of molecules the Coulomb matrix has
proven to be a well-performing representation [13, 14].
This is given by

Cmol
ij =

{
0.5Z2.4

i for i = j
ZiZj
‖ri−rj‖ for i 6= j

with nuclear charges Zi and positions ri of the atoms.
This description is invariant under rotation and transla-
tion, but unfortunately it cannot be applied directly to
infinite periodic crystals.

A simple extension to crystals would be to combine a
Coulomb matrix of one single unit cell with the Bravais

matrix. We call this representation Bravais + Coulomb
matrix (B+CM).

In order to avoid the above discussed degeneracy prob-
lem associated with the Bravais description, a direct gen-
eralization to crystals can be formulated by fixing one
atom in the crystal and taking the nearest k atoms to
build up the Coulomb matrix from those. We then sort
the matrix by the nuclear charges, i.e., Cii < Cjj for
i < j. This leads to a representation that takes the pe-
riodicity of the crystal directly into account. We call
this second candidate representation Crystal Coulomb
matrix (CCM). The Coulomb matrix representation as-
sumes a similarity relation between atoms with close nu-
clear charges. However, this is not necessarily the case
for materials.

FIG. 1. Alternative crystal representations. Left: a crystal
unit cell with indicated the Bravais vectors (blue) and base
(pink). Right: Illustration of one shell of the discrete partial
radial distribution function gαβ(r) with width dr.

In order to include more physical knowledge about
crystals, we propose the partial radial distribution func-
tion (PRDF) representation inspired by radial distri-
bution functions as used in the physics of x-ray pow-
der diffraction [25] and text mining from computer sci-
ence [26, 27]. It considers the distribution of pair-wise
distances dαβ between two atom types α and β, respec-
tively. This can be seen as the density of atoms of type
β in a shell of radius r and width dr centered around an
atom of type α (see Fig. 1). Averaged over all atoms of
a type, the discrete PRDF representation is given by

gαβ(r) =
1

NαVr

Nα∑
i=1

Nβ∑
j=1

θ(dαiβj − r)θ(r + dr − dαiβj ),

where Nα and Nβ are the numbers of atoms of type α and
β, respectively, while Vr is the volume of the shell. We
only need to consider the atoms in one primitive cell as
shell centers for calculation. The distribution is globally
valid due to the periodicity of the crystal and the nor-
malization with respect to the considered crystal volume.
In this work, the type criterion for ’counting’ an atom is
its nuclear charge, however, other more general criteria
could be used, such as the number of valence electrons or
the electron configuration.
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As input for the learning algorithm, we employ the
feature matrix X with entries xαβ,n = gαβ(rn), i.e., the
PRDF representation of all possible pairs of elements as
well as shells up to an empirically chosen cut-off radius.
The distance of two crystals is then defined as the dis-
tance induced by the Frobenius norm between those ma-
trices and may be plugged into the previously described
Gaussian kernel. In this manner, we have defined a novel
global descriptor as well as a similarity measure for crys-
tals which is invariant under translation, rotation and the
choice of the unit cell.

The DOSF we use to train and validate the learning
are computed [28] on crystals from the inorganic crys-
tal structure database (ICSD) [29] with the experimental
lattice parameters reported therein. The chosen subset
contains only non-duplicated materials with a maximum
of 8 atoms per pr/imitive cell. We subdivide the set into
sp (1736 crystals of which 1151 are insulators) and spd
(5134 crystals of which 1979 are insulators).

Since the DOSF is only clearly defined for metals, its
prediction is closely linked to the classification of mate-
rials into metals and insulators. Thus as a first step, we
trained an SVM classifier on the whole dataset. By shift-
ing the classification threshold, sensitivity vs. specifity,
i.e., the trade-off between correctly detected insulators
and metals incorrectly classified as insulators can be ad-
justed. E.g., our classifier is able to detect 85.0% of the
insulators while only mistaking 7.3% of the metals as in-
sulators on the whole data set.

TABLE I. Mean absolute errors in DOS predictions in

10−2 states/eV/Å
3

Predictor sp systems spd systems

Mean predictor 1.49 1.99

KRR / B+CM 1.02 1.65

KRR / CCM 1.11 1.64

KRR / PRDF 0.78 1.19

For the DOSF prediction, we only consider metals in
the sp and spd material sets. The mean absolute errors
of the predictions of all presented crystal representations
are collected in Table I. Furthermore, we list the mean
predictor that always predicts the average DOSF value
of the training set as a simple baseline. Fig. 2 illustrates
how the error decreases steadily with increasing number
of materials used for training. All three representations
yield models that are significantly better than the mean
predictor. However, the PRDF features consistently out-
perform the CCM and the B+CM description. The fur-
ther analysis will therefore focus on PRDF.

We note that the B+CM description does not appear
to be worse than the CCM. This could be a result of
the intrinsic conventional crystallographic choices within
the ICSD. There are conventions that partially restrict

alternative representations, e.g., hexagonal crystals are
usually represented with the hexagonal axis along the z
Cartesian direction, so the degeneracy problem affects
only the xy plane.

The higher complexity of the spd systems can clearly
be observed in the learning curves, which show how much
better the prediction problem can be solved as a func-
tion of the available data. The mean error is much lower
in sp materials. Furthermore, the learning curves are
steeper, i.e., increasing the training set size within the
restricted materials class improves the prediction accu-
racy rapidly. One origin of this higher complexity lies in
the growing dimensionality of the input space: given Nel

possible chemical elements in all material compositions,
dim(X) ∝ N2

el. Furthermore, by including materials with
d electrons, the physics becomes more rich. Due to both
reasons, much more training data is required to achieve
an improvement comparable to that of sp systems.

FIG. 2. Learning process as a function of the number of ma-
terials used for training for all three feature representations
(conventional CCM and PRDF), and for the two datasets.

The prediction of DOSF is shown in Fig. 3, as a density
plot of computed versus predicted values. In both sp and
spd systems the density is clearly accumulated along the
diagonal of the plot, demonstrating that the machine is
giving meaningful predictions. In the case of sp systems,
the upper limit of the absolute deviation from the diago-
nal seems to be independent from the value of DOSF by
itself, implying a comparatively low relative prediction
error for high DOSF.

As a matter of fact, predictions on sp materials exhibit
a considerably lower upper limit of the absolute devia-
tion compared to spd systems. In the spd set, we observe
some severe mispredictions for high DOSF, where the ma-
chine shows a tendency to underestimate the DOS. We
investigated this aspect by a detailed analysis of all exam-

ples with a DOSF ≥ 0.15 states/eV/Å
3

[30], comparing
examples with a relative prediction error δDOSF < 25%
(called ’well predicted’ in the following) to the remaining
ones (called ’badly predicted’ in the following). First of
all, 18% of the badly predicted materials contain pairs of
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FIG. 3. Comparison between predicted and calculated DOSF

for sp (left) and spd systems (right).

chemical elements not found in any other material, which
is important due to the PRDF representation. Taking
into account the 5 training examples of highest influence
onto each prediction [31], we observe that in every ma-
terial with δDOSF < 25% contains at least one material
with the same chemical composition at a close, but nev-
ertheless different pressure (78%), or a material whose
chemical composition is a superset (50%). Only 30% of
the materials with δDOSF > 25% have such contributors.

Magnetic phase transitions are a further important as-
pect. At the crossing of a transition we can have crystals
of similar composition and lattice structure while having
a large difference in DOSF (as the magnetic transition
opens a gap in the d electronic states at the Fermi energy
causing a drop in the value of DOSF). This high sensitiv-
ity of the DOS to the lattice properties is clearly difficult
to learn and leads to evident mispredictions. Since there
are only few training materials with a high DOSF the
misprediction is usually in the direction of an underesti-
mation.

In summary, we have investigated a machine learning
approach for fast solid-state predictions. A set of LSDA
spin-DFT calculations has been used to train a DOSF

predictor and a metal/insulator classifier. Prediction
quality strongly depends on how crystals are represented.
We found that Coulomb matrices, while being success-
ful for predicting properties in molecules [23, 24], are
not suitable to describe crystal structures well enough.
Instead, we have proposed an invariant representation
inspired by partial radial distribution functions. While
the learning curves suggest significant improvement for
the more restricted class of sp systems by increasing the
number of training materials, learning in d systems, al-
though still clearly visible, is much slower due to the
high dimensionality of the chemical compound subspace
and the complexity of magnetic phenomena. Our results
clearly demonstrate that a fast prediction of electronic
properties in solids with ML algorithms is indeed pos-
sible. The suggested representation of periodic solids is
rather generic. We expect that our method can be ex-
tended beyond the DOSF to directly predict other and
more complex materials properties.
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