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Abstract

The lack of sufficient training data is the limiting factor for many Machine Learning applications in Compu-
tational Biology. If data is available for several different but related problem domains, Multitask Learning
algorithms can be used to learn a model based on all available information. However, combining informa-
tion from several tasks requires careful consideration of the degree of similarity between tasks. We propose
to use the recently published q-Norm Multiple Kernel Learning algorithm to simultaneously learn or refine
the similarity matrix between tasks along with the Multitask Learning classifier by formulating the Multi-
task Learning problem as Multiple Kernel Learning. We demonstrate the performance of our method on two
problems from Computational Biology. First, we show that our method is able to improve performance on a
splice site dataset with given hierarchical task structure by refining the task relationships. Second, we con-
sider an MHC-I dataset, for which we assume no knowledge about the degree of task relatedness. Here, we
are able to learn the task similarity ab initio. Our framework is very general as it allows to incorporate prior
knowledge about tasks relationships if available, but is also able to identify task similarities in absence of
such prior information. Both variants show promising results in applications from Computational Biology.

Background

In this paper, we investigate Multitask Learning scenarios where there exists a latent structural relation across tasks. In
particular, we model the relatedness between tasks by defining meta-tasks. Here, each meta-task corresponds to a subset of
all tasks, representing the common properties of the tasks within this subset. Then, the model of each task can be derived
by a convex combination of the meta-tasks it belongs to. Moreover, the latent structure over tasks can be represented by a
collection of the meta-tasks. Information is transferred between two tasks t, t′ with respect to their relatedness according to
the latent structure (number of meta-tasks in which t, t′ co-occur and the importance of each of these meta-tasks defined by
the mixture weights).

Clearly, such an approach is highly sensitive to the chosen structure and in the absence of prior knowledge, learning the latent
structure is a crucial component of MTL with non-uniform relatedness. Starting from a special case, where there exists a
single meta-task consisting of all tasks (standard MTL), we show that inferring the latent structure can be cast as a Multiple
Kernel Learning problem, where the base kernels are defined with respected to Dirac kernels [4] that establish relatedness of
all possible task combinations and hence correspond to all possible meta-tasks.

In a single-task supervised learning scenario, a sample of example-label pairs D = {(xi, yi)}i=1,...,n is given, where the xi
live in an input space X and yi ∈ {−1, 1} (for binary classification). The goal is to learn a function f such that f(xi) ≈ yi
that generalizes well on unseen data. Before we describe our formulation of MTL as MKL approach, we briefly review the
formulation of the used Multitask Learning algorithm. For a detailed description of q-norm MKL, see [5].
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Multitask Learning

In MTL, we are given one labeled sample Dt for each of T tasks. Similar to the single-task supervised learning scenario, we
are now interested in obtaining T hypotheses ft, one for each task. We start from a regularization-based Multitask Learning
method that was similarly proposed in the context of SVMs [1–3]. The basic idea is that models wt are learned simultaneously
for all tasks. Information transfer between tasks is achieved by sharing a general component w0 = 1

T

∑T
t=1 wt and enforcing

similarity of each wt to w0 in the joint optimization problem via regularization. We use the following formulation, leaving
out some constants for readability

min
w1,...,wT

1

2

T∑
t=1

||wt||2 +

T∑
t=1

||wt −w0||2 + C

T∑
t=1

∑
(x,y)∈Dt

` (〈x,wt〉 , y) ,

where ` is the hinge loss, `(z, y) = max{1− yz, 0}.
It was shown in [3], that the dual formulation of the above corresponds to the standard SVM using a modified kernel function:

max
α
− 1

2

n∑
i=1

n∑
j=1

αiαjyiyjK̃(xi,xj) +

n∑
i=1

αi

s.t. αTy = 0, 0 ≤ αi ≤ C ∀i ∈ {1, n},

where KB denotes the base kernel that captures the interactions between examples from all tasks and

K̃(xi,xj) = KB(xi,xj) + δt(i),t(j)KB(xi,xj). (1)

Here, t(i) denotes the task of example xi. In the above formulation, K̃ is composed of the general kernel KB and the kernel
δt(i),t(j)KB(xi,xj) that captures only intra-domain interactions. In [4], the latter kernel is referred to as Dirac kernel. A
slightly more general formulation of K̃ is the following, which allows to adjust the trade-off between the general kernel and
the task-specific kernel:

K̃(xi,xj) = β1KB(xi,xj) + β2δt(i),t(j)KB(xi,xj),

where β1, β2 ≥ 0 and β1 + β2 = 1.

Clearly, K̃ is a convex combination of base kernels and thus a valid kernel. MKL is a technique to learn the individual weights
of a weighted linear combination of kernels. Thus, it seems natural to utilize MKL to learn an optimal weighting for K̃.

Multitask Multiple Kernel Learning

To be able to use MKL for Multitask Learning, we need to reformulate the Multitask Learning problem as a weighted linear
combination of kernels. Motivated by Equation 1, the basic idea of our decomposition is to define task-based block masks on
the kernel matrix of KB . Given a list of tasks T = {t1, ..., tT }, we define a kernel KS on a subset of tasks S ⊆ T as follows:

KS(x, y) =

{
KB(x, y), if t(x) ∈ S ∧ t(y) ∈ S

0, else

where t(x) denotes the task of example x. Here, each S corresponds to a meta-task as defined in the introduction. In the most
general formulation, we define a collection I = {S1, ..., Sp} of an arbitrary number p of task sets Si, which defines the latent
structure over tasks. This collection leads to the following linear combination of kernels, which is positive semi-definite:

K̂(x, y) =
∑
Si∈I

βiKSi(x, y)

Using K̂, we can readily utilize existing MKL methods to learn the βi. This corresponds to identifying the groups of tasks Si
for which sharing information leads to improved performance. After training using MKL, we have obtained a classifier ft for
each task t:

ft(y) =

N∑
i=0

αiyi
∑

Sj∈I;t∈Sj

βjKSj
(xi, y),
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where N is the total number of training examples of all tasks combined.

What remains to be discussed is how to define a collection I of candidate subsets Si (i.e. meta-tasks), which are subsequently
to be weighted by MKL. We consider two scenarios, one where we assume to have access to a hierarchical structure relating
the tasks at hand and one, where we assume no prior knowledge given about task relations. Generally, however, it is possible
to utilize prior domain knowledge indicating how tasks are related to design an appropriate I.

Powerset MT-MKL

With no prior information given, a natural choice is to take into account all possible subsets of tasks. Given a set tasks T , this
corresponds to considering the power set P of T (excluding the empty set) IP = {S|S ∈ P(T ) ∧ S 6= Ø}.
Clearly, this gives us an exponential number (i.e. 2T ) of task sets Si of which only a few will be relevant. To identify the
relevant task sets, we propose to use an L1-regularized MKL approach to yield a sparse solution. Most subset weights will be
set to zero, yielding only a few relevant subsets with weights greater than zero. We expect that the examples in these subsets
come from similar distributions and that it is therefore beneficial to consider interactions between them, when obtaining a
multitask predictor.

Hierarchical MT-MKL

In the second scenario, we assume that we are given a tree structure G that relates our tasks at hand (see Figure 1). In this
context, a task ti corresponds to a leaf in G. Assuming hierarchical relations between tasks is particularly relevant to Compu-
tational Biology where often different tasks correspond to different organisms. In this context, we expect that the longer the
common evolutionary history between two organisms, the more beneficial it is to share information between these organisms
in a MTL setting. We can exploit the hierarchical structure G to determine which subsets might play a role for Multitask

Figure 1: Example of a hierarchical decomposition.

Learning. In other words, we use the hierarchy to restrict the space of task sets. Let leaves(n) = {l|l is descendant of n}
be the set of leaves below the sub-tree rooted at node n. Then, we can give the following definition for the hierarchically
decomposed kernel function

K̂(x, y) =
∑
ni∈G

βiKleaves(ni)

As an example, consider the kernel defined by a hierarchical decomposition according to Figure 1.

Clearly, the number of βi corresponds to the number of nodes. For a perfect binary tree this leads to 2m− 1 nodes, where m
is the number of leaves/tasks. We expect that learning the contributions of the individual levels of the taxonomy makes sense
for cases, where the edge lengths of G are unequal.

Results and discussion

We performed experiments in two settings. In the first setting, we considered a set of MHC-I (major histocompatibility
complex) proteins. Here, we assume we are not given any prior information to relate them. In the second setting, we used
splice site data from 15 organisms and assumed that the task relationship is given by a hierarchical structure according to their
evolutionary history. The examples are string data over an alphabet {A, T,G,C} (DNA) in the splicing case and the alphabet
of 20 amino acids in the MHC-I case. To incorporate string features, we used the Weighted Degree String Kernel [7], which
amongst other kernels such as the Spectrum Kernel [6], has been successfully employed in problems from Computational
Biology. In addition to the two MKL-based methods, we evaluated three following baseline methods: Union: One global
model is obtained on the union of examples from all tasks, Plain: For each task, a model is trained independently, not taking
into account any out-of-domain information, Vanilla MTL: In the vanilla approach, we fix all weights at βi = 1.
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MHC-I binding prediction using Powerset MT-MKL

In this experiment, the task is to predict whether a peptide binds to a certain MHC molecule (binder) or not (non-binder).
It has been previously shown that sharing information between related molecules (alleles) and thus casting the problem in a
Multitask Learning scenario, can be beneficial [4]. In the MHC setting, different tasks correspond to different MHC proteins.
We report the area under the precision recall curve (auPRC) in Table 1.

auPRC Plain Union Vanilla MTL Powerset MT-MKL
cross-validation 0.668 0.637 0.676 0.692
test set 0.671 0.576 0.679 0.699

Table 1: Results for the MHC experiment in auPRC for the model selection step and the final prediction on the test set.
Reported is the average performance over all tasks.

Splice-site prediction using hierarchical MT-MKL

In this setting, we take into account a given hierarchy relating the 15 organisms in our data set. The data set consists of 6000
examples for 15 tasks, each at a positive to negative ratio of 1:100, similar to the one used in [8]. The data is split into 4 splits,
three splits with 333 examples each and a large test split with 5000 examples. The dataset was created that way to establish a
scenario where positive training examples are extremely rare. For the Vanilla MTL method, we use the given hierarchy G to
define the initial task sets, but not further optimize their individual influence.

We report the area under the precision recall curve (auPRC) in Table 2.

auPRC Plain Union Vanilla MTL Hierarchical MT-MKL
cross-validation 0.043 0.092 0.087 0.100
test set 0.059 0.153 0.169 0.190

Table 2: Results for the splice site experiment in auPRC for the model selection step and the final prediction on the test set.
This table shows only the performance for the best-performing variant of Hierarchical MT-MKL with norm q = 2.

Conclusions

We have presented a principle way of formulating Multitask Learning as a Multiple Kernel Learning approach. Following
the basic idea of task-set-wise decomposition of the kernel matrix, we present a hierarchical decomposition and a power
set based approach. These two methods allow us to elegantly identify or refine structure relating the tasks at hand in one
global optimization problem. We expect our methods to work particularly well in cases, where edge weights differ within the
hierarchical structure or where the task structure is unknown.
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