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1 Introduction

Ordinary and partial differential equations are extensively used in different branches of science and
engineering to model wide variety of phenomena, such as diffusion, stability, wave propagation,
population growth and chemical reactions, to mention just a few. For most practical problems these
differential equations cannot be solved analytically and numerical techniques must be employed.

This paper develops methodology for applying mutli-task Gaussian processes to numerical solution
of ordinary (ODEs) and partial (PDEs) differential equations. For different classes of ODEs and
PDEs a detailed evaluation of the accuracy of the proposed methodology is presented by comparing
the obtained numerical solutions with the corresponding exact analytical ones.

2 Differential Equations and Operator Induced Multi-Task GPs

This section briefly reviews differential equations and Gaussian processes (GPs) and then combines
them to introduce operator induced multi-task Gaussian processes.

2.1 Differential Equations

Consider the linear differential equation

L1,x [u (x)] = h1 (x) in the region Ω1 (1)

with the boundary and/or initial conditions

Ll,x [u (x)] = hl (x) in the region Ωl where l = 2 : M. (2)

In Eq. (2) the regions Ω2, ...,ΩM usually represent the boundaries of Ω1. The task is to find a
function u (x) which satisfies the differential equation (1) and boundary/initial conditions (2).

2.2 Multi-Task Gaussian Processes

Consider the supervised learning problem of estimating M tasks y∗ for a query point x∗ given a set
X of inputs x11, . . . ,xN11,x12, . . . ,xN22, . . . ,x1M , . . . ,xNMM and corresponding noisy outputs
y = (y11, . . . , yN11, y12, . . . , yN22, . . . , y1M , . . . , yNMM )

T , where xil and yil correspond to the ith
input and output for task l respectively, and Nl is the number of training examples for task l.

Introducing the multi-task covariance function

cov [fl(x), fk(x′)] = Klk(x,x′), (3)

inference can be computed using the conventional GP equations for mean and variance [1], [2]:

f̄l(x
∗) = kT

l K
−1
lk y and V[fl(x

∗)] = kl∗ − kT
l K
−1
lk kl, (4)
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where

kl = [k1l(x
∗,x11) . . . k1l(x

∗,xN11) . . . kMl(x
∗,x1M ) . . . kMl(x

∗,xNMM )]T . (5)
Similarly, learning can be performed by maximizing the log marginal likelihood

L(θ) = −0.5 log |Klk| − yTK−1lk y − 0.5(N1 +N2 + · · ·+NM ) log 2π (6)
where θ is a set of hyper-parameters.

2.3 Operator Induced Multi-Task Gaussian Processes

Combining linear operators from differential equations with the multi-task GPs from machine learn-
ing introduce Operator Induced Multi-Task Gaussian Processes as follows:

Definition 1 M task Gaussian process with the multi-task covariance functions Kij(x,x
′) induced

by linear operators Ll,x [f (x)] from a single-task covariance function K0(x,x′) according to the
formula

Klq (x,x′) = Lq,x′ [Ll,x [K0 (x,x′)]] , l, q = 1 : M (7)

is called an operator induced multi-task Gaussian process (OMGP). The operators Ll,x are called
inducing operators and K0(x,x′) is called basic covariance function.

The next section describes how to use OMGPs for numerical solution of differential equations.

3 Numerical Solution of Differential Equations

To find an approximate numerical solution of the continuous equations Eq. (1)-(2) one can replace
them with the corresponding discrete equations:

fl (xil) = hl (xil) , l = 1 : M, i = 1 : Nl (8)
where x1l, x2l, ..., xNll ∈ Ωl, and fl (x) is defined as

fl (x) = Ll,x [u (x)] . (9)
Assuming that u (x) is a GP with the covariance function K0 (x, x′) and using the linearity of the
operators Ll,x, from Eq. (9) it follows that fl (x), l = 1 : M , comprise a multi-task GP with the
following multi-task covariances:

cov [fl (x) , fq (x′)] = Lq,x′ [Ll,x [K0 (x,x′)]] , l, q = 1 : M (10)
Using the Definition 1 and Eqs. (10) and (7) one has that

cov [fl (x) , fq (x′)] = Klq (x,x′) , l, q = 1 : M (11)
where the multi-task covariance functions Klq (x,x′) are defined in Eq. (7).

Within the multi-task Gaussian processes framework Eq. (11) represents the covariance functions
and Eq. (8) represents a set of noise-free observations. From Eqs. (11) and (8) it now follows
that the task of finding an approximate solution of differential equations (1)-(2) can be solved by
using multi-task GPs described in section 2.2 where the observations yil are given by Eq. (8), i.e.
yil = hl (xil). Substituting yil = hl (xil) into Eq. (6) and using the multi-task covariance function
Eq. (7) one can maximize the log marginal likelihood to learn the hyper-parameters θ. Once the
learning stage is completed, the values of the approximate solution of Eqs. (1)-(2) at arbitrary points
can be inferred using Eqs. (3)-(5), (7).

Next section applies this technique to particular problems and evaluates the accuracy of the resulted
numerical solutions.

4 Experimental Evaluation

In this section the proposed methodology is applied to numerical solution of ordinary and partial
differential equations for which exact solutions are known. The results of numerical computations
are compared to the corresponding exact solutions to quantify the mean absolute errors of the ob-
tained numerical solutions. The squared exponential covariance function [1] is chosen as the basic
covariance function K0 (x,x′) for all the experiments presented in this paper.
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Figure 1: Predicted and exact solutions for different kinds of differential equations

4.1 First Order ODE with Variable Coefficients

Consider the following differential equation with variable coefficients

u′ (x) + u (x) sinx = sin3x in the region x ∈ (0.5π, 2.5π) (12)

with the condition
u (π/2) = 0. (13)

The exact solution of Eqs. (12)-(13) is

u (x) = sin2x− 2 cosx+ ecos x − 2. (14)

The proposed OMGP method with 11 discretisation points (resulting in 11 data points for the GP)
is applied to numerical solution of Eqs. (12)-(13). The results are presented in Fig. 1a. Comparison
of the obtained numerical solution with the exact solution Eq. (14) in the interval of interest x ∈
(0.5π, 2.5π) results in a mean absolute error of 3.8479E-006.

4.2 Second Order ODE with Variable Coefficients

The problem of a massive rotating rod can be described by the following differential equation [3]:

d2u

dr2
+

1

r

du

dr
− u

r2
= − ρω2

λ+ 2µ
r in the region r ∈ (0, R) (15)

and the following boundary conditions:

u (0) = 0, σrr (R) = 0. (16)

σrr (r) in Eq. (16) is the elastic radial stress which can be expressed by the following equation:

σrr (r) = λ

(
u

r
+
du

dr

)
+ 2µ

du

dr
. (17)

The exact solution of Eqs. (15)-(17) is

u (r) =
1

8

ρω2

λ+ 2µ
r

(
R2 2λ+ 3µ

λ+ µ
− r2

)
. (18)

For numerical computations it is assumed that R = 1, ρω2
/

(λ+ 2µ) = 1 and λ = 2µ. Eq. (15)
is discretized by seven equidistant points located in the region r ∈ (0, R). The resulted numerical
solution is presented in Fig. 1b and has a mean absolute error of 9.663E-11.

4.3 Second Order Elliptic PDE

Consider the Laplace partial differential equation representing the state of equilibrium in solids

∂2u

∂x2
+
∂2u

∂y2
= 1 in the region x2 + y2 < 1 (19)
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with the boundary condition
u (x, y) = 0 on the circle x2 + y2 = 1. (20)

The exact solution of Eqs. (19)-(20) is
u (x, y) = 0.25

(
x2 + y2 − 1

)
. (21)

For discretization of Eq. (19) nine points are chosen on a regular grid inside the region of the unit
circle x2 + y2 < 1. Additionally, four points are chosen on the circle x2 + y2 = 1 to discretize
the boundary condition Eq. (20). This results into a dataset with just 13 points for multi-task GP
learning and inference. Fig. 1c demonstrates the resulting numerical solution for Eqs. (19)-(20)
which is visually indistinguishable from the plot of the exact solution Eq. (21). The mean absolute
error of the numerical solution is equal to 1.5251E-011.

4.4 Second Order Hyperbolic PDE

Consider the following partial differential equation representing non-stationary wave propagation in
elastic media

∂2u

∂x2
− 1

4

∂2u

∂t2
= 0 in the region x ∈ (0, π) , (22)

together with the boundary conditions
u (0, t) = u (π, t) = 0 on the interval t ∈ (0, π) (23)

and the initial conditions

u (x, 0) = 0.1sin3x,
∂u

∂t
(x, 0) = 0 on the interval x ∈ (0, π) . (24)

The exact solution of Eqs. (22)- (24) is
u (x, t) = (3 cos (2t) sinx− cos (6t) sin (3x))/40. (25)

The region x ∈ (0, π), t ∈ (0, π) of Eq. (22) is discretized via a 15x15 regular grid of points. Each
of the intervals of the boundary conditions Eq. (23) and the initial conditions Eq. (24) is discretized
using 10 points. Comparison with the exact solution Eq. (29) shows that for this case the mean
absolute error of the numerical solution is 1.587E-6.

5 Conclusions

Operator Induced Multi-Task Gaussian Processes (OMGPs) are introduced and a method is devel-
oped allowing application of OMGPs to numerical solution of differential equations. It is demon-
strated that using the proposed approach both ordinary and partial differential equations with bound-
ary and initial conditions can be solved with high accuracy.

Results of numerical evaluations for different classes of differential equations are presented. It
is demonstrated that even with very small number of discretization points (i.e vary small datasets
for the OMGP) the proposed methodology can lead to numerical solutions almost identical to the
corresponding exact analytical ones.
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