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Abstract

We propose a simultaneous spatio-temporal filter optimization algo-
rithm for the single trial ElectroEncephaloGraphy (EEG) classification
problem. The algorithm is a generalization of the Common Spatial Pat-
tern (CSP) algorithm, which incorporates non-homogeneous weighting
of the cross-spectrum matrices. We alternately update the spectral
weighting coefficients and the spatial projection. The cross validation
results of our SPECtrally-weighted CSP (SPEC-CSP) algorithm on
162 EEG datasets show significant improvements when compared to
wide-band filtered CSP and similar accuracy as Common Sparse Spec-
tral Spatial Pattern (CSSSP), however, with far less computational
cost. The proposed method is at the same time highly interpretable
and modular because the temporal filter is parameterized in the fre-
quency domain. The possibility of incorporating any prior filter opens
up the applicability of the method far beyond brain signals.

1 Introduction

The goal of the Brain-Computer Interface (BCI) research is to provide a
direct control pathway from human intentions reflected in their brain signals
to computers. Recently, a considerable amount of effort has been done in
the development of BCI systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. We
will be focusing on non-invasive, electroencephalogram (EEG) based BCls.
Such a system not only provides disabled people more direct and natural



control over a neuro-prosthesis or over a computer application (e.g. [3, 4])
but also opens up an opportunity for healthy people to communicate solely
by their intentions.

The study of BCIs consists of two parts; the first part is the techniques
that development of such a system requires and the second part is the rela-
tionship between the system and the user. The design of an experimental
paradigm or a study on subject-to-subject or session-to-session variability
belongs to the second category, whereas a feature extraction technique (e.g.,
this study) or a classification algorithm belongs to the first category. Al-
though novel techniques are often more general in the sense that they could
be applied to other types of problems, yet the importance of interpretability
and transparency of the method as the basis of second type of BCI studies
is often neglected.

Recently machine learning approaches to BCI have proven to be effective
by making the subject training required in a classical subject “conditioning”
framework unnecessary and allow to compensate for the high inter-subject
variability.

The task is to extract subject-specific discriminative patterns from high-
dimensional spatio-temporal EEG signals. We study a BCI based on the
motor imagination paradigm. Motor imagination can be captured through
spatially localized band-power modulation in p- (7-15Hz) and (- (15-30Hz)
rhythms; underlying neuro-physiology is well known as Event Related Desyn-
chronization (ERD) [14]. With respect to the topographic patterns of brain
rhythm modulations, the Common Spatial Pattern (CSP) (see [15, 16, 17])
algorithm, which was first introduced as a decomposition method that finds
projections common to two states of brain activity (e.g., abnormal or nor-
mal) and afterwards successfully applied to the classification problem of the
two states, has also proven to be very useful for motor-imagery BCI. On
the other hand, the frequency band on which the CSP algorithm operates,
has been either selected manually or unspecifically set to a broad band fil-
ter [17, 5]. Recently, Lemm et al. [18] proposed a method called Common
Spatio Spectral Pattern (CSSP) which applies the CSP algorithm to a time-
delay embedded signal; they doubled the number of electrodes with the
addition of 7 delayed channels. The challenge in their approach was that
the selection of the time-lag parameter 7, which embodies the whole prob-
lem of choosing characteristic temporal structure, was only possible through
cross validation on the training set. Dornhege et al. [19] proposed a method
called Common Sparse Spectral Spatial Pattern (CSSSP) which solves the
CSP problem not only for the spatial projection but also for the Finite Im-
pulse Response (FIR) temporal filter coefficients. The difficulty in this work
was the computational inefficiency of the optimization procedure, in which
solving a generalized eigenvalue problem was required for the evaluation of
the objective function at every point.

In this paper, we present a method for simultaneous spatio-temporal



filter optimization, which is an iterative procedure of solving a spectrally
weighted CSP problem and updating the spectral weighting coefficients.
The proposed method is highly interpretable and modular at the same time
because the temporal filter is parameterized in the frequency domain. More-
over it is capable of handling arbitrary prior filters based on neurophysiolog-
ical insights. The proposed method outperforms wide-band filtered CSP in
most datasets. Moreover, a detailed validation shows how much of the gain
is obtained by the theoretically obtained filter and how much is obtained by
imposing a suitable prior filter.

This paper is organized as follows: in Sec. 2 the method is proposed;
in Sec. 3 our novel SPEC-CSP is compared against all three recent filter
methods, namely, CSP, CSSP, and CSSSP; in Sec. 4 the optimal combination
of a spectral filter obtained from the statistical criterion and prior filters is
investigated in detail; finally in Sec. 5 concluding remarks are given.

2 Method

Let us denote by X € R™” the EEG signal of a single trial of an imaginary
motor movement!, where d is the number of electrodes and 7' is the number
of sampled time-points in a trial. We consider a binary classification problem
where each class, e.g. right or left hand imaginary movement, is called the
positive (4) or negative (—) class. The task is to predict the class label for
a single trial X.

In this study, we use a feature vector, namely log-power features defined
as follows:

¢;(X;wj, Bj) =logw! XB;BI Xtw;  (j=1,...,J), (1)

where the upper-script 1 denotes a conjugate transpose or a transpose for a
real matrix, w; € R? is a spatial projection that projects the signal into a
single dimension, and B; € RT*T denotes the linear time-invariant temporal
filter. A log-power feature ¢; captures a brain-rhythm modulation, which
is not only spatially localized (captured by w;) but also localized in the
frequency domain (captured by B;). The training of a classifier is composed
of two steps. In the first step, the coefficients w; and B; are optimized. In
the second step, the Linear Discriminant Analysis (LDA) classifier is trained
on the feature vector. Note that the whole procedure is equivalent to the
conventional CSP based classifiers (see [17, 5, 20]) except that in this study
the temporal filter B; is also optimized, which was manually chosen and
fixed in the previous work.

'For simplicity, we assume that the trial mean is already subtracted and the signal is
scaled by the inverse square root of the number of time-points. This can be achieved by

a linear transformation X = %Xoriginal (IT — %llT).
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We adopt the Common Spatial Pattern (CSP) [15, 16, 17] algorithm
for the optimization of the spatial projection w. The idea is to simul-
taneously diagonalize the sensor covariance matrices corresponding to two
motor-imagery classes. Here, a sensor covariance refers to the covariance
between channels averaged over time as well as trials®:

»©(B) = <XBBTXT>C,

where angled brackets (-) denote expectation within a class ¢ € {+,—}.
Using the fact that a linear time-invariant temporal filter B is diagonal in
the frequency domain UTBBTU = diag(as,...,ar) 3, we can rewrite the
sensor covariance matrix as a weighted sum of cross-spectrum matrices as
follows:

Zak A% Zak <kak> <XUUTBBTUUTXT>C — »(B),

where U := {ﬁe_%”'kl/ T € CTT is the Fourier transformation (thus
UU = Ir), 2 € C? is the k-th frequency component, Vi := 2 - Re [ﬁzkﬁcﬂ

and (V3,)¢ € R?*? is the real-part of the k-th frequency component in the
cross spectrum. Here, without loss of generality we only take the real-part
of the cross spectrum because (a) the imaginary part cancels out since the
spectrum of the filter {ak}{zl is symmetric around the Nyquist frequency
and (b) the phase of the signal is irrelevant to the log-power feature (Eq. (1)).
Note that only the 7" = (”FFiTHW independent frequency components below
the Nyquist frequency are taken into the sum. Furthermore, the complexity
of the spectrum estimation is controlled by using Welch method, which aver-
ages estimations on overlapping windows with shorter time-points nppr < T'.
Now, a decomposition that is common to two brain states, or a set of bases
that simultaneously diagonalize the two sensor covariance matrices, can be
found by solving the following generalized eigenvalue problem [15]:

Y a)w = A2 a)w. (2)
Note that since for each pair of eigenvector and eigenvalue (wj,\;) the
equality A\; = wTE /'wTE a)w; holds,
w0 — aremi w S a)w
= argmin
! & i Na)w’
w wi S a)w
= argmax ,
I 0 wiEa)w

2More precisely, it should be called the cross-power matriz, because a projection w'Sw
gives the power of the projected signal.

3We assume that T is sufficiently large compared to the tap-length of the filter so that
the problem due to the boundary is negligible.



where the eigenvectors are sorted in the ascending order of the eigenval-
ues. Note that the maximization of the ratio of the powers corresponds to
the maximization of the separation of two classes in the log-power feature
space if the class centers are well approximated by the logarithm of the
class-averaged powers. It is common practice that only the first nys largest
eigenvectors and the last nos smallest eigenvectors are used to construct a
low dimensional feature representation.

The next question is how to optimize the coefficients a = {ax}7,. In
order to achieve the trade-off between the good discrimination and the reli-
ability of the band-power estimation, we formulate this problem as follows:

+ _
e — w0~ lwal)” 5
\/Var [s(w, a)]" + Var [s(w, )]~

st.ap, >0 (VeE=1,...,7),

where we define

T/ T/
s(w, a) 1= Zaksk(w) = ZakwTka.
k=1 k=1

Note that Eq. (3) can be viewed as the signed square root of the Rayleigh
quotient used in Fisher discriminant analysis with an additional constraint
that all coefficients must be positive; therefore, if we exchange the labels,
Eq. (3) yields a different solution; thus we take the maximum of Eq. (3) for
the “4+” class and the minimum for the “—” class just like choosing CSP
projections from the both ends of the eigenvalue spectrum of Eq.(2).

The optimal filter coefficient is explicitly written as follows:

(). — (sp(w)_ e
o o d Viarlw)], + Var ()] (HOD kD20

0 otherwise,

(4)

because the spatio-temporally filtered signal s(w, ) is linear with respect
to the spectral filter coefficients {ax}_; and we additionally assume that
the signal is a stationary Gaussian process, where the frequency components
are independent to each other for a given class label; thus Var [s(w, a)]. =
Z;{Zl a2Var [si(w)],.. Note that the labels (+ and —) are exchanged for the

filter for the “—" class {a,(g_)opt {/:1 The norm of the vector o cannot be
determined from the problem (3). Therefore, in practice we normalize the
coefficients so that they sum to one.

Furthermore, we can incorporate our prior knowledge on the spectrum
of the signal during the task. This can be achieved by generalizing Eq. (4)
as follows:

ol = (™) (B (ee {+. ), (5)



where {17, denotes the prior information, which we define specific to a
problem (see Sec. 3.1.4). The optimal values for p and ¢ should depend on
the data, preprocessing, and the prior information {Bk}glzl Therefore one
can choose them by cross validation.

To summarize, the optimal spatial projection w is the eigenvector with
the largest eigenvalue of the generalized eigenvalue problem (2) and the
optimal spectral filter a is the solution to the problem (3) and is explicitly
written as Eq. (4). Moreover, one can incorporate any prior filter {3 }7.
as Eq. (5). Since both of the optimal spatial and spectral filter depend
on each other, we use an iterative method that starts from conventional
CSP (solving Eq. (2) with Vk,a; = 1) and updates one fixing the other
alternately. We found that using a fixed number of iterations results in
comparable performance with using cross validations to select the number
of iterations (see Sec. 3); alternatively one can use the eigenvalues of Eq. (2)

to decide when the iteration should stop. The details are summarized in
Table 1.

1. Initialize of) = 1(k=1,...,T') and J = 1.
2. for each step
3. for each set of spectral coefficients a9 (j =1,...,J)
4 Calculate the sensor covariance matrices ¥(9(a()) (¢ € {+,—}).
5 Solve the generalized eigenvalue problem (2) and let
Wj(c) € R¥mot  : the set of net top eigenvectors, and
A§c) : the top eigenvalue (c € {+,—}).
6. end (for each set of spectral coefficients)
7. set W) .= Wj(:) with j* = argminjzl’w])\;_) and
W) = Wj(j) with j* = argmaxj:17._.’J)\§+)
8. for each projection w; € {W) W (5 =1,...,J = 2ny)
9. Calculate (si(w;))“ and Var [sg(w;)]® for ¢ € {+,—}.
10. Update al({j) = (azpt>q - (Bg)? according to Egs. (4) and (5)
and normalize al) so that it sums to unity.
11. end (for each projection)

12. end (for each step)

Note:  The top eigenvectors in step 5 are the eigenvectors
corresponding to the largest and the smallest eigenvalues
K for the positive and the negative classes, respectively.

Table 1: The implementation of the proposed method.

~
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3 Results

3.1 Experimental setup
3.1.1 Validation

We test four different preprocessing techniques, namely, the proposed method,
wide-band filtered CSP [15, 17], CSSP [18], and CSSSP [19] on 162 datasets
of BCI experiments from 29 subjects by cross validation. We use the log-
power feature (Eq. (1)) with nos = 3 features for each class (thus J = 2ny =
6) and LDA as a classifier.

3.1.2 Data acquisition

A Berlin Brain-Computer Interface (BBCI) experiment consists of two parts,
the calibration block and the feedback block [10]. In the calibration block,
subjects performed 3-3.5 seconds of one of the imaginary movement tasks,
namely, right hand (R), left hand (L) or foot (F), instructed by the corre-
sponding letter displayed on the screen during this period. These trials were
repeated every 4.5-6 seconds. Brain activity was recorded at the sampling
frequency 100Hz from the scalp with multi-channel EEG amplifiers using 32,
64 or 128 channels. Besides EEG channels, we recorded the electromyogram
(EMG) from both forearms and the leg as well as horizontal and vertical
electrooculogram (EOG) from the eyes. The EMG and EOG channels were
used exclusively to make sure that the subjects performed no real limb or
eye movements correlated with the mental tasks that could directly (arti-
facts) or indirectly (afferent signals from muscles and joint receptors) be
reflected in the EEG channels and thus be utilized by the classifier, which
operates on the EEG signals only. Varying from a dataset to another, from
70 to 600 (median 280) trials were recorded. No feedback or response to the
subject’s motor imagination was presented in the calibration block. On the
other hand, in the feedback block, the subject could steer a cursor or play a
computer game like brain-pong by BCI control. The data from the feedback
block is not used in this study because they depend on intricate interactions
of the subject with the original classification algorithm in use with the feed-
back. In this study, since we investigate only binary classifications, different
combinations of imaginary movements produced several binary problems in
the datasets from a single experiment. The multi-class CSP proposed by [20]
can also be generalized to incorporate spectral weighting.

3.1.3 Preprocessing of the signals

After removing the EOG, EMG, and a few outermost channels of the cap,
we band-pass filter the signal from 7-30Hz and cut out the interval of 500-
3500ms after the appearance of the visual cue on the screen from the contin-



uous EEG signal for each trial of imaginary movement. Only in Sec. 4, we
also use the signal without the band-pass filter step, in order to investigate
the effect of assuming the above mentioned band on the design of a filter;
except the band-pass filtering, the signal was equally processed as described
above.

3.1.4 Prior information

The prior filter {3, }}., is defined as follows:
B = 10" (o)) o+ (si(w)) ) /2, (6)

where {/ l[:’ 30]}5’:1 is an indicator function that takes value one only in the
band 7-30Hz, and otherwise zero. Since we have already band-pass filtered
the signal, it is reasonable to restrict the resulting filter to take values only
within this band. The second term, which is the average activity of two
classes, expresses our understanding that in the motor imagery task that
involves ERD [14], good discrimination is most likely found at frequency
bands that correspond to strong oscillations, i.e., u- and SG-rhythms. Since
the optimal filter (Eq. (4)) and the prior filter (Eq. (6)) scale with powers —1
and 1 of the spectrum, respectively, we reparameterize the hyperparameters
asp =p +¢ and q = ¢. Here, if p’ = ¢ the filter scales with the power
c regardless of which ¢’ one chooses. Thus, the contributions of the scale
and the discriminability are separated in the new parameterization. Now,
using p’, the scaling exponent of the filter and ¢/, the intensity of the label
information, Eq. (5) can be written as follows:

()N (Y ¢
s =) (ks ”) B 4 (NP ) o)
. — >
o) o [ ( ST o0 > (56" +s:7)" s =5 20,
0 otherwise,
(7)
where the following short hands are used: S;:) = (sg(w))® and v :=

Var [s;(w)]. Note that for a,(c_), the labels (4 and —) should be exchanged.

3.2 Visual examples

Here we present some figures which are not directly relevant to the compar-
ison but are helpful in understanding the proposed method better.

Figure 1 shows the construction of a spectral filter. The averaged spec-
trum of spatially filtered signals is shown for each class in Fig. 1(b). The
spatial projection coefficients are also topographically shown in Fig. 1(c).
The conventional CSP is purely an operation in the spatial domain. There-
fore, as a spectral filter it has a flat spectrum as shown in Fig. 1(a). The



proposed method (Fig. 1(d)), on the other hand, is a combination of the
theoretically obtained filter (Eq. (4), Fig. 1(e)) and the prior filter (Eq. (6),
Fig. 1(f)). The theoretically obtained filter scales with the power —1 of the
spectrum (see Sec. 4 for the detailed discussion), therefore not only the dis-
crimination around 12Hz but also that around 24Hz, which can be hardly
seen in the original scale (Fig. 1(b)), are detected. Although the increase in
the amplitude just before 30Hz might seem problematic, the effect is limited
because the power of the wide-band filtered signal (Fig. 1(b)) goes to zero at
30Hz and the theoretical filter is only counterbalancing the decrease in the
power of the original signal. The prior filter (Fig. 1(f)) peaks at frequency
components corresponding to a strong rhythmic activity (u-rhythm, 12Hz)
regardless of whether it has discriminative information or not. Since the sig-
nal is already band-pass filtered from 7-30Hz, taking the average spectrum
(Eq. (6)) is sufficient to tell where the rhythmic activity is. The resulting
filter (Fig. 1(d)), which is the elementwise product of the two filters in this
case (because (p/,q') = (0,1)), has two peaks, one larger peak at 12Hz and
a smaller peak at 24Hz, reflecting the compromise between the theoretical
and the prior filters. The optimal combination of the two filters is discussed
in Sec. 3.4

Figure 2 shows the process of iteratively updating the spatial projection
and the spectral filter. The iteration starts from uniform spectral coefficients
(step 0). In an odd step the spatial projection is updated, whereas in an
even step the spectral coefficients are updated. Note that “step 1”7 is the
CSP with the wide-band filter. At “step 5”, we obtain a clear pattern
corresponding to synchronized brain activity in the foot area of the motor
cortex, which could not be found by the wide-band filtered CSP.

Figure 3 shows the improvement in the cross-validation error by iterative
updates. An odd step and an even step corresponds to a spatial projection
update and a spectral filter update similarly to Fig. 2. The 10x10 cross-
validation errors are shown for six subjects. In addition, median over 162
datasets are also shown (gray dashed line). For some subjects (e.g., in
subject F') no improvement were observed, most likely due to artifacts whose
effects are not localized in the frequency spectrum (e.g. blinking, chewing
or other muscle movements).



(a) CSP (b) signal (c) CsP

power

10 20 30
(d) proposed (e) theoretical (f) prior filter

power

10 20 30 10 20 30 10 20 30
frequency (Hz) frequency (Hz) frequency (Hz)

Figure 1: (a) The conventional CSP in the frequency domain. (b) The class-
averaged spectrum of the original signal projected with a CSP projection.
(¢c) The CSP projection topographically mapped on a head viewed from
above. The head is facing the top of the paper. (d) The filter spectrum
obtained by the proposed method. (e) The theoretically obtained filter
(Eq. (4)). (f) The prior filter (Eq. (6)). All vertical axes show the powers
in arbitrary units.
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Figure 2: The topographical patterns of the CSP projections and the spectra
of the filters are shown for each step of iteration for a Foot (—) vs. Left (4)
dataset. The iteration starts from a homogeneous spectral filter (step 0) and
the spatial projection and spectral filter are updated alternately (step 1-5).
Note that although we use nq¢ features for each class, only the top patterns
are shown here for the visualization purpose.
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Figure 3: The 10x10 cross-validation errors of the proposed method for
each step are shown for six subjects from very good classification accuracy
(subject E) to moderate accuracy (subject B). The median over 162 datasets
is also shown (dashed line). The hyperparameters were fixed at p’ = 0
and ¢’ = 1 (the elementwise product of Eqgs. (4) and (6)). The odd steps
correspond to spatial projection updates and the even steps are spectral
filter updates. Note that the first step is the wide-band filtered CSP.
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3.3 Comparison with conventional algorithms

Figure 4 shows the 10x10 cross validation errors of CSP and the proposed
method for each dataset as a single data point. The hyperparameters are
fixed at p’ = 0 and ¢’ = 1, which corresponds to the elementwise product of
the theoretical optimum Eq. (4) and the prior filter Eq. (6). The iteration
was performed 10 times, which contain 10 times of spatial projection updates
and 10 times of spectral filter updates; therefore the total number of steps
Ngtep = 20.

W

o

L 25

(2}

o

N

—

I

[

o

i

2 gl

o

N

T

O

L

o

1 * ! : :
1 5 25
CSP

Figure 4: The 10x10 cross-validation errors of CSP and the proposed
method on 162 datasets. Points lower than the diagonal correspond to
datasets where the proposed method outperforms CSP. The hyperparame-
ters for the proposed method were fixed at p’ = 0 and ¢’ = 1 (the elementwise
product of Egs. (4) and (6)). The iteration was performed 10 times, i.e., the
number of steps ngep = 20. For a better visualization, data points outside
of 1-50% intervals are shown on the edge of the figure box.

Figure 5 shows the test error of the proposed method against three
conventional methods, namely CSP, CSSP, and CSSSP. All methods were
trained on the first half of the dataset and applied to the remaining half
(chronological validation). The time-lag parameter 7 for CSSP was cho-
sen out of all values from Oms to 150 ms at 10ms interval by leave-one-out
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cross validation on the training set [18]; the regularization constant C' for
CSSSP was chosen out of {0,0.01,0.1,0.2,0.5,1,2,5} by 2x5-fold cross val-
idation on the training set [19]. The hyperparameters for the proposed
method were (a) all fixed at p’ = 0, ¢ = 1 (the elementwise product of
Egs. (4) and (6)) and ngtep = 20; (b) p’ and ¢’ were chosen by 5x5 cross
validation on the training set out of p’ € P’ := {-1,-0.5,0,0.5,1} and
¢ € @ :=1{0,0.5,1,1.5,2,2.5,3,3.5,4} and the number of steps was fixed
at nstep = 20; (c) all parameters were chosen out of p' € P’, ¢ € Q and
Nstep € {1,2,...,20}. The improvement by choosing p’ and ¢’ by cross val-
idation for each dataset (from Fig. 5(a) to Fig. 5(b)) is notable, however
further choosing the number of steps ngep by cross validation yielded no
significant improvement (from Fig. 5(b) to Fig. 5(c)). The fact that the
proposed method with the fixed number of steps at ng.ep = 20 performs
as good as that with ngep chosen by cross validation implies the iterative
procedure in the proposed method suffers no serious over-fitting problem.

3.4 Hyperparameter dependency

Figure 6 shows the contour plot of the average bitrate (per decision) over
162 datasets. The bitrate is defined as follows:

1- <perr 10g2 ! + (1 - perr) 10g2 1 ! ) ) (8)

err — Perr
i.e., the capacity of a binary symmetric channel with the error probabil-
ity perr Obtained by 4x4 cross validation for each combination of (p/,q’) €
P’ x Q. For instance, a bitrate 0.38 corresponds to 15.4% error and also
corresponds to 7.6 bits per minute provided that the subject can make a
decision every 3 seconds. The maximum average bitrate is achieved in the
area including (p’,¢") = (0,1) (the hyperparameters used in Sec. 3.3) The
hyperparameters corresponding to CSP ((p’,¢') = (0,0)) or the prior filter
outperforms the theoretically obtained filter ((p',¢’) = (—1,1)). We further
elucidate the underlying rationale for incorporating both the theoretical op-
timum and the prior filter in Sec. 4

14
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(c) The hyperparameters nsiep as well as p’ and ¢’ are cho-
sen by 5x5 cross validation on the training set.

Figure 5: The chronological test error of the proposed method compared
to three conventional methods, namely CSP, CSSP, and CSSSP on 162
datasets. The time-lag parameter 7 for CSSP and the regularization con-
stant C for CSSSP were chosen by cross validation on the training set. The
data points outside of 1-50% interval are shown on the edge of the figure box
for a better visualization. The number of datasets lying above/below the
diagonal is shown at top-left /bottom-right corners of each plot, respectively.
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Figure 6: The contour plot of the average bitrate over 162 datasets in the
two-dimensional hyperparameter space. The bitrate is defined as Eq. (8)
with the error probability pe,, obtained by 4x4 cross validation for each
(p',¢'). The number of steps ngtep = 20. The filter is defined as Eq. (7) with
two hyperparameters p’, the scaling exponent, and ¢/, the discriminability.
(p',¢') = (—1,1) is the theoretical optimum (Eq. (4)). (p’,¢") = (0,0) cor-
responds to the wide-band filtered CSP. (p/,¢’') = (1,0) is the prior filter
itself (Eq. (6)). (p',¢) = (0,1) corresponds to the elementwise product of
Egs. (4) and (6), which is used in Sec. 3.3.
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4 Discussion: the effect of prior information

Since the solution (Eq. (4)) of the problem (3) has the form of “mean over
variance”, it scales with the power —1 with respect to the spectrum. Theo-
retically speaking, this is favorable because the filter compares all frequency
components in a fair manner regardless of the power at each frequency com-
ponent. In other words, it whitens the spectrum before the comparison.
The scaling exponent p’ = —1 is also favorable from another point of view,
namely invariance; one can apply an arbitrary (non-zero) spectral filter to
the signal before calculating Eq. (4) yet the effect is canceled out by Eq. (4).
However, the cross-validation result in Sec. 3.4 shows that the filter having
the scaling exponent p’ = 0 is better than p’ = —1 compared at any ¢’. This
is analogous to the fact that the wide-band filtered CSP (Vay = 1) works
quite well in general, because the scaling exponent p’ = 0 implies that the
power of the filtered signal is dominated by rhythmic activities, e.g., u- and
B-rhythms, which have overwhelmingly strong power.

In order to fill the gap between the theoretical scaling exponent p’ = —1
and the empirically obtained scaling exponent p’ = 0, here we carry out
an additional validation. The validation consists of two steps. In the first
step we optimize the spatial projection. Each dataset is band-pass filtered
from 7-30Hz and the CSP projection with n.s = 3 patterns for each class
is calculated on the whole dataset. In the second step, in order to investi-
gate the optimal design of a temporal filter, we conduct a cross-validation
on the signal without pre-filtering. Note that this validation differs from
that in section 3.4 in two folds: first, the optimization of the spatial pro-
jection was done on the whole dataset in the first step and fixed during the
validation, second, the spatial projection was calculated on the pre-filtered
signal but applied to the signal without pre-filtering. Furthermore, in the
cross-validation we test two prior filters 8 namely,

e with the wide-band 7-30Hz assumption:
B = 1% ((su(w))t + (su(w))7) /2, (9)

e without the assumption:
Br = ((sk(w) ™ + (si(w))7) /2. (10)

Note that for the signal already band-pass filtered as in Sec. 3 the wide-band
assumption is only useful in avoiding numerical instability and improving
interpretability, whereas here with the signal without pre-filtering, the as-
sumption imposes a real constraint on the design of a spectral filter. We
test the filter (5) with the two prior filters for p = p’ 4+ ¢’ and ¢ = ¢’ with
p €[-2,2] and ¢’ € [0,8].
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Figures 7(a) and 7(b) show the contour plot of the average bitrate for
all combinations of p’ € [—2,2] and ¢’ € [0, 8] on a 0.2 interval grid for the
prior filters Eqgs. (9) and (10), respectively. Figure 7(a) is similar to Fig. 6
where the maximum bitrate is achieved approximately at (p’,¢') = (0,1).
However, it is clearer here, since the spatial projection is not recalculated,
that the weighting of cross-spectrum matrices according to Eq. (4) improves
the classification accuracy ((p/,¢') = (0, 1) is better than (p/, ¢’) = (0,0)) and
incorporating the prior filter is also effective ((p/,q’) = (0,1) is better than
(',q") = (—1,1)). On the other hand, Fig. 7(b) shows a completely different
picture. Since the wide-band assumption is not adopted in the prior filter
(Eq. (10)), it weights not only p- and S-bands but also the brain activity
lower than 7Hz, which has nothing to do with motor imagery task or even
which cannot be considered a rhythmic activity. Thus the prior information
is not so much useful anymore. The highest bitrate is now obtained in
the area p’ < 0 where the filter scales inversely to the spectrum. The
theoretical optimum (Eq. (4)) is now the best performer among the wide-
band filtered CSP, the prior filter (Eq. (10)), and the elementwise product
of Egs. (4) and (10). Note that however the overall bitrate is higher in
Fig. 7(a) compared to that in Fig. 7(b). Therefore, in practice the wide-
band assumption appears to help though the aim of this section was to
show that in general it is necessary that the filter scales inversely to the
power of the signal (Eq. (4)). Also note that since the all the trials in a
dataset are used to calculate the spatial projection for each dataset, the
bitrate does not reflect the real generalization performance in Fig. 7; thus
one cannot directly compare Fig. 7 to Fig. 6.
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Figure 7: The contour plot of the average bitrate over 162 datasets in the
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wide-band filtered CSP, the theoretically derived filter (Eq. (4)), the prior

filter, and the elementwise product of the two filters ((p/,q’) =

marked.
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5 Conclusion

In this paper, we have proposed a novel technique for spatio-temporal filter
optimization in the context of single-trial EEG classification. The method
works in the spatial domain and in the frequency domain alternately. The
spatial projection optimization is a generalized version of CSP [17], in which
a weighted sum of cross-spectrum matrices in the frequency domain is cal-
culated for each class and then simultaneously diagonalized. The spectral
filter, which is the weighting coefficients of the cross-spectrum matrices, is
optimized through a novel optimization criterion. Since both the spatial and
spectral filter optimization depends on each other, the two steps are iterated
alternately.

The cross validation on 162 BCI datasets show improved classification
accuracy compared to CSP [17] and comparable accuracy with CSSP [18]
and CSSSP [19]. In comparison to CSP [17], we have shown that the non-
homogenous weighting of the spectrum improves the classification accuracy.
In comparison to CSSP [18], the problem of temporal filter optimization
is directly addressed through a statistical criterion (3) and the new crite-
rion has proven to be capable of handling more flexible and interpretable
representation of a temporal filter without a serious over-fitting problem.
In comparison to CSSSP [19], the proposed method is far more computa-
tionally efficient with comparable classification accuracy as well as being
easily interpretable because the temporal filter is parameterized not as a
FIR filter but in the frequency domain. Note that in online application it
is straightforward to realize the obtained spectral filter as an AR filter or
ARMA filter by various existing methods, e.g., the Yule-Walker method and
its extensions.

Furthermore, we have investigated the best combination of the theoreti-
cal optimum (4) and the prior filter (6) by cross validation. We have found
that the best combination is approximately obtained by the elementwise
product of the theoretical optimum and the prior filter ((p’,¢’) = (0, 1), or
(p,q) = (1,1) in the original parameterization). Moreover, we have found
that CSP ((p,¢') = (0,0)) or the prior filter itself ((p’,¢") = (1,0)) gives bet-
ter classification accuracy than the theoretical optimum ((p/,¢") = (=1, 1)).

The fact that the models with a larger scaling exponent p’ perform better
than the theoretical optimum, motivated us to conduct an additional vali-
dation in order to investigate the effect of the wide-band 7-30Hz assumption
on the optimal filter design. The validation was done on the signal with-
out pre-filtering. Moreover, the recalculation of the spatial projection was
not performed in order to ensure that the difference only arises from the
temporal filter.

We have found that without the wide-band assumption, the prior filter,
which assumes the discrimination to be found at frequency regions that are
strongly active, fails because the activity below 7THz will tend to dominate
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without contributing to discriminability. On the other hand, the theoreti-
cally optimal scale exponent p’ = —1, which whitens the signal, has proven
to be favorable than p’ = 0 or p’ = 1 in this situation. Thus, the “strong
activity implies good discrimination” assumption that is behind the prior
filter is only valid together with the wide-band assumption (7-30Hz). Note
that either CSP or the elementwise product of the theoretical optimum and
the prior filter ((p/,q¢') = (0,1), or (p,q) = (1,1) in the original parame-
terization), which we have used in Sec. 3.3, already incorporates this prior
knowledge. In fact, after band-pass filtering from 7-30Hz, a homogeneously
weighted spectrum is dominated by some a priori important activities (e.g.
p- and [-rhythms).

The proposed method gives a highly interpretable spatial projection nat-
urally because we solve the generalized CSP problem. In addition, the spec-
tral representation of the temporal filter is favorable not only from the in-
terpretability but also from providing possibility to incorporate any prior
information about the spectral structure of the signal as we have demon-
strated in section 3.

The applicability of the proposed method is not limited to brain signals
because we use a very simple statistical criterion and we have clearly sepa-
rated the effect of the statistical criterion and the prior knowledge specific
to EEG signals in the implementation.
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