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Abstract. One crucial question in the design of EEG-based brain-computer interface (BCI) experiments
is the selection of channels. While a setup with few channels is more convenient and requires less
preparation time, a dense placement of electrodes provides more detailed information and henceforth
could lead to a better classification performance. Here, we investigate this question for a specific
setting: a BCI that uses the popular CSP algorithm in order to classify voluntary modulations of
sensorimotor rhythms. In a first approach 13 different fixed channel configurations are compared to the
full one. The configuration with 48 channels results to be the best one, while configurations with less
channels, from 32 to eight, performed not significantly worse than the best configuration in cases of
less trials available. In a second approach an optimal channel configuration is obtained by an iterative
procedure. As a surprising result, in the second approach a setting with 17 channels centered over the
motor areas were selected. Thanks to the acquisition of a large data set recorded from 80 novice
subjects using 119 EEG channels, the results of this study can be expected to have a high degree of
generalizability.
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1. Introduction

The question of which channel configuration to use is crucial in the design of a BCI system. While
the aim to achieve the best possible performance might bias the decision towards the usage of many
channels, practical considerations like the ease of preparation and the comfort of the user favor
configurations with few channels. Surprisingly, so far there are no large-scale studies which investigate
in what way the performance of a system depends on its number of channels. Obviously, there will be
no general answer to this question, as it strongly depends on the type of BCI system. Here, we limit the
investigation to BCIs which are driven by the modulation of the sensorimotor rhythms (caused by
motor imagery). One of the most popular algorithms in such systems is the common spatial pattern
(CSP) analysis, see [Blankertz et al., 2008]. In CSP-based systems, a higher number of channels may
lead to finer spatial filters, which might be more successful in extracting signals from the discriminative
sources. On the other hand, the number of parameters that need to be estimated from calibration data
increases quadratically with the number of channels, meaning that overfitting may occur. In summary,
it is still a question of debate whether smaller channel configurations could allow to operate BCIs
without significant worsening of the performance.

In [Popescu et al., 2007], starting with a full setup of 64 electrodes, an iterative channel removal
was used to find the best subject-specific placement of electrodes. In their analysis of data from five
subjects, the performance started to decrease after less than 20 channels remained in the setup.

A variant of CSP using an L1-norm was used in [Farquhar et al., 2006] in order to obtain sparse
spatial filters, thereby implicitly performing a channel selection. For five subjects individually optimal
channel configurations and number of CSP filters were obtained, which utilized between 39 and 4
channels.

In [Lal et al., 2004], a ranking method for electroencephalography (EEG) channels mainly based on
Recursive Feature Elimination [Guyon et al., 2002] was proposed and 39 channels were ranked for five
good BCI performing subjects. Poor performing subjects were excluded from the analysis. While many



differences in the minimum number of channels were found among subjects, a setting of 17 channels
near or close to the motor cortex was hypothesized to be the optimal solution.

In the present study we performed an offline investigation of 119-channel data recorded from 80
subjects in order to find the optimal subject-independent channel configuration, i.e. a setting that yields
the best results on average across all subjects. Given the size of the data set, the result of this study can
be expected to generalize well to future experiments.

2. Material and Methods

2.1 Experimental Setup

In this study, 80 data sets from 80 BCI naive subjects (39m, 41f; age 29.9+11.5y; 4 left-handed)
were investigated. Each data set was acquired during a single BCI session with a classical motor
imagery paradigm.

During the calibration measurement, in each trial a visual stimulus indicated to the subject which
type of movement s/he should imagine. The visual stimulus was an arrow directed to the left, to the
right or to the bottom, corresponding to left hand, right hand and foot movement imagination, giving
rise to three classes and three possible binary class combinations. Calibration data sets consist of three
concatenated runs, each run with 25 trials per class, resulting in 75 trials per class.

Automatic variance based artifact rejection was applied on the calibration data to reject trials and
channels corresponding to amplitude abnormalities in the raw electroencephalogram (EEG). For each
binary class combination, a semi-automatic procedure selected a specific frequency band and time
interval, in which the two classes were best discriminable and CSPs were trained on the corresponding
filtered and segmented EEG. Afterwards, CSPs filters were chosen by a heuristic and the log-variance
of the CSP filtered EEG signals (in the following called CSP features) was used to train a Linear
Discriminant Analysis (LDA) [Friedman, 1989] resulting in a generalized calibration performance. The
best class combination was then chosen depending on the best classification performance and used for
the feedback session, see [Blankertz et al., 2008] for more details on this procedure.

During the feedback measurement, the previously trained CSP filters and LDA were used to
respectively filter the raw data and classify the CSP features, and the classifier output was visualized at
the same time as the stimulus presentation. Feedback data consists of three concatenated runs, each run
containing 50 trials per class. The first 20 trials (ten per class) were used to adapt the bias of the LDA
classifier, and the feedback performance was calculated on the remaining 80 trials, resulting in 240
trials (120 per class) per session.

The stimulus duration was five seconds, while the inter-stimulus interval (ISI) was nine seconds.
EEG was recorded using using 119 Ag/AgCl electrodes at positions according an extended international
10-20 system and a sample frequency of 1000 Hz. Electromyogram (EMG) and electrooculogram
(EOG) have been also recorded in order to assure that no muscle activity is present during the mental
task and that no eye movements could influence the classification.

2.2 Classification performance

In order to evaluate various channel configurations, offline classification performance was
determined according to the procedures described in Sections 2.3 to 2.5. The calibration data were used
as training set for CSP analysis, and the feedback data was used as test set. For each channel
configuration, the parameters of the procedure described in Section 2.1 (time interval, frequency band,
set of CSP filters) were selected completely automatically. Different from online feedback, we did not
try to mimic continuous cursor movement in this offline analysis. Rather, complete trials extracted from
feedback data have been classified. The classification error was then calculated as the area over the
Receive Operative Characteristic (ROC) constructed using the output of the LDA classifier.

2.3 Testing predefined channel configurations

Thirteen different channel configurations were investigated. Twelve of them are summarized in
Fig. 1. The configuration 'most’, not shown in Fig. 1, contains all channels except for the very frontal,



temporal and occipital ones. For each channel configuration, the classification error was calculated for
all 80 subjects as described in Section 2.2.

Frequency band and time interval for the CSP analysis were chosen in two different modalities. In
the first one called 'broad’, a fixed frequency band of 8-35 Hz and time interval of 750-3750 ms were
used. In the second one called ‘auto’, frequency band and time interval were automatically chosen by
the heuristic as during the experiment.

Wilcoxon signed rank tests for equality of medians [Gibbons, 1985; Hollander and Wolfe, 1973]
were then applied on the test error data for each classification modality to find out the 'best set' in terms
of calibration accuracy. In particular, paired tests for comparison of the test error percentages of each
configuration with that of the full channel configuration called ‘all’ resulted in 13 p-values.

Among the n (say) configurations yielding a p-value < 0.05 and with a median test error smaller
than the 'all' set, the configuration with the smallest p-value was selected as the ‘best set'. The test errors
of the other n-1 configurations were again compared to the test error of the 'best one' and those sets
corresponding to p-values > 0.1 are listed as 'sets comparable to the best', since they result in a
performance not significantly worse than the 'best set’.

2.4 Evaluation on small training sets

The analysis described in Section 2.3 was repeated using just n = 50, 40, 30 trials from the
calibration data in three different ways: 1) just the first # trials, 2) the last n trials and 3) n trials linearly
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equally spaced in the time. Results for these three modes were averaged.

Figure 1. Predefined channel configurations. Some channel labels are omitted for a better visualization.

2.5 Iterative channel seletion

An iterative channel selection procedure was applied, which allows to determine an optimal
channel configuration without being confined to a predefined list of configurations. The method is
based on statistical tests to see whether each single channel contributes to the classification of the
feedback data significantly or not.

The procedure considers a set of 'selected’ channels and a ‘pool’ containing all other channels. The
algorithm alternates 'intern cycles’ and 'extern cycles'. Within an 'intern cycle' one or more channels
belonging to the 'selected’ set are removed from it and added to the ‘pool’ because their removal does
not yield any significant increase of test error. Within an 'extern cycles’ one or more channel belonging
to the ‘pool’ are added to the 'selected’ set and removed from the ‘pool’ due to a significant test error
improvement.

The procedure starts with an 'intern cycle' using the channel configuration called '32ch_mcc', which
contains 32 channels distributed in the very central motor area. In the first iteration, the test error is
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calculated for all 80 subjects using the 'selected’ 32 channel configuration and for the 32 ‘candidate
configurations consisting of 31 channels obtained by leaving out one channel from '32ch_mcc'. Testing
the difference between the median of the 'selected’ configuration and the median of each 'candidate’
configuration by Wilcoxon signed rank test, 32 p-values are obtained. Channels corresponding to p-
values > 0.1 were considered not relevant for the classification because their removal does not cause
significant difference in the performance. An additional condition in order to remove a channel was that
its elimination leads to an improvement of the median test error. Therefore, if existing, the ‘candidate’
configuration with the highest p-value > 0.1 and with median test error smaller than the median test
error of the ‘selected’ one, becomes the 'selected’ configuration, and the algorithm stays in the 'intern
cycle' modality. If no 'candidate’ configuration satisfies the two conditions on the p-value and the
median test error, the procedure enters the ‘extern cycle’ modality.

In each iteration in the ‘extern cycle’, the test error is calculated for all 80 subjects and for all
possible N ‘candidate’ sets formed by the 'selected’ set plus one channel coming from the ‘pool’, where
N is the number of channels in the pool’. The paired comparison between the median test error obtained
used the 'selected’ set and the median test error of each 'candidate’ set results in N p-values. Channels
corresponding to p-values < 0.05 were considered relevant for the classification because their inclusion
causes significant difference in the performance. An additional condition in order to add a channel, was
that its inclusion leads to an improvement of the median test error. Therefore, if existing, the
‘candidate’ configuration with the smallest p-value < 0.05 and with median test error smaller than the
median test error of the 'selected’ one, becomes the 'selected’ configuration, and the algorithm stays in
the 'intern cycle' modality. If no ‘candidate’ configuration satisfies the two conditions on the p-value
and the median test error, the procedure enters the 'intern cycle' modality again. The procedure
terminates when no further channels can be removed from or added to the 'selected’ set.

Frequency band and time interval for training CSP were the same as selected in the experiment.

Table 1. Results obtained using all subjects.
FILT BROAD AUTO

TRIALS Comp. to the best Best |Err.[%]| Comp. to the best Best Err.[%]

ALL 48ch 15.20 48ch 11.75

48ch, 20ch, 32¢h_mec, 32ch_mec, 20ch,

MEANSO 32¢h.me, 64ch _mee, 16¢h. me 24ch 20.55 32ch_mc, 12ch, 16ch_mc, 48ch 24.81
24ch
MEAN40 48ch, 24ch 32ch_me|  21.60 32ch_mee, 16¢h_mc, 48ch 26.07

32ch_mc, 20ch, 12ch

MEAN30 32ch_mcc, 32ch_mc, 20ch, 24ch 2431 16¢h_mc, 20ch, 12ch,

16¢ch_mc 8ch_me, 32ch_mc 32ch_mcc 29.25

3. Results

3.1 Best channel setup of fixed configurations

The results of the significance tests run on the classification performance of the predefined 13
channel configurations are summarized in Table 1. The first row indicates the type of frequency and
time filtering applied, called 'broad’ and 'auto’. The fields 'All’, 'Sum50', 'Sum40’, 'Sum30’ in the first
column mean that the results shown were obtained using all trials from the calibration data and the
mean value of the test error resulting using the three modalities with 50, 40 and 30 trials respectively
explained in Section 2.4. In the column 'Comp. to the best', the sets are listed that, if existing,
performed not significantly worse than the best set, visualized in the column 'Best’. Finally, the column
'Err.' visualized the median test error of the 'Best’.

In the more detailed analysis for subgroups of good (>88% accuracy in original feedback), fair
(70%-88%) and bad (<70%) performing subjects (not included in Table 1 because of lack of space), it
could be observed that in better performing subjects configurations with more channels were preferred.



Channel selocted by iteration starting from 32mee 3.2 Best channel setup by iterative channel selection

The iterative channel selection described in the Section
2.5 chose 17 channels concentrated in the motor area as
visualized in Fig. 2. The presence of more channels on
the right hemisphere could be due to the fact that the
class left' and especially the class combination eft-foot’,
was more often selected during the experiment than the
class 'right' and the combinations 'left-right’ and 'right-
foot'. The median test error using this configuration was
12.79 %, resulting very competitive to the errors
reported with the '48ch’ set in Section 3.1.
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Figure 2. Channels selected by iteration using
‘32mecc’ as initial channel configuration.

4. Discussion and Conclusion

In a detailed study with 80 subjects we investigated how many channels are sufficient for a stable
classification of BCI using the motor imagery paradigm.

In the first approach the general tendency was that configurations with more channels were
preferred 1) with bigger training sets, 2) for the ‘auto’ condition in comparison to the 'broad’ one and 3)
for better performing subjects. These facts are presumably due to overfitting effects of CSP [Blankertz
et al., 2008] if too many channels are used just with a small number of trials (for points 1 and 2) or with
less quality information present in the data of bad performing subjects (for point 3).

In general, the configuration with 48 channels resulted to be the best one. This result contradicts
previous findings [Lal et al., 2004; Farquhar et al., 2006; Popescu et al., 2007] where subject depending
channel selections showed that much less channels are necessary for a robust classification, even if
using good performing subjects and 400 trials [Lal et al., 2004; Farquhar et al., 2006].

On the contrary, the second iterative approach presented in this paper selected 17 channels as the
best configuration, agreeing with the previous studies.

It can be then hypothesized that the iterative procedure, as well as the algorithms used in [Lal et al.,
2004; Farquhar et al., 2006; Popescu et al., 2007] are probably more efficient against the high
correlation present in EEG signals, since they consider either a sparse solutions [Farquhar et al., 2006]
or a recursive one, which considers each channel separately.

While the resulting set with 17 channels may seem as expected as motor imagery necessarily
focuses on motor activity, it is actually far from obvious: a more fine grained resolution with 119
channels may have yielded more stable CSP filters and likewise more robust and individually adapted
classifiers. A minimal number of channels always holds the risk that outliers and artifacts of any kind
may spoil statistical estimation: this trade-off between feature sparsity and robustness is a general
statistical dilemma. Interestingly, the statistical testing procedure outlined here showed that a sparse
subspace is optimal and noise robust. Thus, the use of a well-estimated low dimensional informative
subspace not only regularizes against noise and artifacts but also makes optimal use of the complexity
of the classifier and focuses the resources of the estimator onto the proper subspace.

The present work goes well beyond existing studies due to its rigor in the statistical analysis and the
large number of subjects all recorded in a unified setting.

In the future we will use the channel subset established in this paper as an excellent starting point
for subject independent adaptive training procedures [Vidaurre and Schlogl, 2008]. While a standard or
even underperforming BCI user can use the channel subset as such, excellent BCI may further gain
additional communication performance by adaptively increasing the channel set beyond the standard
one.
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