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Abstract

Machine learning methods are an excellent choice for cosgigmy the high variability in
EEG when analyzing single trial data in real-time. This pdpeefly reviews preprocessing
and classification techniques for efficient EEG-based B&omputer Interfacing (BCI)
and mental state monitoring applications. More specifictiliis paper gives an outline of
the Berlin Brain-Computer Interface (BBCI), which can beeied with minimal subject
training. Also, spelling with the novel BBCIl-based Hex-pell text entry system, which
gains communication speeds of 6-8 letters per minute, @idged. Finally the results of a
real-time arousal monitoring experiment are presented.
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1 Introduction

Recently, advances in single trial EEG analysis have aelid¢ive efficient online
differentiation of neuroelectric signals. The presenttdbation distinguishes be-
tween two main application fields of these analysis tectesq(a) Brain-Computer
Interfacing and (b) online monitoring of brain states. Tpaper reviews both along
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with the machine learning and signal analysis machineryishaecessary for such
online EEG processing.

Brain-Computer Interfaces (BCI) allow for communicatitiat is solely based on
brain signals, independent from muscles or peripheralese(see Wolpaw et al.
(2002); Kubler et al. (2001); Curran and Stokes (2003)hl€iiand Muller (2007);

Dornhege et al. (2007a); Carmena et al. (2003) for a broadavew and back-

ground information). The Berlin Brain-Computer InterfdB8CI) is a non-invasive,
EEG-based system whose key features are (1) the use of muagery for con-

trol tasks, (2) advanced machine learning techniques thianzatically extract

complex high-dimensional features and classify in a rolmighner, and—as a
consequence—(3) no need for subject training. The latteradteristic is consid-
ered an important contribution since typical BCI systentg oa classical condi-

tioning (cf. Elbert et al. (1980); Rockstroh et al. (1984)rdaumer et al. (2000))
and require extensive subject training of 50-100 héuts contrast, the BBCI ap-
proach allows to shift the training effort from the user togsthe machine (cf. Sec-
tion 3). Section 4.1 will demonstrate a BBCI applicatiore thex-o-Spell interface
for spelling.

Brain-Computer Interfacing is certainly not the only irgsting application when
decoding brain activity. General online monitoring of geodrain states beyond
voluntarily altered brain activity has in the past been urgtady e.g. for the de-
tection of sleep stages, tiredness, arousal, for emotiamtorong and for cogni-

tive workload analysis (Kohlmorgen et al., 2007; Haynes Beds, 2006; Miller
et al., 1995). In section 4.3 the real-time monitoring of maéstates using EEG
are discussed and the example of monitoring a subject'ssafrda estimate it's

concentration ability within an industrial problem segtiis briefly outlined.

2 MachineLearning for BCI

Since brain data is non-stationary, it offers formidablalignges from the view-
point of a data analyst. It is characterized by significaiad-to-trial and subject-
to-subject variability. Often signals are high-dimensibwith only relatively few
samples available for fitting models to the data and finakydignal-to-noise ratio
is highly unfavorable, In fact, it typically is even ill-degd what signal and respec-
tively what noise are (cf. Blankertz et al. (2006c¢); Dorndegjal. (2007a)). Due to
this variability, machine learning methods have becomedbeof choice for the
online analysis of single-trial brain data. In contrasassical neurophysiological
analysis methods apply averaging methods like taking geaedages over trials,

1 Consider, that many of these approaches deal with indilsduigh neurological diseases
which affect the brain. This may even lead to slower learrofithe subjects or unusual
difficulties in the classification of the patient’s signals.



subjects and sessions to get rid of various sources of vigabhis approach
investigates thaveragebrain and can answer generic questions of neurophysio-
logical interest, but it is rather blind to the wealth of thendmics and behavioral
variability available only to single trial analysis metlsod

Brain-Computer Interfacing has been pushing single triaGEanalysis to an ex-
treme, as the methods applied in this field need to be perfbimmreal-time without
significant processing delays (typically less than 40nms)hé following the basic
machine learning methods for single trial EEG analysisar@duced: feature ex-
traction — here an approach using spatial filters is predentand classification,
which is discussed by the example of a framework of reguddriznear Discrimi-
nant Analysis (LDA). Furthermore when analyzing high disienal data it is not
only important to visualize, predict or classify the datahnliow error, but it is
essential that the exploratory data analysis tools allowxpain the underlying
structure in order to contribute to a better understandfraata. A final paragraph
of this section will address this aspect.

2.1 The General Machine Learning setting

For the training phase of a BCk,= 1...N samplesxx are measured, whereis

a continuous stream of EEG in timedimensional sensor space. The subjects are
asked to perform individual but fixed mental task, e.g. matagery of their left
and right hand. This allows to associate the EEG vectrwith the respective
class labels for these two mental stages +1. After collecting a sufficient num-
ber of trials, the machine learning approach allows to I¢hencomplex unknown
mappingf betweerx, andyy by inferring the typical EEG patterns of left and right
motor imagery tasks of a particular subject. While theogdly this abstract map-
ping f could be learned even from raw EEG data (Blankertz et al.2p00has
proven to be much more efficient to extract appropriate featirom the continu-
ous EEG signal using available physiological a-priori kiedge. For the example
of motor imagery tasks, known useful discriminative featuare the band-power
values localized at motor related areas, which can be eekdancontrast by spatial
filtering. 2 Clearly it will depend on the particular paradigmatic sejtvhether the
resulting features can — in a subsequent step — be besffieldssi linear methods
or whether nonlinear kernel-based learning methods @éllal., 2001; Scholkopf
and Smola, 2002; Vapnik, 1995) are necessary (for a dismussie Muller et al.
(2003)).

With the help of modern machine learning methods, the BBGtesy needs only
between 50-150 trials, i.e. between 7 and 20 minutes (depgion the signal-to-
noise ratio of the subject’s EEG) of calibration recordifgsconstructing a high

2 But even if no prior knowledge is available for a new mentskiauitable discriminative
features can be found by machine learning algorithms.



performance BCI (Blankertz et al., 2007a). Note that sontgests need no cali-
bration measurement at all, if data from earlier BCl sessisavailable (Krauledat
etal., 2007). With the BBCI even BCI naive subjects can ssgftdly communicate
within the same morning. Our approach follows the mdgtathe machines learn
and has no need for explicit subject training. However, nbée (as in all other
groups worldwide) about one third of the BCI users do notaahBCl communi-

cation at all.

2.2 Spatial Filtering with Common Spatial Patterns

A crucial point in the data processing is to extract appradprspatio-temporal filters
that can serve as feature extractors for the subsequest sdeally they optimize
the discriminability of the multi-channel brain signalskd on some chosen phys-
iological paradigm, for instance event-related (de-)$syanization (ERD/ERS) ef-
fects of the (sensory-) motor rhythms (Pfurtscheller angdsoda Silva, 1999). The
filters that have been learned from the training data setsed to project the con-
tinuous EEG to a lower dimensional informative subspacentthe final features
are constructed as the log variances from those projections

A very successful method to determine spatio-temporatdilter a BCl system is

the so-called Common Spatial Pattern (CSP) algorithm, kvhis recently been
extended and improved in various directions (Lemm et ab52@ornhege et al.,
2007b, 2006; Tomioka et al., 2006, 2007). Note that for sioitylonly the basic

CSP version (Fukumizu, 1996) that was originally introdilit® BCI by Ramoser
et al. (2000) is discussed. The objective of the CSP teclenigjuo find spatial

filters that maximize the variance of signals of one condiiod at the same time
minimize the variance of signals of another condition (segufeé 1). Since the
variance of band-pass filtered signals is equal to the bawep &SP filters can be
used to discriminate conditions that are characterizedRP/ERS effects.

Technically CSP filters are constructed as follows.IgandZ, be estimates of the
covariance matrices of the band-pass filtered EEG signdksriwo conditions (for
the extension to more conditions see (Dornhege et al., 200A¢se two matrices
are simultaneously diagonalized in a way that the eigeegatiz; and>, sum to
1. Practically this can be done by calculating the genexdleagenvectory':

51V = (S1+22)VD. (1)

Then the diagonal matri® contains the eigenvalues bf and the column vectors
of V are the filters of the common spatial patterns. In theory #s bontrast is
provided by filters with high eigenvalues (large variancedondition 1 and small
variance for condition 2) and by filters with low eigenval@e@se versa). In practice
it is useful to inspect the resulting filters visually in orde detect miss-estimates
due to outliers. Further details about the processing nistaod the selection of
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Fig. 1. Two spatial filters for right hand imagery (R1, R2) ama filters for left hand
imagery (L1, L2) result in four CSP-channels are shown orritjte side. The variance of
the filtered EEG data changes depending on the task cue, vghiathicated by the dashed
lines.

parameters can be found in Blankertz et al. (2005); Fuku(B@20); Lemm et al.
(2005); Dornhege et al. (2007b).

2.3 Classification and Explanation by Machine Learning Tegbes

For log band-power features in CSP-filtered channels tlesifieation task is feasi-
ble very well by linear discriminant analysis in our expade. If the dimensional-
ity of the features is higher, regularization is advisabé® Blankertz et al. (2006c,
2002) for an example in the context of BCI. Features that nawee complex dis-
tributions typically require nonlinear methods (Mulldrad., 2003; Muller et al.,
2001). Here we would like to stress further aspects of macleiarning techniques
for the analysis of single-trial EEG.

First of all, the use of state-of-the-art learning machieeables us to achieve high
decision accuracies for BCI (e.g. (Blankertz et al., 20083 Dornhege et al.,
2004)). When no sufficient prior knowledge is available fdask, then feature se-
lection techniques are required. Particularly those noslaoe attractive that reveal
interpretable results (Lal et al., 2004). Recently, sdechinathematical program-
ming methods like the Linear Programming Machines (LPMdaiiRertz et al.,
2006c¢; Bennett and Mangasarian, 1992; Vapnik, 1995; Migteal., 2001) have
been proposed which fulfill this condition.

Applied to EEG measurements from a motor imagery paradigenthie one pre-
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Fig. 2. This figure shows the absolute weight vector (disgdiagts a channet frequency
matrix) of a sparse LPM classifier. It was trained to discniaté left vs. right hand motor
imagery. The bar on the bottom shows the sum across all clsaané is displayed also in
the lower right plot. The focus in the frequency range liesh@o-band (here 11-14 Hz).
The bar on the right side of the matrix shows the sum acroskegjlency bands and
is displayed as a scalp topography in the upper right ploteNat less than 4% of the
features were assigned non-zero weights.

sented in Section 3.1, the LPM selects less than 4% of therkedtmensions. The
chosen features result in very accurate classificationfo¥$e right hand imagery
signals and generalize well to new data. The outcome of thari#thm coincides
nicely with what is expected from neurophysiology, i.egthioadings for elec-
trodes close to sensorimotor cortices in the left and rigimisphere with a strong
focus at 12 Hz, i.e., the frequency range of the sensorimotdrythm, cf. Fig. 2.
Note that the feature selection is an integrative part ofléaening process and is
automatically adapted to a subject, electrode placemtnt, e

For the above paradigm a clear physiological expectatitsieand the mathemat-
ical programming method could match perfectly with thisesgation. More inter-
esting and realistic is an exploratory scenario, where apaadigm is tested that
possibly generates unexpected neurophysiological sigemt The learning ma-
chine could automatically generate a hypothesis aboutrienying task-relevant
brain processes. This can serve to adapt and explore theiregpeal paradigm,
such that in principle a better understanding of the braic@sses can be inferred.
In this sense a machine learning method can offer explamatibich is of great
use in the exploration loop for testing new paradigms.

3 BCI Control based on Movement I magery without Subject Training

So far the BBCI has mainly studied two paradigms: (a) theroirgnability of pre-
movement potentials in self-paced executed movementskBitz et al., 2003,
2006a,c), where it can be shown that high information temsites can be ob-



tained from single-trial classification of fast-paced mammmands and (b) motor
imagery (Blankertz et al., 2007a). Both paradigms do natiiregsubject training.
Due to space limitations only the results of the second panadre reviewed.

3.1 Experimental Setup

Six subjects who all had no or very little experience with B€#dback took part

in this BCI study. To capture brain signals related with nnatoagery tasks, EEG

was recorded from 118 electrodes mounted on the scalp. Estigate the influ-

ence from non central nervous system activity, electramgnaim (EOG) and elec-
tromyogram (EMG) signals were additionally recorded butus®zd to generate the
feedback signal.

In the cued calibration measurement the subjects perfomwdr imagery tasks

of the left hand, the right hand or the right foot. The imageas sustained after a
cue, and cues appeared at intervals of 6-7s. The subjectotiréceive any feed-
back. After analysis, those two of the three conditions wehsignals allowed for

the best discrimination were used subsequently used ihtée two-class feedback
applications described below. Note that the whole expertmdiich comprises a
calibration recording plus all feedback applications waselwithin one morning.

In the first feedback applicatiop@sition controlled cursor, PCthe output of the
classifier was directly translated to the horizontal posiof a cursor. There were
two fields on the left resp. right edge of the screen, one otliias highlighted
as a target at the beginning of each trial. The cursor stamtaddeactivated mode
(in which it could move into but not activate the target fiedad became activated
after the user has held the cursor in a central position fOma€ The trial ended
when the activated cursor touched one of the two fields. Télat\fias then colored
green or red, depending on whether it had been the targethigidvas hit or not.
The cursor was then deactivated and the next target wasdtiggd.

The second feedback applicatiarate controlled cursor, RCCwas very similar,
but the control of the cursor was relative to the actual pmsijt.e., at each update
step a fraction of the classifier output was added to the otcrgsor position. Each
trial started by setting the cursor to the middle of the straed releasing it after
750 ms.

The third feedback applicatiob@sket games similar to applications in (McFar-
land et al., 2003) and (Krausz et al., 2003)) and was openatedynchronous BCI
mode. A ball was falling down from the top of the screen at tamsspeed. Its hor-
izontal position was controlled by the classifier outputti®d bottom of the screen
there were three horizontally aligned possible targetdieldhe outer ones had half
the width of the middle field to account for the fact that ouyiesitions are easier
to hit.



Table 1

The first two columns compare the accuracy as calculateddsseralidation on the cali-
bration data with the accuracy obtained online in the feekllagplication RCC (see text).
Columns three to eight report the information transferggt&@R) measured in bits per
minute obtained in all three feedback applications PCC, R@&€basket. For each appli-
cation the first of the two columns reports the average ITRlalias (of 25 trials each),

while the second column reports the peak ITR of all runs. &t} is not reported in this
table as he or she did not achieve sufficient BCI control tothenfeedback applications
(64.6% accuracy in the calibration data).

Subject| acc [%] PCC RCC basket
No. cal. fb. ‘ I} peak‘ @ peak @ peak
1 954 80.5| 7.1 151 59 11.0f 2.6 55
3 98.0 98.0| 12.7 20.3| 244 354 9.6 16.1
4 78.2 885 89 155|174 37.1| 6.6 9.7
5 78.1 905/ 7.9 13.1| 9.0 245 6.0 838
6 97.6 95.0/ 134 21.1| 22.6 315/ 16.4 35.0

%) 89.5 90.5| 10.0 17.0{ 159 279 82 15.0

3.2 Results

To compare the results of the different feedback scenahesnformation transfer
rate (ITR, Wolpaw et al. (2002)) measured in bits per minbpe) is used (cf. Ta-
ble 1). The BBCI can be operated at a high decision speedhEdive out of six
subjects that showed discriminable brain signals durirgctidibration recording,
this high speed was enforced by using a setting where theashywere competing
to be the winner in one discipline. In the position contra #verage trial length
was 3 seconds, in rate control 2.5 seconds. In the baskdidekdhe trial length
is constant (synchronous protocol) but was individuallgsted for each subject,
ranging from 2.1 s to 3 s. The fastest subject was no. 4 whidoeed at an aver-
age speed of one decision every 1.7s. The most reliablerpaafce was achieved
by subject 3: only 2% of the total 200 trials in the rate coltdab cursor were
misclassified at an average speed of one decision per 2.1s.

Although EOG artifacts and a small amount of concurrent EMBvily were
present in some trials of motor imagery, they were found teeh® influence on
the classification accuracy. For details see (Blankertk 2@07a).



4 Applications of BBCI

The machine learning tools that have been developed forBt& Bystem enable us
to analyze EEG signals in real-time and on a single triald#ss a prerequisite the
algorithms generally have to be calibrated based on exangpline specific brain
patterns of an individual. In the following, two applicai®of single-trial analysis
are presented. Firdfex-o-Spella text entry system for communicating, which is
a classical BCI feedback application. Second, the onlineitoong of arousal that
reflects the concentration ability of subjects. In the sdcapplication, the BBCI
provides additional information about the user, that wawdtlbe accessible in real-
time otherwise. This additional information could in prijpal serve to improve
human-computer interfaces (HMI): the characteristicheftiMI can adapt to the
user based on the results of the monitoring estimate (Krefoi., 2007).

4.1 Text entry with the BBCI: Hex-o-Spell

The challenge in designing a mental text entry system is o asmall number of
BCI control states (typically two) to a much high number afols (26 letters plus
punctuation marks, blanks aedase while accounting for the low signal-to-noise
ratio in the control signal. The fluid interaction in the BB§jistem was enabled
by applying a combination of probabilistic data and dynasyistems theory and
is based on work on mobile interfaces (Williamson and Mw&awith, 2005). For
details see Blankertz et al. (2007hb).

The initial configuration of the visual user interface iswhan the leftmost plot

right hand imagery: turn arrow foot imagery: extend arrow level two of selection

BERLI BERLI BERLI

foot

I .GQ
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Fig. 3. The mental text entry systeHex-0-Spell The two states classified by the BBCI
system (bar on the right in each screenshot) control thénisnd growing of the central

green arrow (see also text). All letters and a number of mytdsls can be chosen in a two
step procedure. If the classifier output is undecided thegaréar is between the thresholds.

In this case the arrow maintains its direction and its lerdjthinishes continuously to a
minimum.




of Fig. 3. Six hexagonal fields surround a circle and in eackthein five sym-
bols are arranged. An arrow in the center of the circle allfawshe selection of a
neighboring field of symbols (in a first step) or a neighbosgmbol (in a second
step). By imagining a right hand movement the arrow turnslshese. An imag-
ined left hand movement stops the rotation and the arrousstatending. If this
imagination persists, the arrow touches the neighboringden and thereby se-
lects it. Then all other hexagons are cleared and the five sigds the selected
hexagon are moved to individual hexagons as shown in themiggt screenshot of
Fig. 3. For the following second step the arrow is reset taitsimal length while
maintaining its last direction. Now the same procedureafioh and extension) is
repeated to finally select a symbol. Note that there are ordymdbols to choose
from in the second step as shown in the rightmost screens$hot 03. Choosing
the empty hexagon makes the application return to the fiept without selecting
a symbol. This transition allows to revoke the last choicésddelt characters can
be erased by selecting the backspace symbol.tiitmeng speedand thegrowing
speedof the arrow are parameters that can be adapted to the user.
Hex-o-Spell incorporates a language model that deterntireeprobability for all
symbols conditioned on the letters written so far. Thus npoobable symbols can
be reached faster. However the grouping of the symbols tsithéexagons is
fixed (e.g. letters ‘A’ to ‘E’ are always in the topmost hexageee Fig. 3) in order
to avoid confusion of the user. Only the arrangement of theb®ls within one
hexagon is controlled by the language model. Thereforeytirdesl probability is
matched with the rank of the symbol position which reflects lkrasy that position
can be reached. The symbol that is in forward direction carebdehed most easily,
since in this case the user can simply maintain the ‘go $ttasgmmand. To reach
the position next to it, switching to the turning state andagkwise turn of 60 is
required, cf. Fig. 3. In general, after one symbol has betttss the arrow will
be set to point to the hexagon which according to the langoeaggel contains the
most probable next letter.

4.2 Results

On two days in the course of the CeBIT fair 2006 in Hannovemngay, live

demonstrations were given with two subjects that simuttasly used the BBCI
system. These demonstrations turned out to be BBCI rolsstestpar excel-

lence All over the fair pavilion, noise sources of different kaelectric, acous-
tic,...) were potentially jeopardizing the performancewlair humidity affected the
EEG electrode gel, Last but not least, the subjects wererysyehological pres-
sure to perform well, for instance in front of several rurgnifV cameras or in the
presence of the German minister of research. The preparatithe experiments
started at 9:15 a.m. and the live performance began at 11Taentwo subjects
played a simple computer garBeain-Pongagainst each other or wrote messages
with Hex-o-Spell. Except for a few very short breaks and argeér lunch break,
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the subjects continued until 5 p.m. without any degradatidhe classification per-
formance over time. This stability was demonstrated by gr@ssive typing speed
of between 2.3 and 5 char/min for one subject and betweemd.8.& char/min for
the other subject. The speed was measured only for errerdmnpleted phrases,
i.e. all typing errors had to be corrected by using the baagsgommand.

For a BCI-driven text entry system that did not operate orkegl@otentials these
numbers are a world class spelling speed, especially whedithcult environ-
ment is taken into control. Note that the the subjects had tre= BBCI text entry
interface only twice before the demonstration.

4.3 Mental State Monitoring of Users

When aiming to optimize the design of user interfaces or thekvilow of man-
ufacturing environments, the mental state of a user duhegekecution of a task
can provide interesting information. Examples of these talestates are the lev-
els of arousal, fatigue or workload. However questionrsa@e of limited use for
precisely assessing this information as the delivered arssare often distorted by
subjectiveness. Questionnaires can not determine theitiesuof interest in real-
time (during the execution of the task) but only in retrogpec Even the monitor-
ing of eye blinks or eye movements only allows for an indi@atess to the user’s
mental state. In contrast to this, the monitoring of a usem'srs is a more direct
measure but detects critical changes of the user statehposinly.

We propose to evaluate the use of electroencephalogram)(&gaals for arousal
monitoring. The experimental setting simulates a secatityeillance system where
the sustained concentration ability of the user is cru€iat.the data analysis meth-
ods developed in the context of Brain-Computer Interfacesagplied. With this
approach the signals of interest can be isolated and inipahalso evaluated in
real-time and on a single-trial basis.

4.4 Experimental Setup for Arousal Monitoring

For this pilot study a subject was seated approx. 1m in frbat@mputer screen
that displayed different stimuli in a forced choice settiigvas asked to respond
quickly to stimuli by pressing keys of a keyboard with eittiee left or right in-
dex finger; recording was done with a 128 channel EEG at 100THe.subject
had to rate several hundred x-ray images of luggage objsc#laer dangerous or
harmless by a key press after each presentation. The exgrenmas designed as an
oddball paradigm where the number of the harmless objectswech larger than
that of the dangerous objects. The terms standard and devilasubsequently be
used for the two conditions. One trial was usually performatthiin 0.5 seconds

11



after the cue presentation.

The subject was asked to perform 10 blocks of 200 trials elaak.to the mono-
tonous nature of the task and the long duration of the exmarinthe subject was
expected to show a fading level of arousal which results irs&zgoncentration and
the generation of more and more erroneous decisions dwiaghlocks.

For the offline analysis of the collected EEG signals, thiofaihg steps were ap-
plied. After exclusion of channels with bad impedances &ialdaaplace filter was

applied and the band power features from 8-13 Hz were cordmt&s windows.

The resulting band power values of all channels were conatgd into a final

vector. As the subject’s correct and erroneous decisioms Wgwn, a supervised
LDA classifier was trained on the data. The classificationreof this procedure

was estimated by a cross-validation scheme that left outadendlock of 200 trials

during each fold for testing. As the number of folds was dateed by the number
of experimental blocks it varied slightly from subject tdgect.

45 Results

The erroneous decisions taken by a subject were recordedrandthed in or-
der to form a measure for the arousal. This measure is furéfiemred to agrror
indexand reflects the ability of the subject to concentrate anfilftiie security
task. To enhance the contrast of the discrimination arglysio thresholds were
introduced for the error index and set after visual inspectExtreme trials out-
side these thresholds defined two sets of trials with a rdtiggr rsp. a low value.
The EEG data of the trials were labeledsasficiently concentratedr insufficiently
concentrateddepending on these thresholds for later analysis. Figurewsthe
error index. The subject did perform nearly error-free dgrihe first blocks but
then showed increasing errors beginning with block 4. Hexes the blocks were
separated by short breaks, the subject could regain arauted beginning of each
new block at least for a small number of trials. The trials mfhhand low error
index formed the training data for teaching a classifier sediminate mental states
of insufficient arousal based on single trial EEG data.

A so-called Concentration Insufficiency Index (CII) of a thowvas generated by
an LDA classifier that had been trained off-line on the lateétaining data of the
remaining blocks. The classifier output (Cll) of each trelplotted in Figure 4
together with the corresponding error index. It can be oleskthat the calculated
Cll mirrors the error index for most blocks. More precisdig Cll mimics the error
increase inside each block and in blocks 3 and 4 it can aateifhe increase of
later blocks. For those later blocks the Cll reveals thasthigect could not recover
its full arousal during the breaks. Instead it shows a stworé-arousal for the time
immediately after a break, but the Cll accumulates over time
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Fig. 4. Left plot: Comparison of the concentration insuéfitty index (ClI, dotted curve)
and the error index for subject 1. The error index (the truéopmed errors smoothed over
time) reflects the inverse of the arousal of the subject. Raht: Correlation coefficient
between the CII (returned by the classifier) and the trueopeidince for subject 1 for
different time shifts. Highest correlation is around a zénoe shift as expected. Please
remark that the Cll has an increased correlation with thar exren before the error appears.

The correlation coefficient of both time series with varyiemporal delay is shown
in the right plot of Figure 4. The CIlI inferred by the clasgifénd the errors that
the subject had actually produced correlate stronglyheumore the correlation is
high even for predictions that are up to 50 trials ahead iriuhee.

4.6 Physiological analysis

The trials of subject one are grouped into different CllI leMgow/medium/high)
as depicted in Figure 4. To enlarge the contrast for the vietlg analysis, only
the extreme CII levels are further considered. CalculatilrgEEG spectrum for
the groups of high and low ClI reveals that a main differenegveen these groups
expresses in the frequency domain. Figure 5 shows the agects number of EEG
channels together with signed values for low ClI trials against high ClI trials. It
shows that the difference between low and high CllI levelgilected best by the
differences in the 10 Hz range.

Of course itis also of interest which channels have contebto the class discrim-
inability by means of LDA in the CII detection system. Thelpgalot in Figure 5
shows the map of signed-values for the discrimination of low and high ClII tri-
als (see marked trials in Figure 4) in tbeband. (Left-)occipital channels account
strongest for this difference, which nicely reflects thatroes otr-activity depend
on visual processes.

5 Concluding Discussion

Analyzing EEG signals robustly and in real-time, despitgrthigh variability, and
the obviously noisy signal characteristics, is a major leingle. Recently modern
machine learning and adaptive signal processing techsigaee been able to suc-
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Fig. 5. Left plot: EEG spectra for Laplace-filtered chanragid two extreme levels of CII.
Gray values code the? values for Low Cll vs. High ClI. Right plot: Scalp plot shovgn
signedr? values for 8-13 Hz. The plot reveals discriminability at ipital channels in the
o-band.

cessfully contribute to this exciting field. In particul#arhas become possible to
analyze EEG on a single-trial basis for two fields of appias: (a) new insights
into general mental state monitoring can be gained and (BjnBZomputer In-
terfacing becomes feasible without the need for subjentitrg. Our contribution
presents machine learning as a key technology to accessibedields. We would
now like to discuss interesting future directions. Firdlyther gains in the BCI in-
formation transfer rate will be achieved by combining difiet physiological fea-
tures, by moving from binary to multi-class classificatibg,adapting the system
to non-stationarity and by including the error potentiall@brnhege et al. (2003,
2004); Dornhege (2006); Dornhege et al. (2007a); SugiyamdaMiiller (2005).
Secondly, as we demonstrated with the mental text entrycgijgn Hex-o-Spellit
can be foreseen that the incorporation of principles frormdn-Computer Interac-
tion research into the design of BCI feedback applicatioiisb@wost the usability
and the performance of BCls and brain state monitoring syst& hirdly, using
BCI technology as a tool for computational neuroscienc@ordhabilitation engi-
neering is attractive. Gaming and mental state monitoniagaly the beginning of
a widerdirectuse of information on brain activity for Human-Machine Iratetion.
BCI output (in addition to the motor output of healthy user$grs a new commu-
nication channel for the HMI field that is yet to be explorediMr and Blankertz,
2006; Krepki et al., 2007). Finally, EEG based neurotecbgyplmust profit from
further improvement of machine learning and signal pracgsalgorithms, but it
will require a substantial advancement of sensor techiyolgG caps and ampli-
fiers need to become cheap and easy to use even by non-tragheduals. To be
accepted on the market they need to be well designed andegelénce such sys-
tems exist, a large number of applications that enhance Huvtechine Interaction
will emerge — not only for the disabled user, but also for taalthy.
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