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Abstract

Machine learning methods are an excellent choice for compensating the high variability in
EEG when analyzing single trial data in real-time. This paper briefly reviews preprocessing
and classification techniques for efficient EEG-based Brain-Computer Interfacing (BCI)
and mental state monitoring applications. More specifically, this paper gives an outline of
the Berlin Brain-Computer Interface (BBCI), which can be operated with minimal subject
training. Also, spelling with the novel BBCI-based Hex-o-Spell text entry system, which
gains communication speeds of 6-8 letters per minute, is discussed. Finally the results of a
real-time arousal monitoring experiment are presented.
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1 Introduction

Recently, advances in single trial EEG analysis have achieved the efficient online
differentiation of neuroelectric signals. The present contribution distinguishes be-
tween two main application fields of these analysis techniques: (a) Brain-Computer
Interfacing and (b) online monitoring of brain states. Thispaper reviews both along
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with the machine learning and signal analysis machinery that is necessary for such
online EEG processing.

Brain-Computer Interfaces (BCI) allow for communication that is solely based on
brain signals, independent from muscles or peripheral nerves (see Wolpaw et al.
(2002); Kübler et al. (2001); Curran and Stokes (2003); Kübler and Müller (2007);
Dornhege et al. (2007a); Carmena et al. (2003) for a broader overview and back-
ground information). The Berlin Brain-Computer Interface(BBCI) is a non-invasive,
EEG-based system whose key features are (1) the use of motor imagery for con-
trol tasks, (2) advanced machine learning techniques that automatically extract
complex high-dimensional features and classify in a robustmanner, and—as a
consequence—(3) no need for subject training. The latter characteristic is consid-
ered an important contribution since typical BCI systems rely on classical condi-
tioning (cf. Elbert et al. (1980); Rockstroh et al. (1984); Birbaumer et al. (2000))
and require extensive subject training of 50-100 hours1 . In contrast, the BBCI ap-
proach allows to shift the training effort from the user towards the machine (cf. Sec-
tion 3). Section 4.1 will demonstrate a BBCI application: the Hex-o-Spell interface
for spelling.

Brain-Computer Interfacing is certainly not the only interesting application when
decoding brain activity. General online monitoring of generic brain states beyond
voluntarily altered brain activity has in the past been under study e.g. for the de-
tection of sleep stages, tiredness, arousal, for emotion monitoring and for cogni-
tive workload analysis (Kohlmorgen et al., 2007; Haynes andRees, 2006; Müller
et al., 1995). In section 4.3 the real-time monitoring of mental states using EEG
are discussed and the example of monitoring a subject’s arousal to estimate it’s
concentration ability within an industrial problem setting is briefly outlined.

2 Machine Learning for BCI

Since brain data is non-stationary, it offers formidable challenges from the view-
point of a data analyst. It is characterized by significant trial-to-trial and subject-
to-subject variability. Often signals are high-dimensional with only relatively few
samples available for fitting models to the data and finally the signal-to-noise ratio
is highly unfavorable, In fact, it typically is even ill-defined what signal and respec-
tively what noise are (cf. Blankertz et al. (2006c); Dornhege et al. (2007a)). Due to
this variability, machine learning methods have become thetool of choice for the
online analysis of single-trial brain data. In contrast, classical neurophysiological
analysis methods apply averaging methods like taking grandaverages over trials,

1 Consider, that many of these approaches deal with individuals with neurological diseases
which affect the brain. This may even lead to slower learningof the subjects or unusual
difficulties in the classification of the patient’s signals.
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subjects and sessions to get rid of various sources of variability. This approach
investigates theaveragebrain and can answer generic questions of neurophysio-
logical interest, but it is rather blind to the wealth of the dynamics and behavioral
variability available only to single trial analysis methods.
Brain-Computer Interfacing has been pushing single trial EEG analysis to an ex-
treme, as the methods applied in this field need to be performed in real-time without
significant processing delays (typically less than 40ms). In the following the basic
machine learning methods for single trial EEG analysis are introduced: feature ex-
traction – here an approach using spatial filters is presented – and classification,
which is discussed by the example of a framework of regularized Linear Discrimi-
nant Analysis (LDA). Furthermore when analyzing high dimensional data it is not
only important to visualize, predict or classify the data with low error, but it is
essential that the exploratory data analysis tools allow toexplain the underlying
structure in order to contribute to a better understanding of data. A final paragraph
of this section will address this aspect.

2.1 The General Machine Learning setting

For the training phase of a BCI,k = 1. . .N samplesxk are measured, wherex is
a continuous stream of EEG in then-dimensional sensor space. The subjects are
asked to perform individual but fixed mental task, e.g. motorimagery of their left
and right hand. This allows to associate the EEG vectorsxk with the respective
class labels for these two mental statesyk ∈ ±1. After collecting a sufficient num-
ber of trials, the machine learning approach allows to learnthe complex unknown
mappingf betweenxk andyk by inferring the typical EEG patterns of left and right
motor imagery tasks of a particular subject. While theoretically this abstract map-
ping f could be learned even from raw EEG data (Blankertz et al., 2002), it has
proven to be much more efficient to extract appropriate features from the continu-
ous EEG signal using available physiological a-priori knowledge. For the example
of motor imagery tasks, known useful discriminative features are the band-power
values localized at motor related areas, which can be enhanced in contrast by spatial
filtering. 2 Clearly it will depend on the particular paradigmatic setting whether the
resulting features can – in a subsequent step – be best classified by linear methods
or whether nonlinear kernel-based learning methods (Müller et al., 2001; Schölkopf
and Smola, 2002; Vapnik, 1995) are necessary (for a discussion see Müller et al.
(2003)).

With the help of modern machine learning methods, the BBCI system needs only
between 50-150 trials, i.e. between 7 and 20 minutes (depending on the signal-to-
noise ratio of the subject’s EEG) of calibration recordingsfor constructing a high

2 But even if no prior knowledge is available for a new mental task, suitable discriminative
features can be found by machine learning algorithms.
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performance BCI (Blankertz et al., 2007a). Note that some subjects need no cali-
bration measurement at all, if data from earlier BCI sessions is available (Krauledat
et al., 2007). With the BBCI even BCI naive subjects can successfully communicate
within the same morning. Our approach follows the mottolet the machines learn
and has no need for explicit subject training. However, notethat (as in all other
groups worldwide) about one third of the BCI users do not achieve BCI communi-
cation at all.

2.2 Spatial Filtering with Common Spatial Patterns

A crucial point in the data processing is to extract appropriate spatio-temporal filters
that can serve as feature extractors for the subsequent steps. Ideally they optimize
the discriminability of the multi-channel brain signals based on some chosen phys-
iological paradigm, for instance event-related (de-)synchronization (ERD/ERS) ef-
fects of the (sensory-) motor rhythms (Pfurtscheller and Lopes da Silva, 1999). The
filters that have been learned from the training data set are used to project the con-
tinuous EEG to a lower dimensional informative subspace. Then the final features
are constructed as the log variances from those projections.

A very successful method to determine spatio-temporal filters for a BCI system is
the so-called Common Spatial Pattern (CSP) algorithm, which has recently been
extended and improved in various directions (Lemm et al., 2005; Dornhege et al.,
2007b, 2006; Tomioka et al., 2006, 2007). Note that for simplicity only the basic
CSP version (Fukumizu, 1996) that was originally introduced to BCI by Ramoser
et al. (2000) is discussed. The objective of the CSP technique is to find spatial
filters that maximize the variance of signals of one condition and at the same time
minimize the variance of signals of another condition (see Figure 1). Since the
variance of band-pass filtered signals is equal to the band power, CSP filters can be
used to discriminate conditions that are characterized by ERD/ERS effects.

Technically CSP filters are constructed as follows. LetΣ1 andΣ2 be estimates of the
covariance matrices of the band-pass filtered EEG signals under two conditions (for
the extension to more conditions see (Dornhege et al., 2004)). These two matrices
are simultaneously diagonalized in a way that the eigenvalues ofΣ1 andΣ2 sum to
1. Practically this can be done by calculating the generalized eigenvectorsV:

Σ1V = (Σ1+Σ2)VD. (1)

Then the diagonal matrixD contains the eigenvalues ofΣ1 and the column vectors
of V are the filters of the common spatial patterns. In theory the best contrast is
provided by filters with high eigenvalues (large variance for condition 1 and small
variance for condition 2) and by filters with low eigenvalues(vice versa). In practice
it is useful to inspect the resulting filters visually in order to detect miss-estimates
due to outliers. Further details about the processing methods and the selection of
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Fig. 1. Two spatial filters for right hand imagery (R1, R2) andtwo filters for left hand
imagery (L1, L2) result in four CSP-channels are shown on theright side. The variance of
the filtered EEG data changes depending on the task cue, whichis indicated by the dashed
lines.

parameters can be found in Blankertz et al. (2005); Fukunaga(1990); Lemm et al.
(2005); Dornhege et al. (2007b).

2.3 Classification and Explanation by Machine Learning Techniques

For log band-power features in CSP-filtered channels the classification task is feasi-
ble very well by linear discriminant analysis in our experience. If the dimensional-
ity of the features is higher, regularization is advisable,see Blankertz et al. (2006c,
2002) for an example in the context of BCI. Features that havemore complex dis-
tributions typically require nonlinear methods (Müller et al., 2003; Müller et al.,
2001). Here we would like to stress further aspects of machine learning techniques
for the analysis of single-trial EEG.
First of all, the use of state-of-the-art learning machinesenables us to achieve high
decision accuracies for BCI (e.g. (Blankertz et al., 2002, 2003; Dornhege et al.,
2004)). When no sufficient prior knowledge is available for atask, then feature se-
lection techniques are required. Particularly those methods are attractive that reveal
interpretable results (Lal et al., 2004). Recently, so-called mathematical program-
ming methods like the Linear Programming Machines (LPMs) (Blankertz et al.,
2006c; Bennett and Mangasarian, 1992; Vapnik, 1995; Müller et al., 2001) have
been proposed which fulfill this condition.

Applied to EEG measurements from a motor imagery paradigm like the one pre-
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Fig. 2. This figure shows the absolute weight vector (displayed as a channel× frequency
matrix) of a sparse LPM classifier. It was trained to discriminate left vs. right hand motor
imagery. The bar on the bottom shows the sum across all channels and is displayed also in
the lower right plot. The focus in the frequency range lies ontheα-band (here 11–14 Hz).
The bar on the right side of the matrix shows the sum across allfrequency bands and
is displayed as a scalp topography in the upper right plot. Note that less than 4% of the
features were assigned non-zero weights.

sented in Section 3.1, the LPM selects less than 4% of the feature dimensions. The
chosen features result in very accurate classification of left vs. right hand imagery
signals and generalize well to new data. The outcome of the algorithm coincides
nicely with what is expected from neurophysiology, i.e., high loadings for elec-
trodes close to sensorimotor cortices in the left and right hemisphere with a strong
focus at 12 Hz, i.e., the frequency range of the sensorimotorµ-rhythm, cf. Fig. 2.
Note that the feature selection is an integrative part of thelearning process and is
automatically adapted to a subject, electrode placement, etc.

For the above paradigm a clear physiological expectation exists and the mathemat-
ical programming method could match perfectly with this expectation. More inter-
esting and realistic is an exploratory scenario, where a newparadigm is tested that
possibly generates unexpected neurophysiological signatures. The learning ma-
chine could automatically generate a hypothesis about the underlying task-relevant
brain processes. This can serve to adapt and explore the experimental paradigm,
such that in principle a better understanding of the brain processes can be inferred.
In this sense a machine learning method can offer explanation, which is of great
use in the exploration loop for testing new paradigms.

3 BCI Control based on Movement Imagery without Subject Training

So far the BBCI has mainly studied two paradigms: (a) the discriminability of pre-
movement potentials in self-paced executed movements (Blankertz et al., 2003,
2006a,c), where it can be shown that high information transfer rates can be ob-
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tained from single-trial classification of fast-paced motor commands and (b) motor
imagery (Blankertz et al., 2007a). Both paradigms do not require subject training.
Due to space limitations only the results of the second paradigm are reviewed.

3.1 Experimental Setup

Six subjects who all had no or very little experience with BCIfeedback took part
in this BCI study. To capture brain signals related with motor imagery tasks, EEG
was recorded from 118 electrodes mounted on the scalp. To investigate the influ-
ence from non central nervous system activity, electrooculogram (EOG) and elec-
tromyogram (EMG) signals were additionally recorded but not used to generate the
feedback signal.
In the cued calibration measurement the subjects performedmotor imagery tasks
of the left hand, the right hand or the right foot. The imagerywas sustained after a
cue, and cues appeared at intervals of 6-7s. The subjects didnot receive any feed-
back. After analysis, those two of the three conditions whose signals allowed for
the best discrimination were used subsequently used in the three two-class feedback
applications described below. Note that the whole experiment which comprises a
calibration recording plus all feedback applications was done within one morning.

In the first feedback application (position controlled cursor, PCC), the output of the
classifier was directly translated to the horizontal position of a cursor. There were
two fields on the left resp. right edge of the screen, one of which was highlighted
as a target at the beginning of each trial. The cursor startedin a deactivated mode
(in which it could move into but not activate the target field)and became activated
after the user has held the cursor in a central position for 500 ms. The trial ended
when the activated cursor touched one of the two fields. That field was then colored
green or red, depending on whether it had been the target fieldthat was hit or not.
The cursor was then deactivated and the next target was highlighted.

The second feedback application (rate controlled cursor, RCC) was very similar,
but the control of the cursor was relative to the actual position, i.e., at each update
step a fraction of the classifier output was added to the current cursor position. Each
trial started by setting the cursor to the middle of the screen and releasing it after
750 ms.

The third feedback application (basket game) is similar to applications in (McFar-
land et al., 2003) and (Krausz et al., 2003)) and was operatedin a synchronous BCI
mode. A ball was falling down from the top of the screen at constant speed. Its hor-
izontal position was controlled by the classifier output. Atthe bottom of the screen
there were three horizontally aligned possible target fields. The outer ones had half
the width of the middle field to account for the fact that outerpositions are easier
to hit.
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Table 1
The first two columns compare the accuracy as calculated by cross-validation on the cali-
bration data with the accuracy obtained online in the feedback application RCC (see text).
Columns three to eight report the information transfer rates (ITR) measured in bits per
minute obtained in all three feedback applications PCC, RCCand basket. For each appli-
cation the first of the two columns reports the average ITR of all runs (of 25 trials each),
while the second column reports the peak ITR of all runs. Subject 2 is not reported in this
table as he or she did not achieve sufficient BCI control to runthe feedback applications
(64.6% accuracy in the calibration data).

Subject acc [%] PCC RCC basket

No. cal. fb. ∅ peak ∅ peak ∅ peak

1 95.4 80.5 7.1 15.1 5.9 11.0 2.6 5.5

3 98.0 98.0 12.7 20.3 24.4 35.4 9.6 16.1

4 78.2 88.5 8.9 15.5 17.4 37.1 6.6 9.7

5 78.1 90.5 7.9 13.1 9.0 24.5 6.0 8.8

6 97.6 95.0 13.4 21.1 22.6 31.5 16.4 35.0

∅ 89.5 90.5 10.0 17.0 15.9 27.9 8.2 15.0

3.2 Results

To compare the results of the different feedback scenarios,the information transfer
rate (ITR, Wolpaw et al. (2002)) measured in bits per minute (bpm) is used (cf. Ta-
ble 1). The BBCI can be operated at a high decision speed. For the five out of six
subjects that showed discriminable brain signals during the calibration recording,
this high speed was enforced by using a setting where the subjects were competing
to be the winner in one discipline. In the position control the average trial length
was 3 seconds, in rate control 2.5 seconds. In the basket feedback the trial length
is constant (synchronous protocol) but was individually selected for each subject,
ranging from 2.1 s to 3 s. The fastest subject was no. 4 which performed at an aver-
age speed of one decision every 1.7s. The most reliable performance was achieved
by subject 3: only 2 % of the total 200 trials in the rate controlled cursor were
misclassified at an average speed of one decision per 2.1s.

Although EOG artifacts and a small amount of concurrent EMG activity were
present in some trials of motor imagery, they were found to have no influence on
the classification accuracy. For details see (Blankertz et al., 2007a).
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4 Applications of BBCI

The machine learning tools that have been developed for the BBCI system enable us
to analyze EEG signals in real-time and on a single trial basis. As a prerequisite the
algorithms generally have to be calibrated based on examples of the specific brain
patterns of an individual. In the following, two applications of single-trial analysis
are presented. First,Hex-o-Spell, a text entry system for communicating, which is
a classical BCI feedback application. Second, the online monitoring of arousal that
reflects the concentration ability of subjects. In the second application, the BBCI
provides additional information about the user, that wouldnot be accessible in real-
time otherwise. This additional information could in principal serve to improve
human-computer interfaces (HMI): the characteristics of the HMI can adapt to the
user based on the results of the monitoring estimate (Krepkiet al., 2007).

4.1 Text entry with the BBCI: Hex-o-Spell

The challenge in designing a mental text entry system is to map a small number of
BCI control states (typically two) to a much high number of symbols (26 letters plus
punctuation marks, blanks anderase) while accounting for the low signal-to-noise
ratio in the control signal. The fluid interaction in the BBCIsystem was enabled
by applying a combination of probabilistic data and dynamicsystems theory and
is based on work on mobile interfaces (Williamson and Murray-Smith, 2005). For
details see Blankertz et al. (2007b).

The initial configuration of the visual user interface is shown in the leftmost plot
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Fig. 3. The mental text entry systemHex-o-Spell. The two states classified by the BBCI
system (bar on the right in each screenshot) control the turning and growing of the central
green arrow (see also text). All letters and a number of meta symbols can be chosen in a two
step procedure. If the classifier output is undecided the orange bar is between the thresholds.
In this case the arrow maintains its direction and its lengthdiminishes continuously to a
minimum.
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of Fig. 3. Six hexagonal fields surround a circle and in each ofthem five sym-
bols are arranged. An arrow in the center of the circle allowsfor the selection of a
neighboring field of symbols (in a first step) or a neighboringsymbol (in a second
step). By imagining a right hand movement the arrow turns clockwise. An imag-
ined left hand movement stops the rotation and the arrow starts extending. If this
imagination persists, the arrow touches the neighboring hexagon and thereby se-
lects it. Then all other hexagons are cleared and the five symbols of the selected
hexagon are moved to individual hexagons as shown in the rightmost screenshot of
Fig. 3. For the following second step the arrow is reset to itsminimal length while
maintaining its last direction. Now the same procedure (rotation and extension) is
repeated to finally select a symbol. Note that there are only 5symbols to choose
from in the second step as shown in the rightmost screenshot of Fig. 3. Choosing
the empty hexagon makes the application return to the first step without selecting
a symbol. This transition allows to revoke the last choice. Misspelt characters can
be erased by selecting the backspace symbol. Theturning speedand thegrowing
speedof the arrow are parameters that can be adapted to the user.
Hex-o-Spell incorporates a language model that determinesthe probability for all
symbols conditioned on the letters written so far. Thus moreprobable symbols can
be reached faster. However the grouping of the symbols to thesix hexagons is
fixed (e.g. letters ‘A’ to ‘E’ are always in the topmost hexagon, see Fig. 3) in order
to avoid confusion of the user. Only the arrangement of the symbols within one
hexagon is controlled by the language model. Therefore the symbol probability is
matched with the rank of the symbol position which reflects how easy that position
can be reached. The symbol that is in forward direction can bereached most easily,
since in this case the user can simply maintain the ‘go straight’ command. To reach
the position next to it, switching to the turning state and a clockwise turn of 60 is
required, cf. Fig. 3. In general, after one symbol has been selected the arrow will
be set to point to the hexagon which according to the languagemodel contains the
most probable next letter.

4.2 Results

On two days in the course of the CeBIT fair 2006 in Hannover, Germany, live
demonstrations were given with two subjects that simultaneously used the BBCI
system. These demonstrations turned out to be BBCI robustness testspar excel-
lence. All over the fair pavilion, noise sources of different kinds (electric, acous-
tic,...) were potentially jeopardizing the performance. Low air humidity affected the
EEG electrode gel, Last but not least, the subjects were under psychological pres-
sure to perform well, for instance in front of several running TV cameras or in the
presence of the German minister of research. The preparation of the experiments
started at 9:15 a.m. and the live performance began at 11 a.m.The two subjects
played a simple computer gameBrain-Pongagainst each other or wrote messages
with Hex-o-Spell. Except for a few very short breaks and one longer lunch break,
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the subjects continued until 5 p.m. without any degradationof the classification per-
formance over time. This stability was demonstrated by an impressive typing speed
of between 2.3 and 5 char/min for one subject and between 4.6 and 7.6 char/min for
the other subject. The speed was measured only for error-free, completed phrases,
i.e. all typing errors had to be corrected by using the backspace command.

For a BCI-driven text entry system that did not operate on evoked potentials these
numbers are a world class spelling speed, especially when the difficult environ-
ment is taken into control. Note that the the subjects had used the BBCI text entry
interface only twice before the demonstration.

4.3 Mental State Monitoring of Users

When aiming to optimize the design of user interfaces or the work flow of man-
ufacturing environments, the mental state of a user during the execution of a task
can provide interesting information. Examples of these mental states are the lev-
els of arousal, fatigue or workload. However questionnaires are of limited use for
precisely assessing this information as the delivered answers are often distorted by
subjectiveness. Questionnaires can not determine the quantities of interest in real-
time (during the execution of the task) but only in retrospective. Even the monitor-
ing of eye blinks or eye movements only allows for an indirectaccess to the user’s
mental state. In contrast to this, the monitoring of a user’serrors is a more direct
measure but detects critical changes of the user state post-hoc only.

We propose to evaluate the use of electroencephalogram (EEG) signals for arousal
monitoring. The experimental setting simulates a securitysurveillance system where
the sustained concentration ability of the user is crucial.For the data analysis meth-
ods developed in the context of Brain-Computer Interfaces are applied. With this
approach the signals of interest can be isolated and in principal also evaluated in
real-time and on a single-trial basis.

4.4 Experimental Setup for Arousal Monitoring

For this pilot study a subject was seated approx. 1m in front of a computer screen
that displayed different stimuli in a forced choice setting. It was asked to respond
quickly to stimuli by pressing keys of a keyboard with eitherthe left or right in-
dex finger; recording was done with a 128 channel EEG at 100 Hz.The subject
had to rate several hundred x-ray images of luggage objects as either dangerous or
harmless by a key press after each presentation. The experiment was designed as an
oddball paradigm where the number of the harmless objects was much larger than
that of the dangerous objects. The terms standard and deviant will subsequently be
used for the two conditions. One trial was usually performedwithin 0.5 seconds
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after the cue presentation.
The subject was asked to perform 10 blocks of 200 trials each.Due to the mono-
tonous nature of the task and the long duration of the experiment, the subject was
expected to show a fading level of arousal which results in worse concentration and
the generation of more and more erroneous decisions during later blocks.

For the offline analysis of the collected EEG signals, the following steps were ap-
plied. After exclusion of channels with bad impedances a spatial Laplace filter was
applied and the band power features from 8-13 Hz were computed on 2s windows.
The resulting band power values of all channels were concatenated into a final
vector. As the subject’s correct and erroneous decisions were known, a supervised
LDA classifier was trained on the data. The classification error of this procedure
was estimated by a cross-validation scheme that left out a whole block of 200 trials
during each fold for testing. As the number of folds was determined by the number
of experimental blocks it varied slightly from subject to subject.

4.5 Results

The erroneous decisions taken by a subject were recorded andsmoothed in or-
der to form a measure for the arousal. This measure is furtherreferred to aserror
indexand reflects the ability of the subject to concentrate and fulfill the security
task. To enhance the contrast of the discrimination analysis, two thresholds were
introduced for the error index and set after visual inspection. Extreme trials out-
side these thresholds defined two sets of trials with a ratherhigh rsp. a low value.
The EEG data of the trials were labeled assufficiently concentratedor insufficiently
concentrateddepending on these thresholds for later analysis. Figure 4 shows the
error index. The subject did perform nearly error-free during the first blocks but
then showed increasing errors beginning with block 4. However, as the blocks were
separated by short breaks, the subject could regain arousalat the beginning of each
new block at least for a small number of trials. The trials of high and low error
index formed the training data for teaching a classifier to discriminate mental states
of insufficient arousal based on single trial EEG data.

A so-called Concentration Insufficiency Index (CII) of a block was generated by
an LDA classifier that had been trained off-line on the labeled training data of the
remaining blocks. The classifier output (CII) of each trial is plotted in Figure 4
together with the corresponding error index. It can be observed that the calculated
CII mirrors the error index for most blocks. More precisely the CII mimics the error
increase inside each block and in blocks 3 and 4 it can anticipate the increase of
later blocks. For those later blocks the CII reveals that thesubject could not recover
its full arousal during the breaks. Instead it shows a short-time arousal for the time
immediately after a break, but the CII accumulates over time.
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Fig. 4. Left plot: Comparison of the concentration insufficiency index (CII, dotted curve)
and the error index for subject 1. The error index (the true performed errors smoothed over
time) reflects the inverse of the arousal of the subject. Right plot: Correlation coefficient
between the CII (returned by the classifier) and the true performance for subject 1 for
different time shifts. Highest correlation is around a zerotime shift as expected. Please
remark that the CII has an increased correlation with the error even before the error appears.

The correlation coefficient of both time series with varyingtemporal delay is shown
in the right plot of Figure 4. The CII inferred by the classifier and the errors that
the subject had actually produced correlate strongly. Furthermore the correlation is
high even for predictions that are up to 50 trials ahead in thefuture.

4.6 Physiological analysis

The trials of subject one are grouped into different CII levels (low/medium/high)
as depicted in Figure 4. To enlarge the contrast for the following analysis, only
the extreme CII levels are further considered. Calculatingthe EEG spectrum for
the groups of high and low CII reveals that a main difference between these groups
expresses in the frequency domain. Figure 5 shows the spectra for a number of EEG
channels together with signedr2 values for low CII trials against high CII trials. It
shows that the difference between low and high CII levels is reflected best by the
differences in the 10 Hz range.

Of course it is also of interest which channels have contributed to the class discrim-
inability by means of LDA in the CII detection system. The scalp plot in Figure 5
shows the map of signedr2-values for the discrimination of low and high CII tri-
als (see marked trials in Figure 4) in theα-band. (Left-)occipital channels account
strongest for this difference, which nicely reflects that changes ofα-activity depend
on visual processes.

5 Concluding Discussion

Analyzing EEG signals robustly and in real-time, despite their high variability, and
the obviously noisy signal characteristics, is a major challenge. Recently modern
machine learning and adaptive signal processing techniques have been able to suc-

13



0

-0.02

-0.04

-0.02

-0.04

Spectra 5-20 Hz Scalp plot 8-13 Hz

Fig. 5. Left plot: EEG spectra for Laplace-filtered channelsand two extreme levels of CII.
Gray values code ther2 values for Low CII vs. High CII. Right plot: Scalp plot showing
signedr2 values for 8-13 Hz. The plot reveals discriminability at occipital channels in the
α-band.

cessfully contribute to this exciting field. In particular,it has become possible to
analyze EEG on a single-trial basis for two fields of applications: (a) new insights
into general mental state monitoring can be gained and (b) Brain-Computer In-
terfacing becomes feasible without the need for subject training. Our contribution
presents machine learning as a key technology to access these new fields. We would
now like to discuss interesting future directions. Firstly, further gains in the BCI in-
formation transfer rate will be achieved by combining different physiological fea-
tures, by moving from binary to multi-class classification,by adapting the system
to non-stationarity and by including the error potential cf. Dornhege et al. (2003,
2004); Dornhege (2006); Dornhege et al. (2007a); Sugiyama and Müller (2005).
Secondly, as we demonstrated with the mental text entry applicationHex-o-Spell, it
can be foreseen that the incorporation of principles from Human-Computer Interac-
tion research into the design of BCI feedback applications will boost the usability
and the performance of BCIs and brain state monitoring systems. Thirdly, using
BCI technology as a tool for computational neuroscience or for rehabilitation engi-
neering is attractive. Gaming and mental state monitoring are only the beginning of
a widerdirectuse of information on brain activity for Human-Machine Interaction.
BCI output (in addition to the motor output of healthy users)offers a new commu-
nication channel for the HMI field that is yet to be explored (Müller and Blankertz,
2006; Krepki et al., 2007). Finally, EEG based neurotechnology must profit from
further improvement of machine learning and signal processing algorithms, but it
will require a substantial advancement of sensor technology. EEG caps and ampli-
fiers need to become cheap and easy to use even by non-trained individuals. To be
accepted on the market they need to be well designed and gel-free. Once such sys-
tems exist, a large number of applications that enhance Human-Machine Interaction
will emerge – not only for the disabled user, but also for the healthy.
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