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ABSTRACT

Analyzing biomedical data — e.g. from the brain —
we encounter fundamental problems that lie largely
in the fields of signal processing and machine learn-
ing. The current paper presents at first a method
to deal with non-stationary signals, subsequently the
signal processing technique of independent component
analysis (ICA) is reviewed. We use EEG recordings of
continuous auditory perception as illustration for the
discussed algorithms.

1. INTRODUCTION

De-noising and artifact removal of biomedical data,
e.g. brain signals is essential for providing a sound ba-
sis for neurophysiological model building. Brain data is
inherently very noisy — technical noise sources, e.g. sen-
sor noise, and biological noise sources, e.g. heart beat
or eye blinks, interfere. So the machine learning and
signal processing community faces an exciting chal-
lenge and testbed to apply state-of-the-art techniques
for projection, prediction, classification, artifact reduc-
tion and de-noising, and to further develop them.

The following sections give short overviews about
typical problems and challenges that are encountered
during the analysis of biomedical data. One EEG data
set of continuous auditory perception (described in sec-
tion 1.1) serves as “red thread” to demonstrate the
use of the data analysis techniques. Section 2 deals
with the problem of treating non-stationary data un-
der the assumption that it originates from a multi-
modal switching or drifting dynamical system (very
much in the spirit of [15, 23]). We show an unsuper-
vised segmentation of single EEG channels into dynam-
ical modes that corresponds to an external stimulus.
The subsequent section uses the same EEG, but now
all 23 channels to illustrate ICA type projection meth-
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ods for artifact removal. The final section discusses and
points out open problems and future challenges.

1.1. An Example EEG Data Set

The EEG data used throughout the paper consists of 23
channels (electrodes placed at prominent positions in
the 10/20 system) sampled at 1000 Hz. It was recorded
with a Neuroscan device. The subject was in a resting
position in an armchair and had his eyes closed dur-
ing the whole measurement session of approximately
11 minutes. The room in which the experiment took
place is not soundproof and the subject was positioned
in about 2 meters distance from the electronic devices
for the recording of the EEG data.

We played an auditory stimulus based on the first
eight bars of the variation 30 (quodlibet) of Bach’s
so called Goldberg Variations (interpreted by Glenn
Gould, 1981). The stimulus consists first of an enlarged
period of silence (90 seconds) followed by 10 alternating
sections of music and silence of the same length (~ 26
seconds). The subject heard the music biaurally (but
monophonically) over earphones from a battery driven
discman. An envelope of the music was synchronously
fed into the 24-th channel of the EEG head box for
reference.

2. NON-STATIONARITY AND
SEGMENTATION

For a better understanding of a biological system it is
desirable to learn about the dynamics of the measured
signal components. A useful way of description of such
time-series is to predict them and therefore construct
a model of their dynamics. Typically, biomedical data
has strong intrinsic non-stationarities. In such cases
(see e.g. [15]), it is very helpful to first resolve the non-
stationarities by a segmentation into stationary parts
and then to identify the dynamical system inherent to
the data. Among other techniques (see [15] for ref-
erences) the ACE algorithm has shown to be a par-
ticular powerful data analysis technique, if the data is



not purely noise driven but contains some deterministic
components.

2.1. The ACE Framework

In the following, we briefly outline the Annealed Com-
petition of Experts (ACE) method (see [15, 23] for a
detailed description). ACE is a framework for the anal-
ysis of time series from switching or drifting dynamics,
in which adaptive prediction experts specialize on the
dynamics of individual operating modes hidden in the
data. An ensemble of experts f;, i = 1,..., N, is trained
in order to maximize the likelihood L that the ensemble
might have generated a given time series. This is ac-
complished by using a gradient method (cf. [15]). The
derivative of the log-likelihood with respect to the out-
put of an expert is given by
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where y is a data point to be predicted and S is a
scaling factor which controls the degree of competition
between the experts. Eq. (1) is a special case of the
well-known mixtures of experts approach [12], in so far
as the input-gating network is simply omitted. This
is because the ACE method aims to identify operat-
ing modes also in cases where the current input to the
ensemble is not sufficient to distinguish between dif-
ferent modes. Instead of selecting an expert based on
the input, ACE uses a moving average of the expert’s
prediction errors as selection criterion. In this way,
memory is introduced into the expert selection scheme
to exploit the low mode switching frequency compared
to the sampling rate (see [15, 23] for details).

2.2. Limits and Problems

An assumption of the ACE framework is that mode
changes occur infrequent, i.e. between two mode changes
the dynamics is expected to operate more or less sta-
tionary in one mode for a certain number of time steps.
A second prerequisite is that the individual dynamics
can be modeled to some extent by a time-invariant
mapping of past data points to future data points.
Thus, it requires some functional dependence in the
data. In the case of EEG data, the ACE experts typ-
ically still have a large prediction error after training.
Although the performance is better than just predict-
ing the global or local mean, the EEG dynamics can
not be reconstructed by means of iterated prediction.
We found that the predictors trained on EEG can only
be used to discriminate between different modes, but
they do not capture the individual dynamics properly

[15]. This result, however, is not surprising, since the
EEG is a very complex signal.

2.3. Results

To give an example, we applied ACE to the EEG record-
ing from section 1.1. The idea was to find structure in
EEG that corresponds to the two phases. For EEG
position Cz, the result of ACE is depicted in Fig. 1.
The data recorded from Cz was first subsampled from
1 kHz to 100 Hz and then the first-order differences
were taken as training data. As predictors we used 8
radial basis function (RBF) networks with 6 Gaussian
basis functions. The embedding dimension was d = 4
and the time lag 7 = 2 (cf. [15]). The resulting ACE
segmentation nicely corresponds to the phases of music
and silence (Fig. 1). Note that the segmentation was
done purely data driven: only a single channel of un-
labeled EEG data and not the music signal was given
for training the experts.

3. ICA PROJECTION TECHNIQUES

Blind source separation (BSS) methods have been suc-
cessfully applied for a variety of problems (see e.g. [1,
10, 3, 5, 18, 20, 27, 29, 30]). The source separation
problem is stated as follows. Consider M unknown
sources that generate M statistically independent time
series s;(t) 1 = 1,...,M, t = 1,...,T that are spatially

uncorrelated but have a ‘non-delta’ temporal autocorrelation

function. A sensor array consisting of M sensors z;(t)
measures a stationary linear superposition

z;(t) = Z Ajisi(t) (2)

(in matrix notation x(t) = As(t)). The goal is to iden-
tify A in this model and to blindly reconstruct s(t)
given only x(t). This decomposition approach is suited
for the analysis of multichannel recordings of brain sig-
nals, like EEG or MEG, and can be used for post-
processing of the measured data. The spatial struc-
ture of the recorded magnetic/electric fields is conden-
sated in the columns of the mixing matrix A and the
temporal information is preserved in the components
s;(t). The most appealing advantage is — as in the pre-
vious section — the unsupervised (”blind”) functioning
of this method, i.e. no reference or template signals are
needed.

Although many algorithms [1, 3, 13, 16, 10] utilize
higher-order statistics to exploit the non-Gaussian dis-
tribution of the sources to achieve a separation, a de-
composition of neuro-physiological signals relying on
second-order statistics only was shown to be useful
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Figure 1: Segmentation of EEG data recorded from a human subject during alternating phases of music and silence
(signal STIM). The resulting ACE segmentation into dynamical modes, given only the unlabeled EEG data, nicely
corresponds to the two phases. Note, however, that the first and third transition towards prediction expert 8
(net 8) are 6 resp. 12 s before the next music interval starts, which might be attributed to the varying attention in

the experiment.

[30, 28]. The success of the second-order approach is
owed mainly to the fact that neuro-physiological signals
possess an inherent time structure.

The advantage of second-order methods is their com-
putational simplicity and efficiency. They are also more
robust against outliers and for a reliable estimate of
covariances only comparably few samples are needed.
In the following we give a detailed description of one
particular implementation of a second-order BSS algo-
rithm.

Let us recall that for mutual independent signals
the cross-correlation function vanishes. If the signals
have a temporal structure resulting in a non-delta auto-
correlation function we can define so called time-delayed
correlation matrices R, (), which should be in diagonal
form. This knowledge is used to calculate the unknown
mixing matrix in Eq. (2) as follows. Let us consider
time-lagged correlation matrices of the form

Bz1 21 (T) b1,z (T)
T Bus,z4 (T) Bas,zn (T)

Ry = (x(t)x" (t — 7)) = : . ,
Pz zq (T) Bz zn (T)

where ¢, ., (1) = (xi(t)z;(t — 7)) denotes the respec-
tive auto- or cross-correlation functions.

Since the mixing model in Eq. (2) is just a linear
transformation we can substitute x(t) by As(t) and
get:

(x(®)x"(t — 7))
(As(t) (As(t—7)7)
= AR, (9A". 3)

Rr(x)

Obviously, the temporal de-correlation algorithm can
be used successfully only if the signals have non-identical

spectra i.e. distinctive autocorrelation functions, since
otherwise the eigenvalues would be degenerate. Hence
the quality of the signal separation depends strongly
on the very choice of 7, therefore it is better to try to
diagonalize a larger set {R.(x)} of delayed correlation
matrices simultaneously [29]. To achieve an approxi-
mate simultaneous diagonalization of several matrices
one proceeds in two steps: (1) whitening and (2) a num-
ber of Jacobi rotations [5, 11]. First a whitening trans-
formation W = R2 = (VAV?)~§ = VA~ V?
achieves a white basis z(t) = Wx(¢) on a unit sphere
[8]. The remaining set of time delayed correlation ma-
trices R, (,) can be diagonalized subsequently by a uni-
que orthogonal transformation Q, since in the white
basis all degrees of freedom left are rotations [5]. For
several matrices, that share a common Eigen-structure,
a Jacobi-like algorithm proposed by Cardoso can be
used to find a satisfying solution [11, 6]. The basic
idea is that one can approximate the rotation matrix
Q by a sequence of elementary rotations Qg (¢y) in a
two dimensional subspace each trying to minimize the
off-diagonal elements

min Y [(R,)s]
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of the respective R, (,) matrices, where the rotation an-
gle ¢p can be calculated in closed form (see [6] for
details). The final rotation, which diagonalizes R, ;)
up to a certain level of accuracy, is then obtained by
Q = [l Qk(¢k). Concatenation of both transforms
(whitening W and rotation Q) yields an estimate of
the mixing matrix A = W~1Q, which has to be in-
verted to get the demixing matrix W = A~! of our



TDSEP algorithm [29]. Further second order source
separation algorithms are e.g. [20, 26, 14, 4].

3.1. Limits and Problems

While using ICA (or other projection) algorithms one
has to be aware of their assumptions (see above), gen-
eral limits and difficulties and we will give a checklist
of those possible problems in the following.

(a) A particularly hard practical problem is the
availability of only few data points in combination with
a high-dimensional sensor input, the latter being a prob-
lem of computational complexity that can be overcome
by e.g. TDSEP or Fast ICA algorithms [10], while the
former is a ubiquitous systematic statistical problem
(“curse of dimensionality”).

(b) Channel noise is potentially a rather serious
harm to ICA algorithms as it effectively doubles the
number of independent sources. Often, however, the
application problem allows to construct an approxi-
mate noise model and projections to signal spaces or-
thogonal to the noise space can be performed [21, 9].

(¢) A further difficulty comes from the indepen-
dence assumption: any projection algorithm can only
retrieve and denoise signals within the subspace of the
linear space of all components that we define by cer-
tain a priori assumptions. Generally speaking in data
analysis we are always interested in finding a proper
basis that is describing the relevant characteristics of
the data. So we aim for a linear component analysis
(generative model) where the components (latent vari-
ables) are meaningful with respect to the application in
mind [2]. An orthogonality assumption leads to prin-
cipal component analysis (PCA), positivity constraints
on the linear decomposition yields non-negative matrix
factorization [17], orthogonality in some feature space
gives rise to non-linear PCA (cf. [25]) and enforcing
mutual independence of the components defines ICA.

(d) The number of sources that can be unmixed has
to be assumed to be smaller or equal than the num-
ber of sensors. However, in biomedical measurements
a multitude of microscopic sources contributes to the
recorded signal. How these sources can be collapsed
into fewer macroscopic sources depends on the partic-
ular biological system under study.

(e) The mixing model as defined in Eq.(2) might
be too simple-minded and models that include noise
terms (see discussion above) or cope with convolutive
(e.g. EMG) or even non-linear mixtures would be more
appropriate. For MEG/EEG recordings a linear model
is sufficient, due to the linearly superimposing mag-
netic/electric fields.

(f) Outliers can strongly decrease the performance
of ICA algorithms involving higher-order statistics, nev-

ertheless second-order algorithms are more robust against
outliers.

3.2. Results

To apply ICA algorithms to this data we have to make
sure that the criteria of the checklist from section 3.1
are fulfilled. The criterion (a) is easy to meet since
we have 23 channels and abundant data points per
channel. Additive channel noise (b) is an issue due to
the general experimental set-up of an EEG in a non-
shielded environment. Qur assumption of temporal
decorrelation /independence and a linear mixing model
(c) holds as we are looking for signals with high tem-
poral structure. Also the number of sources (d) has
to be less than the number of sensors. Even though
the exact number of sources is unknown, at least the
eigenvalue spectrum of the covariance matrix decayed
rapidly. Finally, as we see from the occasional spikes
in various channels, outliers (f) can pose a problem in
this data set.

The spectra of the EEG data set all look rather
similar (strong « rhythm, weaker 8 rhythm and 50 Hz
noise) with but subtly different mixtures of the rhythms.
A decomposition seems therefore promising.

We applied TDSEP (7 = {0,...,50}) to the EEG
channels resulting in 23 (approximately) independent
components. Fig. 2 shows three selected components to
demonstrate the decomposition properties of the ICA
approach: IC 1 in Fig. 2(a) can be clearly perceived as
artifact as it consists mainly of a 50 Hz power line inter-
ference. Fig. 2(b) depicts component IC 12 with strong
a-rhythm (and comparably weak 8 contribution), while
the component IC 17 in Fig. 2(c) is largely S domi-
nated. Note that this physiologically useful decompo-
sition was found in an unsupervised manner. Other
components have mostly rather flat and unstructured
spectra.

Further information is contained in the demixing
matrix W computed by the ICA algorithm. For each
component, say the jth, the corresponding unmixing
row w; = (Wj1,..., W) is the weighting of the sen-
sor data. Since the sensors have fixed known positions
on the head, we can compute the activity of the corre-
sponding (latent) source on the scull surface. Further
physiological reasoning goes beyond the scope of this
contribution.

4. DISCUSSION AND OUTLOOK

By means of a standard EEG recording we demon-
strated the use of two interesting decomposition tech-
niques. ACE can distinguish between two dynamical
modes (music vs. silence) using a single, highly noisy
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Figure 2: Spectra of selected independent components (see text).

EEG channel as input. The TDSEP source separa-
tion approach — here we reviewed a particular blind
source separation approach out of many other possi-
ble ones (e.g. [1, 3, 13, 16, 10, 7, 2, 24]), constructed a
linear projection from mixed multi-channel EEG data
by enforcing temporal independence using only second
order statistics. This projection technique gives a use-
ful decomposition into artifacts (e.g. 50Hz noise) and
several components that represent typical EEG bands
(e.g. a,B activity). The decompositions (segments,
ICA components) obtained can then serve as a basis
for neuro-physiological model building, which might
involve further steps as for example: source localiza-
tion, identification or a detailed mathematical model-
ing e.g. in terms of differential equations. Our emphasis
in this overview paper was to discuss general problems
(interesting to the signal processing community) that
are encountered in such a typical biomedical data anal-
ysis set-up rather than to provide new algorithms or
detailed neuro-physiological insights.

So far segmentation algorithms like ACE had their
strength in off-line data analysis. Further research is
required to obtain on-line segmentation algorithms. A
combination of ACE and ICA techniques to a multi-
channel framework appears promising.

Clearly, future directions for the ICA methodol-
ogy have to consider the practical cases where strong
noise is present or a-priori knowledge is available [22],
or where the underlying components might have hid-
den dependencies that do not match the standard ICA
model assumptions or the limits discussed in section
3.1. In the context of using prior knowledge, in partic-
ular a combination of beam-forming and ICA methods
seems auspicious. Furthermore, it would be interesting
to see in a biomedical context whether nonlinear ICA
models [19] provide useful decompositions beyond the
linear ones.

From the biomedical point of view it is highly im-

portant to find a measure that allows to assess the re-
liability of a decomposition result.
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