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Abstract— At the recent Second International Meeting
on Brain-Computer Interfaces held in Rensselaerville, New
York, June 2002, a formal debate was held on the pros and
cons of linear and non-linear methods in Brain-Computer In-
terface research. Specific examples applying EEG data sets
to linear and non-linear methods are given and an over view
of the various pros and cons of each approach is summarised.
Over all it was agreed that simplicity is generally best and
therefore, the use of linear methods is recommended wher-
ever possible. It was also agreed that non-linear methods
in some applications can provide better results, particularly
with complex and/or other very large data sets.
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I. INTRODUCTION

T the First International Meeting on Brain-computer

Interfaces held in Rensselaerville, New York in June
1999 [25], there was a significant amount of discussion
around the relative advantages and disadvantages of us-
ing linear and non-linear methods in the development of
Brain-Computer Interface systems. Therefore, at the re-
cent Second International Meeting on Brain-Computer In-
terfaces held in Rensselaerville, New York, a 45-minute de-
bate was held on linear versus non-linear methods in BCI
research. The debate format involved a moderator and
two discussants. Klause-Robert Miiller from Fraunhofer-
FIRST, Berlin, Germany was the first discussant and he
was assigned the task of representing the point of view
that linear methods should be used. The other discus-
sant, Charles Anderson from Colorado State University,
Colorado, USA was assigned the counter position that non-
linear approaches should be favoured.

The Moderator, Gary Birch from the Neil Squire Foun-
dation, Vancouver, Canada, started the debate by making
a few contextual observations. In particular, the discus-
sants were asked to make it clear which aspect or compo-
nent of the BCI system they were referring to when dis-
cussing the pros and cons of a particular method. For
instance, in the simplified model of a BCI system given
in Figure 1, it should be clear if a given method was to
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be used in the Feature Extractor or the Feature Classifier.
For instance, an AR modeling method might be used in
the process of extracting features from the EEG signal (for
example see [19]). On the other hand, a Nearest Neighbour
classifier method could be applied in the feature classifica-
tion process (for example see [14]). Whichever the case,
the context in which a given method is being used should
be clearly understood.
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Fig. 1. Simplified functional model of a BCI System adapted
from [15].

In the following two sections, a summary of the discus-
sion related to the use of linear and non-linear methods in
BCI systems is provided.

II. LINEAR METHODS FOR CLASSIFICATION

In BCI research it is very common to use linear classifiers
and this section argues in favour of them. Although linear
classification already uses a very simple model, things can
still go terribly wrong if the underlying assumptions do
not hold, e.g. in the presence of outliers or strong noise
which are situations very typically encountered in BCI data
analysis. We will discuss these pitfalls and point out ways
around them.

Let us first fix the notation and introduce the linear
hyperplane classification model upon which we will rely
mostly in the following (cf. Fig. 2, see e.g. [7]). In a BCI
set-up we measure k = 1...N samples xj, where x are
some appropriate feature vectors in n dimensional space.
In the training data we have a class label, e.g. y; € +1
for each sample point x;. To obtain a linear hyperplane
classifier

y =sign(w-x+b) (1)

we need to estimate the normal vector of the hyperplane w
and a threshold b from the training data by some optimiza-
tion technique [7]. On unseen data x, i.e. in a BCI session,
we fix the parameters (w,b) and compute a projection of
the new data sample onto the direction of the normal w-x



via Eq.(1), thus determining what class label y should be
given to x according to our linear model.

Fig. 2. Linear classifier and margins: A linear classifier is defined by
a hyperplane’s normal vector w and an offset b, i.e. the decision
boundary is {x|(w - x) + b = 0} (thick line). Each of the two
halfspaces defined by this hyperplane corresponds to one class,
i.e. f(x) = sign((w - x) + b). The margin of a linear classifier is
the minimal distance of any training point to the hyperplane. In
this case it is the distance between the dotted lines and the thick
line. From [18].

A. Optimal linear classification: large margins versus

Fisher’s discriminant

Linear methods assume a linear separabilty of the data.
We will see in the following that the optimal separating
hyperplane from last section maximizes the minmal mar-
gin (minmax). Fisher’s discriminant, that has the stronger
assumption of Gaussian class covariances, maximizes the
average margin.

A.1 Large margin classification

For linearly separable data there is a vast number of pos-
sibilities to determine (w,b), that all classify correctly on
the training set, however that vary in quality on the un-
seen data (test set). An advantage of the simple hyperplane
classifier (in canonical form cf. [24]) is that literature (see
e.g. [7], [24]) tells us how to select the optimal classifier w
on unseen data: it is the classifier with the largest margin
p = 1/||wl|?, i.e. of minimal norm ||w|| [24] (see also Fig. 2).
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Fig. 3. For EEG channel C3, we show in the upper panels that
the projections onto the decision directions are approximately
Gaussian for the ’left’ and the ’right’ class. In the lower panel we
see that also the class covariances coincide. Thus the assumptions
for using Fisher’s discriminant are ideally fulfilled. From [3].

A.2 Fisher’s discriminant

Fisher’s discriminant computes the projection w and the
threshold b differently and under the more restrictive as-

sumption that the class distributions are (identically dis-
tributed) Gaussians, it can be shown to be Bayes optimal.
The separability of the data is measured by two quanti-
ties: How far are the projected class means apart (should
be large) and how big is the variance of the data in this
direction (should be small). This can be achieved by max-
imizing the so-called Rayleigh coefficient of between and
within class variance with respect to w [8], [9]. These
slightly stronger assumptions have been fulfilled in several
of our BCI experiments e.g. in [2], [3]: Fig.3 clearly shows
that the covariance structure is very similar for both classes
such that we can safely use Fisher’s discriminant.

B. Some remarks about reqularization and non-robust clas-
sifiers

Linear classifiers are generally more robust than their
nonlinear counterparts, since they have only limited flexi-
bility (less free parameters to tune) and are thus less prone
to overfitting. Note however that in the presence of strong
noise and outliers even linear systems can fail. In the car-
toon of Fig.4 one can clearly observe that one outlier or
strong noise event can change the decision surface drasti-
cally, if the influence of single data points on learning is
not limited. Although this effect can yield strongly de-
creased classification results for linear learning machines,
it can be even more devastating for nonlinear methods. A
more formal way to control one’s mistrust in the available
training data, is to use regularization (e.g. [11], [23], [20],
[4]). Regularization helps to limit (a) the influence of out-
liers or strong noise (e.g. to avoid Fig.4 middle), (b) the
complexity of the classifier (e.g. to avoid Fig.4 right) and
(c) the raggedness of the decision surface (e.g. to avoid
Fig.4 right). No-matter whether linear or nonlinear meth-
ods are used, one should always regularize, — in particular
for BCI data! Very useful in practice has been the regular-

Fig. 4. The problem of finding a maximum margin “hyper-plane”
on reliable data (left), data with an outlier (middle) and with
a mislabeled pattern (right). The solid line shows the resulting
decision line, whereas the dashed line marks the margin area. In
the middle and on the left the original decision line is plotted
with dots. Illustrated is the noise sensitivity: only one strong
noise/outlier pattern can spoil the whole estimation of the deci-
sion line. From [21].

ized Fisher Discriminant (cf. [16], [18], [2], [3]). Here w is
found by solving the mathematical program

C a2
+ﬁ||§||
ye(W-xp+0)=1—-¢

where £ denote the slack variables and C' is the regular-
ization strength (a hyperparameter that needs to be deter-

1
min 3 ||w||2

[

subject to fork=1,...,N,



mined by model selection, see e.g. [18]). Clearly, it is in
general a good strategy to remove outliers first. In high
dimension (as for BCI) the latter is a highly demanding
if not impossible statistical mission. In some cases, how-
ever, it can be simplified by physiological prior knowledge.
A further very useful step towards higher robustness is to
train with robust loss functions, e.g. #;-norm or Huber-loss

(e.g. [10]).
C. Beyond linear classifiers

Kernel based learning has taken the step from linear to
nonlinear classification in a particularly interesting and effi-
cient! manner: a linear algorithm is applied in some appro-
priate (kernel) feature space. Thus, all beneficial properties
(e.g. optimality) of linear classification are maintained?,
but at the same time the overall classification is nonlin-
ear in input space, since feature- and input space are non-
linearly related. A cartoon of this idea can be found in
Fig.5, where the classification in input space requires some
complicated non-linear (multi-parameter) ellipsoid classi-
fier. An appropriate feature space representation, in this
case polynomials of second order, supply a convenient ba-
sis in which the problem can be most easily solved by a
linear classifier. Examples of such kernel-based learning
machines are among others, e.g. Support Vector Machines
(SVMs) [24], [18], Kernel Fisher Discriminant (KFD) [17]
or Kernel Principal Component Analysis (KPCA) [22].

Fig. 5.
order monomials w%, V2z125 and z% as features a separation in
feature space can be found using a linear hyperplane (right). In
input space this construction corresponds to a mon-linear ellip-
soidal decision boundary (left). From [18].

Two dimensional classification example. Using the second

D. Discussion

To wrap up: a small error on unseen data cannot be ob-
tained by simply minimizing the training error, on the con-
trary, this will in general lead to overfitting and non-robust
behaviour, even for linear methods (cf. Fig.4). One way to
avoid the overfitting dilemma is to restrict the complexity
of the function class, i.e. a “simple” (e.g. linear) function
that explains most of the data is preferable over a complex
one (Occam’s razor). This still leaves the outlier problem
which can only be alleviated by an outlier removal step
and regularization. Note that if a certain linear classifier

1By virtue of the so-called ’kernel trick’ [24].
2As we do linear classification in this feature space.

works lousy, then there are (at least) two potential reasons
for this: (a) either the regularization was not done well or
non-robust estimators were used and a properly chosen lin-
ear classifier would have done well. Alternatively it could
as well be that (b) the problem is intrinsically nonlinear.
Then the recommandation is to try a linear classifier in
the appropriate kernel-feature space (e.g. Support Vector
Machines) and regularize well.

Generally speaking, linear models are more forgiving and
easy to use for 'naive’ users, but a design where all assump-
tions are carefully tested whether they are fulfilled or not
and prior knowledge is included, will achieve better results
with high probability over a naive linear Ansatz.

Finally, note that if ideal model selection could be done
then the complexity of the learning algorithm does not mat-
ter too much anymore. In other words, the model selection
process can chose the best method, be it linear or nonlin-
ear. In practice k-fold cross validation is quite a useful (al-
though not optimal) approximation to such an ideal model
selection strategy.

III. NON-LINEAR METHODS FOR CLASSIFICATION

It is always desirable to avoid reliance on non-linear clas-
sification methods if possible, because they often involve a
number of parameters whose values must be chosen in an
informed way. If the process underlying the generation
of the sampled data that is to be classified is well under-
stood, then the user of a classification method should use
this knowledge to design transformations that extract the
information that is key to good classification. The extent
to which this is possible determines whether or not a linear
classifier will suffice. This is demonstrated in the following
two sections. First, examples are discussed for which useful
transformations are known. The second sections describes
how autoassociative networks can be used to learn good
non-linear transformations.

A. Fized Non-linear Transformations

In Section II, an example of EEG classification is shown
in which the user has selected a single channel of EEG and
a particular frequency band that is assumed to be very rel-
evant to the discrimination task. With this representation,
the linear classifier performed well.

A second example is described by Garrett, et al., (cita-
tion in this volume) who compare linear and non-linear
classifiers for the discrimination of EEG recorded while
subjects perform one of five mental tasks. Previous work
showed that a useful representation of multichannel, win-
dowed, EEG signals consists of the parameters of an au-
toregressive (AR) model of the data [1], [19]. One linear
and two non-linear classifiers were applied to EEG data
represented as AR models. The linear method, Fisher’s lin-
ear discriminant, achieved a classification accuracy on test
data of 66.0%. An artificial neural network units achieved
69.4% and a support vector machine achieved 72.0%. A
purely random classification would result in 20% correct.
The non-linear methods do perform slightly better in this
experiment, but the difference is not large. The compu-
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Fig. 6. Bottleneck form of autoassociative neural network for non-
linear dimensionality reduction. Two bottleneck units shown.

tation time and memory for the neural network and the
support vector machine are much higher than for the lin-
ear discriminant method. The neural network used 20 hid-
den units and the support vector machine resulted in an
average of about 200 support vectors.

B. Learned Non-linear Transformations

When the source of the data to be classified is not well
understood, methods for finding good non-linear transfor-
mations of the data are required. In this section, the use
of autoassociative neural networks to learn such transfor-
mations is illustrated on an EEG discrimination problem.

Autoassociative neural networks are non-linear, feedfor-
ward networks trained using the standard error backpropa-
gation algorithm to minimize the squared error between the
output and the input to the network [12], [13]. Dimension-
ality reduction is achieved by restricting an interior layer
of the network to a number of units less than the number
of input components, as shown in Figure 6. This configu-
ration is sometimes referred to as a “bottleneck” network.
If the input to the network is closely approximated by the
output of the network, then the information contained in
the input has been compactly represented by the outputs
of the bottleneck units. The non-linear mapping from the
input to the bottleneck unit outputs is formed by the two
layers of units in the left half of the network.

Devulapalli [6] applied autoassociative networks to a
classification problem involving spontaneous EEG. Six
channels of EEG were recorded from subjects while they
performed two mental tasks while minimizing voluntary
muscle movement. For one task subjects were asked to
multiply two multi-digit numbers. For the second task they
were asked to compose a letter to a friend and imagine writ-
ing the letter. Eye blinks were determined by a separate
EOG channel and data collected during eye blinks was dis-
carded. Data was recorded in two sessions on two different
days. On each day five trials for each task were recorded
with each trial lasting for 10 seconds.

The resulting six time series of data for each task were
divided into quarter-second windows. The sampling rate
was 250 Hz, so each window consisted of 6 x 250/4, or
372, values. Thus, the associative network applied to this
data has 372 input and output components. The best num-
ber of hidden units, including bottleneck units, is usually
determined experimentally—the usual practice is to train
autoassociative networks with different numbers of bottle-
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Fig. 7. Percent of test data correctly classified versus number of
bottleneck units [6]. The error bars show the extent of the 90%
confidence intervals.

neck networks to determine the minimum number below
which the network’s input is not accurately approximated
by the output. Here the outputs of the bottleneck units are
taken as a new, compact representation of the windowed
EEG data and classified by a second, two-layer feedforward
neural network trained to output a low value for the first
mental task and a high value for the second task. For this
application, the classification accuracy for different num-
bers of bottleneck units can be used to choose the best
number.

Both networks were trained on nine of the trials of each
task and tested on the remaining trial. This is repeated 10
times, once for each trial designated as the test data, and
classification results are averaged over the 10 repetitions.
Figure 7 shows the results in terms of the percent of test
data correctly classified versus the number of bottleneck
units. For these experiments, the number of units in the
layers before and after the bottleneck layer were approxi-
mately 1 1/2 times the number of bottleneck units.

The best result is for 30 bottleneck units with a classi-
fication accuracy of about 85%. This is over a 12 times
reduction in dimensionality, from 372 to 30. With only
10 bottleneck units the accuracy is about 57%, not much
better than the 50% level that would result from a random
classification choice. Accuracy also decreases quickly as the
number of bottleneck units increases. It is also known that
simply training the classification network with the origi-
nal representation of 372 values results in an accuracy not
significantly higher than 50%.

These experiments show that the classification of un-
transformed EEG signals is very difficult, even with non-
linear neural networks trained to perform the classification.
However, classification may be possible if the dimensional-
ity of the EEG signals is first reduced with a non-linear
transformation. Here it is shown that an autoassociative
neural network can learn this non-linear dimensionality-
reducing transformation.

Clearly, the number of bottleneck units, and thus the
size of the reduced-dimension space, has a critical effect
on the results. Ideally, we would like a method for deter-
mining the intrinsic dimension of the data. An example of
automatically determining the best number of bottleneck



units is the pruning algorithm demonstrated by DeMers
and Cottrell [5].

IV. CONCLUSIONS

During the debate, most of the discussion focused on the
Feature Classifier. It was underscored several times that
it is very important to understand the underlying princi-
ples of various methods and, in particular, the assumptions
that are being made when applying a method in any given
application. In addition, it is important to understand the
characteristics, as best as possible, of the data set that will
be used in a proposed system. It is also very important
to use a process to regularise the data and/or use robust
methods especially when applying non-linear methods.

Over all, it was agreed that simplicity is generally best
and therefore, use linear methods wherever possible, par-
ticularly in cases where there is limited knowledge about
the data sets. In many cases when there is limited knowl-
edge of the data sets, after some experience with applying
linear methods this can lead to a better understanding of
the data, perhaps preparing the way to using an appropri-
ate non-linear method. In particular, it is suggested that
when the source of the data to be classified is not well
understood to use methods that are good at finding non-
linear transformations of the data. Autoassociative neural
networks can be used to determine these transformations.
It was also agreed that non-linear methods in some applica-
tions can provide better results, particularly with complex
and/or very large data sets.
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