
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 1

Probabilistic Modeling of Sensorimotor µ-Rhythms
for Classification of Imaginary Hand Movements

(BCI Competition 2003 - Data Set III)

Steven Lemm, Christin Schäfer, and Gabriel Curio

Abstract— Brain computer interfaces (BCI) require effective
on-line processing of EEG measurements, e.g., as a part of
feedback systems. Here we present an algorithm for single trial
on-line classification of imaginary left and right hand movements,
based on time-frequency information derived from filtering EEG
wideband raw data with causal Morlet wavelets which are
adapted to individual EEG spectra. Since imaginary hand move-
ments lead to perturbations of the ongoing pericentral µ-rhythm,
we estimate probabilistic models for amplitude modulation in
lower (10 Hz) and upper (20 Hz) frequency bands over the
sensorimotor hand cortices both contra- and ipsilaterally to the
imagined movements (i.e., at EEG channels C3 and C4). We use
an integrative approach to accumulate over time evidence for the
subject’s unknown motor intention. Disclosure of test data labels
after the competition showed this approach to succeed with an
error rate as low as 10.7%.

Index Terms— single trial classification, BCI, imaginary hand
movement, µ-rhythm, Morlet wavelet, sensorimotor hand cortex

I. INTRODUCTION

THE human perirolandic sensorimotor cortices show
rhythmic macroscopic EEG oscillations (µ-rhythm) [1],

with spectral peak energies around 10 Hz (localised pre-
dominantly over the postcentral somatosensory cortex) and
20 Hz (over the precentral motor cortex). Modulations of
the µ-rhythm have been reported for different physiological
manipulations, e.g., by motor activity, both actual and imag-
ined [2]–[4], as well as by somatosensory stimulation [5].
Standard trial averages of µ-rhythm power show a sequence
of attenuation, termed event-related desynchronization (ERD)
[3], followed by a rebound (event-related synchronization:
ERS) which often overshoots the pre-event baseline level [6].

In order to distinguish between single trials (STs) of left and
right hand imaginary movements, we utilize the accompanying
EEG µ-rhythm perturbation. Similar approaches were pursued
in [7]–[9].

This paper describes a probabilistic approach, that has been
successfully applied in the 2003 international data analysis
competition on BCI-tasks [10] (data set III). The particular
competition data was provided by the Dept. of Med. Infor-
matics, Inst. for Biomed. Eng., Univ. of Techn. Graz. The
EEG from three channels (C3, Cz, C4) was acquired with
bandfilter settings of 0.5 to 30 Hz and sampled at 128 Hz.
The data consist of 140 labeled and 140 unlabeled trials of
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imaginary hand movements, with an equal number of left
and right hand trials. Each trial has a duration of 9 s: after
a 3 s preparation period a visual cue (arrow) is presented
pointing either to the left or the right. This is followed by
another 6 s for performing the imagination task (for details see
[10]). The specific competition task is to provide an on-line
discrimination between left and right movements for each of
the 140 unlabeled STs. In particular, at every time instance in
the interval from 3 to 9 seconds a decision and its confidence
must be supplied. The objective of the competition is to
detect the respective motor intention as early and as reliable
as possible. Consequently, the competing algorithms have to
solve the on-line discrimination task as based on information
on the event onset. Thus it is not within the scope of the
competition to solve the problem of detecting the event onset
itself.

We approach this problem by applying an algorithm fo-
cusing on the different modulations of the µ-rhythm. Since
we assume that the midline channel Cz does contain little of
discriminative information, we excluded it and restricted the
analysis to C3 and C4. To extract the rhythmic information
we map the EEG to the time-frequency domain by means of
Morlet wavelets [11]. For the extracted time courses of the
rhythmic activity we estimate two probabilistic models, one
for each class, on the labeled training data. The classification
of an unlabeled ST is then derived using Bayes theorem.

The paper is organized as follows: section II introduces
some of the underlying neurophysiological principles and
elaborates on the ERD framework. Section III describes the
feature extraction, starting from a short excursion on Morlet
wavelets. It also introduces probabilistic models for a single
point in time and explains how to combine the information
from preceding time points to gather accumulating evidence
for the final classification at a certain time point. In section IV
the results on the competition data are given and discussed.

II. NEUROPHYSIOLOGICAL BACKGROUND

In standard ERD approaches [12] the EEG signals are
first filtered in a narrow frequency band, squared, lowpass
filtered and averaged over trials. The ERD is then defined
as the attenuation of the band power relative to the power in
a preceding baseline interval. Fig. 1 visualizes the µ-rhythm
ERDs in the lower frequency band at both hemispheres,
induced by imaginary hand movements.

Notably, for ST classifications an ERD evaluation relative to
a baseline can lead to misinterpretations. Instead we used the
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Fig. 1. The panels show the averaged ERD of the µ-rhythm at 10 Hz for
the imagination of left (solid line) and right (dashed line) hand movement.
The vertical line indicates the begin of the imagination period. The µ-
rhythm amplitude is attenuated in relation to the preceding baseline during
the motor intention. This attenuation is prominent contralateral to the intended
movement, i.e., for right hand movement over the left hemisphere (C3) and
over right hemisphere (C4) for the left hand.

time courses of the absolute amplitudes, independent of the
level of oscillatory activity in the preceding baseline interval.
To illustrate the potentially misleading influence of an ERD
baseline, we sort all trials according to their amplitude level
in the preparation period, then split the whole set of trials
into four non-overlapping quartiles of this distribution and
calculate the ERD for each subgroup separately. An ERD,
as observed for the average over all trials, is actually found
only for the two subgroups with the highest amplitudes during
the preparation period. In striking contrast it turns even into an
event-related synchronization (ERS) for the subgroup with the
lowest preceding amplitude (see left panel of Fig. 2). In clear
distinction to the baseline-corrected ERDs, the time courses
of the absolute rhythm amplitudes behave similar for the
four subgroup averages (see right panel of Fig. 2). Thus, µ-
rhythm modulations should be considered independent of the
oscillation level in the preceding reference interval. Given this
finding we suggest that motor activity not necessarily lead
to a desynchronization in general, rather a certain low, yet
not the minimal level of oscillatory activity is instantiated
in pericentral sensorimotor cortices. Accordingly, for the BCI
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Fig. 2. The averaged time courses of the absolute amplitudes (right panel) vs.
an ERD measure relative to a baseline prior to the directional command cue
displayed at 3 s (left panel). Data are shown for the 10 Hz band at electrode
C3 for imaginary right hand movement. Note that each of the four subgroups
of different pre-stimulus activity consists of only 17 STs.

classification task we do not focus on the detection of an ERD
relative to a running baseline but rather on modeling the hand-
specific time course of absolute µ-rhythm amplitudes over both
sensorimotor cortices for each ST.

III. ON-LINE CLASSIFICATION PROCEDURE

A. Preprocessing and feature extraction

Let C3
k(t) and C4

k(t) denote the EEG signals recorded
from electrodes C3 and C4 in the k-th trial at time t . The
corresponding class labels assigned to each trial of the training
data are given by yk ∈ {L, R}. For our analysis we use a time-
frequency representations of the STs by filtering the EEG data
with complex Morlet wavelets [11].

Typically wavelets are defined by a mother wavelets. In
the case of Morlet wavelets it takes the form of a modulated
Gauss-impulse with an characteristic eigenfrequency ω0. To
localize the wavelets in the time and frequency domain, the
mother wavelet has to be scaled and temporally shifted, i.e.:

Ψτ,s(t) =
1√
s
π− 1

4 e(iω0
t−τ

s )e−
1

2 (
t−τ

s )2

. (1)

Note that Morlet wavelets are Gaussian filters in the frequency
domain. The appropriate scaling factor s depends on the main
receptive frequency f of the wavelet and can be calculated
with respect to ω0 as

s(f) =
ω0 +

√

2 + ω2
0

4πf
. (2)

The effective widths of the wavelet in the time and frequency
domain are often expressed as the duration of attenuation by
a factor e (e-folding) and are denoted by teff and feff . With
respect to the scaling factor s, these quantities are

teff =
√

2s, feff =
√

2 (2πs)
−1

. (3)

It is worth noting that an increase of the eigenfrequency ω0

of the mother wavelet sharpens the frequency resolution at the
expense of a lower temporal resolution.

The wavelet transform of a real signal C(t) at time τ and
frequency f is its convolution with the scaled and shifted
wavelet. From this complex signal we calculate the instan-
taneous amplitude as:

a(τ, f) =
1√
s
‖C(t) ∗ Ψτ,s(f)(t)‖. (4)

In order to extract the rhythmic activity in the two frequency
bands, we adapt the parameters (fα, ωα

0 ) and (fβ, ω
β
0 ) of the

wavelets to individual EEG spectra. All model parameters –
including those used for the wavelets – are estimated using
a leave-one-out (LOO) cross-validation scheme on the final
model performance [13]. The LOO procedure is applied by
leaving out entire STs rather than single time points. The
obtained wavelet parameters for the lower and upper µ-band
are (fα, ωα

0 ) = (10 Hz, 10) and (fβ , ω
β
0 ) = (22 Hz, 6).

The corresponding effective frequency ranges are shown in
Fig. 3, the e-folding times correspond to tα

eff = 226ms and
t
β
eff = 62 ms.

It follows from Eq. (1) that Morlet wavelets are unbounded,
time-symmetric filters centered on the time-point under study,
thus featuring a causal half (looking backward on the time
axis) and an acausal half (looking forward). Since real on-
line processing permits only causal filtering, we first limit the
extension of the wavelets in the time domain, by restricting
them to four times the e-folding time. In addition, we shift
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Fig. 3. The averaged frequency spectra for left (dashed) and right (solid)
movements. The vertical lines and the shaded regions denote the main
receptive frequencies and effective width of the wavelets in the frequency
domain.

the wavelets backward on the time axis by the maximum of
the remaining acausalities, i.e., by 452ms. The time courses
of the rhythmic activity at the two electrodes over the hand
motor cortices are then calculated by the convolution of each
trial with these causal wavelets. The resulting amplitudes for
the two frequency bands at the two electrodes are then stacked
together into the feature vector

ak(t) =
(

a3
k (t, fα) , a4

k (t, fα) , a3
k (t, fβ) , a4

k (t, fβ)
)T

. (5)

The obtained feature vectors of the labeled trials are further
used for the estimation of the probabilistic models.

B. Probabilistic models for a single point in time

Imaginary movements modulate the µ-rhythm on the hemi-
sphere contralateral to the respective event more than ipsi-
lateral (see Fig. 1, [3]–[6]). Combining this with the frame-
work of absolute ERDs, we assume the existence of two
distinguishable prototypical behaviors of modulation for the
absolute amplitude of the µ-rhythm caused by either imaginary
left or, respectively, right hand movements. Based on these
physiological concepts we estimate two probabilistic models,
one for each class of imaginary movement. At any time
instance t ∈ [0 − 9] s we assume a 4-dimensional Gaussian
distribution of the feature vectors a(t) for each model, i.e.,

p(a(t)|y) =
|Σy

t |−
1

2

(2π)2
· e(− 1

2
(a(t)−µ

y
t )T (Σy

t )−1(a(t)−µ
y
t )), (6)

where µ
y
t and Σy

t are the individual means and the covariance
matrices of the two classes y ∈ {L, R}. The Gaussian
assumption is made for computational convenience, accepting
its systematic errors arising from the facts that EEG amplitudes
are bounded and the empirical marginal distributions are found
asymmetric. This observed skewness could be due to artifacts
or, more interestingly, might be caused by STs in which the
subject was not able to adequately manage the imagination
task, possibly because of a temporarily declining concentration
so that the ongoing oscillation stayed unperturbed at a higher
average amplitude causing an overestimation of the mean. To
compensate for this we estimate α-trimmed class means µ̂L

t and
µ̂R

t . Specifically, we exclude 10% of the largest observations of
any class and for any dimension in order to adjust the means
toward zero, whereas the size of the α-quantile to be removed
is estimated by the LOO procedure as well. The covariance

matrices Σ̂L
t and Σ̂R

t are estimated using the empirical means
ā

y
t

Σ̂y
t = E{y=yk}

[

(ak(t) − ā
y
t )

T
(ak(t) − ā

y
t )

]

. (7)

For y ∈ {L,R} the classification for a single point in time t is
derived, using Bayes theorem, as

p (y|a (t)) =
p (a (t) |y)

p (a (t) |L) + p (a (t) |R)
. (8)

C. Combining information across time

In order to finally derive the on-line classification at a
certain time t0, we incorporate knowledge from all preceding
timepoints t ≤ t0, leading to an evidence accumulation
over time about the binary decision process. The temporal
combination is realized by taking the expectation of the class
probabilities from Eq. (8) with respect to the discriminative
power at each point in time, denoted by wt that will be derived
later on,

p (y|a (0) , . . . , a (t0)) =

∑

t≤t0
wtp(y|a(t))

∑

t≤t0
wt

. (9)

To derive the discriminative power we use the Bayes error of
misclassification [13] of the two estimated class distributions
at time t (cf. Eq. (6)). As the Bayes error cannot be calcu-
lated directly because of the distinct covariance matrices, we
approximate it from above by the Chernoff bound [13] and
finally define wt by

2wt := 1 − min
0≤γt≤1

∫

p(a(t)|L)γtp(a(t)|R)1−γtda (10)

In the case of Gaussian distributions the integral can be
expressed in a closed form [13], such that the minimum
solution can be easily obtained. Fig. 4 shows the estimated
Chernoff bound, given the training data. Note that the most
discriminative information occurs around 4.5 s, as indicated
by the minimum of the error bound that corresponds to
the maximum weight in the integration process. In practice
we start the integration at 3.5s, this taking into account the
time required for the cognitive cue processing as well as the
temporal extent of the wavelet filters.

Strictly speaking Eq. (9) gives the probabilities that the
observed ST are generated by either one of the models, until
time t0. Due to the submission requirements of the competition
the final decision at this point in time is

yt0 = 1 − 2 · p(L|a(1), . . . , a(t0)), (11)

where a positive or negative sign refers to right or left
movements, while the magnitude indicates the confidence in
the decision on a scale between 0 and 1.

IV. RESULTS AND DISCUSSION

As mentioned before we estimate all model hyper-
parameters, in particular for the wavelets and the alpha
quantile by means of LOO cross-validation optimization. The
selected parameters achieve a minimum binary LOO decision
error of 7.9% on the training data. Using these parameters
we apply the model estimated from the labeled training
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Fig. 4. Left panel shows the time course of the classification error (thin solid),
the Chernoff bound on the Bayes error (dashed) and the mutual information
(thick solid). Right panel displays time course of the mean and standard
deviations of the decision according Eq. (11) for right (light grey) and left
(dark grey) imaginary movements on the test data.

data set to the feature vectors of the unlabeled STs of the
test data. To permit an objective evaluation of the model
performance of each competitor, the labels for the test data
were published after competition closure. The resulting time
courses for both the error of the binary classification and
the mutual information (MI) [14] on the previously unlabeled
data are presented in Fig. 4. During the first 4 seconds the
classification is rather by chance, after 4 seconds a steep ascent
in the classification accuracy can be observed in both the
raising MI and the decreasing classification error. Although
the Bayes error bound starts to gradually increase again after
4.5 s, indicating fading separability, the full model still gains
information due to the integration process so that at 6.8 s
an overall minimum error of 10.7% is achieved. The MI
maximum of 0.61 Bit occurs at 7.6 s indicating a peak decision
confidence at this time. Demonstrating the time courses of
the class means and standard deviations of the decision the
right panel of Fig. 4 emphasizes the high discriminative ability
of the proposed procedure: around 6 s there is no overlap
between the class standard deviation tubes, reflecting the high
confidence of the decisions. A comprehensive comparison of
all submitted techniques to solve the specific task for data set
III of the BCI-competition is provided in [10]. Basically this
evaluation reveals that the proposed algorithm outperforms all
competing approaches, including traditional AAR-parameter
based methods.

The processing time for all 140 unlabeled STs using non-
optimized MATLAB code adds up to approximately 110 s.
Since each trial lasts for 9 s and is recorded at 128 Hz, this
strongly emphasizes the on-line applicability of the proposed
algorithm, i.e. a stream of incoming EEG data can be pro-
cessed at a rate as high as about 1 kHz.

Notably, the general Bayesian framework of the present
approach is applicable to other kinds of sequential two-class
on-line discrimination tasks, just by adapting the preprocessing
and/or feature extraction. Moreover, different task objectives
can be chosen, such as classification speed, accuracy or confi-
dence, and, correspondigly, different modifications of the algo-
rithm are possible. However, the optimization of one particular
objective will come at the expense of the others. For speeding
up the system working on the present BCI task, one can choose
lower eigenfrequencies ω0 for the mother wavelet (cf. Eq. (1)).
This leads to a shorter temporal duration of the wavelets and
thereby to an acceleration of the decision process. On the

other hand abandoning the Gaussian assumption and fitting
other distributions could increase the classification accuracy,
yet determining the Bayes error of misclassification for these
models will require a further appropriate elaboration.

Future work will be dedicated to the analysis of asyn-
chronous imaginary movements, i.e., without information
about onset of movement being provided. For such on-the-
fly on-line classifications there are several ways how to apply
the proposed algorithm. The most obvious one consists of a
two-stage procedure: first a movement detector followed by
the classifier proposed here, aligned to the detected onset of
movement. Another possibility is to apply a sequence of any
favored classifier and use the Bayesian temporal combination
framework presented here to integrate its evidence over time.
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[14] A. Schlögl, R. S. C. Keinrath, and G. Pfurtscheller, “Information transfer
of an EEG-based brain-computer interface,” in Proc. First Int. IEEE
EMBS Conference on Neural Engineering, 2003, pp. 641–644.


