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Abstract — The investigation of innovative Human-
Computer  Inter faces (HCI) provides a challenge for  fu-
ture multimedia research and development. Brain-
Computer  Inter faces (BCI) exploit the ability of human 
communication and control bypassing the classical neu-
romuscular  communication channels. In general, BCIs 
offer  a possibility of communication for  people with severe 
neuromuscular  disorders, such as Amyotrophic Lateral 
Sclerosis (ALS) or  spinal cord injury. Beyond medical 
applications, a BCI conjunction with exciting multimedia 
applications, e.g. a dexter ity game, could define a new 
level of control possibilities also for  healthy customers 
decoding information directly from the user ’s brain, as 
reflected in EEG signals which are recorded non-
invasively from the scalp. 

This contr ibution introduces the Ber lin Brain-
Computer  Inter face (BBCI) and presents setups where the 
user  is provided with intuitive control strategies in plausi-
ble multimedia-based bio-feedback applications. Yet at its 
beginning, BBCI thus adds a new dimension in multime-
dia research by offer ing the user  an additional and inde-
pendent communication channel based on brain activity 
only. First successful exper iments already yielded inspir -
ing proofs-of-concept. A diversity of multimedia applica-
tion models, say computer  games, and their  specific intui-
tive control strategies are now open for  BCI  research aim-
ing at a fur ther  speed up of user  adaptation and increase 
of learning success and transfer  bit rates. 
 
Keywords — Brain-Computer  Inter face, Electroencepha-
lography, Digital Signal Processing, Machine Learning, 
Bio-Feedback, Multimedia. 
 
 

I. INTRODUCTION 
 

In the seven decades since Berger’s original publica-
tion [8] the electroencephalogram (EEG) has been used 
mainly to evaluate neurological disorders and to inves-
tigate brain function. Besides, people have also specu-
lated that it could be used to decipher thoughts or in-

tents, such that a person will be able to control devices 
directly by its brain activity, bypassing the normal chan-
nels of peripheral nerves and muscles. However, due to 
the large amount of data to be analyzed, it could attract 
serious scientific attention only in the last decade, pro-
moted by the rapid development in computer hardware 
and software. As nowadays it is possible to distribute 
tasks of a complex system over different computers com-
municating with each other and to process acquired data 
in a parallel manner and in real time. 

Currently, modern multimedia technologies address 
only a subset of I/O channels humans use for communica-
tion. Those demand mainly motor (joystick), visual (ani-
mation) and acoustic (music, speech) senses. Recent re-
search tries to include also olfaction [9], tactile sensation 
[10], [11], interpretation of facial emotions [12] and ges-
tures [13]. Since all these information streams pass its 
own interface (hand/skin, eye, ear, nose, muscles) yet 
indirectly converge or emerge in the brain, the investiga-
tion of a direct communication channel between the ap-
plication and the human brain should be of high interest to 
multimedia researchers [4]. 

In section II we give a short introduction in state-of-the-
art in BCI, and then, in section III, we introduce a novel 
communication channel that can be used in Human-
Computer Interfaces (HCI) and a correspondingly new 
technique for information retrieval directly from the brain. 
This is followed by a demonstration of a set of multime-
dia applications used as bio-feedback, in section IV. Sec-
tion V concludes with a discussion on future disposition 
of Brain-Computer Interfaces (BCI) in the field of con-
trol, multimedia and gaming. 
 
 

II. STATE OF THE ART IN BCI 
 

A recent review on BCI defines a Brain-Computer In-
terface as a system for controlling a device, e.g. com-
puter, wheelchair or a neuroprosthesis by human inten-
tions, which does not depend on the brain’s normal output 
pathways of peripheral nerves and muscles [5]. 

There are several non-invasive methods of monitoring 
brain activity encompassing Positron Emission Tomogra-
phy (PET), functional Magnetic Resonance Imaging 
(fMRI), Magnetoencephalography (MEG) or Electroe-
ncephalography (EEG) techniques, which all have advan-
tages and shortcomings. Notably alone EEG yields data 
that is easily recorded with comparatively inexpensive 
equipment, is rather well studied and provides high tem-
poral resolution. Thus it outperforms remaining tech-
niques as an excellent candidate for BCI. 

EEG-based BCI systems can be subdivided into several 
groups according to the electrophysiological signals they 
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use. Visual Evoked Potentials (VEP) define a depend-
ent BCI, i.e., they depend on oculomotor control of 
gaze direction. Sutter [14] described a Brain Response 
Interface (BRI) applying it as a keyboard interface: by 
selecting a symbol from a set of 64 proposed in an 8×8 
array by focusing on it volunteers were able to type 10-
12 words/min. Symbols were changing their color or 
flashing with a certain frequency, which induces a dis-
tinct spatiotemporal pattern in the visual cortex of the 
user’s brain. However, this method requires stable con-
trol over oculomotor muscles, needed for focusing a 
letter. 

BCI systems, which do not rely on any muscular ac-
tivity, are defined to be independent. For example, a 
subject waiting for the occurrence of a rare stimulus on 
the background of a series of standard stimuli evokes a 
positive peak over parietal cortex about 300 ms (P300) 
after appearance. Donchin presented a P300-based BCI 
in [15] used for typing of ca. 5 letters/min. However 
those techniques remain limited to letter selection para-
digms, and the like. 
In Albany, New York, Jonathan Wolpaw directs the 
develpoment of a BCI system that lets the user steer a 
cursor by oscillatory brain activity into one of two or 
four possible targets [1]. In the first training sessions 
most of the subjects use some kind of motor imagery 
which are then, during further feedback sessions, re-
placed by adapted strategies. Well-trained users achieve 
hit rates of over 90% in the two-targets setup. Each 
selection typically takes 4 to 5 seconds. 

Physiologically meaningful signal features can be ex-
tracted from various frequency bands of recorded EEG, 
e.g. Pfurtscheller reports in [16] that µ and/or β rhythm 
amplitudes serve as effective input for a BCI. Move-
ment preparation, followed by execution or even only 
motor imagination is usually accompanied by a power 
decrease in certain frequency bands, labeled as event-
related desynchronization (ERD), in contrast, their in-
crease after a movement indicates relaxation and is due 
to a synchronization in firing rates of large populations 
of cortical neurons (ERS). Table I summarizes fre-
quency bands and neurophysiological features they are 
assumed to encode. 
 

TABLE I: FREQUENCY BANDS. 

Band Frequency [Hz] Occur while / Indicate 
δ 0.5 – 3.5 Movement preparation 
θ 3.5 – 8 Memory 

α (µ) 8 – 13 Relaxation, sensory idling 
β 13 – 22 Motor idling 
γ 22 – 40 Feature binding 

 

Slow Cortical Potentials (SCP) are voltage shifts 
generated in cortex lasting over 0.5-10 seconds. Slow 
negativation is usually associated with cortical activa-
tion used to implement a movement or to accomplish a 
task, whereas positive shifts indicate cortical relaxation 
[17]. Further studies showed that it is possible to learn 
SCP control. Consequently, it was used to control 
movements of an object on a computer screen in a BCI 

referred to as Thought Translation Device (TTD) [3]. Af-
ter repeated training sessions over months, through which 
patients achieve accuracies over 75% they are switched to 
a letter support program, which allows selection of up to 3 
letters/min. 

Using information recorded invasively from an animal 
brain Nicolelis reports in [18] a BCI able to control a ro-
bot. Four arrays of fine microwires penetrate the animal’s 
scull and connect to different regions inside the motor 
cortex. A robotic arm remotely connected over the Inter-
net implements roughly the same trajectory as the owl 
monkey gripping for food. Granted, this invasive technol-
ogy allows the extraction of signals with fine spatial and 
temporal resolution, since each microelectrode integrates 
firing rates of few dozens of neurons. However, to make a 
BCI attractive to an everyday-user it should be non-
invasive, fast mounted and leave no marks. 
 
 

III. THE BERLIN BRAIN-COMPUTER INTERFACE (BBCI) 
 

This section presents an independent non-invasive 
EEG-based online-BCI, developed at Fraunhofer FIRST 
and the Neurophysics Group of the Free University in 
Berlin, that overcomes limitations mentioned above. First, 
the design of the entire system should be monolithic, but 
the enormous amount of data to be processed in a limited 
time forced the distribution of processing tasks over sev-
eral computers communicating via Client-Server-Inter-
faces, Figure 1. Moreover, this distributed concept allows 
advantageous replacement of single modules according to 
particular communication protocols. 

The volunteer user (1) is facing a computer screen. A 
drapery brain-cap (2) furnished with 128 electrodes is put 
on her/his head. Four flat cables of 32 wires each connect 
the cap with four amplifiers (3), which also perform an 
A/D-conversion and transmit the acquired EEG at sam-
pling rate of 5 kHz and accuracy of 16 bits via a fiber 
optic cable to the recorder PC (4). The recorder performs 
some predefined simple preprocessing operations, i.e., 
subsampling to 1 kHz, optional low/high/band-pass or 
notch filters, and stores the data in raw format for later 
offline analysis into the database (5). Additionally it acts 
as Remote Data Access server (RDA) which allows up to 
10 client-connections and serves one data block each 
40 ms. A second computer (6) runs a corresponding cli-
ent, which performs, after data acquisition, some preproc-
essing steps for feature selection (details in subsection D) 
in a parallel manner: for detection and determination of 
user action two separate non-blocking threads were em-
ployed, followed each, after a synchronization step, by a 
classification step of the current acquired data block (de-
tails in subsection E). Finally, a combiner joins the two 
classifier results and produces a control command. Fig-
ure 2 illustrates the parallel approach of data processing. 
The online classifier (6) acts as a server for various feed-
back clients (7) and serves each 40 ms the control com-
mand produced by the combiner. The feedback client is a 
multimedia application that runs on a separate computer 
and acquires the control commands produced by the com-
biner module of the data processing server. It is conceived 
to rely on simple control, e.g. left/right movements, which 
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may be expressed by a small command set, and should 
give the user a feeling of being inside the simulation. 
Currently we employed simple computer games like 
Pacman or Tele-Tennis, however other more sophisti-
cated and challenging multimedia applications are con-
ceivable. 
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Figure 1: Distributed design of BBCI. 
 

 

A. Data Acquisition 
 

We recorded brain activity with multi-channel EEG 
amplifiers using 128 channels from the cap with 
Ag/AgCl Electrodes (Ø of the contact region is 5 mm). 
Additionally, surface electromyogram signals (EMG), 
which detect muscle activity at both forearms, as well 
as horizontal and vertical electrooculogram signals 
(EOG), which reflect eye movements, were recorded. 

All signals were band-pass filtered between 0.05 and 200 
Hz and sampled at 1000 Hz. For online analysis, the data 
signals were then subsampled to 100 Hz to minimize the 
data processing effort. 
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Figure 3: Locations of electrodes and labels of corre-
sponding channels. 

 

The labels of electrodes are composed of some letters 
and a number. The letters refer to anatomical structures 
(Frontal, Parietal, Occipital, Temporal lobes and Central 
sulcus), while the numbers denote sagittal (anterior-
posterior) lines. Odd numbers correspond to the left hemi-
sphere, while even numbers to the right; small ‘z’  marks 
electrodes on the central sagittal line. Labels with 1 or 2 
capital letters correspond to the 64 electrodes of the ex-
tended international 10-20-system [19] while labels with 
3 capital letters were composed from the neighboring 
electrode labels and denote additional channels in a 128-
channel setup. EEG activity is measured against the refer-
ence electrode (Ref) mounted on the nasion, while the 
ground electrode (Gnd) is mounted on the forehead. Loca-
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Figure 2: Parallel manner of data processing. 
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tions of the electrodes and corresponding labels are 
illustrated in Figure 3. 

The voltage measured by the electrodes is very low 
and fluctuates rapidly within the range of ±300 µV. 
Electrical noise from the surrounding environment 
(mainly 50 Hz, resp. 60 Hz, power outlet frequency) 
interferes with the data via connecting wires, which act 
as small “antennas” . To assure low impedances be-
tween the electrodes and the scalp (desired below 5 
kΩ), electrolyte gel is filled into each electrode before 
experiments start. 
 

B. Task and its Neurophysiology 
 

We let our subjects (all without neurological deficits) 
take a binary (left/right hand) decision coupled to a 
motor output, i.e., self-paced typewriting on a computer 
keyboard.  Using multi-channel scalp EEG recordings, 
we analyze the single-trial differential potential distri-
butions of the Bereitschaftspotential (BP / Readiness 
potential) preceding voluntary (right or left hand) finger 
movements over the corresponding (left/right) primary 
motor cortex. As we study brain signals from healthy 
subjects executing real movements, our paradigm re-
quires a capability to predict the laterality of imminent 
hand movements prior to any EMG activity to exclude 
a possible confound with afferent feedback from mus-
cle and joint receptors contingent upon an executed 
movement. 
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Figure 4: Averaged Event Related Potentials (ERPs) 
 

The basic BBCI idea is focusing on control applica-
tions, such as “virtual keyboard typing” , that can be 
conceived as potentially resulting from a natural se-
quence of motor intention, followed by preparation and 
completing by the execution. Accordingly, our neuro-
physiological approach aims to capture EEG indices of 
preparation for an immediately upcoming motor action. 
At present, we exploit the BP, i.e., a slow negative EEG 
shift, which develops over the activated motor cortex 
during a period of about one second prior to the actual 
movement onset; it is assumed to reflect mainly the 

growing neuronal activation (apical dendritic polariza-
tion) in a large ensemble of pyramidal cells. Previous 
studies [25], [26] showed that in most subjects the spatial 
scalp distribution of the averaged BP correlates consis-
tently with the moving hand (focus of brain activity is 
contralateral to the performing hand). 
The upper part of Figure 4 shows Laplace filtered EEG 
around the left and right hand motor cortices (electrodes 
C3 and C4) within a time range of [-450 : 200] ms relative 
to the key tap, averaged selectively for left-hand vs. right-
hand taps. The gray bars indicate a 100 ms baseline cor-
rection. The lateralization of BP is clearly specific for left 
resp. right finger movements. Potential maps show the 
scalp topographies of the BP averaged over time windows 
(upper) before movement preparation and (lower) when 
BP reaches its maximum negativation, again averaged 
over left-hand and right-hand taps separately. Bold 
crosses mark electrode positions C3 and C4. 

We would like to emphasize that the paradigm is 
shaped presently for fast classifications in normally be-
having subjects and thus could open interesting perspec-
tives for a BCI assistance of action control in time-critical 
behavioral contexts. Notably, also a possible transfer to 
BCI control by paralyzed patients appears worthwhile to 
be studied further because these patients were shown to 
retain the capability to generate BPs with partially modi-
fied scalp topographies [20]. 
 

C. Training Procedure 
 

The guiding motto of BBCI is: “Let the machines 
learn!” , thus the user should require only a minimum of 
training for operating it. The training procedure described 
here serves for “ teaching the machine”  and adjusting its 
model parameters to better match the user and his brain 
signal’s properties. During the training procedure we ac-
quire example EEG from the user while performing a 
certain task, e.g. execution or imagination of left vs. right 
hand movement of the index fingers. The user is in-
structed to sit comfortably and, as far as possible, to omit 
any muscular artifacts, like biting, gulping, yawning, 
moving the head, arms, legs or the whole body. These 
would induce electromyographic (EMG) noise activity 
that interferes with EEG signals, such that the signal-to-
noise-ratio (SNR) tends to zero. Eye movements are to be 
minimized for the same reason. To prevent possible (in-
voluntarily) cheating, e.g. producing eye movements cor-
related with performed tasks, vertical and horizontal elec-
trooculograms (EOG) are recorded, which can be used for 
artifact correction, i.e. cleaning up EEG signals of inter-
fering EOG by weighted subtraction. 
 

relax relax

40 sec 6 min 20 sec

perform task repeatedly

 

Figure 5: Setup of a training session 
 

The training is performed in 3-4 sessions, each of about 
7 min, as illustrated in Figure 5. Tasks are performed for a 
period of 6 min repeatedly with an interval of 1-2 sec. All 
training sessions may be performed in two experimental 
kinds: (i) imagined, i.e., queried, (ii) executed, i.e., self-
paced. In the executed task experiment we acquire re-
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sponse markers via keyboard, while the user determines 
himself which task to perform next. During the imag-
ined task experiment a visual cue indicates the task, 
which has to be executed on the next auditory beat pro-
duced by a digital metronome. Both stimuli place corre-
sponding markers into the data, stored with a time-
stamp. 

To train the learning machine and adjust its parame-
ters, we select time series of EEG activity acquired 
within a certain time region before the marker, which 
gives the training sample its label.   
 

#1a .
#2a .

#3a .

tdti

Marker
(Stim./Resp.)

...
t

#1r .
#2r .

t'dt'i

...

...

 
Figure 6: Selection procedure for training samples 

 

We search for event markers in the acquired data and 
examine each for affiliation to one of the classes of in-
terest. Each class covers its own sample-selection pa-
rameter set SSP = ({ mrk} , n, td, ti), where a set of 
marker labels mrk identifies the affiliation of markers to 
classes, n gives the number of training samples to be 
selected from the data, td and ti are time constants indi-
cating the delay and inter-sample interval. Beside the 
classes indicating Action, e.g. implementation or imagi-
nation of a task accomplishment, which in Figure 6 
provide samples 1a, 2a and 3a, an additional class indi-
cating Rest is introduced. This provides in an analog 
manner training samples 1r and 2r, that are used to-
gether with Action-samples for detection of task ac-
complishment, though we use action samples only, for 
the determination of which task has been completed. 
For sample selection in the training procedure, negative 
time constants are preferred, positive are allowed, how-
ever they make no sense for online analysis. 
 

D. Preprocessing and Feature Selection 
 

To extract relevant spatiotemporal features of slow 
brain potentials we subsample signals from all or a sub-
set of all available channels and take them as high-
dimensional feature vectors. We apply a special treat-
ment because in pre-movement trials most information 
is expected to appear at the end of the given interval. 

Starting point of the procedure are epochs of 128 data 
points (width of a sample window) of raw EEG data, 
corresponding to 1280 ms as depicted in Figure 7 (a) 
for one channel from -1400 ms to -120 ms (td) relative 
to the timestamp of the desired event marker. To em-
phasize the late signal content, we first multiply the 
signal by a one-sided cosine function (1), as shown in 
Figure 7 (b). 
 

( ) ( )( )128cos15.0::127,,0 πnnwn −⋅==∀ �  (1) 

 

A Fast Fourier Transformation (FFT) filtering tech-
nique is applied to the windowed signal. From the com-
plex-valued FFT coefficients all are discarded but the 

ones in the pass-band (including the negative frequencies, 
which are not shown), Figure 7 (c). Transforming the se-
lected bins back into the time domain gives the smoothed 
signal of which the last 200 ms are subsampled at 20 Hz 
by calculating means of consecutive non-overlapping in-
tervals, each of 5 samples, resulting in 4 feature compo-
nents per channel, see Figure 7 (d). 

 

(a) Raw EEG signal at 100 Hz 
 

 

(b) Windowing 
 

 

 

(c) Fourier coefficients (magn.) 
 

 

 

(d) Filtering and subsampling 
 

 

Figure 7: Pre-processing procedure 
 

E. Classification 
 

The event related potential (ERP) features are superpo-
sitions of task-related and many task-unrelated signal 
components. The mean of the distribution across trials is 
the non-oscillatory task-related component, ideally the 
same for all trials. The covariance matrix depends only on 
task-unrelated components. Our analysis showed that the 
distribution of ERP features is indeed normal. The impor-
tant observation here is, that the covariance matrices of 
both classes (left/right movements) look very much alike 
[7]. 

A basic result from the theory of pattern recognition, 
says that Fisher’s Discriminant gives the classifier with 
minimum probability of misclassifications for known 
normal distributions with equal covariance matrices [23]. 
As was pointed out in the previous paragraph the classes 
of ERP features can be assumed to obey such distribu-
tions. Because the true distribution parameters are un-
known, means and covariance matrices have to be esti-
mated from training data. This is prone to errors since we 
have only a limited amount of training data at our dis-
posal. To overcome this problem it is common to regular-
ize the estimation of the covariance matrix. In the mathe-
matical programming approach of [21] the following 
quadratic optimization has to be solved in order to calcu-
late the Regularized Fisher Discriminant (RFD) w from 
data xk and labels yk ∈ { -1, 1}  (k = 1, …, K): 
 

2

2

2

2,, 2
1min ξ

ξ K
Cw

bw
+      subject to 

( ) kk
T

k bxwy ξ−=+ 1      for k = 1, ..., K 

 
(2) 

 

where ||·||2 denotes the 
�

2-norm ( www T=2

2
), ξ are slack 

variables. C is a hyper-parameter, which has to be chosen 
appropriately, say, by cross-validation strategies. There is 



Submitted to the 9th International Conference on Distributed Multimedia Systems (DMS’03) 

 6

a more efficient way to calculate the RFD, but this 
formulation has the advantage, that other useful variants 
can be derived from it [21], [22]. For example, using 
the 

�
1-norm in the regularizing term enforces sparse 

discrimination vectors. Other regularized discriminative 
classifiers like support vector machines (SVMs) or lin-
ear programming machines (LPMs) appear to be 
equally suited for the task [6]. 
 

F. Bio-Feedback 
 

Finally, a multimedia application, running on a sepa-
rate computer, receives combined results of classifica-
tion via an asynchronous client-server interface and 
acquires them in a temporal queue. It examines the 
queue repeatedly for stationary signals persisting for a 
certain time length, i.e., a Command Activation Term 
(CAT) and emits the command, corresponding to the 
class label of the classification result (left/right/rest). 
After a command has been emitted, it then falls into 
“ relaxation”  for a certain time period, i.e., Command 
Relaxation Term (CRT), which should be at least as 
long as the CAT. During this period combiner outputs 
remain being collected in the queue, but further com-
mand emissions are suppressed. This procedure, for 
three classes: left (black), right (gray) and rest (dashed) 
is illustrated in Figure 8. Here the combiner yields the 
class label (denoted as color of bars) and the fuzzy val-
ues i

i
PP
~

max
~

max =  of the most likely recognized class 

(depicted as amplitude) distributed over time at a fre-
quency of 25 Hz. CAT is set to 10 periods (400 ms), 
and CRT is set to 14 periods (560 ms). 
 

CAT CRT CAT CRT

t

400 ms Class "left"
Class "right"

Class "rest"

real left/right action

emitted commands

max

~
P

 

Figure 8: Time structure of command emission queue 
 

This flexible setup allows individual adjustments for 
the user and the control strategy of the bio-feedback 
application: (i) long CAT, helps to avoid false-
positively emitted commands; (ii) short CAT, allows 
fast emission of commands, i.e., before the real move-
ment is executed; (iii) intraindividually adjusted CRT 
prevents erroneous, respectively allows volitional suc-
cessive emissions of the last command. These parame-
ters depend strongly on the user and should be set ini-
tially to values calculated from the results of the appli-
cation of trained classifier to the training data. At start-
ing point CAT0 may be set to the median length of the 
stable signal containing a marker of the same action 
class, and CRT0 to a value larger than CAT0 by twice 
the amount of the standard deviation of the distribution 
of lengths of stable signals. The values of CAT and 
CRT should then be adjusted according to the user’s 
demand. 

The underlying multimedia application should be intui-
tive, simply to understand, and the control strategy should 
give the user a feeling of natural acting, however it should 
require a small (at present: binary) control set of com-
mands, i.e., left-turn/right-turn, avoid fast animation and 
high-contrast changes to prevent or minimize spooling of 
data affected by artifacts, e.g., brisk eye-, head- or body 
movements. An issue of particular importance for a fast 
pacing of control commands is a “natural mapping” of the 
action required in the multimedia or gaming scenario to 
the “action space”  of the human operator, which is coded 
in egocentric coordinates. To this end the on-screen envi-
ronmental perspective must continuously represent the 
viewing direction of the human operator, so that, e.g., a 
selection of the option of right-turn can be addressed by 
the intension to move the right hand. 
 
 

IV. RESULTS 
 

To enable the classifier training, we initially let the user 
execute or imagine the task accomplishment repeatedly. 
For real movements, which can be monitored the user 
may perform tasks “self-paced” . For imagined move-
ments (in paralyzed patients) the lateralization of each 
action (left/right) is queried by an auditory and/or visual 
cue. We extract training samples, preprocess each as de-
scribed in subsections III.C and III.D, calculate a set of 
optimal classifiers on a selection of 90% of the markers 
and test each on remaining 10%. This cross-validation 
procedure is illustrated in Figure 9. 
 

Tst

...         ...         ...         ...

Cl 1 ...
...

...

Cl 2

Cl n

Tst

Tst  

Figure 9: The cross-validation procedure 
 

By calculating, then, means of training and test errors, 
we obtain a measure for effectiveness of a particular clas-
sifier model. A test error essentially higher than the train-
ing error would indicate that the model is too complex for 
the given data, such that the risk of over-training is high 
due to bad generalization ability. 
 

 

Figure 10: Classification test errors based on EEG/EMG 
 

Notably, test errors of the cross-validation procedure 
depend on the choice of the delay time td in the pre-
processing procedure. Obviously classification is ambigu-
ous for large values of td and mostly correct for td = 0. 
Figure 10 shows the cross-validation test-error of classifi-
cation of EEG single trials as a function of td for a single 
subject performing in a self-paced experiment with 30 
taps per minute. 
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The right ordinate enumerates the number of com-
municated bits per minute that can be extracted from 
the classification results. Compared to the errors of 
classification based on EMG (upper curve), which mir-
rors the muscle activity in the forearms, the EEG ap-
proach yields superior classification results already 
120 ms prior to the actual movement execution and 
retains its higher performance, as classifications after 
the hit marker is present are not interesting any more. 
This phenomenon is neurophysiologically evident, be-
cause the decision about lateralization of movement has 
to be met in the brain firstly, followed by the prepara-
tion of cortical neurons and emission of the command 
down to the spinal cord, peripheral nerves and to the 
effector muscles spending at least 60-80 ms. 
 

  

Figure 11: Feedback "jumping cross”  with history tail 
 

Initially we implemented a very simple visual bio-
feedback application to provide the user with a first 
feeling of her/his intentions: a thick black cross is mov-
ing over a full-screened window containing a thin fixa-
tion cross in the center and two target fields (dark-red 
and dark-green – indicating left-hand and right-hand 
movements, respectively). The ordinate of the “ jumping 
cross”  reflects the normalized decision of the move-
ment detection classifier (“up”  indicating action vs. 
“down” indicating rest), i.e., that the missile jumps in 
the upper half of the screen on upcoming “action” . The 
abscissa provides the natural mapping of the determina-
tion classifier result (left vs. right). The “ jumping-
cross”  trails a history tail of 4 points (data drawn at 
40 ms intervals). The single action trial is indicated as 
completed, when (i) the screen freezes on occurrence of 
an event marker, i.e., after an actual movement is per-
formed and when (ii) the corresponding lateralization 
field, the cross is actually located in, is highlighted. 
Figure 11 illustrates a typical left and right event. 
 

 
Figure 12: Accumulated feedback trials 

 

A series of single trials acquired over the whole ex-
periment (here: 64 left and 64 right trials) may be repre-
sented in an instructive summary plot, cf. Figure 12. 
Here, crosses were replaced, for clarity, by bold dots 

and the history tails are painted bold for the 3 most recent 
periods and thin for another 4 preceding periods. The axes 
represent the classification results of the determination 
and detection classifiers, respectively. It can be recog-
nized at a single glance, that the majority of trials have 
been classified correctly. 

Finally, the well-known Pacman video game has been 
adapted to serve as bio-feedback. The idea is to combine 
the information, available from the “ jumping-cross”  feed-
back with an aim-gain inventively in a gaming applica-
tion. A random labyrinth is generated in a full-screened 
window, which has exactly one way from the entry (in the 
left wall) to the exit (in the right wall), which is the short-
est path and is marked with gray track marks. The player 
may also decide to run the Pacman through the rest of the 
labyrinth, e.g., to receive additional credits for harvesting 
the apples. 
 

 
Figure 13: Feedback "Brain-Pacman" 

 

As control strategy we use the following approach: The 
Pacman makes one step each 1.5-2 sec. and moves always 
straight ahead until it reaches a wall. The direction, the 
Pacman is intended to make in the next step is pointed by 
its yellow nose. Initially the Pacman’s head is completely 
white and fills with red and green color from bottom up as 
the player’s intention to turn rises, i.e., the detection clas-
sifier yields “action”  results. A vertical line discriminating 
the two filling colors, i.e., intention to turn left (red) vs. 
right (green) is placed according to the result of the de-
termination classifier. Effectively, the intersection of the 
fill level and the discrimination line matches the position 
of the “ jumping cross” . If the player intends to steer the 
Pacman to the right, this should fill the Pacman’s head 
green for at least the CAT. After a turn, the Pacman does 
not accept any further command for at least CRT. The 
simulation is finished when the Pacman reaches the exit 
of the labyrinth. 

A healthy subject will be able to navigate the Pacman 
through the presented labyrinth within 40 sec (20 steps, 
each of 2 sec) using a conventional keyboard or a mouse, 
however, the “ fun-factor”  of navigating the Pacman just 
by intentions of the own brain turned out to be very ap-
pealing. Although it takes much longer to move through 
the maze by the power of thoughts alone, it is highly in-
teresting that when immersed into the BCI-game scenario 
the user has sometimes the feeling that the Pacman moves 
in the correct direction though the user was consciously 
not aware of his decision, sometimes consciously not 
even ready for a decision. 
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V. CONCLUSION AND OUTLOOK 

 

Brain-Computer Interfaces have traditionally been 
conceived and used in assistance systems for the dis-
abled [1], [3] and [5]. We have shown in this contribu-
tion that our BBCI explores also the interesting path 
towards multimedia applications, exemplified here as 
gaming. 

While most BCIs (except VEP or P300-based) re-
quire extensive training (>200 hours) from their users, 
it is one distinctive feature of the BBCI that it employs 
advanced signal processing and machine learning tech-
nology for training the computer rather than the human 
subject, such that the user can start “communicating”  
without extensive prior training. The particular focus of 
the present paper was to introduce appropriate as well 
as appealing bio-feedback signals that allow a user, 
who has taken a “cold-start”  to explore and improve his 
individual possibilities to use the BBCI communication 
channel. 

There are several aspects for further improvement of 
BBCI: so far we have used a paradigm, where the user 
actually implements a movement, i.e., typing with the 
left or right index or pinky finger. In ongoing research 
we transfer this paradigm to assistance systems where a 
disabled person still has movement intentions and their 
respective neural correlate, but no means for an actual 
movement. 

Generally, the question of an ideal bio-feedback sig-
nal for BCI will find new answers appropriate for each 
new application. The current study showed clearly, that 
a bio-feedback in a gaming scenario, such as Pacman 
can be realized very naturally and by work successfully. 
Eventually, this bio-feedback can make the user adapt 
to the classification engine and vice versa the classifica-
tion engine might experience it simpler to classify cor-
rectly in the course of mutual adaptation. Another issue 
with pioneering appeal is the thrilling possibility that, 
because the BBCI bypasses the conduction delays from 
brain to muscles, it could speed up the initiation of ac-
tions in competitive, dual-player scenarios. 

Let us finally discuss how much information we can 
expect to transmit in such a new BCI channel. Invasive 
technologies can achieve bit-rates that are high enough 
for, e.g., online 3D robot control (as already discussed 
before) [18], but require hundreds of microelectrodes 
implanted into the brain’s cortex, which appears as an 
unlikely condition for healthy subjects. For non-
invasive techniques our own earlier studies have shown 
that in a pseudo-online idealized evaluation – i.e., data 
are recorded and analyzed later as if online – record bit-
rates of up to 40 bits per minute are achievable [7]. In 
spelling tasks that are truly online with bio-feedback, 
single subjects can reach a level of 2-3 letters per min-
ute [1], [2] and [3]. At first sight, this might appear 
rather slow for a communication device, as other com-
munication devices, e.g., a computer mouse can achieve 
300-350 bits per minute [24]. Yet, one should realize 
that a BCI communication channel is largely independ-
ent of other channels and offers a unique feature of ultra 
fast action emissions for each single reaction trial. 

In conclusion, we discussed state-of-the-art BCI re-
search and presented recent results that could be achieved 
by providing multimedia, i.e. gaming feedback to a BCI 
user. Future research will further explore this direction 
towards more natural feedback modi ultimately using 
brain signals for control in VR environments. 
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