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Abstract

Up to now even subjects that are experts in the use of mackaraeihg based
BCI systems still have to undergo a calibration session otia®0-30 min. From

this data their (movement) intentions are so far infered. ndwe propose a new
paradigm that allows to completely omit such calibrationl amstead transfer
knowledge from prior sessions. To achieve this goal we fieginé normalized

CSP features and distances in-between. Second, we deoitatypical features
across sessions: (a) by clustering or (b) by feature conatiten methods. Finally,
we construct a classifier based on these individualizedpnoes and show that,
indeed, classifiers can be successfully transferred to asesgion for a number
of subjects.

1 Introduction

BCI systems typically require training on the subject sidd an the decoding side (e.d.| [1,[2, 3,
4,[5,[6,[T]). While some approaches rely on operant conditgpwith extensive subject training
(e.g. [2[1]), others, such as the Berlin Brain-Computegifaice (BBCI) put more emphasis on the
machine side (e.gL[4] 8] 9]). But when following our philphg of 'letting the machines learn’, a
calibration session of approximately 20-30 min was so fquired, even for subjects that are beyond
the status of BCI novices.

The present contribution studies to what extent we aauit this brief calibration period. In other
words, is it possible to successfully transfer informafiam prior BCI sessions of the same sub-
ject that may have taken place days or even weeks ago? WiIslgubstion is of high practical
importance to the BCI field, it has so far only been addressq@iC] in the context of transfering
channel selection results from subject to subject. In emttio this prior approach, we will focus
on the more general question of transfering whole classjfiesp. individualized representations
between sessions. Note that EEG (electroencephalogrdtajmstypically vary strongly from one
session to another, due to different psychological preditmms of the subject. A subject might
for example show different states of fatigue and attentanjse diverse strategies for movement
imagination across sessions. A successful session tmedsansfer should thus capture generic
'invariant’ discriminative features of the BCI task.

For this we first transform the EEG feature set from each [@@gsion into a 'standard’ format (sec-
tion[A) and normalize it. This allows to define a consistenasoee that can quantify the distance
between representations. We use CSP-based classifierse(@asi{ 31l and e.g[[1L1]) for the dis-
crimination of brain states; note that the line of thougletgented here can also be pursued for other
feature sets resp. for classifiers. Once a distance funixtiorl[3.R) is established in CSP filter
space, we can cluster existing CSP filters in order to obkenrost salient prototypical CSP-type

for computing prototypes by a robust ICA decompositiontjsa33). We will show that these new
CSP prototypes are physiologically meaningful and furtieme are highly robust representations
which are less easily distorted by noise artifacts.



2 Experiments and Data

Our BCI system uses Event-Related (De-)Synchronizati®@DIERS) phenomenhl[3] in EEG sig-
nals related to hand and foot imagery as classes for coritha.term refers to a de— or increasing
band power in specific frequency bands of the EEG signal dutie imagination of movements.
These phenomena are well-studied and consistently repitiidifeatures in EEG recordings, and
are used as the basis of many BCI systems (e.g[[11, 14]) hEgresent study we investigate data
from experiments with 6 healthy subjectsw (13 sessionskl (8 sessions)cm (4 sessions)ie (4
sessions)ay (5 sessions) anch (4 sessions). These are all the subjects that participatatieast

4 BCI sessions. Each session started with the recordindibfaon data, followed by a machine
learning phase and a feedback phase of varying duratiorfolidiving retrospective analyses were
performed on the calibration data only.

During the experiments the subjects were seated in a caablerchair with arm rests. For the
recording of the calibration data every 4.5—6 seconds oaldferent visual stimuli was presented,
indicating a motor imagery task the subject should perfouring the following 3—3.5 seconds.
The randomized and balanced motor imagery tasks investidat all subjects excejty were left
hand (), right hand ¢), and right foot {). Subjectay only performed left- and right hand tasks.
Between 120 and 200 trials were performed during the caidrgphase of one session for each
motor imagery class.

Brain activity was recorded from the scalp with multi-chehBEG amplifiers using at least 64
channels. Besides EEG channels, we recorded the electgyampdEMG) from both forearms and
the right lower leg as well as horizontal and vertical elestulogram (EOG) from the eyes. The
EMG and EOG channels were exclusively used to ensure thatthjects performed no real limb
or eye movements correlated with the mental tasks. As tlo#irity can directly (via artifacts) or
indirectly (via afferent signals from muscles and jointeptors) be reflected in the EEG channels
they could be detected by the classifier. Controlling EMG &®{G ensured that the classifier
operated on true EEG signals only.

Data preprocessing and Classification

The time series data of each trial was windowed from 0.5 s#xafter cue to 3 seconds after cue.
The data of the remaining interval was band pass filtered destveither 9 Hz — 25 Hz or 10 Hz —
25 Hz, depending on the signal characteristics of the stuldjgany case the chosen spectral interval
comprised the subject specific frequency bands that cadamnotor-related activity.

For each subject a subset of EEG channels was determinelatidieen recorded for all of the
subject’s sessions. These subsets typically contained 48 thannels which were densely located
(according to the international 10-20 system) over the roengral areas of the scalp (see scalp maps
in following sections). The EEG channels of each subjeceweduced to the determined subset
before proceeding with the calculation of Common SpatidtePas (CSP) for different (subject
specific) binary classification tasks.

After projection on the CSP filters, the bandpower was eddthay taking the logvariance over
time. Finally, a linear discriminant analysis (LDA) classi was applied to the best discriminable
two-class combination.

3 Acloser look at the CSP parameter space

3.1 Introduction of Common Spatial Patterns (CSP)

The common spatial pattern (CSP) algorithm is very usefaainulating spatial filters for detecting
ERD/ERS effects [[15]) and can be applied to ERD-based Bs&isJ[11]. It has been extended to
multi-class problems iri.[14], and further extensions armlistifications concerning a simultaneous
optimization of spatial and frequency filters were preseime1€,[17[18]. Given two distributions
in a high-dimensional space, the (supervised) CSP algorithds directions (i.e., spatial filters)
that maximize variance for one class and simultaneouslymize variance for the other class. Af-
ter having band-pass filtered the EEG signals to the rhythinisterest, high variance reflects a
strong rhythm and low variance a weak (or attenuated) rhythehus take the example of discrim-
inating left hand vs. right hand imagery. The filtered sigr@responding to the desynchronization
of the left hand motor cortex is characterized by a strongomidtythm during imagination of right
hand movements (left hand is in idle state), and by an atteduaotor rhythm during left hand
imagination. This criterion is exactly what the CSP alduritoptimizes: maximizing variance for
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Figure 1: Left: Non-euclidean distance matrix for 78 CSP filters of imagitefthand and foot movement.
Right: Scatterplot of the first vs. second dimension of CSP filtetar dflulti-Dimensional Scaling (MDS).
Filters that minimize the variance for the imagined leftthamne plotted as red crosses, foot movement imagery
filters are shown as blue dots. Cluster centers detectedI@AlBre marked with magenta circles. Both figures
show data fronal.

the class of right hand trials and at the same time minimizariance for left hand trials. Further-
more the CSP algorithm calculates the dual filter that witlife on the area of the right hand and
it will even calculate several filters for both optimizat®loy considering the remaining orthogonal
subspaces.

Let Z; be the covariance matrix of the trial-concatenated matfigimension [channels< con-
catenated time-points] belonging to the respective dlas$1,2}. The CSP analysis consists of
calculating a matrixQ and diagonal matrio with elements if0, 1] such that

QZQ"=D and QQ'=1-D. (1)

This can be solved as a generalized eigenvalue problem. mjecpon that is given by theth
row of matrix Q has a relative variance af (i-th element ofD) for trials of class 1 and relative
variance 1 d; for trials of class 2. Ifd; is near 1 the filter given by thieth row of Q maximizes
variance for class 1, and since-1d; is near 0, minimizes variance for class 2. Typically one woul
retain projections corresponding to the three highestwileesd;, i.e., CSP filters for class 1, and
projections corresponding to the three lowest eigenvalleesCSP filters for class 2.

3.2 Comparison of CSP filters

Since the results of the CSP algorithm are the solutions eh&i@lized eigenvalue problem, where
every multiple of an eigenvector is again a solution to tigeevalue problem. If we want to compare
different CSP filters, we must therefore keep in mind thatypeint on the line through a CSP filter
point and the origin can be identified (except for the origself). More precisely, it is sufficient to
consider only normalized CSP vectors on the (#channeiirignsional hypersphere. This suggests
that the CSP space is inherently non-euclidean. As a mom@ppate metric between two points
andc; in this space, we calculated the angle between the two limeesponding to these points.

)

When applying this measure to a set of CSP fil{ers<n, one can generate the distance matrix

C1 % Cp

m(cy, C2) = arcco$m

D = (M(Ci,¢j))i.j<ns

which can then be used to find prototypical examples of CS&diltFidl shows an example of a
distance matrix for 78 CSP filters for the discrimination lod tvariance during imagined left hand
movement and foot movement. Based on the left hand sighaé €SP filters showing the lowest
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Figure 2: Dendrogram of a hierarchical cluster tree for te&Gilters of left hand movement imagery (dashed
red lines) and foot movement imagery (solid blue lines). s@ucenters detected by IBICA are used as CSP
prototypes. They are marked with magenta arrows.

eigenvalues were chosen for each of the 13 sessions. Thawsenier of 3x 13 filters were chosen
for the foot signals. The filters are arranged in groups atingrto their relative magnitude of the
eigenvalues, i.e., filters with the largest eigenvaluegsoaped together, then filters with the second
largest eigenvalues etc.

The distance matrix in Figl. 1 shows a block structure whigkeats that the filters of each group have
low distances amongst each other as compared to the distanocembers of other groups. This is
especially true for filters for the minimization of varianodeft hand trials.

3.3 Finding Clusters in CSP space

The idea to find CSP filters that recur in the processing oethffit sessions of a single subject is
very appealing, since these filters can be re-used for efficiassification of unseen data. As an
example of clustered parameters, Hig.2 shows a hieratdicsdering tree (se€T19]) of CSP filters
of different sessions for subjeat. Single branches of the tree form distinct clusters, which a
also clearly visible in a projection of the first Multi-Dimsional Scaling-Components in Hifj.1 (for
MDS, seel[2D]).

The proposed metric of secti@nB.2 coincides with the metsied for Inlier-Based Independent
Component Analysis (IBICA, se&[l12,113]). This method wagioally intended to find estimators
of the super-Gaussian source signals from a mixture of EgrBy projecting the data onto the
hypersphere and using the angle distance, it has been deatedshat the correct source signals can
be found even in high-dimensional data. The key ingreditthi® method is the robust identification
of inlier points as it can be done with tlyendex (seell21]), which is defined as follows:

Letze {cy,...,Cn} be apointin CSP-space, andifet;(2), . ..,nn(z) be thek nearest neighbors of
z, according to the distanaa. We then call the average distancezab its neighbors thg-index of
zi.e.

1 k
V)= ¢ 3 mzn@)
j=

If zlies in a densely populated region of the hypersphere, theaterage distance to its neighbors
is small, whereas if it lies in a sparse region, the averagfawce is high. The data points with the
smallesty are good candidates for prototypical CSP filters since teysimilar to other filters in
the comparison set. This suggests that these filters areggdotions in a number of experiments
and are therefore robust against changes in the data sucitliassp variations in background noise
etc.

4 Competing analysis methods: How much training is needed?

Fig[d shows an overview of the validation methods used ®athgorithms under study. The left part
shows validation methods which mimick the following BCI sa€io: a new session starts and no
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Figure 3: Overview of the presented training and testingesddr the example of four available sessions. The
left part shows a comparison of ordinary CSP with three ndthibat do not require calibration. The validation
scheme in the right part compares CSP with three adaptivieadst See text for details.

data has been collected yet. The top row represents datbsefalons in original order. Later rows
describe different data splits for the training of the CSterfd and LDA (both depicted in blue solid
lines) and for the testing of the trained algorithms on ungksa (green dashed lines). The ordinary
CSP method does not take any historical data from prior@esénto account (second row). It uses
training data only from the first half of the current sessidihis serves as a baseline to show the
general quality of the data, since half of the session daganerally enough to train a classifier that
is well adapted to the second half of the session. Note tisétaluation only corresponds to a real
BCI scenario where many calibration trials of the same dayamailable.

4.1 Zero training methods

This is contrasted to the following rows, which show the asile use of historic data in order

to calculate LDA and one single set of CSP filters from theemtétd data of all prior sessions
(third row), or calculate one set of CSP filters for each histsession and derive prototypical

filters from this collection as described in sect[on] 3.3 (fbuow), or use a combination of row

three and four that results in a concatenation of CSP filtedsderived CSP prototypes (fifth row).

Feature concatenation is an effective method that has wsmgo improve CSP-based classifiers
considerably (se€[22]).

4.2 Adaptive training methods

The right part of FidlB expands the training sets for rowséhfour and five for the first 10, 20 or 30
trials per class of the data of the new session. In the methfodsv 4 and 5, only LDA profits from
the new data, whereas CSP prototypes are calculated esaiusi historic data as before. This
approach is compared against the ordinary CSP approaahdivainly uses the same small amount
of training data from the new session.

This scheme, as well as the one presented in seClidn 4.1 eleasdnoss-validated such that each
available session was used as a test session instead oftlada

5 Results

The underlying question of this paper is whether inforntatiathered from previous experimental
sessions can prove its value in a new session. In an idea¢gesimg CSP filters and LDA classifiers
could be used to start the feedback phase of the new sessioediately, without the need to collect
new calibration data.



Subjects aw | al | cm ie ay ch
Classes LF | RF| LF | LR | LR | LR
Ordinary CSP|| 5.0 | 2.7| 11.8] 16.2| 11.7] 6.2
HIST 10.1| 29| 23.0| 26.0| 13.3| 6.9
PROTO 9.9 | 31|215]|26.2|10.0| 114
CONCAT 89 | 27|195|23.7|124| 7.4
Sessions 13 7 4 4 5 4

Table 1. Results of Zero-Training modes. All classificat@mors are given in %. While the ordinary CSP
method uses half of the new session for training, the thradadeHIST, PROTO andCONCAT exclusively
use historic data for the calculation of CSP filters and LDas described on the left side of Eig.3). Amongst
them,CONCAT performs best in four of the six subjects. For subjettayandchits result is even comparable
to that of ordinary CSP.
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Figure 4: Incorporating more and more data from the curression (10, 20 or 30 trials per class), the clas-
sification error decreases for all of the four methods dbedrion the right side of FId.3. The three methods

HIST, PROTO and CONCAT clearly outperform ordinary CSP. Interestingly the besb#eaining method
CONCAT is only outperformed by ordinary CSP if the latter has a héad ef 30 trials per class.

We checked for the validity of this scenario based on the desaribed in sectidd 2. Talile 1 shows
the classification results for the different classificatioathods under the Zero-training validation
scheme. For subjectd, ay andch, the classification error d§ONCAT is of the same magnitude as
the ordinary (training-based) CSP-approach. For the dkinee subjectsCONCAT outperforms the
methodsHISTandPROTO. Although the ideal case is not reached for every subjeetiahle shows
that our proposed methods provide a decent step towardeti@fiZero-training for BCI.

Another way to at least reduce the necessary preparati@nftima new experimental session is to
record only very few new trials and combine them with datafigrevious sessions in order to get
a quicker start. We simulate this strategy by allowing the meethodsHIST, PROTO andCONCAT

to take a look also on the first 10, 20 or 30 trials per class efrtew session. The baseline to
compare their performance would be a BCI system trained amiyhese initial trials. In Fidll4, this
comparison is depicted. Here the influence of the numbeiitidlitraining trials becomes visible. If
no new data is available, the ordinary classification apgrad course can not produce any output,
whereas the history-based methods, EQNCAT already generates a stable estimation of the class
labels. All methods gain performance in terms of smaller éeors as more and more trials are
added. Only after training on at least 30 trials per clagdipary CSP reaches the classification level
thatCONCAT had already shown without any training data of the curresgisa.

Fig[ shows some prototypical CSP filters as detected byABiDstering for subjecal and left
hand vs. foot motor imagery. All filters have small suppos.(imany entries are close to 0), and
the few large entries are located on neurophysiologicaljyartant areas: Filters 1-2 and 4—6 cover
the motor cortices corresponding to imagined hand movesnesiile filter 3 focuses on the central
foot area. This shows that the cluster centers are spatakfihat meet our neurophysiological ex-
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Figure 5: First six CSP prototype filters determined by IBIf@Aal.

pectations, since they are able to capture the frequencgmpowdulations over relevant electrodes,
while masking out unimportant or noisy channels.

6 Discussion and Conclusion

Advanced BCI systems (e.g. BBCI) recently aquired the @hiti dispense with extensive subject
training and now allow to infer a blueprint of the subjeciition from a short calibration session of
approximately 30 min. This became possible through the tiseodern machine learning technol-
ogy. The next step along this line to make BCI more practg#bistrive for zero calibration time.
Certainly it will not be realistic to achieve this goal fobérary BCI novices, rather in this study we
have concentrated on experienced BCI users (with 4 and mesioss) and discussed algorithms to
re-use their classifiers from prior sessions. Note that timsttuction of a classifier that isvariant
against session to session changes, say, due to diffegéiandge, focus or motor imagination across
sessions is a hard task.

Our contribution shows that experienced BCI subjects donecessarily need to perform a new
calibration period in a new experiment. By analyzing the @@Pameter space, we could reveal
an appropriate characterization of CSP filters. Findingtels of CSP parameters for old sessions,
novel prototypical CSP filters can be derived, for which tleeinophysiological validity could be
shown exemplarily. The concatenation of these prototyperdilwith some CSP filters trained on
the same amount of data results in a classifier that not onfpimes comparable to the presented
ordinary CSP approach (trained on a large amount of data fh@same session) in half of the
subjects, but also outperforms ordinary CSP considerabmwonly few data points are at hand.
This means that experienced subjects are predictable txtant¢hat they do not require calibration
anymore.

We expect that these results can be even further optimizegldoyhand selecting the filters for
PROTO, by adjusting for the distribution changes in the new sessog. by adapting the LDA as
presented in 23], or by applying advanced covariate-sbiftpensation methods like [24].

Future work will aim to extend the presented zero trainireitbwards BCI novices.
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