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Abstract

Up to now even subjects that are experts in the use of machine learning based
BCI systems still have to undergo a calibration session of about 20-30 min. From
this data their (movement) intentions are so far infered. Wenow propose a new
paradigm that allows to completely omit such calibration and instead transfer
knowledge from prior sessions. To achieve this goal we first define normalized
CSP features and distances in-between. Second, we derive prototypical features
across sessions: (a) by clustering or (b) by feature concatenation methods. Finally,
we construct a classifier based on these individualized prototypes and show that,
indeed, classifiers can be successfully transferred to a newsession for a number
of subjects.

1 Introduction

BCI systems typically require training on the subject side and on the decoding side (e.g. [1, 2, 3,
4, 5, 6, 7]). While some approaches rely on operant conditioning with extensive subject training
(e.g. [2, 1]), others, such as the Berlin Brain-Computer Interface (BBCI) put more emphasis on the
machine side (e.g. [4, 8, 9]). But when following our philosophy of ’letting the machines learn’, a
calibration session of approximately 20-30 min was so far required, even for subjects that are beyond
the status of BCI novices.
The present contribution studies to what extent we canomit this brief calibration period. In other
words, is it possible to successfully transfer informationfrom prior BCI sessions of the same sub-
ject that may have taken place days or even weeks ago? While this question is of high practical
importance to the BCI field, it has so far only been addressed in [10] in the context of transfering
channel selection results from subject to subject. In contrast to this prior approach, we will focus
on the more general question of transfering whole classifiers, resp. individualized representations
between sessions. Note that EEG (electroencephalogram) patterns typically vary strongly from one
session to another, due to different psychological pre-conditions of the subject. A subject might
for example show different states of fatigue and attention,or use diverse strategies for movement
imagination across sessions. A successful session to session transfer should thus capture generic
’invariant’ discriminative features of the BCI task.
For this we first transform the EEG feature set from each priorsession into a ’standard’ format (sec-
tion 2) and normalize it. This allows to define a consistent measure that can quantify the distance
between representations. We use CSP-based classifiers (seesection 3.1 and e.g. [11]) for the dis-
crimination of brain states; note that the line of thought presented here can also be pursued for other
feature sets resp. for classifiers. Once a distance function(section 3.2) is established in CSP filter
space, we can cluster existing CSP filters in order to obtain the most salient prototypical CSP-type
filters for a subject across sessions (section 3.3). To this end, we use the IBICA algorithm [12, 13]
for computing prototypes by a robust ICA decomposition (section 3.3). We will show that these new
CSP prototypes are physiologically meaningful and furthermore are highly robust representations
which are less easily distorted by noise artifacts.



2 Experiments and Data

Our BCI system uses Event-Related (De-)Synchronization (ERD/ERS) phenomena [3] in EEG sig-
nals related to hand and foot imagery as classes for control.The term refers to a de– or increasing
band power in specific frequency bands of the EEG signal during the imagination of movements.
These phenomena are well-studied and consistently reproducible features in EEG recordings, and
are used as the basis of many BCI systems (e.g. [11, 14]). For the present study we investigate data
from experiments with 6 healthy subjects:aw (13 sessions),al (8 sessions),cm (4 sessions),ie (4
sessions),ay (5 sessions) andch (4 sessions). These are all the subjects that participated in at least
4 BCI sessions. Each session started with the recording of calibration data, followed by a machine
learning phase and a feedback phase of varying duration. Allfollowing retrospective analyses were
performed on the calibration data only.
During the experiments the subjects were seated in a comfortable chair with arm rests. For the
recording of the calibration data every 4.5–6 seconds one of3 different visual stimuli was presented,
indicating a motor imagery task the subject should perform during the following 3–3.5 seconds.
The randomized and balanced motor imagery tasks investigated for all subjects exceptay were left
hand (l), right hand (r), and right foot (f ). Subjectay only performed left- and right hand tasks.
Between 120 and 200 trials were performed during the calibration phase of one session for each
motor imagery class.
Brain activity was recorded from the scalp with multi-channel EEG amplifiers using at least 64
channels. Besides EEG channels, we recorded the electromyogram (EMG) from both forearms and
the right lower leg as well as horizontal and vertical electrooculogram (EOG) from the eyes. The
EMG and EOG channels were exclusively used to ensure that thesubjects performed no real limb
or eye movements correlated with the mental tasks. As their activity can directly (via artifacts) or
indirectly (via afferent signals from muscles and joint receptors) be reflected in the EEG channels
they could be detected by the classifier. Controlling EMG andEOG ensured that the classifier
operated on true EEG signals only.

Data preprocessing and Classification

The time series data of each trial was windowed from 0.5 seconds after cue to 3 seconds after cue.
The data of the remaining interval was band pass filtered between either 9 Hz – 25 Hz or 10 Hz –
25 Hz, depending on the signal characteristics of the subject. In any case the chosen spectral interval
comprised the subject specific frequency bands that contained motor-related activity.
For each subject a subset of EEG channels was determined thathad been recorded for all of the
subject’s sessions. These subsets typically contained 40 to 45 channels which were densely located
(according to the international 10-20 system) over the morecentral areas of the scalp (see scalp maps
in following sections). The EEG channels of each subject were reduced to the determined subset
before proceeding with the calculation of Common Spatial Patterns (CSP) for different (subject
specific) binary classification tasks.
After projection on the CSP filters, the bandpower was estimated by taking the logvariance over
time. Finally, a linear discriminant analysis (LDA) classifier was applied to the best discriminable
two-class combination.

3 A closer look at the CSP parameter space

3.1 Introduction of Common Spatial Patterns (CSP)

The common spatial pattern (CSP) algorithm is very useful incalculating spatial filters for detecting
ERD/ERS effects ([15]) and can be applied to ERD-based BCIs,see [11]. It has been extended to
multi-class problems in [14], and further extensions and robustifications concerning a simultaneous
optimization of spatial and frequency filters were presented in [16, 17, 18]. Given two distributions
in a high-dimensional space, the (supervised) CSP algorithm finds directions (i.e., spatial filters)
that maximize variance for one class and simultaneously minimize variance for the other class. Af-
ter having band-pass filtered the EEG signals to the rhythms of interest, high variance reflects a
strong rhythm and low variance a weak (or attenuated) rhythm. Let us take the example of discrim-
inating left hand vs. right hand imagery. The filtered signalcorresponding to the desynchronization
of the left hand motor cortex is characterized by a strong motor rhythm during imagination of right
hand movements (left hand is in idle state), and by an attenuated motor rhythm during left hand
imagination. This criterion is exactly what the CSP algorithm optimizes: maximizing variance for
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Figure 1: Left: Non-euclidean distance matrix for 78 CSP filters of imaginedleft hand and foot movement.
Right: Scatterplot of the first vs. second dimension of CSP filters after Multi-Dimensional Scaling (MDS).
Filters that minimize the variance for the imagined left hand are plotted as red crosses, foot movement imagery
filters are shown as blue dots. Cluster centers detected by IBICA are marked with magenta circles. Both figures
show data fromal.

the class of right hand trials and at the same time minimizingvariance for left hand trials. Further-
more the CSP algorithm calculates the dual filter that will focus on the area of the right hand and
it will even calculate several filters for both optimizations by considering the remaining orthogonal
subspaces.
Let Σi be the covariance matrix of the trial-concatenated matrix of dimension [channels× con-
catenated time-points] belonging to the respective classi ∈ {1,2}. The CSP analysis consists of
calculating a matrixQ and diagonal matrixD with elements in[0,1] such that

QΣ1Q> = D and QΣ2Q> = I −D. (1)

This can be solved as a generalized eigenvalue problem. The projection that is given by thei-th
row of matrix Q has a relative variance ofdi (i-th element ofD) for trials of class 1 and relative
variance 1−di for trials of class 2. Ifdi is near 1 the filter given by thei-th row of Q maximizes
variance for class 1, and since 1−di is near 0, minimizes variance for class 2. Typically one would
retain projections corresponding to the three highest eigenvaluesdi, i.e., CSP filters for class 1, and
projections corresponding to the three lowest eigenvalues, i.e., CSP filters for class 2.

3.2 Comparison of CSP filters

Since the results of the CSP algorithm are the solutions of a generalized eigenvalue problem, where
every multiple of an eigenvector is again a solution to the eigenvalue problem. If we want to compare
different CSP filters, we must therefore keep in mind that every point on the line through a CSP filter
point and the origin can be identified (except for the origin itself). More precisely, it is sufficient to
consider only normalized CSP vectors on the (#channels-1)-dimensional hypersphere. This suggests
that the CSP space is inherently non-euclidean. As a more appropriate metric between two pointsc1
andc2 in this space, we calculated the angle between the two lines corresponding to these points.

m(c1,c2) = arccos(
c1∗ c2

|c1| ∗ |c2|
)

When applying this measure to a set of CSP filters(ci)i≤n, one can generate the distance matrix

D = (m(ci ,c j))i, j≤n,

which can then be used to find prototypical examples of CSP filters. Fig.1 shows an example of a
distance matrix for 78 CSP filters for the discrimination of the variance during imagined left hand
movement and foot movement. Based on the left hand signals, three CSP filters showing the lowest
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Figure 2: Dendrogram of a hierarchical cluster tree for the CSP filters of left hand movement imagery (dashed
red lines) and foot movement imagery (solid blue lines). Cluster centers detected by IBICA are used as CSP
prototypes. They are marked with magenta arrows.

eigenvalues were chosen for each of the 13 sessions. The samenumber of 3×13 filters were chosen
for the foot signals. The filters are arranged in groups according to their relative magnitude of the
eigenvalues, i.e., filters with the largest eigenvalues aregrouped together, then filters with the second
largest eigenvalues etc.
The distance matrix in Fig.1 shows a block structure which reveals that the filters of each group have
low distances amongst each other as compared to the distances to members of other groups. This is
especially true for filters for the minimization of variancein left hand trials.

3.3 Finding Clusters in CSP space

The idea to find CSP filters that recur in the processing of different sessions of a single subject is
very appealing, since these filters can be re-used for efficient classification of unseen data. As an
example of clustered parameters, Fig.2 shows a hierarchical clustering tree (see [19]) of CSP filters
of different sessions for subjectal. Single branches of the tree form distinct clusters, which are
also clearly visible in a projection of the first Multi-Dimensional Scaling-Components in Fig.1 (for
MDS, see [20]).
The proposed metric of section 3.2 coincides with the metricused for Inlier-Based Independent
Component Analysis (IBICA, see [12, 13]). This method was originally intended to find estimators
of the super-Gaussian source signals from a mixture of signals. By projecting the data onto the
hypersphere and using the angle distance, it has been demonstrated that the correct source signals can
be found even in high-dimensional data. The key ingredient of this method is the robust identification
of inlier points as it can be done with theγ-index (see [21]), which is defined as follows:
Let z∈ {c1, . . . ,cn} be a point in CSP-space, and letnn1(z), . . . ,nnk(z) be thek nearest neighbors of
z, according to the distancem. We then call the average distance ofz to its neighbors theγ-index of
z, i.e.

γ(z) =
1
k

k

∑
j=1

m(z,nnj(z)).

If z lies in a densely populated region of the hypersphere, then the average distance to its neighbors
is small, whereas if it lies in a sparse region, the average distance is high. The data points with the
smallestγ are good candidates for prototypical CSP filters since they are similar to other filters in
the comparison set. This suggests that these filters are goodsolutions in a number of experiments
and are therefore robust against changes in the data such as outliers, variations in background noise
etc.

4 Competing analysis methods: How much training is needed?

Fig.3 shows an overview of the validation methods used for the algorithms under study. The left part
shows validation methods which mimick the following BCI scenario: a new session starts and no
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Figure 3: Overview of the presented training and testing modes for the example of four available sessions. The
left part shows a comparison of ordinary CSP with three methods that do not require calibration. The validation
scheme in the right part compares CSP with three adaptive methods. See text for details.

data has been collected yet. The top row represents data of all sessions in original order. Later rows
describe different data splits for the training of the CSP filters and LDA (both depicted in blue solid
lines) and for the testing of the trained algorithms on unseen data (green dashed lines). The ordinary
CSP method does not take any historical data from prior sessions into account (second row). It uses
training data only from the first half of the current session.This serves as a baseline to show the
general quality of the data, since half of the session data isgenerally enough to train a classifier that
is well adapted to the second half of the session. Note that this evaluation only corresponds to a real
BCI scenario where many calibration trials of the same day are available.

4.1 Zero training methods

This is contrasted to the following rows, which show the exclusive use of historic data in order
to calculate LDA and one single set of CSP filters from the collected data of all prior sessions
(third row), or calculate one set of CSP filters for each historic session and derive prototypical
filters from this collection as described in section 3.3 (fourth row), or use a combination of row
three and four that results in a concatenation of CSP filters and derived CSP prototypes (fifth row).
Feature concatenation is an effective method that has been shown to improve CSP-based classifiers
considerably (see [22]).

4.2 Adaptive training methods

The right part of Fig.3 expands the training sets for rows three, four and five for the first 10, 20 or 30
trials per class of the data of the new session. In the methodsof row 4 and 5, only LDA profits from
the new data, whereas CSP prototypes are calculated exclusively on historic data as before. This
approach is compared against the ordinary CSP approach thatnow only uses the same small amount
of training data from the new session.
This scheme, as well as the one presented in section 4.1, has been cross-validated such that each
available session was used as a test session instead of the last one.

5 Results

The underlying question of this paper is whether information gathered from previous experimental
sessions can prove its value in a new session. In an ideal caseexisting CSP filters and LDA classifiers
could be used to start the feedback phase of the new session immediately, without the need to collect
new calibration data.



Subjects aw al cm ie ay ch
Classes LF RF LF LR LR LR
Ordinary CSP 5.0 2.7 11.8 16.2 11.7 6.2
HIST 10.1 2.9 23.0 26.0 13.3 6.9
PROTO 9.9 3.1 21.5 26.2 10.0 11.4
CONCAT 8.9 2.7 19.5 23.7 12.4 7.4
Sessions 13 7 4 4 5 4

Table 1: Results of Zero-Training modes. All classificationerrors are given in %. While the ordinary CSP
method uses half of the new session for training, the three methodsHIST, PROTO andCONCAT exclusively
use historic data for the calculation of CSP filters and LDA. (as described on the left side of Fig.3). Amongst
them,CONCAT performs best in four of the six subjects. For subjectsal, ayandch its result is even comparable
to that of ordinary CSP.
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Figure 4: Incorporating more and more data from the current session (10, 20 or 30 trials per class), the clas-
sification error decreases for all of the four methods described on the right side of Fig.3. The three methods
HIST, PROTO andCONCAT clearly outperform ordinary CSP. Interestingly the best zero-training method
CONCAT is only outperformed by ordinary CSP if the latter has a head start of 30 trials per class.

We checked for the validity of this scenario based on the datadescribed in section 2. Table 1 shows
the classification results for the different classificationmethods under the Zero-training validation
scheme. For subjectsal, ay andch, the classification error ofCONCAT is of the same magnitude as
the ordinary (training-based) CSP-approach. For the otherthree subjects,CONCAT outperforms the
methodsHISTandPROTO. Although the ideal case is not reached for every subject, the table shows
that our proposed methods provide a decent step towards the goal of Zero-training for BCI.
Another way to at least reduce the necessary preparation time for a new experimental session is to
record only very few new trials and combine them with data from previous sessions in order to get
a quicker start. We simulate this strategy by allowing the new methodsHIST, PROTO andCONCAT
to take a look also on the first 10, 20 or 30 trials per class of the new session. The baseline to
compare their performance would be a BCI system trained onlyon these initial trials. In Fig. 4, this
comparison is depicted. Here the influence of the number of initial training trials becomes visible. If
no new data is available, the ordinary classification approach of course can not produce any output,
whereas the history-based methods, e.g.CONCAT already generates a stable estimation of the class
labels. All methods gain performance in terms of smaller test errors as more and more trials are
added. Only after training on at least 30 trials per class, ordinary CSP reaches the classification level
thatCONCAT had already shown without any training data of the current session.
Fig.5 shows some prototypical CSP filters as detected by IBICA clustering for subjectal and left
hand vs. foot motor imagery. All filters have small support (i.e., many entries are close to 0), and
the few large entries are located on neurophysiologically important areas: Filters 1–2 and 4–6 cover
the motor cortices corresponding to imagined hand movements, while filter 3 focuses on the central
foot area. This shows that the cluster centers are spatial filters that meet our neurophysiological ex-
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Figure 5: First six CSP prototype filters determined by IBICAfor al.

pectations, since they are able to capture the frequency power modulations over relevant electrodes,
while masking out unimportant or noisy channels.

6 Discussion and Conclusion

Advanced BCI systems (e.g. BBCI) recently aquired the ability to dispense with extensive subject
training and now allow to infer a blueprint of the subject’s volition from a short calibration session of
approximately 30 min. This became possible through the use of modern machine learning technol-
ogy. The next step along this line to make BCI more practical is to strive for zero calibration time.
Certainly it will not be realistic to achieve this goal for arbitrary BCI novices, rather in this study we
have concentrated on experienced BCI users (with 4 and more sessions) and discussed algorithms to
re-use their classifiers from prior sessions. Note that the construction of a classifier that isinvariant
against session to session changes, say, due to different vigilance, focus or motor imagination across
sessions is a hard task.
Our contribution shows that experienced BCI subjects do notnecessarily need to perform a new
calibration period in a new experiment. By analyzing the CSPparameter space, we could reveal
an appropriate characterization of CSP filters. Finding clusters of CSP parameters for old sessions,
novel prototypical CSP filters can be derived, for which the neurophysiological validity could be
shown exemplarily. The concatenation of these prototype filters with some CSP filters trained on
the same amount of data results in a classifier that not only performs comparable to the presented
ordinary CSP approach (trained on a large amount of data fromthe same session) in half of the
subjects, but also outperforms ordinary CSP considerably when only few data points are at hand.
This means that experienced subjects are predictable to an extent that they do not require calibration
anymore.
We expect that these results can be even further optimized bye.g. hand selecting the filters for
PROTO, by adjusting for the distribution changes in the new session, e.g. by adapting the LDA as
presented in [23], or by applying advanced covariate-shiftcompensation methods like [24].
Future work will aim to extend the presented zero training idea towards BCI novices.
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