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ABSTRACT

The Berlin Brain-Computer Interface (BBCI) project is guided
by the idea to train a computer using advanced machine
learning and signal processing techniques in order to im-
prove classification performance and to reduce the need of
subject training. Instead of having the human adapt to a pre-
defined feedback that is computed from a fixed set of fea-
tures, the BBCI adapts to the user’s brain waves by learning
(’let the machines learn’). One aspect of the BBCI is the
capability of giving fast-response feedback. This was in-
vestigated in keyboard typing paradigms with self-paced as
well as reactive finger movements in a time critical task.
In both settings a prediction of the laterality of upcoming
movements was possible before EMG onset.

1. INTRODUCTION

A brain-computer interface (BCI) is a communication chan-
nel from a human’s brain to a computer which does not re-
sort to the usual human output pathways as muscles, [1]. A
BCI could, e.g., allow a paralyzed patient to convey her/his
intentions to a computer program. But also applications
in which healthy users can benefit from the direct brain-
computer communication are conceivable, e.g., to speed up
reaction times.

In the setting of man-machine interfaces, there are two
different adapting systems involved: the operator and the
computer. One approach to BCI technology is therefore to
rely on the ability of the human brain to adapt quickly to
new tasks. The strategy confronting the user with a biofeed-
back can take months until it reliably works [2].

The BBCI pursues another objective in this respect, i.e.,
to impose the main part of the learning task on the machine.
Modern machine learning techniques allow for extracting
relevant information from high-dimensional noisy data like
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multi-channel EEG, even in a small sample statistics sce-
nario, and offer ample possibilities for incorporating neuro-
physiological characteristics of the data [3].

Below, we report on experiments where the lateralized
readiness potential (LRP) can be used to classify a motor
task before the actual movement even in time critical situ-
ations. Combination strategies for using lateralized move-
ment potentials and the ERD approach [4] that lead to promis-
ing results are discussed elsewhere, see [5].

2. EXPERIMENTAL PARADIGM

Before accomplishing motor tasks, a negative readiness po-
tential can be observed at the scalp, reflecting the prepa-
ration. Multi-channel EEG-recordings of unilateral finger
movements show that this negative shift originates on the
frontal lobe in the area of the corresponding motor cortex,
i.e., contralateral to the performing hand, cf. [6]. Based on
the laterality of the pre-movement potentials it is possible
to discriminate multi-channel EEG recordings of upcoming
left from right hand movements.

We investigated the LRP in two different experimental
settings. In an earlier study we recorded spontaneous mo-
tor activity during self-paced finger movements where the
subjects performed the typing on a computer keyboard with
their index and little fingers in a deliberate order and on their
own pace. We were able to classify the pre-movement po-
tentials of left vs. right hand finger movements before EMG
onset, cf. [3]. These findings suggested that it might be pos-
sible to use a BCI system to enhance reaction times in time
critical applications.

To pursue this idea further we designed another experi-
ment where subjects had to react with finger movements in
a “d2”-test. 8 healthy subjects had to respond as quickly as
possible to targets with a keypress with the right index fin-
ger and to non-targets with the left index finger. A target
is a visual stimulus consisting of the letter “d” with exactly
two horizontal bars that may occur in four possible positions
each, while non-targets either have the letter “b” or show a
wrong number of bars. The experiments, which were per-
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Fig. 1: The figure on the left shows the averaged readiness poten-
tial in the case of spontaneous selfpaced (grey) and reactive (dark)
finger movement. The figure on the right indicates the distribution
of the continuous classifier output in both experimental settings,
see text for details.

formed on one day, comprised 400–500 keypresses per fin-
ger with a distance of 2 seconds. It turned out that with our
LRP-based approach ([7, 3]) it was possible to distinguish
the pre-movement potentials between the classes “left” and
“right” before EMG onset even in this reaction time task.
Besides multi-channel EEG, surface EMG at both forearms
was recorded to determine EMG onset.

3. RESULTS

On the left side of Fig.1, the EEG signals at channel C3,
averaged over all “right” trials of subject aa, show LRPs for
both experimental settings. For self-paced typing the neg-
ative shift in this subject starts 800 ms before the keypress.
The reactive potential, as produced in the time-critical d2
experiment, starts just 250 ms before the keypress.

The right side of Fig.1 shows the distribution of the con-
tinuous output of our classifier (traces), which was trained to
output negative values for left and positive values for right
hand trials. To determine the classifier trace to one trial for
this analysis, we train the classifier on all other trials (leave-
one-out methodology) and then apply it to a window that is
sliding over the test trial. The end point was varied between
-1000 and 500 ms. After doing this for all trials we deter-
mine the distribution of classifier outputs for each time point
separately for classes “left”and “right”. The figure shows
the range between 15 and 85 percentile (shaded) and the
median (line). In the classifier output for the spontaneous
movements, we note that the traces of both means for “left”
and “right” trials are diverging already from the beginning,
such that 350 ms before the keypress, even the 85-percentile
tubes are separated, whereas in the reactive movement the
tubes are still indistinguishable at this point in time. How-
ever, 100 ms before the keypress, a separation of the tubes
becomes apparent. This indicates a robust classification of
the laterality of the movement already at this point in time.

While the BCI system will use only EEG signals, we
analyzed the EMG classification to determine the average
point in time of EMG onset for every subject. At that point,
we calculated the EEG classification results (table 1), so that

aa ab ac ad ae af ag ah ∅

cl 12.8 16.8 9.4 14.8 25.7 26.3 12.5 27.7 18.3
os -80 -70 -110 -100 -100 -120 -120 -110

Table 1: The first row shows for 8 different subjects the classi-
fication error (left vs. right hand, cl) and their mean in percent
on a 10× 10-fold cross validation on LRP features using linear
discriminant analysis with regularization (RLDA) in the “d2”-
experiments; the second row shows the point in time for EMG
onset (os), which is the rightmost point for the EEG classification
window of each subject.

only EEG data prior to EMG onset were used for classifica-
tion.

4. DISCUSSION

The use of readiness potentials for early classification of
motor tasks even before the actual EMG onset was exempli-
fied with classification on data from different experimental
setups. These properties of the readiness potential confirm
its value for the use in time-critical BCI applications.
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