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Abstract

We introduce Focal Vector Field Reconstruction (FVR), a novel technique for the
inverse imaging of vector elds. The method was designed toimultaneously achieve
two goals: a) invariance with respect to the orientation of the coordinate system, and
b) a preference for sparsity of the solutions and their spatl derivatives. This was
achieved by de ning the regulating penalty function, which renders the solutions
unigue, as a global 1-norm of local ",-norms. We show that the method can be
successfully used for solving the EEG inverse problem. In th joint localization of

2-3 simulated dipoles, FVR always reliably recovers the truesources. The competing
methods have limitations in distinguishing close sources écause their estimates are

either too smooth (LORETA, Minimum »-norm) or too scattered (Minimum -
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norm). In both noiseless and noisy simulations, FVR has the mallest localization
error according to the Earth Mover's Distance (EMD), which is introduced here
as a meaningful measure to compare arbitrary source distribtions. We also apply
the method to the simultaneous localization of left and right somatosensory N20
generators from real EEG recordings. Compared to its peers ¥R was the only
method that delivered correct location of the source in the smatosensory area of

each hemisphere in accordance with neurophysiological @t knowledge.

Key words: EEG/MEG, Inverse Problem, Source Localization, Second-Orer
Cone Programming, " 1-norm Regularization, Sparsity, Vector Fields, Rotational

Invariance

1 Introduction

Precise localization of neuronal activity is an important aspct for a better
understanding of brain functioning. Several functional imging methods have
been developed for investigating this issue, including SingRhoton Emission
Computed Tomography (SPECT), Positron Emission Tomography (ET) and
functional Magnetic Resonance Imaging (fMRI). These technigs provide
high spatial resolution of brain activity using metabolic indcators such as
blood oxygenation level (fMRI) or the concentration of radhactively marked
substances (SPECT/PET) in the tissue. Due to the slow response of the
metabolism, however, these measures cannot be used to assess rapatying
neuronal activity in a range of few milliseconds. Apart from mesuring direct

neuronal activity, Electroencephalography (EEG) and Magetoencephalogra-
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phy (MEG) allow very accurate reconstruction of the time cowe of neuronal
signals with a microsecond precision (Nunez and Srinivasan, 2p0Obnpor-
tantly both techniques are noninvasive, and do not interferevith neuronal
activities. However, the signal arriving at the sensors containsontributions
from all areas of the brain, as well as external noise. The faavd mapping
from cerebral sources to sensors is well-de ned and can be ddsedi mathe-
matically with the help of a suitable model of the head. Infeing the sources
that lead to a certain measurement, on the other hand, is impo&de, as in-
nitely many source con gurations will ful Il the forward eq uation. In other

words, the inverse problem is ill-posed.

One strategy to still obtain a unique solution to the inverse prolem is to
regularize, i.e. to restrict the search space to a su ciently simige class of
sources. A common approach is to assume that the measured scalp eatthas
been generated by dipolar (point-like) sources (Scherg andrvCramon, 1986;
Mauguere et al., 1997; Komssi et al., 2004; Huttunen et al., 2®). Respective
approaches model a small number of dipoles, where the optimaimber has to
be known in advance. The inversion is carried out by solving awverdetermined
nonlinear system in a least-squares sense. Unfortunately, the castdtion of
dipole ts is highly nonconvex and the obtained solution dep&ls heavily on
the initialization. Additionally, dipolar sources can be a por approximation
if, e.g., the true sources are spatially extended and orientedrmal to a folded

cortical surface.

An approach related to dipole tting is dipole imaging. Imagng methods
model a large but xed number of dipoles. These are arranged inragular
grid covering the whole brain (or optionally just the corticd areas). Inferring

the dipole current vectors requires solving a heavily undeetermined system,



in which the ful llment of the forward equation constitutes only a constraint.

Several methods tackle the underdetermined nature of the qgdslem by incor-
porating additional information. Very often temporal strudure in the signal
is used, as for example in beamforming (Veen and Buckley, 1988ubspace
methods like MUSIC and (RAP)MUSIC (Schmidt, 1986; Mosher and Léw,

1999) and the methods proposed in (Baillet and Garnero, 1994uang et al.,
2006; Malioutov et al., 2005; Cotter et al., 2005; Polonsky @nZibulevsky,
2004). The approach of Dale and Sereno (1993) imposes anatahconstraints
obtained from MRI on the sources. A general overview on inversesthods for

EEG and MEG is given by Baillet et al. (2001).

In this paper we focus on the situation in which only the scalp gtern at
one time point is available. In this case, imaging methods havo de ne an
additional quality criterion in order to obtain a unique soltion. Ideally, this
regularizing criterion should encode prior knowledge on haa\good" solution
looks like. We here assume that a) brain sources are focal and vezjuest
b) invariance with respect to rotations of the coordinate systa. Standard
Minimum " ,-norm solutions, weighted or not, are either rotationally inariant
but highly non-focal (p=2) or focal but violating rotational invariance (p=1).
We will propose an alternative consisting of a globak-norm of local " ,-norms
which ful lls both goals simultaneously. Local ,-norms can be calculated both
of the sources (as in \standard" Minimum ",-norm solutions and of their
second order spatial derivatives (as in LORETA). We here suggesb use a
speci ¢ combination of the two, relaxing the strict focality requirement in

favor of a more robust \simplicity" requirement.

This paper is organized as follows. In section 2 we will rst givan overview

of existing methods and then we will present the mathematicaledails of our



method. In section 3 we show illustrative examples in a simple cstructed one-
dimensional scenario, followed by detailed simulated examplef EEG inverse
calculations and a case study using real EEG data from electridrsiulation of

left and right median nerve. We nally discuss the results and ge a conclusion

in sections 4 and 5, respectively.

2 Materials and methods

2.1 Inverse imaging

Let x 2 RM denote a scalp pattern measured aM EEG or MEG sen-

sors. The current density in the brain is modeled b\ dipolar sourcesd; =

moments. As the relationships between source currents and EEGEG mea-
surements are linear, the forward equation just reads = Ls in both cases.
The matrix L is called lead eld matrix. It comprises information about ge
ometric and conductive properties of the tissue. We will assunie to have
maximal rank, that is for EEG the reference electrode is noincluded in x
and L. If we require that the estimated solution explains the data eactly, the

inverse solution for an imaging methods can be cast as
8§ =arg msin f(s) st. x=1Ls; (1)

wheref de nes the imaging method. The choice df choice crucially a ects the

shape of the estimated source distribution, as there are much lesmstraints



on s than degrees of freedom.

For practical reasons it is desirable to choosk to be convex, as only then
numerics guarantees to nd the best solution. Important conwe functions in
this context are " ,-norms. Minimizing a norm ofs is reasonable, since unnec-
essarily complicated source con gurations (e.g. sources witpmosite moment
at nearby locations) are avoided. The rst approach along thesknes used
the ",-norm and its solution is traditionally called Minimum Norm Estimate
(MNE, Hamalinen and llmoniemi, 1994, extending their 198 technical re-
port). However, signal attenuation in the tissue causes this medll to under-
estimate deep sources. A method known as sLORETA (Pascual-Margga002)
overcomes the problem by standardizing the MNE and is proven tecover the
location of a single point source exactly in the absence of measmnent noise. A
variety of so-called Weighted Minimum Norm Estimate (WMNE) appoaches
employ weighting matrices for depth compensation (Je s et gl1987; Kehler
et al., 1996). One particular method is LORETA (Pascual-Margi et al., 1994),
which searches for the smoothest current density explaining trdata. Mini-
mum ",-norm methods have the desirable property that they are lineai.e.
their solutions are obtained by simply multiplying a precalclated pseudoin-
verse matrix to the measurement vector. These solutions, howeyend to be
smeared, making it di cult to separate distinct close sources. Th@ccurrence

of spurious \ghost sources"” is another problem of linear methods.

Smoothness related problems are addressed by Minimuginorm solutions,
also referred to as Minimum Current Estimates (MCE, Matsuura ad Okabe,
1995). These solutions are sparse, which seems to be congruenhwhie as-
sumption that only a few narrow regions of the brain are activén a certain

experimental condition. This argument has also been used tosjify the FO-



CUSS algorithm (Gorodnitsky et al., 1995), which provides ewesparser solu-
tions by implicitly minimizing " ,-quasinorms p < 1). Sparse imaging methods
usually do not model any spatial relation between dipoles, whiacauses their
solutions to be scattered. For example, such a method may explaa single
dipolar source located o -grid by several disconnected dipa€see Figs. 3 and
4). The spatial scattering problem can be alleviated by averagyy the sparse
inverse solutions at di erent time points (Uutela et al., 1999) assuming that

the source con guration is stable over time.

Another issue with many sparse approaches is that they do not taketo
account the vectorial nature of currents. As a result, the origation of the
estimated dipoles are often axes-parallel, as one or two. Seeéechniques are
used to alleviate this problem. One possibility is to a-priori x the orienta-
tions in a meaningful way. In Uutela et al. (1999) the dipole aentations are
taken from MNE, while dipole amplitudes are minimized usingi;-norm. A
much more complicated approach is suggested in Huang et al. (BpOwhere
activity in a voxel is discouraged, if the orientation of the MNE solution in the
respective voxel is close to one of the coordinate axes. In coaliy-constrained
approaches (Dale and Sereno, 1993; Kincses et al., 2003) tipare usually
oriented perpendicular to the cortical surface, modeling #hapical dendrites
of pyramidal neurons, which are known as the main generatorg$ oortical
EEG/MEG. This approach, however, requires very precise kndadge of the
cortical geometry, as small changes of the normal vector catready lead to

considerably di erent forward equations.



2.2 Focal Vector Field Reconstruction (FVR)

Many real-world signals possess a sparse structure, i.e. they canexpressed
by a linear combination of a few basis functions. This concepthk been utilized
in Basis Pursuit (BP, Chen et al., 1998), where a time series is @@ximately
represented by a small number of Gabor functions from an overoplete dic-
tionary. Other authors have used sparsity for image denoising (Rlin et al.,
1992) and reconstruction (Compressive Sensing, Candes et a00@). In the
regression and classi cation context, ;-norm regularization leads to sparse
coe cients (Bennett and Mangasarian, 1992; Tibshirani, 1996Graepel et al.,
1999). In inverse imaging, predominantly sparsity in the \natwal" basis of
unit impulses has been considered so far, although other bases/rha as well
useful. We reason, that plausible source estimates should have #atigely
simple structure. This is the case for functions with sparse secomtgriva-
tives, which, in one dimension, are just the piecewise linear fations. In our
proposed approach, we impose sparsity of the current density aslivaes spar-
sity of its second spatial derivatives. Sources ful lling both or criteria will be
mainly zero, except for a minimal number of continuous pat@s. Interestingly,
this approach has structural similarity to the fused lasso algahm recently
proposed in statistics (Tibshirani et al., 2005), which also corggrs a joint

regularization in two bases.

Discrete Laplace operator

For calculating discrete second derivatives, we consider the pilacian rather
than the full 3 3 Hessian. The Laplacian has the advantage of rotational

invariance, compared to other local operators. Assume the brato be seg-



mented into voxels of sizén, the activity in each is represented by a dipole in

the center. TheN N operator is given by

(N N) _
Di;J -

1 kri rikz=h (2)

8
% if kjkri riko=hgj i=]
1
hz%

0 else |,

,(,N ) is equal to the number of voxels adjacent to

i.e. each diagonal entryD
voxeli. With this de nition nonzero currents at the boundary are nd necessar-
ily penalized. This is important, as cerebral activity measted by EEG/MEG
can often be expected to originate from cortical structures. Ne that, in con-
trast to FVR, LORETA (Pascual-Marqui et al., 1994) uses a de nition with
6 on the diagonal, regardless of the number of adjacent voxeWhile this
choice makes the Laplacian non-singular, which is a preregite for the an-

alytical inversion carried out by LORETA, it also practically prohibits the

correct localization of super cial sources.

Laplace- Itering is done separately for each moment of the cent density.
Hence, the full 3N 3N operator can be written asD = DN N) |G 3)
with 1 (K K) peing theK K identity matrix and  denoting the Kronecker

product.

Depth compensation

We conduct a depth compensation, that is inspired by the post-tvocur-
rent standardization of sSLORETA (Pascual-Marqui, 2002). Moreprecisely,

we make use of the source covariance estimate derived in therdiich is de-



nedby §= LT LLT 'L 2 R™ 3N with L = L for MEG and L = HL
for EEG, whereH =1 117=1T1 2 RM M js the centering matrix and1 a
column vector of ones. LewV; denote the 3 3 matrix square root of the part
of S belonging to theith dipole. We include theW; as penalties in the cost
function of FVR, i.e. we penalize large currents at positionsit high a-priori
uncertainty. This approach di ers from the one used in Pascuallarqui (2002)

in that allows to standardize not only current power, but vecbrial currents.

Cost function of FVR

A central aspect of our method is the way sparsity of the current ehsity
is enforced. We propose to minimize the;-norm of the current amplitudes,
rather than the individual moments of the current vectors. Wih this choice,

rotational invariance of the FVR solution is guaranteed. Lets; 2 R® denote

t; = ti(s) 2 R® denote the moment of the Laplacian of the source eld at the

ith voxel. Then the FVR optimization problem takes the followng form

(&

. N
&R = arg min KW,sik, + kWitiks
i=1 =1

3)

s.t. X = Ls:
Formulations like Eq. (3), which involve sums of ,-norms generally arise when-
ever joint sparsity of groups of variables is desirédd While we arrive at the

1 Note that in Eq. (3) it is not possible to replace the inner “»-norms by their
squared counterparts without losing the sparsity property. This is easily understood,

as a sum of squared »-norms is nothing but a global “»-norm, which is known for

10



FVR objective from a rotational invariance requirement, thé concept has also
been used for regression (Yuan and Lin, 2006) and sparse spatiopamnal de-
compositions (Malioutov et al., 2005). Minimizing sums of,-norms is harder
than traditional ";-norm or ",-norm minimization, although not substantially.
While the latter problems are solved by linear and quadraticq@grams, respec-
tively, Eg. (3) can be cast as an instance of Second-Order Consgramming,
(SOCP, see e.g. Lobo et al., 1998). SOCP problems are also caraed thus
unambigously solvable (Boyd and Vandenberghe, 2004). By inttlucing aux-

iliary variables u and v, Eq. (3) can be rewritten using SOC constraints

&R = arg min : u + a Vi
SV =1 i=1
s.t. kWisik, u;; i=1;:::;N
(4)
kWitik, v i=1;:::;N
X =Ls:

Rotational invariance

If the coordinate system is rotated by an orthogonal matriXxJ, the lead eld

L and the sourcess are transformed as

Lt LOT Ly (5)
s! Os sy (6)

where
0 1NNy (7)

producing nonsparse estimates (as in WMNE and LORETA).
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is the rotation operator for all voxels. Then
1 1
S=LT LLT "L! L] Lyl TLy=080T (8)

and the block diagonal entries of the square root & transform as

P

W, ! USUT TC=U SUT = UWUT: @)

Now, Eq. 3 is rotationally invariant since a)
kWisk 'k UWUTUsk = kW,sik (10)

and b) the same holds fokW;t;k because the Laplacian is a scalar di erential
operator and the rotation is independent of space (i.e. the muent of each

voxel is rotated identically).

Note that a rotation of the coordinate system must be distinguishefrom a
rotation of the grid. Invariance with respect to the former isexactly ful lled

implying that the method itself does not prefer speci c source r@entations.
Rotational invariance of the latter is an approximation limted by the discrete
approximation of the Laplacian, however with negligible irpact for small voxel

distances.

Computational cost

At present, the computational requirements of FVR are quite gh. For the
7mm grid used in our experiments (amounting to 6249 dipoles)nanverse
calculation (M  100) took approximately 45 min on a single-processor com-
puter (2 GHz clock rate, 2 GB memory), compared to 3 min for MCEFor a
coarser grid with 1 cm inter-voxel distances (2142 dipoles), ¢htime required

by FVR was only 4 min on the same machine.

12



Several options for accelerating the computation exist. A ogiderable speedup
may already be achieved by reducing the number of constraintsing Trun-
cated Singular Value Decomposition (TSVD, see below) of the kkaeld. Fur-
thermore, the currently used generic solver (Sturm, 1999) cloube replaced
by a specialized algorithm. Parallel implementations as thene described in
Nakata et al. (2006) are also conceivable; this, however, goes/bnd the scope

of this contribution.

Measuring accuracy of reconstruction results

In order to assess the quality of source reconstructions, we hereopose to
measure the disagreement of the simulated and the estimated dipampli-
tudes by means of the Earth Mover's Distance (EMD, Rubner et gl2000).
This quantity is suitable for comparing distributions with possibly nonoverlap-
ping support, for which a distance measure in the domain space igdable.
In the case of EEG/MEG inverse solutions the Euclidean distanceebween

dipoles provides such a measure.

To understand the Earth Mover's Distance, consider that for a gen source
distribution the amplitude at each voxel is divided into a hug@ number of
units 2 with tiny and xed amplitude. Two source distributions have the same
total number of units. One can now transform the rst source into he second

source by moving the units of the rst source to match those of the send

2 For a formal de nition of the Earth Mover's Distance, no divi sion into units is
necessary. This was just introduced here to give the reader better intuition. The
exact de nition of EMD along with an e cient algorithm for it s computation is

provided in Rubner et al. (2000).
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source. The average distance the units have to be transportedpdsds on
the speci ¢ transformation we choose. The minimum average distee (aver-
aged over all units and minimized over all possible transformiains) de nes
the EMD. The idea of using this metric in this context is that it provides a
meaningful measure for arbitrary types of source distributioqn We can, e.g.,
compare a few dipole solution with highly distributed sources ithout hav-

ing to worry which local maximum corresponds to which dipolegr we can

compare a 3-dipole solution with a 2-dipole solution in a meargful way.

3 Results

3.1 lllustration

[Fig. 1 about here.]

Fig. 1 illustrates the main properties of the inverse methods@RETA and
MCE compared to that of FVR. The current density domain was de red to
be a straight line of 300 scalar sources. Three source con gurat&) consist-
ing of either three Hanning windows, two boxcar windows or a site sine
wave, were simulated. Source reconstruction was performedsbd on noise-
free \measurements”, which were obtained by smoothing and subsplimg the
sources. Apparently, only FVR is able to recover the exact numbef sources
in all three cases. LORETA is not able to distinguish all three soges in the
Hanning example. Instead, one estimated source is placed exadtl between
two true sources. MCE estimates consist of spikes, the number anddtions

not always being in line with the true source con guration.
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[Fig. 2 about here.]

In Fig. 2 the e ect of enforcing sparse current amplitudes is liistrated on
the basis of two simulations. The sources were modeled as a straityhe of
100 two-dimensional vectors. In one case we simulated two soureeth Han-
ning window envelopes. In the other example, two boxcar winds were used.
All vectors belonging to the same source had equal orientatiofien pseudo
measurements were constructed from the source vectors by meahtowpass-
Itering. Note, that for this example the "forward solution” h as no physical
origin. It was just constructed to contain essential features atal EEG/MEG
forward mappings in a simple one-dimensional case and for illtetion pur-
poses only. In the examples shown, MCE source estimates accogdio Mat-
suura and Okabe (1995) are all parallel to one of the two axes. tontrast to
that, the modi ed version minimizing the ";-norm of vector amplitudes recov-
ers the original orientations very well, while being even spser. Finally, the
additional sparsity of the amplitudes of the Laplacian remowethe problem of

source scattering.

3.2 Simulated dipoles

We conducted simulations in a realistic volume conductor usintpe publicly
available Montreal head (Holmes et al., 1998) with three shsli(brain, skull,
skin). Grids with 7mm and 10mm voxel distances were constructddlly inside
the inner shell. The forward problem in a realistic head model ag solved
using semi-analytic expansions of the electric lead elds (N@tand Dassios,
2005). We simulated four source con gurations, consisting of air two or

three dipoles located at random o -grid positions. In each exaple, either

15



the sagittal or the axial coordinate was the same for all dipate The dipoles
moment vectors had random orientation and unit amplitude. Hpothetical
EEG patterns were constructed by carrying out the forward caulation for
118 standard electrode positions. We investigated the noiselesse as well as
the case in which the pattern was superimposed by Gaussian whiteis@ In
each example, the signal-to-noise ratio, de ned by signal strgth and noise
standard deviation averaged over all channels, was set to 5. érge imaging
solutions were computed according to WMNE, LORETA, MCE (accorithg to
Matsuura and Okabe (1995)) and FVR. For WMNE and MCE the sLORETA-
based weighting, as well as the standard approach of weightiegch moment

with the ",-norm of the corresponding column of was used.

In the presence of noise, a relaxation of the hard constraint= Lsis advisable.
Most commonly, Truncated Singular Value Decomposition is useidr doing

so, while a di erent option may be given by quadratic constrain

KLs xk, (11

In TSVD, perfect reconstruction is requested only in the space spaed by the
right-singular vectors ofL belonging to thek largest singular values. This has
the consequence that only the low-frequency components oktkcalp pattern
have to be explained, as these contain the most variance. In ¢@st, the con-
straint (11) equips the inverse method with maximal exibility to \smoothen™
the pattern. We therefore adopted this approach and minimed the cost func-
tion of each inverse method subject to Eq. (11). This resulted iall cases
in convex problems, which were solved exactly using an iteraéivalgorithm
(Sturm, 1999). We set based on our prior knowledge of the noise level, i.e.

= kxk,=5. In other words, the deviation of the model and the measured

16



electric potential was adjusted to be consisted with statisticagéxpectations.

The tradeo between sparsity and simplicity of the FVR solution iscontrolled
by means of the model parameter. The choice of does not a ect the quality
of t of the solutions. For the experiments reported in this pagr was set to

10 2 cn?, i.e. we regarded sparsity more important than simplicity.

[Fig. 3 about here.]

[Fig. 4 about here.]

3.3 Somatosensory Evoked N20

To provide a real world example as a proof of concept, we reded 113-
channel EEG of one male subject (26 years) during electrical dian nerve
stimulation. EEG electrodes were positioned according to thmternational
10-20 system and their spatial position was obtained using a 3D diger.
The electrode positions were mapped later onto the surface dfet Montreal
head and forward calculations were performed. EEG data werecorded with
sampling frequency of 2500 Hz, and digitally bandpass- Itereddiween 15 Hz
and 450 Hz. For the following analysis the data was decimated t®50 Hz.
Left and right median nerves were stimulated in separate bloskby constant
square 0.2 ms current pulses with intensities of approx. 9 mA (alee motor
threshold). The inter-stimulus interval varied randomly betveen 500 and 700
ms. About 1100 trials were recorded for each hand. The study wappaoved

by the local Ethics Committee of the Charite, University Medicine Berlin.

Electrodes were excluded from the analysis if standard deviah at these

17



electrodes exceeded 50V. The remaining 106 channels were segmented into
epochs in a time interval from -100 ms to 70 ms relative to the istulus on-
set. Baseline correction was based on the mean amplitude in theegtimulus
interval (-100 ms to -10 ms). An epoch was rejected from the awaging, if its
amplitude was more than 10QuV in either the prestimulus or poststimulus
interval (10 ms to 70 ms). After this, at leastl = 973 epochs remained in each
class. These epochs were averaged separately for the left andhtrignedian
nerve stimulation. Visual inspection of the averaged signals realed that the
peak time of the N20 de ection was approximately at 21 ms. Fig. Shows
both the average time courses of both conditions, as well as theerage po-
tential patterns at this time. A combined pattern was creaté by arithmetic

summation of the patterns related to left and right N20.

[Fig. 5 about here.]

We inverted the single left and single right as well as the summaeghttern,

amounting to a (joint) localization of the left and right N20 generators. The
methods tested were LORETA, MCE and FVR. For MCE, the sLORETA-
based depth compensation was employed. All three methods weexjuired
to provide the same quality of t. The regularization parameer was set to
kSE(X )ko=kxk,, where X is the m 973 matrix containing the left, right

and summed trials, respectively, and SE{) is the m 1 vector of electrode

standard errors.

[Fig. 6 about here.]

In cases like above, where the presence of more than one sourgalisated, an
automatic decomposition of the estimated current density is d&able. In the

case of sparse solutions, such a decomposition is easily obtaineddoyputing
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the connected components (with respect to the grid neighboobd relation) of

the set of dipoles having nonzero estimated amplitude.

[Fig. 7 about here.]

3.4 Quantitative performance analysis

We also performed a quantitative comparison of the inverse soiohs. For that

purpose, source localization was repeatedly performed witha 5 5 crossval-
idation, i.e. for each localization task the following proadure was carried out
ve times. The channels were randomly divided into ve sets ofgual size. For

each union of four sets, inverse solutions were computed.

The patterns to be inverted were grouped into the N20 evoked famtial, the
noiseless and the noisy simulated patterns. For the simulations clalization in
terms of the Earth Movers distance was considered the ultimagerformance
measure. Apart from localization, we de ned a number of perfarance criteria
that do not rely on explicit knowledge of the true sources. Thesmclude
sparsity, de ned as the fraction of dipoles with (close to) zeramplitude. The
generalization error of a crossvalidation run was de ned as ¢hmean squared
di erence of the measurement at those channels, which were takeut for the
source estimate, and the prediction for these channels based be estimated
source distribution. Finally, stability of the solution was assesseas the sum of
the variances of the dipole moments over the 25 crossvalidatiouns. Table 1
lists the results of the numerical analysis. Mean and standard ems (SE) were
computed across the experiments of a group and the crossvalidat runs. As

stability aggregates information of all runs, mean and SE wer@ken across
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experiments only for this measure.

[Table 1 about here.]

4 Discussion

In the simulations, FVR outperformed the other methods with signcantly
better localization in both the noiseless and the noisy case. Ihé noiseless sim-
ulations, FVR also had by far the highest stability and generalizson perfor-
mance. In the presence of noise (simulations and N20 localizafipthis advan-
tage became insigni cant for generalization (on par with SLOETA weighted
MCE) and vanished for stability. Here, WMNE and LORETA achieved he
best scores, followed by FVR. High stability seems, however, less \alle in
conjunction with a large localization bias, as it is indicatd for these methods
in Table 1. The sLORETA weighted MCE outperformed all other m&éhods
signi cantly in terms of sparsity, which was above 99 % on averag Column-

norm weighted MCE and FVR were, however, also very sparse (abové %).

The good localization of FVR becomes apparent also in Figs. 3 addwhich
show inverse solutions based on the whole set of 118 channels. FVR th&s
only method that had exactly as many distinct active patches sithere were
true sources. In the noiseless setting, the centers of gravity dfelse patches
were located on top of the simulated dipoles (at the closest gadints). With
noise added to the pattern, only a small o set was observed for sorseurces.
For WMNE and MCE the column-norm weighting was not a su cient depth
compensation. These methods became comparative to FVR only whthe

SLORETA based weighting was used.
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The sources estimated by LORETA and WMNE are typically distribued over
the whole brain. For this reason, it is common in smooth inverse ethods to
analyze only maximal values of the source distribution (althegh this is in
disagreement to the model the estimation was based on). Howeviar, some of
the simulations in Figs. 3 and 4 this analysis does not yield aqable results,
as the local maxima of the LORETA/WMNE estimates were not even olse to
some of the true sources. For example, LORETA estimated a spurioghost
source even in a noisefree simulation (SAG3), while at the sameng two real
sources were spuriously merged into one local maximum in the rdid. Also
thresholding, which is another popular way to preprocess smdogestimates,

would not alleviate this problem.

The di erence in the estimates obtained from noisy and noisefegatterns were
relatively small for WMNE, LORETA and FVR. For MCE, on the other hand,
virtually disjoint sets of dipoles were predicted to be activeMCE solutions
usually featured several spikes, that were scattered around a &source in
the noisefree case. Due to the scatter, the distinction of sourdesing than a

few centimeters apart was hardly possible (see e.g. example AX3).

In the localization of the single left and single right N20 compeent, LORETA
and FVR detected strongest currents in the contralateral somasensory cor-
tex (inverse solutions are not shown here). This is in good agreent with
the localization of the hand areas reported in the literatug (Huttunen et al.,
2006; Komssi et al., 2004). Both methods estimated one source teeed in
the respective somatosensory area. The extension of this sourcayéver, was
too large to be realistic for LORETA, whereas it was much smalléor FVR 2.

3 Of course, a realistic spatial extent of the sources does namply, that the exact

shape and size of the true sources is always recovered. Thiarmot be achieved by
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MCE revealed several activation spots (mainly single dipoles) the contralat-

eral sensorimotor cortex.

Simultaneous localizations of left and right N20 generatorgerformed with
LORETA, sLORETA weighted MCE and FVR are shown in Fig. 6. The FVR
solution showed two major patches, which closely match the estites from
single pattern localization. LORETA, on the other hand, estiméd only one
large active region over the central area, with the maximumying exactly in
between the two individually estimated sources. The MCE solutioconsisted
of several small patches scattered across the whole somatosensoeq & the

proximity of activation spot obtained in the single pattern lacalizations.

Due to the linearity of the forward equation, the estimates fom the simulta-
neous localizations should ideally be just the sum of activatig obtained from
inverting the single left and single right N20 patterns. As mentioed above,
this was approximately the case for FVR, but dids not hold for LRETA.

The better ability of FVR to recover the same sources in both casesanifests
also in the low EMD between its joint source reconstruction andhie sum of
its single-pattern reconstructions, which was only 0.76 comped to 1.20 for

LORETA and 3.29 for MCE.

We conducted a connected components analysis of the FVR invesdution
for the summed N20 pattern. For LORETA and MCE this did not seem hig-
ful, as the analysis returned either too few (one) or too manyn(ore than 20)
components, which were considered unrealistic. The FVR sourcesidibution
revealed ve distinct sources. They are shown in Fig. 7, along vhitthe indi-

vidual scalp patterns obtained from forward calculations. Foeach component

any method, due to the genuine ambiguity of inverse problems
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a dipole having the mean orientation was drawn at the centerf gravity. The
components were named C1 to C5 according to the decreasingnorm of
their EEG patterns. The two strongest sources according to thisiterion are
the N20 generators. Their patterns resemble very much the singtemponent
patterns shown in Fig. 5, except that the latter ones are a bit wre central
and even contralateral. It seems that the residuals were comieid in a third,
more central component with questionable physiological relence. However,
this component is already three times less pronounced (in tes of the norm
of its pattern) than the rst two. Judging by its characteristi ¢ frontal pattern,
component C4 seems to contain an eyeblink artifact. This is ilne with the
location of C4, which is maximally close to the eyes. Componef@5 has a
rather negligible in uence on the EEG measurement and may beonsidered

biological noise.

Using FVR and performing the connected components analysis weuttbclearly
separate task related activity of interest from arti ctual activity. Thus, as a
side e ect, the method can be used to reject artifacts based on anely spatial
criterion, given that brain regions likely to pick artifacts are known. At this
point, it should also be mentioned that task related and artifaimal compo-
nents were inseparably mixed in the LORETA estimate. A similar pblem
can be expected to occur in cortically constrained approachiewhere deep

artifactual sources can only be modeled using large parts ofetltortex.

5 Conclusion and Outlook

In this paper we have introduced Focal Vector Field Reconstation as a new

method for localizing generators of human brain activity orthe basis of an
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EEG or MEG measurement. So far, the method was formulated to atyze an
evoked potential at a single time point. For the future, we inénd to generalize
this to more complex cases such as time-dependent evoked pas#ncross-
spectral matrices, and subspaces de ned by the latter. We expeittat in all

these cases the problem will ultimately lead to a Second-Ord€one Problem.
This emerged here naturally from the requirement of rotatioal invariance, but
always follows whenever sparsity makes sense e.g. in spatial disien but not

in other dimensions like dipole moment, time or frequency.

Future studies will also apply our novel Focal Vector Field Remnstruction
to complex imaging paradigms and use it for contributing to te analysis of
interactivity and causality of neural information processing Note, however,
that the numerics of solving a SOCP will need further improveents as the
ultimate goal would be to have a fast solver that is able to modelomplex

brain signals in real-time.
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Fig. 1. One-dimensional simulations illustrating the charecteristics of standard in-
verse solutions and FVR. Simulated source con gurations (TRUE) include three
hanning windows (HANN), two boxcar windows (BOX) and a sine wave (SINE). Hy-
pothetical measurements (PAT) were obtained by smoothing ad subsampling the
sources. Source reconstructions according to one-dimens@l versions of LORETA
(LOR), FVR and MCE are shown in the three lower panels.
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Fig. 2. Simulations, illustrating the approaches of MCE and FVR to achieve spar-
sity of a vector eld. A straight line of two-dimensional vect ors models the current
density. The vector envelopes were taken to be combination®f either two Han-
ning (HANN) or two boxcar windows (BOX). Vector orientation s were xed within

sources. True sources (TRUE) and pseudo patterns are showm ithe upper panels
of the plot. The inverse solutions of MCE, the corrected vergon of MCE working

on amplitudes (MCE_AMP) and FVR are shown below.
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Fig. 3. Comparison of inverse solutions in two realistic exanples. In each, two dipoles
(black color) were put into an either axial (AX2) or sagittal (SAG2) slice of the brain.
The resulting scalp patterns with noise (NOISY) or without it (NOISELESS) are
shown in the top panel. Panels below show current densitieseconstructed from
these patterns by means of column-norm weighted Minimum Norm(WMNE _COL),
SLORETA weighted MNE (WMNE _SLOR), LORETA (LOR), FVR, column-norm
weighted MCE (MCE _COL) and sLORETA weighted MCE (MCE _SLOR). Dipole
amplitudes are shown color-coded (red = low, yellow = high) with scales adjusted
to the range of the individual solution. In each plot the average activity within 1 cm
is shown. Mean amplitudes exceeding 7 % of the individual séa are shown opaque.
Between 0 % and 7 % opacity is linearly scaled between 0 and 1pSces between
grid dipoles are interpolated.
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Fig. 4. Comparison of inverse solutions in examples with thee simulated dipoles.
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Fig. 5. Somatosensory Evoked N20 after left and right mediamerve stimulation.

Upper part: Averaged time series between 10 ms and 70 ms aftestimulus onset.
Lower part: Averaged scalp patterns at 21 ms and sum of left ad right pattern.
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Fig. 6. Source localization of summed left and right N20 compnent. The average
estimated dipole amplitudes of eight consecutive axial sties (thickness 2 cm) of the
brain is shown for the inverse solutions of LORETA (LOR), FVR and MCE.
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Fig. 7. Connected component analysis of the FVR inverse sotion for the summed
N20 pattern. Components were sorted from top to bottom accoding to the “»-norm
(NORM) of their scalp patterns (PAT). For each source comporent, the average
dipole amplitudes of 1 cm sagittal (SAG), coronal (COR) and axial (AX) slices
around the source gravity center are shown (red and yellow dor, di erent scale for
each component). Additionally, a single dipole (black) haung the mean orientation
of the source and unit amplitude is drawn at the gravity center.
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LOCALIZATION STABILITY GENERALIZATION SPARSITY

108 102 10?
SIM _NOISELESS
WMNE _COL 4.70 0.03 0.31 0.18 1.28 0.15 09.1 0.38
WMNE _SLOR 4.36 0.06 0.38 0.24 1.31 0.15 19.6 0.56
LOR 4.35 0.06 0.31 0.23 1.31 0.16 14.1 0.55
FVR 211 0.10 0.03 0.02 0.03 0.00 97.5 0.11
MCE_COL 4.56 0.10 3.27 0.29 3.23 0.17 98.8 0.00
MCE _SLOR 2.56 0.12 1.25 0.16 0.15 0.01 99.2 0.03
SIM_NOISY
WMNE _COL 5.17 0.03 0.20 0.04 9.45 0.23 19.7 0.39
WMNE _SLOR 4.66 0.04 0.18 0.04 9.31 0.21 29.0 0.30
LOR 4.66 0.04 0.18 0.04 9.29 0.20 26.9 0.47
FVR 2.40 0.07 1.34 0.13 8.58 0.17 97.4 0.05
MCE _COL 5.16 0.10 2.90 0.43 11.0 0.23 99.6 0.00
MCE _SLOR 2.79 0.07 2.76 0.16 8.80 0.19 99.8 0.00
N20
WMNE _COL 0.08 4.03 0.18 14.3 0.15
WMNE _SLOR 0.08 3.97 0.16 33.2 0.03
LOR 0.06 4.02 0.15 30.6 0.47
FVR 1.29 3.87 0.13 98.1 0.05
MCE _COL 2.61 4.59 0.16 99.7 0.00
MCE _SLOR 2.53 3.91 0.16 99.8 0.00
Table 1

Performance of column-norm weighted minimum norm (WMNE_COL), SLORETA
weighted MNE (WMNE _SLOR), LORETA (LOR), FVR, column-norm weighted
MCE (MCE _COL) and sLORETA weighted MCE (MCE _SLOR) in noiseless sim-
ulations (SIM_NOISELESS), noisy simulations (SIM_NOISY) and somatosensory
evoked N20 localization (N20). Winning entries in each catgory are shown in slanted
font. Entries being within a con dence interval of three standard errors around the
winner are shown in bold.
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