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Charité University Medicine Berlin, 12203 Berlin, Germany

dBernstein Center for Computational Neuroscience, Berlin, Germany

eDepartment of Brain and Cognitive Engineering, Korea University, Anam-dong,

Seongbuk-gu, Seoul 136-713, Korea

fDepartment of Neurophysiology and Pathophysiology, University Medical Center

Hamburg-Eppendorf, 20246 Hamburg, Germany

Abstract

Information flow between brain areas from EEG measurements is hard to estimate

reliably due to the presence of noise, as well as due to volume conduction. We present

results of a simulation study, in which we test the ability of popular measures of

effective connectivity to detect neuronal interactions, as well as machine learning

approaches to inverse source reconstruction and blind source separation to improve

the estimation. We find that volume conduction limits the neurophysiological inter-

pretability of sensor-space connectivity analyses and may even lead to conflicting
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results. On the other hand, the estimation of connectivity on the basis of source ac-

tivity, which has been estimated with some of the tested machine learning methods,

yields correct and interpretable results. The success here crucially depends on the

correctness of the source reconstruction, which in turn depends on the capability

of the method to model multiple spatially-distinct interacting sources. As a novel

methodological contribution, we propose to use time-reversed data as surrogates in

order to cancel out artifactual confounders that are not related to true interaction,

e. g., due to the volume conduction. We show that this novel approach improves

the performance of Granger-causal connectivity measures. Finally, integrating the

insights of our study, we provide a guidance for measuring information flow in EEG.

Software and benchmark data is made available.

Key words: EEG, effective connectivity, inverse source reconstruction, blind

source separation, GC, PDC, PSI, WMN, S-FLEX, LCMV, ICA, TDSEP, JADE,

SCSA, MVARICA, CICAAR

1 Introduction

Due to its temporal resolution in the millisecond range as well as its noninva-

siveness, portability and relatively low costs, electroencephalography (EEG) is

a popular and widely used measurement technique for studying brain dynam-

ics and interaction in humans. However, any neurophysiological interpretation

of EEG data is hindered by the fact that the signals related to electrical activ-

ity in source brain regions are spread across the EEG sensors due to volume

conduction in the head. The inversion of volume conduction is an ill-posed
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inverse problem. In the EEG-based analysis of directed information flow be-

tween brain regions (i. e., effective brain connectivity Friston, 1994; Horwitz,

2003; Jirsa and McIntosh, 2007), volume conduction poses a serious challenge,

since multiple active sources are usually present, the contributions of which

mix into all EEG sensors. Nevertheless, electroencephalographic recordings

have been widely used in neuroscience to estimate brain effective connectiv-

ity (e. g., Kamiński et al., 1997; Babiloni et al., 2004; Astolfi et al., 2004;

Babiloni et al., 2005; Silberstein, 2006; Srinivasan et al., 2007; Supp et al.,

2007; Blinowska et al., 2010). Only recently, the fact that volume conduction

has to be accounted for in EEG- and MEG-based brain connectivity studies

has been seriously acknowledged (Nolte et al., 2004; Schlögl and Supp, 2006;

Nolte et al., 2006, 2008; Gómez-Herrero et al., 2008; Schoffelen and Gross,

2009; Nolte and Müller, 2010).

In this paper, we present results of a series of simulation experiments in which

we systematically assessed common measures of effective connectivity in terms

of their ability to infer source interactions from pseudo-EEG recordings under

various conditions and after various common preprocessings such as inverse

source reconstruction and blind source separation. We here deliberately re-

strict ourselves to the analysis of simulated data, since we believe that any

connectivity estimation should achieve reliable performance on appropriately

designed artificial data before it can be applied to real data at all; an opinion

that does however not seem to be the predominant one in the field. While

Theiler and Prichard even postulate “the importance of avoiding (that’s right

- avoiding) ‘real’ data”, since “Too many studies, we feel, have been corrupted

by the dogma that a methodology is not tested unless it is tested on real data.”

(Theiler and Prichard, 1997), we would like to argue that both real and sim-
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ulated data are in general suitable for evaluating a method. However, many

problems in neuroimaging (such as brain connectivity analysis) are inherently

unsupervised, which means that the “ground truth” cannot be retrieved. In

these cases, simulations are the only way to benchmark a method’s ability to

solve the task, while a neuroscientific finding on real data that matches prior

expectations should not be mistaken for a proof-of-concept of the method.

To our knowledge, our study is the first to attempt an assessment of a broad

variety of methods on standardized data that have been generated using a

realistic model of volume conduction. The purpose of the paper, however, is

not to provide an exhaustive numerical comparison of all these methods, but

rather to highlight potential pitfalls of such analyses. In particular, we demon-

strate that source and noise mixing may easily mislead connectivity estimation

depending on the type of measure used, while the success of source estima-

tion algorithms crucially depends on their ability to deal with the presence of

multiple interdependent sources. Thus, even methodologies combining rather

standard source reconstruction and connectivity estimation algorithms may

not permit a correct neurophysiological interpretation. With this paper we

want to bring such issues to the attention of the practitioners in the most

instructive way, namely by visually demonstrating how certain properties of

the data in combination with the characteristics of the various methods can

potentially spoil connectivity analyses. The present study is thus primarily a

qualitative one, in which we do not attempt to exhaustively chart the huge

space of adjustable parameters. Rather, we focus on a single minimalistic sce-

nario, which however does ensure that the simulated data comprise some of

the defining characteristics of real EEG data. Starting from this scenario, we

subsequently apply certain modifications in order to demonstrate their effect
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on causal estimation. Since space limitations allow us to present only our most

important results graphically within the paper, we provide the remaining re-

sults in an extensive supplement, which can be downloaded along with the

data and code used in our simulations at www.bbci.de.

As a methodological contribution we further introduce the concepts of weak

and strong asymmetries in multivariate time series in the context of causal

modeling. Weak asymmetries are by definition not related to time-lagged in-

teractions. Nevertheless they frequently mislead certain types of causal anal-

yses. We propose to use time-reversed data as surrogates in order to suppress

the influence of weak data asymmetries when testing for causal influences.

We introduce relevant state-of-the-art measures of effective connectivity as

well as methods for inverse source reconstruction and blind source separation

in Section 2. Section 3 introduces a novel methodology for improving connec-

tivity estimates by distinguishing between weak and strong data asymmetries.

Section 4.1 presents a series of simulations, in which connectivity measures and

preprocessing steps are evaluated within a common framework. The results are

discussed in Section 5, before we reach conclusions in Section 6.

2 Methods

2.1 Measures of time-lagged effective connectivity

While there are multiple ways to define effective connectivity, the most widely

accepted definition is based on a temporal argument: the cause must precede

the effect. Algorithms implementing this definition are often subsumed under
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the term Granger-causal modeling (Valdes-Sosa et al., 2011), although the

technique that is known as Granger causality is only one way to measure

time-lagged influence.

2.1.1 Granger causality based on model errors

The linear multivariate autoregressive (MVAR) process is the most simple

model for the dynamics and interactions of a multivariate time series (Brock-

well and Davis, 1998). It assumes that the present state of a time series can

be approximated by a linear combination of its past P samples, i. e.,

xptq �
P̧

p�1

Bppqxpt� pq � εptq , (1)

where the innovations εptq are usually assumed to be independent and Gaus-

sian distributed, and where Bppq are matrices describing the time-delayed

influences of xpt � τq on xptq. Notably, the off-diagonal parts Bi,jppq, i � j

describe time-lagged influences between different time series xi and xj.

Granger causality (Granger, 1969) involves fitting an MVAR model for the

full set xt1,...,Mu � x, as well as for the reduced set xt1,...,Muztiu of available

time series. Denoting the prediction errors of the full model by εfull and those

of the reduced model by εzi, the Granger score GC describing the influence of

xi on xj is defined as the log-ratio of the mean-squared errors (MSE) of the

two models with respect to xj. I. e.,

GCi,j � log

���°T
t�P�1

�
εfullj ptq

�2°T
t�P�1

�
ε
zi
j ptq

�2
�� . (2)

If only unidirectional flows are to be detected, or if one is only interested in

the dominant direction of a bidirectional flow, it is reasonable to investigate
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the pairwise net flow, which is obtained by antisymmetrizing the outcome of

a connectivity measure M via M net
i,j � Mi,j �Mj,i. A time series xi is said to

be the net driver of a time series xj, if M net
i,j is significantly greater than zero.

Analogously, xj is the net receiver of xi. Note that testing net connectivity

scores is equivalent to performing a paired test for differences between Mi,j

and Mj,i.

2.1.2 Granger causality based on AR-coefficients

A causal dependence of time series xj on time series xi in Granger’s sense is

sufficiently evidenced if any of the P coefficients Bi,jppq of the MVAR model

fitted on the full set of available time series is significantly different from zero.

Hence, a Granger-causal dependency can be inferred directly from the offdiag-

onal MVAR coefficients instead of prediction errors. This is done per frequency

by partial directed coherence (PDC). Let rBpfq be the Fourier transform of the

coefficients of a multivariate AR model fitted on all available time series, andsrBpfq � IM � rBpfq, PDC is defined as

PDCi,jpfq �

������
srBi,jpfqbsrBH
j pfq

srBjpfq

������
2

, (3)

and is an estimate of the strength of the information flow from xi to xj at

frequency f . Note that this is the squared absolute value of the complex-valued

quantity introduced in Baccalá and Sameshima (2001). Unlike GC, PDC is not

independent of the scale of the data.
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2.1.3 The phase-slope index

Another measure of interaction at a specific frequency is coherency (denoted

by CHY) (Nunez et al., 1997, 1999), defined as

CHYi,jpfq �
Si,jpfq

pSi,ipfqSj,jpfqq
1
2

, (4)

where

Si,jpfq �
1

K

Ķ

k�1

rxi,kpfq�rxj,kpfq (5)

denotes the empirical cross-spectrum. The absolute value of coherency is often

used to quantify the strength of functional connections. However, this measure

makes no distinction between instantaneous and truly time-delayed correlation

and is hence dominated by effects of volume conduction when applied to EEG

data. As a remedy, one can look at the imaginary part of coherency only (Nolte

et al., 2004), which is systematically different from zero only for nonzero phase

lags.

In general, a positive imaginary part of CHYi,jpfq suggests that zi is earlier

than xj. However, for oscillations with period lengths of the order of the delay,

“earlier” and “later” are ambiguous due to the periodicity of the processes.

In order to resolve this ambiguity, the information contained in nonzero phase

lags can be aggregated within a frequency band of interest, which is the idea of

the phase-slope index (PSI, Nolte et al., 2008). Denoting by F a contiguous set

of frequencies and by δf the frequency resolution, PSI is defined (disregarding

the standardization proposed in Nolte et al. (2008)) as

Ψi,j � =

�¸
fPF

CHY�
i,j CHYi,jpf � δfq

�
. (6)

From the Hermitian property of the cross-spectral matrices it follows that

Ψi,j � �Ψj,i. Hence, PSI measures only net flows. Using the same property,
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it can be shown that PSI exactly flips its sign when being applied to time-

reversed data. Moreover, due to the use of the normalized cross-spectrum, PSI

is invariant with respect to rescaling of the data.

2.2 A model of EEG data

The most general generative model of EEG data is given by

xptq � Asptq � ηptq , (7)

where xptq P RM is the signal measured at M EEG electrodes at time t,

sptq P RK is the activity of K brain sources at time t and A P RM�K is a ma-

trix representing instantaneous source mixing due to volume conduction. The

noise term ηptq comprises uncorrelated measurement (sensor) noise as well as

correlated noise, which could be due to non-task-related background activity

or artifacts. Notably, EEG activity of cerebral origin is always instantaneously

correlated due to volume conduction, which is modeled here explicitly using

the matrix A. The variables A and s are not identifiable given the observations

x without imposing further assumptions.

2.3 Inverse source reconstruction

In reality, the matrix A describes a physical process, namely the propagation

of the brain electric currents from the source regions to the EEG electrodes.

If a physical model of the head exists, the mixing patterns of idealized brain

sources (the columns of A) can be computed. This step is called forward mod-

eling. Inverse source reconstruction is concerned with the estimation of s given
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x and A, which amounts to solving the so-called electromagnetic inverse prob-

lem (Baillet et al., 2001; Nunez and Srinivasan, 2006). In distributed inverse

imaging, dipolar sources are modeled at many locations within the brain, and

the activity at all those locations is estimated jointly. To overcome the am-

biguity of the solution, it is crucial to constrain the solution to be consistent

with prior domain knowledge. Depending on the type of contraint, the solu-

tion can be linear or nonlinear in the observations. A second class of inverse

methods are beamformers. Here, the activity at each voxel is estimated using

a linear spatial filter that is optimized for that voxel.

2.3.1 The weighted minimum-norm estimate

The weighted minimum-norm (WMN) source estimate (Jeffs et al., 1987; Ioan-

nides et al., 1990; Hämäläinen and Ilmoniemi, 1994; Haufe et al., 2008) is the

source distribution with minimal power that explains the EEG measurement.

As it is typical for linear methods (Matsuura and Okabe, 1995; Grave de

Peralta-Menendez and Gonzalez-Andino, 1998; Haufe et al., 2008), the WMN

solution tends to be very blurred, and may not resolve multiple sources, which

is drawback regarding source connectivity studies. To counteract a location

bias in the estimation, we consider a depth-compensation as proposed in Haufe

et al. (2008).

2.3.2 Sparse basis field expansions (S-FLEX)

Inverse source reconstruction via sparse basis field expansions (S-FLEX, Haufe

et al. (2009, 2011)) achieves a compromise between smoothness and focality

and is thereby able to model the simultaneous occurrence of multiple extended
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sources of different sizes and shapes. The idea of S-FLEX is to model the

current density at time t as a linear combination of (potentially many) spatial

basis fields, which are defined as the outer products of scalar Gaussian basis

functions and 3-dimensional coefficient vectors. The assumption made by S-

FLEX is that the current density can be well approximated by a small number

of basis fields, which is encoded by means of an `1,2-norm penalty on the

coefficients. The 3T coefficients related to a single basis function are tied

under a common `2-norm and can only be pruned to zero at the same time.

Thus, the selection of basis functions which contribute coherently to the entire

EEG time series is facilitated.

2.3.3 Linearly constrained minimum-variance (LCMV) beamforming

The idea of beamforming is to find a spatial projection of the observed signal,

such that signals from a specific location in the brain are preserved, while

contributions from all other locations are maximally suppressed. The linearly

constrained minimum-variance (LCMV) spatial filter (Van Veen et al., 1997)

does that by minimizing the variance of the filtered signal subject to a unit-

gain constraint (that is, the product of filter and forward matrix at the desired

location is enforced to be unity). The power of the source time courses has to

be normalized using a noise covariance estimate in order to obtain an unbiased

estimate of the spatial distribution of source power.

2.4 Blind source separation

Instead of using a possibly inaccurate forward model and carrying out its

ill-posed inversion, the mixing matrix can also be estimated jointly with the
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source time series in a completely data-driven way. This approach is called

blind source separation (BSS).

2.4.1 Independent component analysis

The goal of independent component analysis (Comon, 1994; Bell and Se-

jnowski, 1995; Hyvärinen and Oja, 2000) is to search for “maximally inde-

pendent” sources. Practical ICA implementations focus on minimizing certain

aspects of dependence. Joint diagonalization of appropriate matrices is one

popular way to achieve this. For example, the second order blind identifi-

cation (SOBI) approach (Belouchrani et al., 1997) and the related temporal

decorrelation source separation (TDSEP) approach (Ziehe and Müller, 1998)

perform joint diagonalization of symmetrized empirical cross-covariance ma-

trices related to multiple time lags. In the joint approximate diagonalization

(JADE) approach (Cardoso and Souloumiac, 1996), slices of the fourth-order

cumulant tensor are simultaneously diagonalized in order to extract source

time series with distinct non-Gaussian distributions. Despite its independence

assumption, various authors have used ICA in source synchronization and

connectivity studies using the argument that ICA finds the “least dependent”

sources (Beckmann et al., 2005; Meinecke et al., 2005; Astolfi et al., 2007), the

coupling of which may still be analyzed.

2.4.2 Convolutive ICA

In the blind deconvolution setting

xptq �
P̧

p�0

Appqspt� pq � εptq , (8)
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the observation sequence is modeled as a spatio-temporally-filtered version

of source signals (Attias and Schreiner, 1998; Parra and Spence, 2000). The

convolutive ICA with an auto-regressive inverse model approach (CICAAR,

Dyrholm et al., 2007) estimates the parameters Appq under the assumption of

independent non-Gaussian (e. g., hyperbolic secant distributed) source signals

sptq. These “convolutive sources” have an interpretation as innovations of a

source MVAR process (where “sources” refers to the instantaneously demixed

time series as in (7)). Therefore, CICAAR can be used to assess EEG source

effective connectivity (Haufe et al., 2010).

2.4.3 MVARICA

The multivariate autoregression plus independent component analysis (MVAR-

ICA) approach by Gómez-Herrero et al. (2008) assumes the basic linear model

for the EEG and a standard multivariate AR model for the sources. This im-

plies that the EEG time series follows a multivariate AR model with linearly

transformed coefficients and innovations. Thus, MVARICA involves fitting a

sensor-space MVAR model using the ARFIT algorithm (Neumaier and Schnei-

der, 2001). The remaining mutual dependence of the innovations is removed

in a subsequent ICA step on the innovation time series, which is performed us-

ing efficient fast independent component analysis (EFICA, Koldovský et al.,

2006). This leads to an estimate of the mixing matrix, which is used to obtain

the underlying sources’ time series as well as the source MVAR coefficients.
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2.4.4 Sparsely-connected sources analysis

In sparsely-connected sources analysis (SCSA, Haufe et al. (2010)), the same

model as in MVARICA is assumed. Under the assumptions that the source

MVAR innovations are i.i.d. and subject to non-Gaussian distributions (as in

CICAAR, the hyperbolic secant distribution is assumed), the source MVAR

coefficients are identified along with the mixing matrix in a single estimation

step. As a regularization, SCSA additionally sparsifies the connectivity graph

using an `1,2-norm penalty on the source MVAR coefficients.

3 Data asymmetries

Many measures of causal interaction (a. k. a. effective connectivity) are based

on the principle that the cause precedes the effect. However, it would be mis-

leading to assume that temporal ordering is necessarily the dominant factor

which affects the estimation of causal relationships. In fact, methods to es-

timate causal relations are based on general asymmetries between two (or

more) signals out of which the temporal order is just one specific feature.

Other asymmetries, like different signal-to-noise ratios, different overall power

or spectral details may in general also affect causal estimates depending on

which method is used.

We here propose to distinguish between two kinds of asymmetries. We call the

first type “strong asymmetries” defined as asymmetries in the relation between

two (or more) signals like the temporal ordering. The second type is called

“weak asymmetry” and denotes different univariate properties as given, e. g.,

by the spectral densities. Weak asymmetries can hence be detected from two
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signals without estimating any functional relationship between them whereas

a strong asymmetry is a property of that functional relationship.

We restrict ourselves in the following to the discussion of stationary and Gaus-

sian distributed data. Let xjptq be the signal in channel j at time t. Then the

statistical properties are completely defined by the cross-covariance matrices

Cppq �
A
pxptq � pµxq pxpt� pq � pµxq

J
E
, (9)

where x�y denotes expectation. The process is now said to contain a strong

asymmetry if for some i, j and some p it is found that Ci,jppq � Cj,ippq, i. e.

Cppq is asymmetric for at least one p. The process is said to contain a weak

asymmetry if for some i, j and some p it is found that Ci,ippq � Cj,jppq, i. e.

the diagonals are not all equal.

Weak asymmetries can be detected more robustly but can also be considered as

weaker evidence for causal relations. In particular, they arise inevitably in real

EEG data due to volume conduction, even if the underlying sources are statis-

tically independent. In this case all cross-covariances are weighted sums of the

auto-covariances of the sources. Since auto-covariances are always symmetric

functions of the delay p and since generally Cp�pq � CJppq it follows that

Cppq � CJppq for mixtures of independent sources Nolte et al. (2006). Hence,

such mixtures can only contain weak asymmetries but not strong ones. On

the other hand, two sources having a time-delayed influence on another, e. g.,

through a bivariate AR model, do exhibit a strong asymmetry. This strong

asymmetry is still be observed when both channels after linearly mapping

the source activity to EEG sensor space. However, the mixing additionally

introduces weak asymmetries, which may mask the detection of the strong

asymmetry depending on the method used.
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For methods which are sensitive to both weak and strong asymmetries it is

in general difficult to tell on what property of the data an estimate of causal

drive is based. A potential remedy is to test against surrogate data, which are

usually designed to share all the weak asymmetries of the data under study,

but to lack the strong asymmetries. Thus, a statistical test for differences

of the results obtained from both datasets should ideally reveal the strong

asymmetries (i. e. time-lagged interactions). A standard choice for surrogate

data is the original data, in which the temporal order has been randomly

permuted (Kamiński et al., 2001).

As an alternative, we here suggest to compare the specific result of a causal

analysis with the outcome of the method applied to time-reversed signals.

This corresponds to the general intuitive idea that, if temporal order is crucial

to tell a driver from recipient, the result can be expected to be reversed if

the temporal order is reversed. The mathematical basis for this is the simple

observation that the cross-covariance for the time inverted signals, say rCppq,
is given as

rCppq � Cp�pq � CJppq (10)

implying that time inversion inverts all strong asymmetries but none of the

weak asymmetries.

Our approach is able to cancel out weak asymmetries in a similar way as per-

mutation testing. However, it additionally amplifies strong asymmetries, which

are present in the surrogates in the opposite direction. Consequently, empirical

results indicate that time inversion testing achieves greater statistical power

than permutation testing (see Haufe et al. (2012)).
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4 Experiments

In the following we present a series of five experiments designed to assess

state-of-the-art approaches to EEG-based effective connectivity analysis. We

focus on the most-simple model that includes source interaction, namely a two-

dipole model with linear dynamics and a time-delayed linear influence of one

source on the other. In the first experiment, measures of effective connectivity

are applied to simulated unmixed source time series. The second experiment

deals with EEG comprising realistic effects of volume conduction and noise.

The third experiment demonstrates the influence of the choice of the reference

electrode and the SNR. The last two experiments assess the effectiveness of

inverse source reconstruction and blind source separation techniques.

4.1 Experiment 1: two interacting sources

4.1.1 Setting

We first assess measures of effective connectivity on the source level, where

no instantaneous mixing of signals due to volume conduction is present. The

simulated system comprises two sources s1{2ptq following a stable bivariate

AR process of order P � 5. We generate T � 10 000 source samples. The

AR coefficients are sampled independently from N � p0, 0.01q. By setting the

off-diagonal coefficients B1,2ppq, 1 ¤ p ¤ P to zero, while all other coefficients

remain nonzero, unidirectional flow from s1 to s2 is modeled. The innovations

εptq of the source AR process are drawn from the univariate Gaussian dis-

tribution. We perform 100 repetitions of the experiment. For each repetition,

a dataset comprising distinct innovation terms and source AR coefficients is
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generated. Since in practice source time series cannot be observed, the present

experiment mainly serves as a proof-of-concept for effective connectivity mea-

sures and a baseline for source demixing algorithms. We consider the noiseless

case here, while the influence of noise has been studied in detail in the litera-

ture (Nolte et al., 2008, 2010).

We apply Granger causality, partial directed coherence and the phase-slope

index to normalized the source time series, in which the activity in each chan-

nel is transformed to have zero mean and unit variance. The phase-slope index

is computed using an implementation provided by Nolte et al. (2008) 1 , while

the “Granger Causal Connectivity Analysis” toolbox (Seth, 2010) 2 is used

to compute GC, and the MVARICA toolbox (Gómez-Herrero et al., 2008,

code not anymore publicly available) is used to compute PDC. The AR model

underlying the computation of PDC is estimated using the ARFIT package

(Neumaier and Schneider, 2001) 3 . For PDC, we average the scores related to

all frequency bins to obtain a global measure of interaction.

Statistical significance of the results is assessed in five ways. First, the 2 � 2

connectivity matrices are antisymmetrized, and the resulting net flow is tested

for being significantly different from zero using a two-sided one-sample t-test.

Second, testing against temporally permuted as well as time-reversed surro-

gate data is applied. Here, we use a two-sided paired t-test to assess whether

the difference in estimated information flow according to each of the con-

nectivity measures significantly differs from zero. Finally, antisymmetrization

is combined with subsequent permutation and time inversion testing. In all

1 http://ml.cs.tu-berlin.de/causality
2 http://www.informatics.sussex.ac.uk/users/anils/aks_code.htm
3 http://www.gps.caltech.edu/~tapio/arfit
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cases, t-scores are converted into z-scores via z � cdf�1
z pcdftpt, νqq, where cdft

is the cumulative distribution function (cdf) of Students t-distribution with

ν degrees of freedom Gosset (1908) and cdf�1
z is the inverse of the cdf of the

univariate standard normal distribution. Significant effects are indicated by

z-scores with absolute values greater than 1.96 for tests involving antisym-

metrization, and 2.24 for test not involving antisymmetrization (accounting

for the simultaneous testing of two hypotheses using Bonferroni correction).

4.1.2 Results

All three connectivity measures correctly indicate highly significant informa-

tion flow from s1 to s2 with z1,2 ¡ 10 regardless of the testing procedure. In the

three testing variants, in which antisymmetrization is used, the corresponding

negative flow (i. e. inflow) from s2 to s1 is trivially also observed. If plain per-

mutation testing (without antisymmetrization) is used, there is no significant

flow from s2 to s1 (|z2,1|   2) for GC and PDC, while there is highly signifi-

cant (z2,1   10) negative flow for PSI owing to the intrinsic antisymmetry of

this measure. Interestingly, we observe highly significant (z2,1   10) negative

flow from s2 to s1 for all three measures if time-reversed surrogates without

antisymmetrization are used. Thus, all methods are capable of discovering the

reverse flow from reversed time series, indicating in some sense their robust-

ness to model violations (since the dynamics of time-reversed data cannot be

necessarily described by the finite-order linear MVAR model used by GC and

PDC), and hence demonstrating the versatility of the idea of time inversion

testing.
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4.2 Experiment 2: simulated EEG

4.2.1 Setting

We now consider simulated EEG data comprising effects of volume conduction,

as well as noise. The artificial EEG signal is generated according to

xptq �
p1 � γq

�
1
2

°2
i�1

aisiptq
}pSJqi}2

	
}vec pSq }2

� γ
ηptq

}vec pEq }2
, (11)

where x is the EEG signal, s1{2 are the source time series, a1{2 are the spread

patterns of the dipolar sources evaluated at 59 EEG electrode at standard po-

sitions as defined in the extended international 10-20 system (Chatrian et al.,

1988), η is noise and γ, 0 ¤ γ ¤ 1 is a parameter that adjusts the SNR. More-

over, E � pηp1q, . . . ,ηpT qq and S � psp1q, . . . , spT qq. The normalizing terms

}pSJqi}2 are used to equalize the power of driver and receiver time series, while

the normalization by }vec pSq }2 and }vec pEq }2, respectively, allows precise

adjustment of the SNR by means of γ. Here, we set γ � 0.5, corresponding to

a balanced SNR.

We use a head model with realistically-shaped brain, skull and skin shells

(Holmes et al., 1998), and assume a nose reference. The source dipoles are

placed in the left and right hemispheres of the brain, 3 cm below C3 (s1) and

C4 (s2), respectively. The positions of these dipoles are marked by circles in

Figure 1. The current moment vectors of both dipoles are tangentially ori-

ented, leading to bipolar field patterns. In general, the sources are designed to

reproduce field patterns of N20 event-related potentials observed after median

nerve stimulation at the hands in real EEG (Haufe et al., 2008). Similar pat-

terns are also frequently extracted by common spatial patterns (CSP) analysis
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of mu-rhythm oscillations related to idling of the hand motor system Blankertz

et al. (2008). Thus, our scenario resembles sources in the left and right sensori-

motor cortices, where information flows from the left to the right sensorimotor

cortex. The field patterns a1{2 describing the spread of the source dipoles to

the EEG sensors are computed according to Nolte and Dassios (2005). Both

dipolar sources and the corresponding field patterns are depicted in Figure 1.

The noise terms ηptq � ηsensor � Abiol.ηbiol. are composed of sensor noise

ηsensor, which is drawn independently for each sensor and time point from a

Gaussian distribution. Additionally, we include ten sources of biological noise,

the time courses ηbiol.1 ptq, . . . , ηbiol.10 ptq of which are generated using random

stable univariate AR models of order P biol. � 10, and are mixed by a spread

matrix Abiol. obtained representing ten randomly placed dipoles with random

current moment vectors. Sensor and biological noises are scaled to contribute

equally to the overall noise η.

We generate 100 artificial EEG datasets using the source time series introduced

in Experiment 1. The underlying source dipoles are kept constant across exper-

iments, while distinct innovations of the noise AR processes, as well as distinct

noise AR coefficients and noise dipole locations are drawn. Connectivity is as-

sessed between (normalized) sensor-space time series, which is common prac-

tice in parts of the literature (e. g., Kamiński et al., 1997). As in Section 4.1,

statistical significance of each entry of the sensor-space connectivity matrices

estimated by GC, PDC and PSI is assessed using antisymmetrization, permu-

tation testing, time inversion testing, and combinations of antisymmetrization

and permutation/time inversion testing.

[Insert Figure 1 around here]
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4.2.2 Results

The connectivity graphs estimated by GC, PDC and PSI using five different

variants of statistical testing are visualized in Figure 2 using head-in-head

plots (Nolte et al., 2004, 2008). Each head-in-head plot is composed of 19

small circles representing the human scalp. These are arranged within one

large scalp plot according to the positions of the 19 electrodes of the original

10-20 electrode placement system. Each of the small scalp plots thereby shows

the estimated interaction of the respective electrode to all 58 other electrodes,

where red and yellow colors (z ¡ 0) stand for information outflow and blue

and cyan colors (z   0) stand for information inflow. Bonferroni correction

is used to account for multiple testing. The Bonferroni factor is 551, which

is the number of electrode pairs (19 � p59 � 1q{2) visualized. The Bonferroni-

corrected significance threshold (z � 4.0) is indicated by a thin black line in the

colorbar, while the z-score corresponding to an uncorrected p-value (z � 2.0)

is indicated by a thick black line.

The phase-slope index correctly reveals information flow from the left to the

right hemisphere regardless of the statistical testing procedure used (note that

the three variants not involving permutation testing yield numerically identical

results owing to the antisymmetry of this method). The observed connectivity

matrices resemble the true field patterns of the underlying sources in that al-

most all electrodes in the right hemisphere are estimated to receive information

from almost all electrodes in the left hemisphere, while the most significant

flow passes from those regions in which the driving source is most strongly

expressed to those in which the receiving source is most strongly expressed.

Generally (assuming that driving and receiving sources are similarly strong

and noise sources contribute equally much to all sensors), PSI roughly varies
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with logp|aa,i||ab,j|{|ab,i||aa,j|q, which we call the driver-receiver ratio related

to a pair of electrodes pi, jq and a pair of driving and receiving sources pa, bq.

Granger causality yields rather noisy connectivity patterns in all five testing

cases with only very few significant connections between electrodes in general.

For plain permutation testing (Figure 2 (a)), most electrodes are estimated

to send information to their closest neighbors. This is explained by the fact

that neighboring sensors (due to volume conduction) pick up highly corre-

lated signals, which (due to independent noise contributions) improve mutual

predictability. However, this effect does not relate to the simulated underly-

ing flow from the left to the right hemisphere. In fact, in conflict with the

driving source being located in the left hemisphere, GC detects a number of

significant flows to originate from electrodes in the right hemisphere. For the

remaining four testing protocols there are few significant connections, which

generally exhibit little structure. The clearest picture is observed for the com-

bination of antisymmetrization and time inversion testing (Figure 2 (e)). Here,

predominantly interhemispheric flows passing from two electrodes in the left

hemisphere to two electrodes in the right hemisphere are detected, indicating

that time inversion testing reveals strong asymmetries more successfully than

permutation testing.

Partial directed coherence behaves similar as GC unless plain antisymmetriza-

tion (without the use of further surrogate data) is used. Here, highly significant

gross symmetric bilateral information exchange from electrodes with higher

SNR to electrodes with lower SNR is observed. Thus, the corresponding plot

in Figure 2 (c) is a good example of how weak asymmetries in the data can

spoil causal estimates. Moreover, PDC depends on the scale of the data, which

is a further confounder for weak asymmetries. Interestingly, the application of
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PDC on non-normalized data suggests that information flows from low-SNR

to high-SNR channels, i. e., exactly in the opposite direction (see supplement).

The effects of SNR and scale are however ruled out by testing against appro-

priate surrogate data.

In summary, only PSI robustly detects the simulated general interhemispheric

flow in this example regardless of the testing protocol used. For GC and PDC,

depending on the protocol, there can be spurious connectivity or almost no

significant connectivity at all. Thus, our results signify that the presence of

source mixing and noise poses more serious challenges for some connectivity

measures than the analysis of unmixed signals as performed in the previous

experiment. Moreover, all results obtained in sensor space might easily lead to

wrong conclusions regarding the number, size and location of the brain areas

involved in the interaction. For example, due to the bipolar structure of the

field patterns considered here, one might incorrectly infer the presence of four

sources (two sending and two receiving ones).

[Insert Figure 2 around here]

4.3 Experiment 3: influence of reference electrode and SNR

4.3.1 Setting

We inferred previously that PSI designates two electrodes as driver and re-

ceiver depending on the driver-receiver ratio. However, this ratio depends on

how much signal the reference electrode picks up from the underlying driv-

ing and receiving sources. In this experiment, we demonstrate how a change

of reference can drastically affect this ratio and hence influences connectivity
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estimation. To this end, we rereference the data used in Experiment 2 by sub-

tracting the activity of the P3 electrode. This choice is particularly harmful

here (and hence suitable for demonstration purposes), since one of the sources

(the driver) is most strongly expressed in P3.

Another confounder that might affect the interpretation of sensor-space con-

nectivity maps is the signal-to-noise ratio. Here we present results for two

additional SNRs of γ � 0.25 and γ � 0.75 using the standard nose-referenced

dataset. In all experiments the data are normalized and subjected to effec-

tive connectivity analysis by means of GC, PDC and PSI with subsequent

statistical testing using antisymmetrization and time inversion.

4.3.2 Results

Figure 3 (a) shows sensor-space connectivity maps obtained from rereferenced

data. The PSI estimate differs substantially from what is obtained using nose-

referenced data (see Figure 2) in that the general left-to-right flow is not so

obvious anymore. Most importantly, regions in the right hemisphere appear as

drivers of regions in the left hemisphere, which is in conflict with the simulated

direction of information flow. At the same time, no significant interaction is

estimated at all for the left posterior region, since, after rereferenciation, all

activity in the region around P3 vanishes (see Figure 1), which causes global

changes in the driver-receiver ratio. Granger causality and partial directed

coherence are affected by these changes in a similar way as PSI, although

their limited statistical power makes these changes harder to notice.

Results obtained using different SNRs are depicted in Figure 3 (b) and (c).

Granger causality and partial directed coherence do not change much when

25



the SNR is decreased to γ � 0.25, i. e., the few significant connections remain.

This is different for PSI, which exhibits much less significant connections than

before. Importantly, the upper lobes of the two bipolar field patterns do not

reach significance anymore, which might lead to different conclusions regarding

the number and location of the underlying interacting sources compared to

the case γ � 0.5. Analogously, for γ � 0.75 one might erroneously come to

the conclusion that much larger areas within both hemispheres are interacting

than for γ � 0.5 and γ � 0.25, although in fact the simulated sources in all

cases are just point sources without spatial extent. Interestingly, the estimation

using GC and PDC does not improve with higher SNR in terms of significance.

Rather, most of the significant connections seen for lower SNRs vanish.

Generally speaking, our results demonstrate that sensor-space connectivity

maps greatly depend on the reference electrode used (which is an arbitrary

choice) and the SNR of the data (which cannot be controlled for). A problem-

atic influence of the choice of the reference has been acknowledged previously

in the literature (Nunez et al., 1997; Marzetti et al., 2007). As a potential

solution to the problem, the data can be transformed into a reference-free rep-

resentation, e. g., by computing the scalp Laplacian (Kayser and Tenke, 2006),

or by performing genuine source estimation using inverse source reconstruc-

tion or blind source separation techniques. While the former approach is not

suitable for other than superficial radially-oriented sources (results on the cur-

rent data are provided in the supplement nonetheless), the latter approaches

are more general and therefore considered in the following two sections.

[Insert Figure 3 around here]
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4.4 Experiment 4: inverse source reconstruction

4.4.1 Setting

Working on solutions of the EEG inverse problem allows one to study brain in-

teraction directly in terms of the estimated signal-generating brain structures,

which are – as our previous results indicate – otherwise hard to infer from

sensor-space connectivity maps. A number of studies have therefore investi-

gated effective connectivity on source estimates obtained from linear inverse

imaging (Babiloni et al., 2005; Astolfi et al., 2006; Gow et al., 2008) or beam-

forming (Martino et al., 2011; Brookes et al., 2011; Wibral et al., 2011). Here,

we compare distributed inverse imaging according to WMN and S-FLEX with

beamforming via LCMV as preprocessings for EEG-based source connectivity

analysis. The source reconstruction is conducted in the same head model in

which the data were simulated. The interior of the whole brain shell is parti-

tioned into N � 2 142 voxels of 10 mm side length. In the center of each voxel,

a dipolar source is modeled, the current moment vector of which is estimated

for each time point. Note that this source space might be considered too rich,

since the EEG signal is believed to mainly originate from cortical gray matter.

However, in our simulated scenario, these details play a minor role regarding

the evaluation of inverse methods and source connectivity estimation in gen-

eral.

We use own implementations of WMN, S-FLEX and LCMV for transforming

the pseudo-EEG measurements into source time series. The regularization pa-

rameter of the WMN estimate is selected using 5-fold cross-validation, which

is implemented by splitting the set of electrodes randomly into five parts.
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The same regularization parameter is selected for all time indices t. Since

the WMN solution is linear in the data, the source distribution is easily ac-

quired even for long time series data by means of a matrix multiplication. This

is different for S-FLEX, which requires estimating all source variables (the

coefficients of the basis field expansion related to all measurements) jointly

using nonlinear optimization. Doing so for 10 000 samples is prohibitive due

to excessive memory requirements, for which reason a two-step procedure is

adopted, which restricts the number of variables involved in each step. In the

first step, S-FLEX is applied to 100 randomly-selected samples. Using only

the basis functions characterized by nonzero estimated coefficients, the second

estimation is performed for all time samples. We apply S-FLEX using Gaus-

sian basis functions with spatial standard deviations ς1 � 0.75, ς2 � 1 and

ς3 � 1.25. The regularization parameter in both steps is adjusted such that

the S-FLEX solution achieves the same goodness-of-fit as the corresponding

cross-validated WMN estimate. In contrast to both distributed inverses, the

LCMV beamformer estimates much less parameters than samples, and reg-

ularization is less of an issue. To ensure numerical stability of the inversion

of the data covariance matrix C, we here use a slightly regularized estimate

C̃ � C{||C|| � 0.01I{||I||, where I is the identity matrix. Moreover, to coun-

teract potential locations biases, we normalize the source power map with an

estimate of the noise source power using the identity matrix as an approxi-

mation for the sensor-space noise covariance matrix (Van Veen et al., 1997).

The quality of the source reconstructions is measured using the earth mover’s

distance (EMD) metric (Rubner et al., 2000), by which it is possible to ob-

jectively compare the simulated two-dipole source configuration (disregarding

the noise dipoles) with the estimated current densities (Haufe et al., 2008).
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In order to reduce the dimensionality in source space for connectivity analy-

sis, we define regions-of-interest (ROIs) similar to Babiloni et al. (2005) and

Astolfi et al. (2006). Since we are only concerned with simulated data here,

these regions are not defined anatomically but by partitioning the source space

according to the nearest (in the Euclidean sense) EEG electrode. This enables

us to present the results using the familiar head-in-head plots. Dipoles that

are further than 5 cm away from any electrode are not assigned to any region.

The source activity within each ROI is averaged separately for each spatial

dimension to yield a 3M -dimensional time series. Since this time series has

at most rank M , a small amount of noise is added in order to establish full

rank. The resulting time series are normalized and subjected to effective con-

nectivity analysis using GC, PDC and PSI. This yields 3M�3M connectivity

matrices consisting of 3� 3 blocks Rpi, jq, which describe the interactions be-

tween the i-th and the j-th dipole in all three spatial dimensions. We define

the total flow from the i-th to the j-th voxel as the sum over all entries of

Rpi, jq. This operation yields an M�M matrix, which is antisymmetrized and

tested entrywise for being significantly different from a corresponding matrix

obtained from time-reversed source time courses.

4.4.2 Results

The results of the inverse source reconstructions are depicted in the upper

panels of Figure 4 (a), (b) and (c) as heat maps showing estimated dipole

moment vector amplitudes averaged over time instants and repetitions (and

normalized by the estimated noise amplitude in case of LCMV). The plot

is overlaid with arrows representing the true interacting dipolar sources. The

estimated effective connectivity between ROIs is depicted in the corresponding
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lower panels as head-in-head plots. Note that the interpretation of these plots

here is much easier as in previous experiments, since the depictions do not

represent estimated interactions between electrodes but interactions between

source space regions-of-interest below these electrodes. Since we simulated the

true signal source dipoles to lie exactly below C3 and C4, it is hence sufficient

to assess whether the flow from (the region below) C3 to (the region below) C4

is present when evaluating source-connectivity head-in-head plots. All other

connections are incorrect by definition and indicate mislocalization and (as

a result) spurious connectivity. Since information flow is only meaningful if

it is estimated between active regions, the information about the strength

of the source activity is encoded in the visualization by means of the alpha

(transparency) value. Here, the ROI with maximal strength is drawn with

full opacity, while 10 % opacity is used for the ROI with minimal strength.

Transparency values for ROIs in between are assigned using a monotonous

sigmoidal nonlinearity.

The source activity estimated by WMN is spread over the entire brain. The

true sources are not well separated, as the source amplitude exhibits only one

local maximum, which is in between the two true dipoles. In contrast, S-FLEX

estimates two dominant focal patches of activity, each of which is close to one

of the two simulated interacting sources (although located slightly too deep).

The localization performance of LCMV lies in between the other two. As with

WMN, almost the whole brain is covered by estimated active sources. However,

there are two distinguished local maxima close to the simulated interacting

sources. The superior localization performance of S-FLEX compared to WMN

and LCMV is empirically evidenced by lower EMD scores (see Table 1). Note

that the seemingly poor localization performance of some of the methods is
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explained by the fact that we localize single trial data here, which are charac-

terized by low SNR and a large number of active noise sources in the brain.

Thus the conditions under which source reconstruction is performed here are

much worse than in standard event-related potentials studies, in which pre-

averaging can be used to effectively cancel out noise contributions. Notably,

an increase in SNR to γ � 0.75 improves the localization result of all three

methods not only in terms of EMD scores, but also visibly (see also supple-

ment).

The use of PSI on source time courses reveals the underlying interhemispheric

left-to-right flow for all three inverse source reconstruction methods. In com-

bination with S-FLEX, this flow is constrained to the true generating brain

areas, namely the regions below C3 and C4, which have been correctly iden-

tified by S-FLEX. The LCMV beamformer estimates broader active areas,

in which some of the activity of the simulated interacting sources seems to

leak. Consequently, the left-to-right flow is observed also between area closer

to neighboring electrodes of C3 and C4 then to these electrodes themselves.

A similar situation is observed for WMN. Here, however, an additional occip-

ital active region appears to transmit information from the left central area

to the right central area, which is incorrect. Granger causality and partial

directed coherence do not detect significant information flow on WMNE and

LCMV source estimates. On the other hand, both perform similar as PSI on

the S-FLEX sources, i. e., correctly estimate highly significant flow between

the brain areas under C3 and C4. Notably, this result is observed for all sta-

tistical testing protocols except plain permutation testing, which incorrectly

indicates bilateral flow between the areas below C3 and C4 (see supplement).

Thus, our results indicate that S-FLEX is more successful in demixing the
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WMN S-FLEX LCMV

γ � 0.25 56.0� 0.4 27.5� 0.7 51.1� 0.3

γ � 0.5 47.8� 0.2 8.8� 0.5 46.4� 0.3

γ � 0.75 36.3� 0.2 0.4� 0.1 42.6� 0.2

Table 1

Earth-mover’s distance (EMD) scores calculated between the two simulated dipo-

lar signal sources and the current distributions estimated according to the weighted

minimum-norm (WMN) and sparse basis field expansions (S-FLEX) inverse imaging

estimates, as well as the linearly-constrained minimum-variance (LCMV) beamform-

ing estimate for three different signal-to-noise ratios. Lower values indicate better

source reconstruction. Entries marked in bold indicate superior performance.

sources than WMN and LCMV, with the consequence that Granger-causal

connectivity estimation on the sources is much improved.

[Insert Figure 4 around here]

4.5 Experiment 5: blind source separation preprocessing

4.5.1 Setting

An alternative to source reconstruction based on a physical model is blind

source separation (BSS), which amounts to demixing the sensor signals solely

based on statistical assumptions. The aim of this experiment is to demonstrate

the application of popular BSS techniques to the problem of source connectiv-

ity analysis, and to show how sensitive all methods are with respect to certain

properties of the data such as the distribution of the sources/innovations. We
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consider SCSA, MVARICA, CICAAR, TDSEP and JADE.

We apply all BSS methods to normalized time series associated with the

strongest PCA components. Here we choose five components, which ensures

that the two interacting source components are well-represented in the PCA

subspace. Implementations of SCSA, MVARICA, CICAAR, TDSEP and JADE

are obtained from the respective authors of Haufe et al. (2010), Gómez-Herrero

et al. (2008), Dyrholm et al. (2007) 4 , Ziehe and Müller (1998) 5 and Car-

doso and Souloumiac (1996) 6 . The joint diagonalization in TDSEP is carried

out using fast Frobenius-norm joint diagonalization (FFDIAG, Ziehe et al.,

2004) 7 . The number of time lags in TDSEP is chosen to be τ � 100, while

it is selected from t1, . . . , 9u for SCSA, MVARICA and CICAAR using the

Bayesian information criterion (BIC, Schwarz (1978)). For SCSA, P is se-

lected from t1, . . . , 9u by evaluating the BIC criterion for the solution of the

unregularized problem. Using the selected P , the regularization parameter of

this method is determined by 5-fold cross-validation. A final SCSA fit using

optimal values for P and λ is then performed on the complete time series for

each dataset. We use the default parameters for JADE.

The result of applying BSS techniques is a decomposition of the data into five

components consisting of a field pattern and a time series. The time series

are normalized and analyzed using GC, PDC and PSI. Since only the outer

product of a field pattern and a one-dimensional source time series defines

a BSS component, there is a degree of freedom regarding the sign and scale

4 http://www.machlea.com/mads/cicaar/index.html
5 http://user.cs.tu-berlin.de/~ziehe/code/
6 http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
7 http://user.cs.tu-berlin.de/~ziehe/code/ffdiag_pack.zip

33

http://www.machlea.com/mads/cicaar/index.html
http://user.cs.tu-berlin.de/~ziehe/code/
http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
http://user.cs.tu-berlin.de/~ziehe/code/ffdiag_pack.zip


of both factors (although normalization of the time series can be used to

overcome the scale invariance). Moreover, the order of the BSS components is

arbitrary. We therefore have to use the Kuhn-Munkres algorithm (Kuhn, 1955;

Munkres, 1957) to match BSS components obtained in the various repetitions

of the experiment. We use a modification of the implementation by Tichavský

and Koldovský (2004) 8 employing the goodness-of-fit (GOF) score to measure

distances between patterns (Haufe et al., 2010).

We obtain a global alignment of BSS components using the field patterns esti-

mated in the first repetition of the experiment as a template, to which patterns

obtained in later repetitions are transformed. That is, starting from the second

repetition, the optimal pairing between the newly-obtained and the template

field patterns is computed. Having found the pairing, the new field patterns

are permuted and scaled to approximate the template as well as possible. The

source connectivity graphs estimated by GC, PDC and PSI are also permuted

accordingly. To measure the success of each BSS estimation, we compute the

average goodness-of-fit score between each of the true field patterns and its

best matching estimated counterpart. Finally, statistical testing using anti-

symmetrization and time-reversed surrogates is employed to assess whether

there is significant information flow between the estimated source time series.

To highlight the requirement of non-Gaussianity of the source MVAR inno-

vations for blind source separation approaches (Comon, 1994; Dyrholm et al.,

2007; Haufe et al., 2010), the analysis is repeated on problem instances in

which the innovations are drawn from the super-Gaussian Laplace distribu-

tion as well as the sub-Gaussian uniform distribution instead of the Gaussian

8 http://si.utia.cas.cz/downloadPT.htm
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distribution.

4.5.2 Results

Figures 5 and 6 depict the source field patterns (averaged across repetitions)

estimated by SCSA, MVARICA, CICAAR, TDSEP and JADE, as well as the

connectivity estimates calculated from the associated source time series for

Gaussian- and Laplace-distributed innovation terms. The estimated connec-

tivity graphs are presented as matrices, in which red and yellow colors (z ¡ 0)

in the intersection of the i-th row and the j-th column denote that there is

net information flow from the i-th to the j-th source, while blue and cyan

colors (z   0) denote the opposite case. Since there are ten possible pairwise

interactions between five source time series, the z-score corresponding to a

Bonferroni-corrected p-value of p � 0.05 is given by z � 2.8.

For Gaussian-distributed source innovations, the MVAR-coupled (correlated)

sources model defined by Eq. (11) is not identifiable. It is hence expected that

all methods must fail to systematically identify the underlying interacting

sources as separate components. Interestingly, this is not the case for TDSEP,

which does recover the sources. However, the goodness-of-fit is far from the

optimal value of 1.0 even for high signal-to-noise ratios (see Table 2). Neverthe-

less, the flow from the left-hemisphere source to the right-hemisphere source is

significant for all effective connectivity measures. while there is no other signif-

icant flow. In contrast to TDSEP, the insufficiently-demixed sources obtained

from all other BSS approaches either lead to the detection of a large num-

ber interactions (as for SCSA, CICAAR and MVARICA), or to no estimated

interaction at all (as for JADE).
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For super-Gaussian (Laplace-distributed) innovations, all approaches but JADE

recover the interacting sources, although there are huge differences in the sep-

aration accuracy as measured by GOF scores. SCSA and CICAAR, which

are specialized approaches explicitly modeling super-Gaussian innovations,

achieve highest GOF scores, followed by MVARICA and TDSEP. Since MVAR-

ICA is capable of dealing with general non-Gaussian distributed innovation

sequences, it outperforms all other methods for uniformly-distributed (sub-

Gaussian) innovations. Graphical results for the uniform case are presented in

the supplement.

To summarize, independent component analysis according to JADE did not

succeed to reconstruct MVAR-coupled sources in our simulations. Although

making the same assumption of independence of the sources, TDSEP is able

to reconstruct MVAR-coupled sources even for Gaussian innovations to some

degree. The success of TDSEP might be explained by the simple structure

of our simulations, in which the “least-dependent” sources (according to TD-

SEP) seem to coincide with the true interacting sources, even though these

are coupled through the MVAR model. For non-Gaussian data, specialized

approaches explicitly assuming MVAR-coupled sources are more successful.

Compared to maximum-likelihood approaches like SCSA and CICAAR, which

require explicit specification of the underlying distribution, MVARICA is more

flexible, but potentially less powerful. To overcome the current confinement

to super-Gaussian innovations, SCSA and CICAAR may be extended in the

future to support general non-Gaussian distributions, where the “degree of

non-Gaussianity” (i. e., the kurtosis) of the target distribution is inferred from

the data along with the model parameters (Dyrholm et al., 2007).

[Insert Figure 5 around here]
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SCSA CICAAR MVARICA TDSEP JADE

γ � 0.25 0.27� 0.02 0.27� 0.03 0.24� 0.02 0.39� 0.02 0.27� 0.02

γ � 0.5 0.43� 0.03 0.53� 0.02 0.56� 0.02 0.73� 0.02 0.42� 0.02

γ � 0.75 0.61� 0.03 0.66� 0.02 0.69� 0.02 0.76� 0.02 0.62� 0.02

(a) Gaussian distributed innovations

γ � 0.25 0.55� 0.02 0.53� 0.02 0.46� 0.02 0.43� 0.02 0.25� 0.02

γ � 0.5 0.94� 0.01 0.92� 0.01 0.90� 0.01 0.71� 0.03 0.50� 0.02

γ � 0.75 0.99� 0.01 0.98� 0.01 0.92� 0.01 0.74� 0.02 0.51� 0.02

(b) Laplace distributed innovations

γ � 0.25 0.25� 0.01 0.30� 0.01 0.56� 0.02 0.45� 0.02 0.31� 0.02

γ � 0.5 0.43� 0.01 0.44� 0.01 0.95� 0.01 0.56� 0.03 0.51� 0.02

γ � 0.75 0.55� 0.01 0.56� 0.01 0.98� 0.01 0.60� 0.03 0.57� 0.02

(c) Uniformly distributed innovations

Table 2

Goodness-of-fit (GOF) scores calculated between the EEG field patterns of the

simulated sources in the left and right hemispheres and their best matching coun-

terparts estimated by sparsely-connected sources analysis (SCSA), combined mul-

tivariate autoregressive estimation and independent component analysis (MVAR-

ICA), convolutive independent component analysis via inverse autoregression (CI-

CAAR), temporal decorrelation source separation (TDSEP), and joint approximate

diagonalization (JADE) for three different signal-to-noise ratios, and for three dif-

ferent source MVAR innovation distributions. Larger values indicate better source

separation. Entries marked in bold indicate superior performance.
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[Insert Figure 6 around here]

5 Discussion

5.1 Estimation biases caused by weak data asymmetries

We have pointed out that connectivity measures based on Granger’s pre-

dictability argument are prone to be dominated by weak data asymmetries

such as different signal-to-noise ratios or different scalings. To counteract that,

we proposed a new strategy based on time inversion for testing the robust-

ness of causal analyses. Since our method amplifies strong asymmetries in the

data, while suppressing weak asymmetries in a similar way as permutation

testing, it increases the sensitivity of Granger-causal methods compared to

permutation testing. A further strategy for rejecting false positives based on

the evaluation of the asymmetry-symmetry ratio is introduced in Haufe et al.

(2012).

5.2 Sensor-space analyses

Our study illustrates that the estimation of brain interaction from EEG mea-

surements is challenging. We tested three widely-used measures of effective

connectivity. All of them estimate the correct direction of information flow

when being applied directly to source time series, but only PSI is able to

indicate the flow from the corresponding artificial EEG, unless our novel test-

ing approach involving time inversion is used. In addition to that, sensor-space

connectivity analyses were shown to depend on the choice of the reference elec-
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trode, since this choice affects the relative strengths with which driving and

receiving sources are expressed in the sensors. A further difficulty of sensor-

space analyses is that the signal-to-noise ratio affects the extent of the scalp

regions between which significant interactions can be estimated. Finally, if the

underlying interacting sources have more complex spread patterns, if their

field patterns more heavily overlap and/or if there are more than two inter-

acting sources, sensor-space connectivity maps may become even harder to

comprehend.

5.3 Source connectivity analyses

We assessed various source reconstruction algorithms, which have been used

previously in EEG-based synchronization and connectivity studies as prepro-

cessing steps for subsequent connectivity estimation. The diffuse spatial dis-

tribution of the current density estimated by WMN and other linear inverses

(Grave de Peralta-Menendez and Gonzalez-Andino, 1998; Haufe et al., 2008)

prevents sufficient spatial separation of the interacting sources. The same ap-

pears to hold for the LCMV beamformer, the solution of which is also linear

in the observations. More importantly, beamformers have been reported to be

unable to deal with strongly correlated source signals (Van Veen et al., 1997).

Since MVAR-coupling of the sources as simulated here also induces (weak)

instantaneous correlations, this issue might have affected the performance of

LCMV in the present study. Nonlinear distributed inverse imaging according

to S-FLEX achieves a better spatial separation of the sources and at the same

time a better demixing of the source signals than the application of WMN

or LCMV. In our simulation, this was the key to correct connectivity esti-
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mation even by Granger-causal measures. The performance of blind source

separation techniques was demonstrated to crucially depend on the (type of)

non-Gaussianity of the source innovations.

5.4 Degree of realism of the simulations

In this study we modeled the simplest case that we consider realistic in the

sense that the simulated EEG data comprises noise with temporal and spatial

structure, as well as source mixing due to volume conduction. All remaining

parts of our simulations were maximally simplified to the extent that mean-

ingful connectivity analysis is still possible. Undoubtedly, more complex simu-

lations involving more interacting sources with more strongly overlapping field

patterns etc. would only further aggravate connectivity estimation which, as

we show, is already a non-trivial task even in the case of one pair of interacting

sources. Similarly, linear dynamics as modeled here is an oversimplification of

what is expected to take place within the brain. Nevertheless, a linear source

MVAR model does represent a possible mechanism of information transfer

in the brain. Here, the source innovation sequences correspond to local brain

activity, which is generated independently at various distant locations in the

brain. The MVAR matrices relate to a stationary, but task-dependent brain

network, which distributes the local information to all brain sites involved in

the mental task with certain delays. The incoming information is fused at the

various brain sites with the current local information to produce the source

electrical activity that is indirectly observed in the EEG through the forward

mapping. Note that, in contrast to the standard view on innovation sequences

as consisting of pure noise, an interpretation as genuine brain activity justifies
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to model them using non-Gaussian distributions. Moreover, considering that

local brain activity is often spike-like, a super-Gaussian distribution seems to

be more appropriate than a sub-Gaussian distribution.

5.5 Benchmarking

We would like to propose our data as a benchmark dataset for the evaluation of

EEG-based connectivity estimation algorithms. This could help to establish a

best practice procedure of such evaluations also including open data and open

code.

Clearly, establishing a standardized benchmarking protocol is more involved

than proposing a dataset, since the performance measures have to be cho-

sen depending on the general type of algorithm used for source and connec-

tivity estimation. The statistics reported in this paper merely relate to the

significance of the estimated connections rather than their correctness. Con-

sequently, connectivity results have been presented rather qualitatively using

the visualizations that would in reality be interpreted by neurophysiologists.

We hereby encourage attempts on developing a generalized quantitative eval-

uation scheme for EEG-based connectivity analysis – possibly making use of

the datasets proposed here. However, it is rather challenging to accomodate

the various approaches including sensor-space, inverse source reconstruction

and blind source separation approaches into a common evaluation framework.

Since sensor-space approaches lack the notion of sources, it is hard to as-

sess their performance in terms of source connectivity estimation in general.

In genuine source connectivity analysis, the overall estimation is split into

source and connectivity estimation steps, and so must be the evaluation. We
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here quantified source estimation accuracy using the earth mover’s distance in

the inverse source reconstruction setting, and the goodness-of-fit in the BSS

setting. A meaningful quantitative evaluation of the subsequent connectivity

estimation is however only possible if the estimated sources can be matched

to the true sources one-to-one, which is not always easily possible.

6 Conclusions

To sum up, we have studied simulated EEG data generated from a simple

computational model of brain interaction. We have demonstrated that the in-

terpretation of sensor-space EEG connectivity analyses is hard, if not even

error-prone. In order to obtain interpretable results, it is necessary to con-

duct connectivity analysis on source estimates. However, the EEG inverse

problem is ill-posed; therefore, the assumptions made by a source estima-

tion algorithm must match the properties of the sources to be reconstructed.

Otherwise, source reconstruction will be poor, and so will be the subsequent

connectivity analysis. Inverse source reconstruction methods that are suitable

for source connectivity analysis should be able to spatially separate multiple

distinct sources, while being applicable to entire EEG time series. Blind source

separation techniques should explicitly or implicitly model the expected inter-

actions between the sources. As a general practical rule we suggest that any

methodology should be tested on appropriately simulated data before being

applied to real data.
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Gómez-Herrero, G., Atienza, M., Egiazarian, K., Cantero, J. L., 2008. Mea-

suring directional coupling between EEG sources. NeuroImage 43, 497–508.

Gosset, W. S., 1908. The probable error of a mean. Biometrika 6, 1–25, origi-

nally published under the pseudonym “Student”.

Gow, D. W., Segawa, J. A., Ahlfors, S. P., Lin, F. H., 2008. Lexical influences

on speech perception: a Granger causality analysis of MEG and EEG source

estimates. NeuroImage 43, 614–623.

Granger, C., 1969. Investigating causal relations by econometric models and

45



cross-spectral methods. Econometrica 37, 424–438.

Grave de Peralta-Menendez, R., Gonzalez-Andino, S. L., 1998. A critical anal-

ysis of linear inverse solutions to the neuroelectromagnetic inverse problem.

IEEE Trans Biomed Eng 45, 440–448.
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Fig. 1 (following page). Two simulated dipolar sources (SOURCE 1/2) and their

corresponding EEG field patterns (PAT 1/2). Sources are placed 3 cm below the

C3 (left) and C4 (right) electrodes and are oriented tangentially to the scalp. Also

shown are field patterns after changing the reference to the P3 electrode (P3REF

PAT 1/2).
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Fig. 2 (following page). Comparison of effective connectivity of simulated EEG as

estimated by Granger causality (GC), partial directed coherence (PDC) and the

phase-slope index (PSI) using five different statistical testing strategies. Two source

dipoles with tangential orientations are modeled 3 cm below the C3/4 electrodes.

Information flow from the left (C3) to the right (C4) source is modeled by means

of a bivariate AR model. The simulated EEG is superimposed by non-interacting

biological and sensor noise (SNR = 1). The significance of estimated interactions

is measured in terms of z-scores and visualized as head-in-head plots, where red

and yellow colors (z ¡ 0) stand for information outflow and blue and cyan colors

(z   0) stand for information inflow. The Bonferroni-corrected significance level is

indicated by a thin black line in the colorbar, while the uncorrected significance

level is indicated by a thick black line.
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Fig. 3 (following page). Comparison of effective connectivity of simulated EEG as

estimated by Granger causality (GC), partial directed coherence (PDC) and the

phase-slope index (PSI) for re-referenced EEG data, as well as for two additional

signal-to-noise ratios. Two source dipoles with tangential orientations are modeled

3 cm below the C3/4 electrodes. Information flow from the left (C3) to the right (C4)

source is modeled by means of a bivariate AR model. The simulated EEG is super-

imposed by non-interacting biological and sensor noise (SNR = 1). The significance

of estimated interactions is assessed using antisymmetrization and time inversion

testing, measured in terms of z-scores and visualized as head-in-head plots, where

red and yellow colors (z ¡ 0) stand for information outflow and blue and cyan colors

(z   0) stand for information inflow. The Bonferroni-corrected significance level is

indicated by a thin black line in the colorbar, while the uncorrected significance

level is indicated by a thick black line.
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Fig. 4 (following page). Comparison of effective connectivity of simulated EEG as

estimated by Granger causality (GC), partial directed coherence (PDC) and the

phase-slope index (PSI) on source estimates obtained from three inverse source re-

construction algorithms. Two source dipoles with tangential orientations are mod-

eled 3 cm below the C3/4 electrodes. Information flow from the left (C3) to the

right (C4) source is modeled by means of a bivariate AR process. The simulated

EEG is superimposed by non-interacting biological and sensor noise (SNR = 1). Up-

per panels: average source strength (estimated dipole amplitude) per voxel. Lower

panels: Estimated connectivity between regions-of-interest in source space, which

are defined based on the nearest EEG electrode. The significance of estimated in-

teractions between regions is assessed using antisymmetrization and time inversion

testing, measured in terms of z-scores and visualized as head-in-head plots, where

red and yellow colors (z ¡ 0) stand for information outflow and blue and cyan colors

(z   0) stand for information inflow. The Bonferroni-corrected significance level is

indicated by a thin black line in the colorbar, while the uncorrected significance

level is indicated by a thick black line.
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Fig. 5 (following page). Comparison of effective connectivity of simulated EEG

(“non-Gaussian” case) as estimated by Granger causality (GC), partial directed

coherence (PDC) and the phase-slope index (PSI) on source estimates obtained

from blind source separation (BSS) according to sparsely-connected sources analy-

sis (SCSA), combined multivariate autoregressive estimation and independent com-

ponent analysis (MVARICA), convolutive independent analysis via inverse autore-

gression (CICAAR), temporal decorrelation source separation (TDSEP) and joint

approximate diagonalization (JADE). Two source dipoles with tangential orienta-

tions are modeled 3 cm below the C3/4 electrodes. Information flow from the left

(C3) to the right (C4) source is modeled by means of a bivariate AR process with

super-Gaussian (Laplace-distributed) innovations. The simulated EEG is superim-

posed by non-interacting biological and sensor noise (SNR = 1). BSS techniques are

applied to the five strongest principal components. The significance of estimated in-

teractions between demixed signals is assessed using antisymmetrization and time

inversion testing, measured in terms of z-scores and visualized as matrices, where

entries with red and yellow colors (z ¡ 0) stand for information outflow and entries

with blue and cyan colors (z   0) stand for information inflow of the source marked

in the respective row. The Bonferroni-corrected significance level is indicated by a

thin black line in the colorbar, while the uncorrected significance level is indicated

by a thick black line.
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Fig. 6 (following page). Comparison of effective connectivity of simulated EEG

(“Gaussian” case) as estimated by Granger causality (GC), partial directed coher-

ence (PDC) and the phase-slope index (PSI) on source estimates obtained from blind

source separation (BSS) according to sparsely-connected sources analysis (SCSA),

combined multivariate autoregressive estimation and independent component anal-

ysis (MVARICA), convolutive independent analysis via inverse autoregression (CI-

CAAR), temporal decorrelation source separation (TDSEP) and joint approximate

diagonalization (JADE). Two source dipoles with tangential orientations are mod-

eled 3 cm below the C3/4 electrodes. Information flow from the left (C3) to the right

(C4) source is modeled by means of a bivariate AR process with Gaussian-distributed

innovations. The simulated EEG is superimposed by non-interacting biological and

sensor noise (SNR = 1). BSS techniques are applied to the five strongest principal

components. The significance of estimated interactions between demixed signals is

assessed using antisymmetrization and time inversion testing, measured in terms of

z-scores and visualized as matrices, where entries with red and yellow colors (z ¡ 0)

stand for information outflow and entries with blue and cyan colors (z   0) stand

for information inflow of the source marked in the respective row. The Bonferroni–

corrected significance level is indicated by a thin black line in the colorbar, while

the uncorrected significance level is indicated by a thick black line.
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