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Abstract

The increase in spatiotemporal resolution of neuroimaging devices is accom-
panied by a trend towards more powerful multivariate analysis methods.
Often it is desired to interpret the outcome of these methods with respect to
the cognitive processes under study. Here we discuss which methods allow
for such interpretations, and provide guidelines for choosing an appropriate
analysis for a given experimental goal: For a surgeon who needs to decide
where to remove brain tissue it is most important to determine the origin
of cognitive functions and associated neural processes. In contrast, when
communicating with paralyzed or comatose patients via brain-computer in-
terfaces, it is most important to accurately extract the neural processes spe-
cific to a certain mental state. These equally important but complementary
objectives require different analysis methods. Determining the origin of neu-
ral processes in time or space from the parameters of a data-driven model
requires what we call a forward model of the data; such a model explains how
the measured data was generated from the neural sources. Examples are gen-
eral linear models (GLM). Methods for the extraction of neural information
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from data can be considered as backward models, as they attempt to reverse
the data generating process. Examples are multivariate classifiers. Here we
demonstrate that the parameters of forward models are neurophysiologically
interpretable in the sense that significant nonzero weights are only observed
at channels the activity of which is related to the brain process under study.
In contrast, the interpretation of backward model parameters can lead to
wrong conclusions regarding the spatial or temporal origin of the neural sig-
nals of interest, since significant nonzero weights may also be observed at
channels the activity of which is statistically independent of the brain pro-
cess und study. As a remedy for the linear case, we propose a procedure for
transforming backward models into forward models. This procedure enables
the neurophysiological interpretation of the parameters of linear backward
models. We hope that this work raises awareness for an often encountered
problem and provides a theoretical basis for conducting better interpretable
multivariate neuroimaging analyses.

Keywords: neuroimaging, multivariate, univariate, fMRI, EEG,
forward/backward models, generative/discriminative models, encoding,
decoding, activation patterns, extraction filters, interpretability,
regularization, sparsification

1. Introduction

For many years, mass-univariate methods (e. g., Friston et al., 1994;
Pereda et al., 2005; Luck, 2005) have been the most widely used for analyz-
ing multivariate neuroimaging data. In such methods, every single measure-
ment channel (e. g., functional magnetic resonance imaging (fMRI) voxel or
electroencephalography (EEG) electrode) is individually related to a target
variable, which represents, for example, behavioral or stimulus parameters,
which are considered as a model for neural activation. In contrast, multivari-
ate methods combine information from different channels. This approach
makes it possible to cancel out noise and thereby to extract the brain sig-
nals of interest with higher sensitivity and specificity (Dolce and Waldeier,
1974; Donchin and Heffley, 1978; Comon, 1994; Koles et al., 1995; Hyvärinen
et al., 2001; Blankertz et al., 2002; Parra et al., 2003; Kriegeskorte et al.,
2006; Nolte et al., 2006; Blankertz et al., 2008; Parra et al., 2008; von Bünau
et al., 2009; Bießmann et al., 2009; Haufe et al., 2010; Nikulin et al., 2011;
Blankertz et al., 2011; Lemm et al., 2011; Kragel et al., 2012; Dähne et al.,
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2013).
The goals of neuroimaging analyses can be broadly categorized in two

classes as illustrated by the following typical application scenarios.

Interpretability for neuroscience and clinical use. Basic neuroscience
research is often concerned with determining the brain regions (or measure-
ment channels), frequencies, or time intervals reflecting a certain cognitive
process. Here we call analyses, for which this is possible, interpretable with
respect to these processes. In extreme cases, interpretable methods could
even be used to answer questions like “Where can a surgeon cut, without
damaging a certain brain function?”

Accurate brain state estimation for BCIs. In other applications such
as brain-computer interfacing (BCI, Wolpaw and Wolpaw, 2012; Dornhege
et al., 2007), researchers are mainly interested in estimating (or decoding)
brain states from neuroimaging data, or vice versa. For analysis methods
in this scenario, the accuracy of decoding is more important than the inter-
pretability of the model parameters.

There is generally no reason to believe that the decoding models used for
BCIs should at the same time be interpretable. But this is exactly what is
sometimes implicitly assumed. For example, one may contrast the brain ac-
tivity in two experimental conditions using a multivariate classifier. Although
classifiers are designed for a different purpose (estimation of brain states, that
is), it is common to interpret their parameters with respect to properties of
the brain. A widespread misconception about multivariate classifier weight
vectors is that (the brain regions corresponding to) measurement channels
with large weights are strongly related to the experimental condition. In fact,
such conclusions can be unjustified. Classifier weights can exhibit small am-
plitudes for measurement channels containing the signal-of-interest, but also
large amplitudes at channels not containing this signal. In an extreme sce-
nario, in which a surgeon bases a decision about which brain areas to cut on,
e. g., classifier weights, both Type I and Type II errors may thus occur, with
potentially severe consequences: the surgeon may cut wrong brain areas and
actually miss correct ones. The goal of this paper is to raise awareness of this
problem in the neuroimaging community and to provide practitioners with
easy recipes for making their models interpretable with respect to the neural
processes under study. Doing so, we build on prior work contained in Parra
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et al. (2005); Hyvärinen et al. (2009); Blankertz et al. (2011); Naselaris et al.
(2011) and Bießmann et al. (2012).

While we here focus on linear models, nonlinear ones suffer from the same
interpretational difficulties. Besides their simplicity, linear models are often
preferred to nonlinear approaches in decoding studies, because they combine
information from different channels in a weighted sum, which resembles the
working principle of neurons (Kriegeskorte, 2011). Moreover, they typically
yield comparable estimation accuracy in many applications (Misaki et al.,
2010).

The article is structured as follows. We start in Section 2 with three
simple examples illustrating how coefficients of linear classifiers may severely
deviate from what would reflect the simulated “physiological” truth. Next,
we establish a distinction of the models used in multivariate data analysis
into forward and backward models. Roughly speaking, forward models ex-
press the observed data as functions of some underlying variables, which are
of interest for the particular type of analysis conducted (e. g., are maximally
mutually independent, or allow the best estimation with respect to certain
brain states, etc.). In contrast, backward models express those variables of
interest as functions of the data. We point out that the interpretability of
a model depends on the direction of the functional relationship between ob-
servations and underlying variables: the parameters of forward models are
interpretable, while those of backward models typically are not. However,
we provide a procedure for transforming backward models into corresponding
forward models, which works for the linear case. By this means, interpretabil-
ity can be achieved for methods employing linear backward models such as
linear classifiers.

In Sections 3 and 4 we demonstrate the benefit of the proposed trans-
formation for a number of established multivariate methods using synthetic
data as well as real EEG and fMRI recordings. In Section 5, we discuss
theoretical and practical issues related to our findings, as well as non-linear
generalizations and relations to the popular searchlight approach in neu-
roimaging (Kriegeskorte et al., 2006; Chen et al., 2011). Conclusions are
drawn in Section 6.

2. Methods

Our considerations apply in the same way to EEG, fMRI and any other
measurements. Moreover, it is not required that each dimension of the data
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exactly corresponds to one physical sensor (fMRI voxel, EEG electrode).
For example, one may as well consider “spatial features”, where every data
channel corresponds to a different time point or interval of the same physical
measurement sensor (see Example 3 in Section 2.1). Generally, the data
may be composed of any features derived from the original measurements
through linear or nonlinear processing, and may even comprise higher-order
interaction measures between physical sensors, as in Shirer et al. (2012). We
refer to all such features simply as data channels.

In the following, the number of channels will be denoted by M and the
data of channel m (with m ∈ {1, . . . ,M}) will be called xm. Furthermore, to
obtain a concise notation, we combine all channels’ data into the vector x =
[x1, . . . , xM ]> ∈ RM . Finally, we will assume that N data samples x(n), n =
1, . . . , N are available, where in the neuroimaging context the index n may
often refer to time. In analogy, we will assume the presence of K so-called
latent factors in the data (see Sections 2.2 and 2.3), where the n-th sample
of these factors is summarized as s(n) = [s1(n), . . . , sK(n)]

> ∈ RK . Finally,
in supervised settings, each latent factor sk(n) is linked to an externally
given target variable yk(n). These targets can either take continuous (e. g.,
stimulus intensities or reaction times) or discrete (e. g., class labels indicating
the experimental condition) values. The n-th sample of target variables is
denoted by y(n) = [y1(n), . . . , yK(n)]

> ∈ RK . Generally, we set scalar values
in italic face, while vector-valued quantities and matrices are set in bold face.
An overview of the notation is given in Table 1. Denoting x(n) the measured
variable and target variables as y(n) we follow the standard convention in the
machine learning community. Although we are aware of the convention in
the fMRI literature to denote the design matrix as X, we deliberately chose
the machine learning nomenclature: the problem of interpretatibility arises
when using multivariate classifiers, which are more associated with machine
learning than with standard fMRI methods.

2.1. Three classification examples
Example 1. Consider a binary classification setting in which we want to con-
trast the brain activity in two experimental conditions based on the ob-
servations in two channels, x1(n) and x2(n). Imagine that x1(n) contains
the signal of interest s(n) (e. g., the presence or absence of an experimen-
tal condition), but also a strong distractor signal d(n) (e. g., heart beat)
that overshadows the signal of interest. For example, x1(n) = s(n) + d(n).
Channel x2(n) measures the same distractor signal, but not the signal of
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N Number of data points

M Number of measurement channels

K Number of latent factors or target variables

x(n) M -dimensional vector of observed data

s(n), ŝ(n) K-dimensional vector of latent factors

y(n) K-dimensional vector of target variables

ε(n) M -dimensional noise vector in forward models

A M ×K matrix of patterns in forward models

W M ×K matrix of filters in backward models

Σx Data covariance

Σŝ Covariance of the latent factors

Σε Noise covariance in forward models

Table 1: Notation.

interest, i. e. x2(n) = d(n). Combining the information from both chan-
nels, the signal of interest can easily be recovered by taking the difference
x1(n) − x2(n) = w>x(n), where w = [1,−1]> is the weight vector of the
optimal linear classifier. Importantly, this classifier gives equally “strong”
weights to both channels. Thus, interpreting those weights as evidence that
the signal-of-interest is present in a channel would lead to the erroneous con-
clusion that a the signal is (also) present in channel x2(n) – which it is not.
In fact, in the course of this paper we will demonstrate that the only infer-
ence about the signal-of-interest one can draw from the fact that there are
nonzero weights on both channels is that that signal is present in at least one
of the channels.

Example 2. Figure 1 illustrates a slightly more complex two-dimensional sce-
nario, which exemplifies that classifier weights on channels not containing the
signal of interest might also be positive, and might generally also have a larger
magnitude than those of signal-related channels. Consider that the data mea-
sured in two conditions (classes) are multivariate Gaussian distributed with
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Figure 1: Two-dimensional example of a binary classification setting. The class-conditional
distributions are multivariate Gaussians with equal covariance matrix. The class means
differ in channel x1(n), but not in channel x2(n). Thus, channel x2(n) does not contain any
class-related information. Nevertheless, Bayes-optimal classification according to linear
discriminant analysis (LDA) projects the data onto the weight vector (extraction filter)
wLDA ∝ [1, 2]>, i. e., assigns twice the weight of channel x1(n) to channel x2(n). This
large weight on x2(n) is needed for compensating the skewed correlation structure of the
data, and must not be interpreted in the sense that the activity at x2(n) is class-specific.
By transforming the LDA projection vector into a corresponding activation pattern aLDA
using Eq. (7), we obtain aLDA ∝ [1, 0]>, which correctly indicates that x1(n) is class-
specific, while x2(n) is not.

x1(n) with wx1 = [1, 0]> yields a reasonable separation of the two classes
(see the bottom left panel of Figure 1), with the correlation of the class la-
bel y(n) ∈ {−1,+1} and channel data x1(n) being r = Corr(y, x1) = 0.83,
where Corr(x1, x2) = Cov(x1, x2)/(Std(x1) · Std(x2)). In contrast, projecting
the data onto channel x2 using wx2 = [0, 1]> provides no separation at all
(see bottom center panel). Here, r = 0.04. Multivariate classification accord-
ing to linear discriminant analysis (LDA) – which is Bayes-optimal in this
specific scenario – achieves the best possible separation of r = 0.92 using the
projection vector wLDA ∝ [1, 2]> (see Section 5.6 and Appendix AppendixC).
Thus, in order to maximize class separation, the weight on x2(n) must be
twice as large as the weight on x1(n), although x2(n) does not contain class-
specific information at all.

Example 3. Finally, the interpretability issues outlined above do not only
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different means and equal covariance matrices. Here, we choose the class
means to be µ+ = [1.5, 0]> and µ− = [−1.5, 0]>, and the common covari-
ance matrix to be Σ = [ 1.02 −0.30

−0.30 0.15 ] (these values were determined in order to
obtain a particular weight vector wLDA, see below).

Projecting the data onto x1 by means of the linear transformation w>x1x(n) =
x1(n) with wx1 = [1, 0]> yields a reasonable separation of the two classes
(see the bottom left panel of Figure 1), with the correlation of the class la-
bel y(n) ∈ {−1,+1} and channel data x1(n) being r = Corr(y, x1) = 0.83,
where Corr(x1, x2) = Cov(x1, x2)/(Std(x1) · Std(x2)). In contrast, projecting
the data onto channel x2 using wx2 = [0, 1]> provides no separation at all
(see bottom center panel). Here, r = 0.04. Multivariate classification accord-
ing to linear discriminant analysis (LDA) – which is Bayes-optimal in this
specific scenario – achieves the best possible separation of r = 0.92 using the
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projection vector wLDA ∝ [1, 2]> (see Section 5.7 and Appendix AppendixC).
Thus, in order to maximize class separation, the weight on x2(n) must be
twice as large as the weight on x1(n), although x2(n) does not contain class-
specific information at all.

Example 3. Finally, the interpretability issues outlined above do not only
hold for data with spatial structure as derived from different EEG electrodes
or fMRI channels, but for arbitrary features derived from data. To illustrate
that, imagine the classification of stimulus-evoked v. s. baseline neural ac-
tivity based on pre- and poststimulus (that is, temporal) features. Here, the
difference of pre- and poststimulus activity should be highly class-specific.
Thus, large (temporal) classifier weights might be assigned to both features.
Analyzing these weights one might incorrectly conclude that the pre-stimulus
interval contains class-specific information.

These three examples demonstrate that classifier weights may convey mis-
leading information about the class-related directions in the data, where the
LDA classifier is representative of an entire class of methods estimating so-
called backward models, for which such seemingly counter-intuitive behaviour
is necessary and systematic. We will discuss backward models after intro-
ducing their counterparts, forward models, in the following.

2.2. Forward models and activation patterns
Forward models express the observed data as functions of some latent

(that is, hidden) variables called components or factors. Since they provide
a model for the generation process of the observed data, they are also referred
to as generative models in the machine learning literature.

In the linear case, the data x(n) are expressed as the sum of K factors
sk(n) (k ∈ {1, . . . , K}), which are weighted by their corresponding activation
patterns ak ∈ RM , plus additive noise. That is, x(n) =

∑
k aksk(n) + ε(n),

or, in matrix notation

x(n) = As(n) + ε(n) , (1)

where s(n) = [s1(n), . . . , sK(n)]
> ∈ RK and A = [a1, . . . , aK ] ∈ RM×K , cf.

also the linear model presented in (Parra et al., 2005). In the most gen-
eral case, A and s(n) are estimated jointly, which is refered to as the blind
source separation (BSS) setting. Since the factorization into A and s(n) is
not unique, assumptions have to be imposed, where different assumptions
generally also lead to different factorizations.
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Each estimated factor sk can be thought of as a specific signal-of-interest
“hidden” in the data, e. g., a brain response to a stimulus, which is isolated
from other signals of cerebral or extracerebral origin. The corresponding ac-
tivation pattern ak encodes the strength and polarity with which the factor’s
activity is present in each channel. As such, activation patterns have a clear
physiological interpretation, which can be summarized as follows:

The entries of the activation pattern ak show, in which channels
(e. g., fMRI voxels or EEG electrodes) the signal sk is reflected.
Value (and sign) are directly related to its strength (and effect
direction) at different channels.

Intuitively, one might think of latent factors as being produced by a spe-
cific brain region or network implementing a certain mental function or pro-
cessing. In EEG, where the physics of volume conduction implies a linear
mapping from brain sources to sensors, they are indeed commonly equated
with the activity of underlying electrical brain sources. The estimation of
a linear forward model here amounts to implicitly solving the EEG inverse
problem (see Section 5.9).

Imaging modalities such as fMRI measure (the hemodynamic response
to) neuronal activity directly inside the brain, such that no inverse problem
needs to be solved. Nevertheless, assuming a linear forward model of the
data is still adequate, if we assume that each measurement is a summation
of the activities of multiple concurrent brain (and noise) processes, each
of which might be expressed with different strengths in different subsets of
voxels. This assumption of linear superposition builds the foundation of
standard fMRI analyses such as using a general linear model (GLM). In the
classification example depicted in Figure 1, for instance, the data actually
follow the forward model x(n) = ay(n) + ε(n), where the binary class label
y(n) ∈ {−1/2, 1/2} plays the role of the latent signal, the mean difference
µ+−µ− = (3, 0)> = a is the corresponding activation pattern, and where the
noise ε ∼ N (0,Σ) is distributed according to a zero-mean bivariate Gaussian
distribution with covariance matrix Σ.

Supervised methods that directly estimate activation patterns of a for-
ward model given a target variable y(n) are typically refered to as encoding
approaches (Naselaris et al., 2011). Thus, encoding is the supervised special
case of forward modeling (c. f., Table 2). As with all forward models, the
estimated patterns can be interpreted in the desired way as outlined above.
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Classifiers such as LDA, however, do not fit into the encoding framework,
because they employ backward models as discussed below.

Forward model Backward model

Alternative name Generative model Discriminative model

Model (linear
case)

x(n) = As(n) + ε(n) W>x(n) = ŝ(n)

Purpose Factorize the data into latent factors
s(n) and their corresponding activa-
tion patterns (columns of A), plus
noise ε(n).

Extract latent factors ŝ(n) from the
data by multiplying with extraction
filters (columns of W).

Interpretable A, s(n) ŝ(n)

Supervised case Encoding: Replace latent factors
s(n) by known external target vari-
ables y(n) or pre-estimated factors
ŝ(n). Thus, estimate how y(n) or
ŝ(n) are encoded in the measure-
ment.

Decoding: Seek latent factors ŝ(n)
to approximate known external tar-
get variables y(n). Thus, estimate
how y(n) can be decoded from the
measurement.

Table 2: Comparison of linear forward and backward modeling perspectives associated
with activation patterns and extraction filters, respectively, as well as the special supervised
cases of encoding and decoding.

2.3. Backward models and extraction filters
Backward models “extract” latent factors ŝ(n) as functions of the observed

data, i. e., reverse the direction of the functional dependency between factors
and data compared to forward models. They are typically used if there is
no need to model the generation of the entire observations, because one is
only interested in transforming them into a (potentially low-dimensional)
representation in which they exhibit certain desired characteristics. As such,
backward models roughly1 correspond to discriminative models in machine

1While backward modeling encompasses both supervised and unsupervised approaches,
the term “discriminative” is typically used only for supervised approaches.
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learning.
In the linear case, the mapping from observations to factors can be sum-

marized in the transformation matrix W ∈ RM×K . The backward model
then reads

W>x(n) = ŝ(n) . (2)

As in forward modeling, the model parameters must be fitted under appro-
priate assumptions, where the assumptions on ŝ(n) may generally be similar
to those outlined in Section 2.2. In fact, most of the blind source separa-
tion techniques mentioned there can be formulated both in a forward and
backward modeling context (see Section 2.4).

In supervised backward modeling, W is chosen such that ŝ(n) approx-
imates a target variable, where typically K < M . In analogy to the term
“encoding” for supervised forward modeling, one here also speaks of decoding
(Naselaris et al., 2011). An overview of the properties of forward and back-
ward models, as well as their supervised variants of encoding and decoding,
is provided in Table 2.

Generally, each column wk ∈ RM of W extracts one factor ŝk(n), and is
referred to as the extraction filter for that factor. Hence, just as in forward
modeling, every factor is associated with an M -dimensional weight vector.
However, in contrast to forward models these weight vectors appear now in
a complementary role. Instead of multiplying it with a latent factor ŝk(n) in
order to obtain the contribution of that factor to the measured data x(n),
we now multiply it to the measured data x(n) in order to obtain the latent
factor ŝk(n). Accordingly, there is no general reason why the filter vector wk

should be similar to the activation pattern ak of the same factor ŝk(n), and
its interpretation is different:

When projecting observed data onto an extraction filter wk, the
result will be a latent component exhibiting certain desired prop-
erties (e. g., allow good classification or maximize the similarity
to a target variable).

The purpose of a filter is two-fold: it should amplify a signal of interest,
while it should at the same time suppress all “signals of no interest”2. The

2The “signals of no interest” are collectively called noise, although they might comprise
not only measurement noise and technical artifacts, but also the activity of all brain
processes not currently under study.
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first task alone is achieved best by the activation pattern of the target signal
(vector w1 in Fig. 1), but the second task requires the filter to deviate from
that direction in order to be “as perpendicular” as possible to the activation
patterns of the strongest disturbing noise sources (Eigenvectors correspond-
ing to the largest Eigenvalues of Σ in Fig. 1). If those latter patterns are not
orthogonal to the signal pattern, the trade-off between amplifying the target
signal and suppressing the noise requires a rather complex spatial structure
in which the “meaning” of filter weights for a certain channel cannot be dis-
entangled between those two tasks. In particular, the filter weights do not
allow one to draw conclusions about the features (e. g., brain voxels) in which
the corresponding factor is expressed.

Moreover, the sign of a particular filter weight does not give an indication
about the activity at the respective channels being positively or negatively
related to the experimental condition in a classification or regression task.
Put short, extraction filters are generally complicated functions of signal and
noise components in the data.

2.4. Interpreting results of backward modeling: obtaining activation patterns
from extraction filters

Backward modeling amounts to transforming the data into a supposedly
more informative representation, in which the signals of interest are isolated
as low-dimensional components or factors. However, we have seen that the
filters in W only tell us how to combine information from different channels
to extract these factors from data, but not how they are expressed in the
measured channels. Obviously, if we aim at a neurophysiological interpre-
tation or just a meaningful visualization of the weights, we have to answer
the latter question. In other words, we have to construct activation patterns
from extraction filters.

The square case K =M

For linear backward modeling approaches extracting exactly K =M lin-
early independent factors, the extraction filters W form an invertible square
matrix. By multiplying Eq. (2) with W−> from the left, where W−> denotes
the transpose of the inverse of W, we obtain

x(n) = W−>ŝ(n) ,

which has the form of a noise-free forward model of the data x(n) with
activation patterns A = W−>. As mentioned, this duality of forward and

12



backward linear modeling holds for many BSS methods including most ICA
variants3. When interpreting the parameters of these methods it is just
important that the forward modeling view is adopted, i. e., that the activation
patterns A are interpreted rather than the extraction filters W.

The general case K ≤M

For backward modeling approaches estimating a reduced set of K < M
factors, obtaining an equivalent forward model is not straightforward, since
the filter matrix W is not invertible anymore. Nonetheless, our goal here is
again to find a pattern matrix A indicating those measurement channels in
which the extracted factors are reflected. Therefore, we seek a linear forward
model having the form of Eq. (1):

x(n) = Aŝ(n) + ε(n) . (3)

In the following, we assume w. l. o. g. that E [x(n)]n = E [ŝ(n)]n = E [ε(n)]n =
0, where E [·]n denotes expectation over samples. Then, the associated co-
variance matrices are given by Σx = E

[
x(n)x(n)>

]
n
,Σŝ = E

[
ŝ(n)ŝ(n)>

]
n

and Σε = E
[
ε(n)ε(n)>

]
n
. Moreover, we assume that the latent factors ŝ(n)

are linearly independent, which implies that W must have full rank, i. e.,
rank(W) = K.

If the noise term ε(n) is uncorrelated with the latent factors ŝ, i. e.,

E
[
ε(n)ŝ(n)>

]
n
= 0 , (4)

we call Eq. (3) a corresponding forward model to the discriminative model
Eq. (2). Assuming a corresponding forward model ensures that any variation
that can be explained by the latent factors is captured in the term Aŝ(n),
and not in ε(n). This approach leads directly to the following result.

Theorem1. For any backward model

W>x(n) = ŝ(n) (5)

the corresponding forward model is unique, and its parameters are obtained
by

A = ΣxWΣ−1ŝ . (6)

3In ICA terminology the activation patterns correspond to the mixing matrix, the
extraction filters to the demixing matrix.
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The columns of A are activation patterns, which, unlike their associated fil-
ters contained in W, enable the desired interpretation, i. e., indicate the effect
directions and strengths of the extracted latent factors in the measurement
channels.

The proof is given in Appendix AppendixA. A proof of the existence of
a corresponding forward model is given in Appendix AppendixB.

Four remarks
Remark 1. While the above result is based on population covariances

Σx,Σŝ and Σε, those can be exchanged by their sample empirical counter-
parts in order to derive activation patterns in practice.

Remark 2. In the square case, in which the backward modeling method
extracts exactlyK =M linearly independent factors, A = ΣxWΣ−1ŝ directly
reduces to W−>, the inverse of W>. Here, ε(n) = 0, since all noise is
contained in ŝ(n) In the general case K < M , however, A 6= (W>)+; that is,
the patterns do not coincide with the columns of the familiar Moore Penrose
pseudoinverse of W>, given by (W>)+ = limα→0 W(W>W + αI)−1.

Remark 3. Although the corresponding forward model to a given back-
ward model is uniquely determined by Eq. (6), that does not imply that the
decomposition of the data is unique itself. The “correctness” of the activa-
tion patterns derived using Eq. (6) thus solely depends on the correctness of
the data decomposition provided by the backward modeling step, which in
turn depends on the appropriateness of the assumptions used to estimate the
backward model (see Section 5.1 for a discussion).

Remark 4. Since filters and patterns are dual to each other, we can also
construct extraction filters from given activation patterns. In practice this
just means solving Eq. (6) for W. Situations, in which this could be useful,
are outlined in Section 5.1.

Simplifying conditions
If the estimated factors ŝ(n) are uncorrelated, which is the default for

many (but not all) backward modeling approaches, and trivially true for
K = 1, we can obtain activation patterns simply as the covariance between
data and latent factors:

A ∝ ΣxW = Cov[x(n), ŝ(n)] , (7)

where
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Cov[x(n), ŝ(n)] =Cov[x1(n), ŝ1(n)] · · · Cov[x1(n), ŝK(n)]
... . . . ...

Cov[xM(n), ŝ1(n)] · · · Cov[xM(n), ŝK(n)]

 .

This relationship has also been pointed out by Hyvärinen et al. (2009) in the
context of independent component analysis for image processing.

Note that in a decoding setting, one might simply replace the factor es-
timate ŝ(n) in Eq. (7) by the external target variable y(n). In fact, it can
be shown that this approximation is exact for ordinary least squares (OLS)
decoding (see Section 5.7). That is, the activation pattern can be approx-
imated by calculating the covariance Cov[x(n),y(n)] (not the correlation
Corr[x(n),y(n)]) of each single channel’s data with the target variable, which
amounts to a purely mass-univariate analysis.

Eq. (6) also shows under which conditions extraction filters are propor-
tional to activation patterns, i. e., when filter weights can be interpreted
directly. This is possible, only if also the individual channels in the observed
data (in addition to the factors) are uncorrelated. However, this assump-
tion is hardly ever met for real neuroimaging data (c. f., Sections 3 and 4).
Therefore, it is indeed crucial to draw the distinction between filters and
patterns.

Regression approach
A different way of constructing activation patterns from latent factors is

provided by Parra et al. (2005). They propose to find a pattern that, when
multiplied by the extracted latent factors, explains the observed data best
in the least-squares sense. That is, to fit a forward model using the pre-
estimated factors ŝ(n) under the assumption that the noise ε̂ is Gaussian
distributed. Interestingly, this approach leads to the exact same solution as
Eq. (6):

AOLS = argmin
Ã

∑
n

(
x(n)− Ãŝ(n)

)2
= ΣxWΣ−1ŝ . (8)

Treating the calculation of activation patterns as a regression problem pro-
vides an interesting perspective, since it suggests a straightforward way to
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integrate prior knowledge into the activation pattern estimation, which could
genuinely improve interpretability in the presence of too few or excessively
noisy data. For example, if the underlying factors are believed to contribute
only to a few channels, an `1-norm penalty might be added in order to spar-
sify A. The resulting estimator

A`1 = argmin
Ã

∑
n

(
x(n)− Ãŝ(n)

)2
+ λ||Ã||1 (9)

is known as the “LASSO” in the statistics literature (Tibshirani, 1996). Note
that this is fundamentally different from sparsifying the filters themselves
(see Section 5.4). Other penalties might enforce spatially smooth patterns or
sparsity in a suitable function space (e. g., Haufe et al., 2008; Vega-Hernández
et al., 2008; Haufe et al., 2009, 2011; Gramfort et al., 2013).

3. Experiments

3.1. Simulations
We performed simulations to assess the extent to which mass-unvariate

measures as well as weight vectors (filters) and corresponding activation pat-
terns of multivariate methods are able to recover the spatial distribution of
an underlying simulated factor in a binary classification task as well as in an
unsupervised blind source separation (BSS) setting. For these simulations,
we extend the simple 2-dimensional example presented in Section 2.1 to 64
dimensions.

Data generation
The data were generated according to model Eq. (1). There were K = 2

components plus additional noise giving rise to a pseudo-measurement at
M = 64 channels, which are arranged in an 8× 8 grid (c. f., Figure 2). The
noise was generated according to a 64-dimensional multivariate Gaussian
distribution with zero mean and a random covariance matrix, which was
uniformly sampled from the set of positive-semidefinite matrices. Of the
two designated components, one is a distractor component, while the other
one contains the signal-of-interest. The distractor component factor was
sampled from a standard normal (Gaussian) distribution. The corresponding
activation pattern consists of two blobs with opposite signs in the upper
left and upper right corners of the grid. The signal component’s activation
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pattern also consists of two blobs with opposite signs: one in the upper
left and one in the lower left corner. Thus, the two components spatially
overlap in the upper left corner. The activation patterns of the signal and
distractor components are depicted in Figure 2. In the classification setting,
the temporal signature of the signal component factor was set to be the class
label y(n) ∈ {−1,+1} plus standard normal distributed noise. In the BSS
setting, it was sampled from a univariate Laplace distribution and thus the
only non-Gaussian distributed component in the data. The observations were
composed as the sum of a 10 % signal component portion, a 60 % distractor
component portion, and a 30 % noise portion.

Tested methods
We generated 100 datasets for the classification setting, and 100 corre-

sponding ones for the BSS setting. Each dataset consists of 1 000 pseudo-
measurements, which were generated using distinct random noise covari-
ance matrices. For each BSS dataset, independent component analysis was
carried out using joint approximate diagonalization (JADE, Cardoso and
Souloumiac, 1996), where we used the original code provided by the authors.
The analysis was restricted to the space of the ten largest principle compo-
nents. From the resulting ten ICA components, only the one best correlating
with the simulated Laplace-distributed factor was investigated.

Note that, while JADE may not be as popular as other ICA algorithms,
the specific choice of the ICA algorithm plays only a minor role for demon-
strating the different abilities of extraction filters and activation patterns
to indicate sensors containing the signal-of-interest, which is the purpose of
this simulation rather than demonstrating the performance of a particular
method. Therefore, we here designed the non-Gaussian factor-of-interest to
be reliably found by any ICA algorithm. In fact, nearly identical results are
obtained with FastICA (Hyvärinen, A., 1999, author’s implementation with
default parameters, g(u) = u3 nonlinearity). More generally, we could re-
place the ICA example by a different combination of underlying signals with
specific properties and a corresponding BSS method optimized to extracting
such factors, with similar outcome.

For each classification dataset, we computed the mass-univariate corre-
lation Corr[x(n), y(n)] of the class label with each channel reading, as well
as the mass-univariate covariance Cov[x(n), y(n)]. Moreover, we conducted
multivariate classification by applying linear logistic regression (LLR) on the
64-dimensional data. We considered the unregularized variant of LLR as
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well as two variants in which either the `1-norm (LLR-L1) or the `2-norm
(LLR-L2) of the estimated weight vector w is penalized. The regularization
strength in the latter two cases was adjusted using 5-fold crossvalidation.
Each method gives rise to an extraction filter w. Corresponding activation
patterns a were obtained by transforming the extraction filters according to
Eq. (6). Moreover, we used LASSO regression (Eq. (9)) to obtain sparsified
patterns a`1 . The regularization parameter here was 5-fold crossvalidated.

Taken together, we computed the following fourteen 64-dimensional weight
vectors in each experiment.

• Indep. component analysis (JADE): w, a, a`1

• Linear logistic regression (LLR): w, a, a`1

• `1-norm regularized LLR (LLR-L1): w, a, a`1

• `2-norm regularized LLR (LLR-L2): w, a, a`1

• Mass-univariate correlation: Corr[x(n), y(n)]

• Mass-univariate covariance: Cov[x(n), y(n)]

For further analysis and visualization, all weight vectors were normalized.
The weights provided by JADE were moreover adjusted to match the sign of
the true pattern.

Performance evaluation
Focusing on the eleven weight vectors computed in the classification con-

text, we evaluated two performance measures. Most importantly, the recon-
struction of the true signal component pattern was quantified by means of
the correlation between the true pattern and the estimated weight vector.
Secondly, the stability of the estimation was assessed by taking the channel-
wise variance of the weight vectors across the 100 repetitions, and averaging
it across channels.

3.2. Spatio-spectral decomposition of EEG data
Oscillatory activity in the alpha-band (8–13Hz) is the strongest neural

signal that can be observed in the EEG. There exist multiple rhythms in the
alpha range, each of which reflects synchronization within a specific macro-
scopic cortical network during idling. We here analyzed a 5-minute relaxation
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patterns a were obtained by transforming the extraction filters according to
Eq. (6). Moreover, we used LASSO regression (Eq. (9)) to obtain sparsified
patterns a`1 . The regularization parameter here was 5-fold crossvalidated.

Taken together, we computed the following fourteen 64-dimensional weight
vectors in each experiment.

• Indep. component analysis (JADE): w, a, a`1

• Linear logistic regression (LLR): w, a, a`1

• `1-norm regularized LLR (LLR-L1): w, a, a`1

• `2-norm regularized LLR (LLR-L2): w, a, a`1

• Mass-univariate correlation: Corr[x(n), y(n)]

• Mass-univariate covariance: Cov[x(n), y(n)]

For further analysis and visualization, all weight vectors were normalized.
The weights provided by JADE were moreover adjusted to match the sign of
the true pattern.

Performance evaluation
Focusing on the eleven weight vectors computed in the classification con-

text, we evaluated two performance measures. Most importantly, the recon-
struction of the true signal component pattern was quantified by means of
the correlation between the true pattern and the estimated weight vector.
Secondly, the stability of the estimation was assessed by taking the channel-
wise variance of the weight vectors across the 100 repetitions, and averaging
it across channels.
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Figure 2: True activation patterns of the simulated signal and distractor components.
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Figure 2: True activation patterns of the simulated signal and distractor components.

measurement recorded prior to an in-car EEG-study on attentional processes
(Schmidt et al., 2009). During the recording, the subject sat relaxedly in the
driver’s seat of a car with his eyes closed. The engine and all electronic
devices apart from the EEG instrumentation were switched off. Electroen-
cephalography was recorded from 59 electrodes (located according to the
extended 10-20 system, 1 000Hz sampling rate, low cut-off: 0.016Hz; high
cut-off: 250Hz, nose reference) using BrainAmp recording hardware (Brain-
products GmbH, Munich). The EEG signal was digitally lowpass-filtered to
50Hz and down-sampled to 100Hz.

We applied spatio-spectral decomposition (SSD) (Nikulin et al., 2011) in
order to extract EEG components with strong peaks in the alpha band. By
means of SSD, we obtained a full decomposition of the data with invertible
pattern and filter matrices, and with factor time series ordered by the ratio
of the power in the alpha (8–13Hz) band and the power in a slightly wider
(7–14Hz) band. Obviously, the power ratio is bounded in [0, 1], and the
alpha peak of a component is the more pronounced, the closer the power
ratio approaches one. We analyzed the first five SSD components, achieving
power ratios between 0.93 and 0.97. A single-dipole scan (Schmidt, 1986) was
conducted for each of the spatial activation patterns as well as for each of the
extraction filters of the selected components in order to attempt to localize
the electrical generators of alpha-band activity in the brain. Note, that
performing source localization from filter weights is conceptually wrong (see
Section 5.9). However, it was performed here for demonstration purposes.
The dipole fits were carried out in a realistically shaped three-shell head
model based on nonlinearly averaged MRI scans of 152 subjects (Fonov et al.,
2011). Forward calculations were performed according to Nolte and Dassios
(2005).
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3.3. fMRI and intracranial neurophysiology
Hemodynamic measurements obtained by fMRI are the most popular neu-

roimaging modality (Friston, 2009). However they only reflect neural activity
indirectly. Thus simultaneous intracranial electrophysiological measurements
and fMRI measurements are needed to investigate the complex neurovascu-
lar coupling mechanisms that give rise to the fMRI signal (Logothetis et al.,
2001). Many multivariate analysis approaches to these multimodal data sets
compute filters (Bießmann et al., 2011) which are not interpretable. In this
example we illustrate how the relationship between filters and patterns can
be applied to this kind of multimodal data. This not only exemplifies an
fMRI application of the filter pattern relationship; the example also shows
that patterns in multimodal neuroimaging analyses offer a more physiologi-
cally plausible and better interpretable perspective on neurovascular coupling
mechanisms. The data are simultaneous multimodal recordings of intracra-
nial electrophysiology and high resolution fMRI during spontaneous activity
in primary visual cortex of the macaque monkey. For experimental details
see Murayama et al. (2010) and Bießmann et al. (2012). Let x(n) ∈ RF be
the electrophysiological band power in F frequency bins and time bins of 1 s
duration, recorded at an intracranial electrode in primary visual cortex and
y(n) ∈ RV the functional magnetic resonance data recorded in V voxels and
the same time bins as those of the electrophysiological data within a spherical
region of interest around the electrode. We applied temporal kernel canonical
correlation analysis (tkCCA) (Bießmann et al., 2009) in order to obtain the
optimal filters wx(τ), wy such that

{wx(τ),wy} =

argmax
w̃x(τ),w̃y

Corr

[
0∑

τ=−Nτ
w̃x(τ)

>x(n+ τ), w̃>y y(n)

]
. (10)

The time-frequency filter wx(τ) transforms the neural spectrogram into decor-
related neural components that approximate the fMRI signal best and the
spatial filter wy extracts decorrelated components from the fMRI signal which
correlate best with the extracted neural components.

4. Experimental results

4.1. Simulations
Figure 3 depicts an instance of the fourteen weight vectors calculated in

one particular simulation. For a reference, see the true activation pattern
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of the signal Fig. 2 (left). The mass-univariate correlation Corr[x(n),y(n)]
shows high (negative) values only in the lower left corner of the grid. Due
to the influence of the distractor component in the upper left corner, the
correlation in that area drops dramatically, although the class-specific factor
is equally strongly expressed in that corner. The mass-univariate covariance
Cov[x(n),y(n)] recovers both active areas equally well.

The spatial filters of the four multivariate methods LLR, LLR-L2, LLR-
L1 and JADE show a great variety. The LLR filter has a highly complex
structure which does not resemble the true signal pattern at all. The three
other filters have less complex structures which show certain similarities to
the true pattern. As expected, LLR-L1 delivers a sparse filter vector, while
LLR, LLR-L2 and JADE do not. Notably, elastic net regularization (Zou
and Hastie, 2005) as used in Carroll et al. (2009) is a hybrid of `1-norm and
`2-norm regularization, and therefore delivers solutions which are in between
LLR-L2 and LLR-L2 in terms of sparsity. Importantly, all filters show large
(mostly) negative weights in the upper right corner, where there is no task-
related activity at all. These weights are highly stable across repetitions of
the experiment; and would be found to significantly differ from zero using
statistical testing.

The patterns analytically obtained by Eq. (6) as well as the `1-norm (i. e.,
LASSO) regularized patterns estimated by Eq. (9) for all four multivariate
approaches are very similar, and generally resemble the true signal activation
pattern very well. This is particularly surprising considering the diverse
spatial structure of the underlying filters. As expected, the patterns esimated
using LASSO are generally slightly sparser. Note, however, that the benefit
of performing sparse pattern estimation depends on whether the underlying
factors indeed exhibit sparse activations.

Figure 4 shows the mean pattern reconstruction error and the variance
of the entries of the eleven weight vectors calculated in the classification
setting. The reconstruction quality (upper panel) is between r = 0.96 and
r = 0.99 (and thus close to the perfect score of r = 1) for all of the six pat-
tern estimates, but also for the mass-univariate covariance Cov[x(n),y(n)].
Although the performance of the `1-norm regularized pattern estimates is
slightly lower than for the unregularized (this relation reverses, if less sam-
ples are used), none of the differences between the seven weight vectors is
actually significant. Statistical significance of the difference of two correla-
tions is measured here by transforming correlation coefficients into normal
distributed quantities using the Fisher transformation, and performing a two-

21



sample z-test. Compared to all pattern estimates, a significantly lower recon-
struction accuracy of r = 0.87 is observed for the mass-univariate correlation
Corr[x(n),y(n)]. The three filter weight vectors show the lowest reconstruc-
tion accuracies of r = 0.44 for OLS, r = 0.65 for LLR-L1 and r = 0.76 for
LLR-L2. These are all significantly different from each other and from the
rest. In line with theoretical considerations stating that filters depend on the
noise structure of the data in contrast to patterns, all three filters are much
less stable across experiments than their corresponding patterns, as well as
the two mass-univariate measures (see lower panel of Figure 4).

Corr[x(n),y(n)]. The three filter weight vectors show the lowest reconstruc-
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Figure 3: Mass-univariate measures, as well as extraction filters and corresponding recon-
structed activation patterns of multivariate methods in one particular experiment.

4.2. EEG data
Figure 5 depicts the spatial extraction filters and activation patterns cor-

responding to the five SSD components with strongest alpha-band peaks, as
well as the locations of those dipolar brain electrical sources best explaining
the estimated patterns or filters. We observe that all filters are character-
ized by a high-frequency spatial structure. Strongest weights are generally
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Figure 4: Pattern reconstruction performance and variance of weight vector entries in the
classification setting.
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the estimated patterns or filters. We observe that all filters are character-
ized by a high-frequency spatial structure. Strongest weights are generally
observed at central electrodes. In contrast, activation patterns are much
smoother, and cover more diverse areas involving also occipital electrodes.

As mentioned earlier, performing inverse source reconstruction from fil-
ter weight vectors is conceptually wrong, which becomes also evident from
our results. Precisely, we observe that filter weight vectors cannot be well
explained by single dipolar brain sources, the correlation of the filter and the
EEG scalp potential generated by the best-fitting dipole lying only in the
range from r = 0.27 to r = 0.56. As a result of the neurophysiologically-
implausible high-frequent spatial structure of the filters, all dipolar sources
are localized in the most superficial brain areas, and would be located in the
skull or even skin compartments, if those were included in the search space.

Applying inverse source reconstruction to activation patterns yields mean-
ingful results. We observe that all patterns are almost perfectly explained by
a single dipolar electrical brain source, with correlation scores ranging from
r = 0.96 to r = 0.98. Specifically, we find two lateralized central sources, two
lateralized occipital sources, and one deep occipital source. These findings
are consistent with the literature on so-called mu-rhythm oscillations in the
motor system, as well as on alpha-oscillations in the visual system (see, e. g.,
Niedermeyer and Da Silva, 2005).

4.3. fMRI data
Figure 6 shows an example of filters and patterns obtained from simulta-

neous recordings of spontaneous activity in the anesthetized macaque mon-
key. Experimental details are described in (Murayama et al., 2010). Filters
were estimated using temporal kernel CCA, see Eq. 10, patterns were analyt-
ically obtained using Eq. 6. The filters wx(τ), wy (the canonical directions)
for both temporally embedded electrophysiological spectrograms and fMRI,
respectively, are plotted in the right panels. Both show high weights at the
relevant locations of the input space: The fMRI filter wy exhibits large pos-
itive coefficients around the recording electrode and the convolutive filter
wx(τ) for the electrophysiological spectrogram has the highest weights at
time lags of approximately 5 s and at frequencies in the high gamma range.
These are the time-frequency features of neural oscillations that are known to
be maximally correlated with the fMRI signal (Logothetis et al., 2001; Niess-
ing et al., 2005; Goense and Logothetis, 2008). Note however that the filter
structure looks somewhat noisy. In particular the fMRI filter does not show
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Figure 5: Spatio-spectral decomposition (SSD) activation patterns and extraction filters of
alpha-band EEG components during rest, along with their corrresponding approximations
by a single dipolar electrical sources in the brain. All activation patterns can be almost
perfectly explained (r > 0.96) by single dipolar sources representing generators of central
mu-rhythms in the motor cortex, as well as alpha-rhythm generators in the visual cortex.
Unlike patterns, filters do not reflect the physical process of EEG generation. Therefore,
applying dipole fits, as done here for demonstration purposes, is wrong, which is indicated
by the red warning sign. This is also evidenced by the poor approximation (r < 0.56).
Notably, all filters exhibit largest weights at sensors over the central areas, although some
of the corresponding extracted EEG components (3–5) originate from occipital areas.
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the smooth structure that one would expect given the spatiotemporal point
spread function reported in other studies investigating the hemodynamic re-
sponse (Sirotin et al., 2009). In contrast the structure of the corresponding
fMRI pattern ay reflects a smooth hemodynamic spatial response that is in
line with the anatomical structure around the electrode, the coefficients along
the cortical laminae are large and decay quickly perpendicular to the corti-
cal laminae. Similarly the coefficients of the neurovascular time-frequency
response pattern ax(τ) reflect much more clearly the physiology of the neu-
rovascular response that has been reported in other studies. The temporal
profile shows a clear peak at 5 s and a later undershoot at about 15 s. The
frequency profile still indicates that the strongest hemodynamic response is
in the high gamma range but the overall structure now is much clearer than
in the case of the filter wx(τ).
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Figure 6: Filters and Patterns for simultaneous recordings of high-resolution fMRI and
intracranially recorded neural spectrograms; filters were computed by tkCCA according
to Eq. 10, patterns according to Eq. 6; filters wx(τ), wy are not the same as ax(τ),ay.
The patterns ax(τ),ay reflect the correlation structure inherent to the fMRI data.

5. Discussion

5.1. Backward models can be made interpretable
We have demonstrated that extraction filters of backward models may

exhibit large weights at channels not at all picking up the signals-of-interest,
as well as small weights at channels containing the signal. Such “mislead-
ing” weights are by no means indications of suboptimal model estimation.
Rather, they are needed to “filter away” noise and thereby to extract the
signal with high SNR. In our simulation, we obtained one additional patch
of spurious activity in most extraction filters as a results of the particular
choice of a specific noise (distractor) component with specific spatial mixing
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of spurious activity in most extraction filters as a results of the particular
choice of a specific noise (distractor) component with specific spatial mixing
coefficients. In general, however, filters may deviate arbitrarily much from
the true patterns depending on the noise covariance structure. Thus, one
can easily also construct examples in which filters have zero weights at most
task-relevant channels, or even large weights the sign of which opposes the
sign of the true activation.

We derived a transformation by which extraction filters of any linear
backward model can be turned into activation patterns of a corresponding
forward model. By this means, backward models can eventually be made
interpretable.

Whether or not the resulting patterns correspond to those of “true” signals
contained in the data, however, depends on the accuracy with which these
signals are extracted in the initial backward modeling step. Suboptimal fac-
tor extraction will naturally lead to suboptimal pattern reconstruction, since
residual noise contributions in a factor estimate will cause noise-related chan-
nels to light up also in the corresponding pattern. The problem of “optimal”
factor extraction under various conditions, however, is its own field of research
treated in an extensive existing body on linear decomposition methods and
their underlying assumptions (for some overview see Golub and Van Loan
(1996); Comon and Jutten (2010); Haufe (2011)). In the light of these con-
siderations, activation patterns (no matter whether they are estimated by
fitting a forward model, or indirectly using Eq. (6)) should be evaluated only
in conjunction with their corresponding factors. In supervised scenarios, for
example, an unbiased estimate of the decoding accuracy achieved by an ex-
tracted factor may give a good indication about whether its corresponding
pattern should be interpreted at all.

In our simulations, where we had sufficient amounts of data to robustly
estimate the involved backward models and empirical covariance matrices,
the patterns estimated using Eq. (6) and Eq. (9) (LASSO) reflect the spatial
structure of the simulated factors well, in contrast to the original filters.
Patterns were moreover found to be much more stable than filters. This
is explained by the dependence of filters on the noise covariance, which was
simulated to vary to some extent here. In practice, we frequently observe that
even for datasets recorded from the same subject under the same paradigm
during the same session, considerably different filters are obtained, while the
corresponding estimated patterns remain relatively stable. Thus, statistical
processing such as averaging is better justified for (appropriately normalized)
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patterns than for filters. Moreover, since the mapping from filters to patterns
is bijective, extraction filters W to a given set of activation patterns A may
be obtained by rearranging Eq. (6) for W. Doing so may be particularly
useful if A is known, e. g., has been derived from a computational model,
or pre-estimated from different data. In both cases, the resulting W will
be the filter which optimally extracts the sources with pattern A given the
covariance structure of the (new) data. In the first case, W can be thought of
as a beamformer. In the latter case, W can be a better estimate than a filter
obtained directly from the original data, if we assume that both datasets
share the same signal sources, but contain different noise sources.

5.2.
Correlated brain processes An ubiquitous phenomenon in real data are

correlations either between brain processes or between target variables. Most
analyses discussed here are incapable of separating multiple collinear compo-
nents. This includes weight vectors of forward models, prediction accuracies
achieved by encoding or decoding models, prediction accuracies achieved by
searchlight approaches (see Section 5.5), and topographic maps of the uni-
variate correlation/covariance of each channel with a target variable. For
these methods, the activation maps related to a specific brain process will
typically also highlight channels related to other processes, if these processes
are correlated to the process under study. However, the interpretability of
these activation maps is not compromised by the multicollinearity issue, since
correlated components are actually heavily statistically dependent.

Technically, of course, empirical correlations in data may arise for various
reasons. First, two or more brain processes might be “naturally” co-activated
through the way brain processing is organized. Second, “artificial” correla-
tions of two or more functionally unrelated brain processes may be induced
by means of correlations of respective external stimuli triggering activity of
these processes, which could be an indication of improper experimental de-
sign. Unfortunately, however, natural and artificial correlations cannot be
distinguished in practice by means of data analysis.

Importantly, the crucial qualitative distinction between weight vectors
of forward and backward models remains even in the presence of correlated
components. While for all models it holds that correlated components cannot
be disentangled, backward models may additionally give significant large
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weights also to channels lacking any form of statistical dependence to any
brain process of interest.
5.3. Practical implications for neuroimaging studies

Our analysis of real EEG and fMRI data revealed qualitative differ-
ences between the extraction filters and their activation pattern counterparts.
While for EEG data this was expected as a results of volume conduction in
the head (see Section 5.9), our results indicate that overlap of the activation
patterns of, e. g., the signal of interest and other spatially correlated distrac-
tor signals, occurs also for fMRI data. Thus, the distinction between patterns
and filters is crucial for the interpretation of fMRI decoding models, and the
considered way of estimating patterns is of practical relevance for achieving
interpretability on such data.

Importantly, since forward and backward models are dual to each other,
the question whether a model should be regarded as a forward or backward
model entirely depends on which variables are independent, i. e., are the quan-
tities one wants to make inference about. We call these variables “data”, while
any experimentally controlled variables are called “target”. Interpretability of
weight vectors always requires a forward model of the data. While in this pa-
per, we assume that the neuroimaging recordings are independent variables,
one might in other contexts such as optogenetics (Williams and Deisseroth,
2013) actually experimentally control brain activity, and analyze its effects
on, e. g., behavioral measurements. In this case, the neuroimaging data takes
the role of the target variable, and a forward model of the behavioral data
is needed to achieve interpretability of the model parameters with respect to
these behavioral measurements.

5.4. Regularization does not make backward models better interpretable
If the number of parameters of a model is large compared to the amount

of available data, the parameter assignment best explaining the data might
not generalize well, i. e., explain new data not as well as the data used for
fitting the model. This indicates that the relevant aspects of the data have
not been captured by the model due to a lack of data. In order to improve
the generalization performance, constraints on the simplicity of the model
parameters are usually imposed, which is called regularization.

Sparsity of extraction filters does not imply sparsity of activation patterns.
Ideally, such constraints should encode prior assumptions on the parameters’
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distribution, which may be application-specific. In neuroimaging, such as-
sumptions may, for example, refer to the spatial structure of the extracted
factors, and formalize the preference for certain brain regions being estimated
as active, or the belief that the brain activation map has a certain sparsity
structure or is sparse in general. Whether and how easily these assumptions
can be integrated in the modeling, however, depends on the type of model
used. For forward models, constraints on the structure of the extracted fac-
tors may be directly imposed on the mixing coefficients A. In backward
modeling, however, we have no direct access to A. Imposing a certain struc-
ture on the demixing coefficients W, however, does not at all translate into
imposing that exact structure on the factors extracted by W. The effective
assumption imposed on the factors by estimating penalized backward models
is hard to assess, and may be different depending on structural features of
the data covariance matrix. In particular, sparse filters may actually extract
factors contributing to many channels, while non-sparse filters may extract
factors which are only expressed in a single channel. A consequence of the re-
sults of this paper might therefore be to impose “physiologically-motivated”
structural constraints on A = ΣxWΣ−1ŝ rather than on W in backward
modeling approaches.

Regularization is indispensable in case of few data. Importantly, the above
considerations do not indicate that regularization of backward models is in-
appropriate, nor do they imply that the choice of an “improper” regularizer
will necessarily spoil the estimation of the corresponding pattern or even
of the extracted factor. On the contrary, the pattern approximation quality
does not depend on the structure of the filters, but only on the accuracy with
which the underlying factor is estimated. To warrant good reconstruction of
s(n), regularized backward modeling is often helpful, as long as the amount
of regularization is adjusted in a statistically sound way (see, e. g., Lemm
et al., 2011). Note that, in a similar way as for filter estimation, the esti-
mation of corresponding patterns might benefit from regularization, which
could be employed within the regression framework outlined in Eq. (8).

5.5. Relationship between searchlights and patterns
Complementary to our approach there are a number of other methods to

overcome the problem of interpretability of multivariate classifiers in super-
vised neuroimaging analyses. A particularly successful solution is the search-
light approach (e. g., Kriegeskorte et al., 2006; Chen et al., 2011), which
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provides a tradeoff between estimation accuracy and localizability of neural
sources. In the searchlight approach, a backward model is estimated within
a small volume of brain tissue centered around each voxel successively in-
stead of fitting a single backward model to the entire brain volume. The
accuracy with which brain states can be estimated (“decoded”) in a partic-
ular searchlight is interpreted – not the parameters of the single backward
models. While the parameters of a backward model are generally not inter-
pretable, the accuracies are in the sense that they indicate the presence of
class-specific information somewhere in the region. Searchlights and the ap-
proach presented here serve a similar purpose. Theoretically, the approach
presented here is applicable to the searchlights, too. Averaging across all
searchlights then will result in a smoothed version of the pattern A.

5.6. Generalizations
The considered approach for estimating patterns can be generalized in

various ways. We here assumed linear forward and backward models, al-
though nonlinear models are conceivable as well. If nonlinear models are in-
volved, an analytic transformation as for the linear/linear case will likely be
obtained only in very special cases. However, for any combination of (linear
or nonlinear) forward and backward models with the same number of latent
factors, K, a regression approach as outlined in the end of Section 2.4 may
be adopted. Depending on the type of forward model used, the estimation
here may either lead to an analytic solution, or require numerical optimiza-
tion. A general framework for parameter interpretation, which includes the
linear/linear case considered here as a special case, is the feature importance
ranking measure (FIRM) by Zien et al. (2009). FIRM is discussed in detail
in Appendix AppendixD.

5.7. Activation patterns obtained from multivariate OLS decoding are equiv-
alent to a mass-univariate analysis

A particularly simple expression for the activation patterns is obtained
for decoding approaches fitting the data linearly onto a set of external target
variables via ordinary least-squares regression. Notably, this also comprises
the LDA classifier, which can be formulated as an OLS regression with a
particular choice of the target variable y(n) (see AppendixC).

In OLS decoding, both the extraction filters and their corresponding ac-
tivation pattern estimates may be derived analytically. Denoting the targets
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by y(n), and assuming zero mean targets y(n) and observations x(n), the
filters are given by

W = argmin
W̃

∑
n

(
W̃>x(n)− y(n)

)2
= Σ−1x Cov[x(n),y(n)] . (11)

Inserting into Eq. (6) yields the pattern estimate

A = ΣxWΣ−1ŝ
= ΣxΣ

−1
x Cov[x(n),y(n)]Σ−1ŝ

= Cov[x(n),y(n)]Σ−1ŝ , (12)

which, for uncorrelated factors, and for K = 1, is proportional to the mass-
univariate covariance between channel readings and target variables. Thus,
while OLS regression/LDA classification of course does improve the estima-
tion of a target variable, it does not increase the interpretability of the results
upon what can be inferred from mass-univariate analysis. This equivalence,
however, does not hold exactly for decoding approaches involving regulariza-
tion or non-quadratic loss functions.

Note, however, that there are cases when the target variable is not known
and thus mass-univariate analyses cannot be applied directly. In unsuper-
vised analyses for instance, the source variable is unknown. While it is possi-
ble to estimate A and s(n) simultaneously, it has computational advantages
to first obtain an estimate of s(t) by fitting a backward model and then apply
the proposed method to obtain A.

5.8. Mass-univariate analysis: correlation vs. covariance
The dependence on the SNR makes it generally difficult to assess the acti-

vation patterns of the signal components from mass-univariate correlation/class-
separability maps. However, there are also situations in which it is reason-
able to look at correlation measures instead of plain covariance. For example,
EEG recordings may contain a weak neuronal signal, which is highly corre-
lated to the target variable, while at the same time there may be artifactual
activity of much larger amplitude. If the artifacts, however, also exhibit a
nonzero (possibly small or even insignificant) correlation with the target vari-
able (that is, the uncorrelatedness of signal and noise components assumed
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in this paper is violated), the mass-univariate covariance pattern might show
stronger peaks at channels picking up those artifacts than at channels con-
taining the neuronal signal-of-interest. While this is technically not a wrong
result, one may want to highlight only those channels in which the task-
related signal is both strong and highly correlated with the task, which can
be done by looking at correlation/class separability maps, or by performing
searchlight analyses (Kriegeskorte et al., 2006; Haynes et al., 2007).

5.9. The relevance of linear models for EEG data
Traditionally, the factors s of the linear forward model are thought of as

variables aggregating and isolating the problem-specific information, while
the corresponding activation patterns a model the expression of each factor
in each channel. In the particular case of EEG (and magnetoencephalogra-
phy, MEG) data, the linear model moreover accurately describes the physical
process of data generation. Electroencephalography, for example, measures
neuronal electrical activity in the brain indirectly as surface potentials on the
scalp. Due to volume conduction in the head, the electrical signals are trans-
formed on their way from brain sources to EEG channels. For the frequencies
below 1 kHz (which are of highest interest in EEG analysis), this transfor-
mation is mainly an instantaneous spatial blurring. Since contributions from
different brain areas add up linearly at the channel level, the entire phys-
ical process of signal propagation can be accurately modeled by the linear
forward model

x(n) = Lsv(n) + ε(n) , (13)

where sv(n) is the electrical activity at Nv >> K voxel in the brain and L is
the leadfield matrix modeling the propagation of electrical activity from brain
voxels to EEG sensors (e. g., Baillet et al., 2001). Methods estimating the
parameters of a linear forward model x(n) = As(n)+ε(n) on EEG data may
therefore be re-parametrized using L and sv(n). By decomposing A into A =
LP, Eq. (13) is recovered with sv(n) = Ps(n). Here, P is a 3Nv ×K matrix
of current sources densities indicating the brain voxels, which generate the
activity of each of the individualK latent factors. Consequently, it is possible
to interpret the extracted factors sk(n) as estimates of the neural activity of
specific local (or distributed) brain networks, while the corresponding mixing
coefficients ak describe the field spread of these brain electrical sources or
networks in the particular head. The process of estimating the factorization
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A = LP (4) for given A and L is called EEG inverse source reconstruction,
and is usually based on prior assumptions on the spatial structure of the
estimated current densities P. Sections 3.2 and 4.2 contain an example, in
which mixing patterns a are used to estimate the actual locations of the
generating electrical brain sources under the assumption that each latent
factor’s activity originates only from a single brain voxel.

As a result of the fact that a linear forward model holds for raw EEG data
it follows that linear modeling of nonlinearly preprocessed EEG data cannot
be used to recover the true underlying brain sources (see, e. g., Dähne et al.,
2013).

6. Conclusions

We have shown that the parameters of multivariate backward/decoding
models (called extraction filters) cannot be interpreted in terms of the brain
activity of interest alone, because they depend on all noise components in
the data, too. In the neuroimaging context, this implies that no neuro-
physiological conclusions may be drawn from the parameters of such models.
Moreover – in contrast to what may be a widespread intuition – the inter-
pretability of the parameters cannot be improved by means of regularization
(e. g., sparsification) for such models. However, as we pointed out, there is
a simple procedure for transforming backward models into forward models.
The parameters (called activation patterns) of forward models allow the ex-
act desired interpretation. We demonstrated on simulated data, as well as
on real fMRI and EEG data, that the analysis of extraction filters may lead
to severe misinterpretation in practice, while the proposed way of analysing
activation patterns resolves the problem. Our results are not restricted to
the neuroimaging context, but hold for any application, in which parameters
of backward, e. g., regression oder classification models are typically inter-
preted as properties of the extracted signals. Yet, the data analysis methods
covered in this paper are of course only a tiny fraction of what is being used
in practice. Generally, we encourage authors to test sophisticated methods
in realistic simulations to better understand their properties before applying
them to real data, a point also made by Haufe et al. (2012) in the context of
causal estimation.

4In practice, each pattern ak is usually approximated by ak = Lpk + εk, where
[p1, . . . ,pK ] = P.
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Appendix

AppendixA. Proof of Theorem 1 (activation patterns of the corre-
sponding forward model)

Assuming the existence of a corresponding forward model (see AppendixB
for a proof of the existence), we can insert Eq. (3) into Eq. (5) to obtain

ŝ(n)
(5)
= W>x(n)

(3)
= W> (Aŝ(n) + ε(n))

= W>Aŝ(n) + W>ε(n) .

Multiplying that equation with ŝ(n)> from the right, and taking the expected
value over samples yields

E
[
ŝ(n)ŝ(n)>

]
n
= E

[
W>Aŝ(n)ŝ(n)>

]
n
+ E

[
W>ε(n)ŝ(n)>

]
n

= W>AE
[
ŝ(n)ŝ(n)>

]
n
+ W>E

[
ε(n)ŝ(n)>

]
n

(4)
= W>AE

[
ŝ(n)ŝ(n)>

]
n
.

Since the matrix E
[
ŝ(n)ŝ(n)>

]
n
has full rank (due to the factors in ŝ(n)

being linearly independent), we can conclude that

W>A = I . (A.1)

Similarly, by inserting Eq. (5) into Eq. (3), we obtain

x(n)
(3)
= Aŝ(n) + ε(n)

(5)
= AW>x(n) + ε(n) .
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Rearranging for ε(n) yields

ε(n) = x(n)−AW>x(n)

=
(
I−AW>)x(n) ,

which, when multiplied with W> from the left leads to

W>ε(n) = W> (I−AW>)x(n)

=
(
W> −W>AW>)x(n)

(A.1)
=
(
W> −W>)x(n)

≡ 0 . (A.2)

Furthermore, it follows from Eqs. (3) and (4) that Σx = AΣŝA
>+Σε, which

leads to

ΣxWΣ−1ŝ = (AΣsA
> + Σε)WΣ−1ŝ

= AΣsA
>WΣ−1ŝ + ΣεWΣ−1ŝ

(A.1)
= AΣŝΣ

−1
ŝ + ΣεWΣ−1ŝ

(A.2)
= A + 0Σ−1ŝ

= A .

This concludes the proof.

AppendixB. Existence of a corresponding forward model for a given
backward model

Here we show that the definition of A given in Eq. (6) provides a forward
model that corresponds to the backward model Eq. (5). Due to the assump-
tion that the factors ŝ are linearly independent, their covariance matrix Σŝ is
invertible, such that the definition of A in Eq. (6) is well-defined. It remains
to show that the noise term

ε(n) := x(n)−Aŝ(n) (B.1)

satisfies the condition (4) of being uncorrelated with the factors. Using

ε(n)
(B.1)
= x(n)−Aŝ(n)

(6)
= x(n)−ΣxWΣ−1ŝ ŝ(n)
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we can conclude that

E
[
ε(n)ŝ(n)>

]
n
= E

[
x(n)ŝ(n)>

]
n
− E

[
ΣxWΣ−1ŝ ŝ(n)ŝ(n)>

]
n

= E
[
x(n)ŝ(n)>

]
n
− E

[
x(n)x(n)>W

]
n

(5)
= E

[
x(n)ŝ(n)>

]
n
− E

[
x(n)ŝ(n)>

]
n

= 0 .

AppendixC. Example: linear discriminant analysis

As an example of how extraction filters depend on the spatial structure
of the noise, consider the case of linear discriminant analysis (LDA) clas-
sification (Fisher, 1936), which is the Bayes optimal classification rule for
Gaussian distributed classes with equal covariance matrices. Under these as-
sumptions (and provided that the inverse of the empirical covariance matrix
exists), optimal separation of two classes is given by evaluating w>x(n) < c

for some constant c, where w = Σ−1x (µ+
x − µ−x ), and where µ+/−

x ∈ RM and
Σx ∈ RM×M denote the classwise means and the common covariance of the
observed samples in channel space. Now it is obvious that, while the discrimi-
nating factor ŝ(n) = w>x(n) is only one-dimensional, the filter w depends on
the covariance structure of the entire M -dimensional dataset through Σ−1x ,
and thus on all noise sources as well as on all other latent factors.

Applying Eq. (6) to the LDA filter, we note that the resulting pattern
simplifies to â = ΣxwVar[ŝ(n)] ∝ ΣxΣ

−1
x (µ+

x − µ−x ) = µ+
x − µ−x , i. e., is

proportional to the difference of the means of the two classes. This simple
mass-univariate structure is explained by the fact that LDA can be regarded a
special case of OLS regression (c. f., Section 5.7), where the target is a univari-
ate binary variable indicating the class membership. By setting ỹ(n) = 1/N+

for samples of the positive class, and ỹ(n) = −1/N− for samples of the neg-
ative class, where N+ and N− are the numbers of samples per class with
N++N− = N , the OLS filter wOLS = Σ−1x Cov[x(n), ỹ(n)] = Σ−1x (µ+

x −µ−x )
coincides with the LDA weight vector.

To see how regularization changes the estimated patterns consider the
case of regularized LDA (RLDA), which is an instance of Ridge regression.
The Ridge regression estimator of w is defined as wRidge = argminw̃

∑
n(w̃

>x(n)−
ỹ(n))2 + λ||w̃||2 = (Σx + λI)−1(µ+

x − µ−x ), while the corresponding pattern
estimate is â = Σx(Σx + λI)−1(µ+

x − µ−x )Var[ŝ(n)]. That is, for λ→∞ the

43



RLDA pattern becomes proportional to the LDA pattern (i. e., class-mean
difference) “smoothed” by the empirical data covariance.

AppendixD. Relation between patterns and the feature impor-
tance ranking measure

The feature importance ranking measure (FIRM) (Zien et al., 2009) was
first proposed in the context of bioinformatics data (Rätsch et al., 2006) and
later generalized to arbitrary data sets. The advantage of FIRM is that it
is universal in the sense that it is defined for any algorithm (independent
of loss function, regularizer or type of data) and it is objective in the sense
that is invariant with respect to correlations between features or scaling of
features. Given some learning algorithm with a scoring function ρ(x(n))
FIRM for a feature f(x(n)) is based on the conditional expected score qf ,
i. e., the expectation of the score ρ(x(n)) conditioned on the feature f(x(n))
had a certain value t

qf (t) = E[ρ(x(n)) | f(x(n)) = t]. (D.1)

In the linear foward modeling setting ρ(x(n)) = w>x(n) and the features
f(x(n)) are the individual dimensions, that is the entries of x(n) correspond-
ing to fMRI voxels or EEG electrodes. For each feature f(x(n)), qf (t) is the
output of ρ(x(n)) given that the feature f(x(n)) has the value t. FIRM is
now defined as the standard deviation of qf (t)

FIRM :=
√

Var(qf (t)). (D.2)

In other words FIRM measures how the output of a source estimation al-
gorithm or a stimulus estimator changes when a given feature changes. For
the case considered here, linear scoring functions ρ(x(n)) = w>x(n) = ŝ(n),
FIRM can be computed as

FIRM := D−1Σx(nΣ̂x)
−1Cov[x(n), ŝ(n)] (D.3)

where D is a diagonal matrix containing the standard deviations of the mea-
sured neuroimaging data x(n), Σx is the true covariance matrix of x(n), n
is the number of samples and Σ̂x is the empirical estimate of the covariance
matrix of x(n). With enough data the empirical covariance matrix converges
to the true covariance matrix and the terms cancel out. Assuming that the
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features have been normalized to have unit variance and assuming decor-
related sources (or univariate sources), FIRM is equivalent to the pattern
obtained by Eq. 7. As FIRM is defined for arbitrary models, including non-
linear models and discrete data, Eq. D.2 can be applied to obtain meaningful
patterns for these cases.
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