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Abstract— In electroencephalographic (EEG) source imaging
as well as in transcranial current stimulation (TCS), it is
common to model the head using either three-shell boundary
element (BEM) or more accurate finite element (FEM) volume
conductor models. Since building FEMs is computationally de-
manding and labor intensive, they are often extensively reused
as templates even for subjects with mismatching anatomies.
BEMs can in principle be used to efficiently build individual
volume conductor models; however, the limiting factor for such
individualization are the high acquisition costs of structural
magnetic resonance images. Here, we build a highly detailed
(0.5 mm3 resolution, 6 tissue type segmentation, 231 electrodes)
FEM based on the ICBM152 template, a nonlinear average
of 152 adult human heads, which we call ICBM-NY. We
show that, through more realistic electrical modeling, our
model is similarly accurate as individual BEMs. Moreover,
through using an unbiased population average, our model is also
more accurate than FEMs built from mismatching individual
anatomies. Our model is made available in Matlab format.

I. INTRODUCTION

Today, a multitude of tools are available to ‘read and write
the brain’ from outside the head. Brain imaging technologies
such as electroencephalography (EEG) allow one to track the
activity of neuronal populations with millisecond precision.
Conversely, transcranial current stimulation (TCS) can be used
to induce changes in neuronal firing patterns by injecting
electrical currents into the skin. What is common to these
technologies is that they rely on a volume conductor model
of the human head and its internal structures in order to
establish the connection between the active/activated brain
structures and the sensors/stimulators located on the scalp,
where the precision of the model determines the localization
error made by EEG inverse solutions, and the error made
when targeting certain brain structures using TCS.

As head anatomies vary greatly across the population,
individual structural information from magnetic resonance
imaging (MRI) is in general required to build precise volume
conductor models. However, the acquisition of individual
structural MR images is not always possible, and generally
comes at a high cost.
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If individual structural information is available, a boundary
element electrical model (BEM) can be built relatively easily
and with a high degree of automation using several freely
available software packages. Three-shell BEMs are currently
the predominant approach in EEG sources imaging. Here,
smoothed versions of the outer edges of brain, skull and
skin are extracted from structural MR images. Finite element
models (FEM), which are predominant in transcranial current
stimulation (TCS) research, are more accurate than BEMs
since they allow more detailed modeling of tissue types
with complex shapes such as the highly-conducting cerebro-
spinal fluid (CSF) [12]. They are, however, more resource-
consuming than BEMs due to their high computational
complexity and the lack of fully automated segmentation
pipelines for more than three tissue types. It is therefore
common in TCS studies to build an FEM from an ‘arbitrary’
individual anatomy, and use it as a template for all subjects
throughout a study.

Here we reason that, while it may remain infeasible to
compute highly accurate FEMs in individual anatomies at
the scale of larger studies, an improvement may already be
achieved by replacing arbitrary templates with an unbiased
population average. This approach is feasible, as, through
advances in nonlinear co-registration, average anatomies have
recently reached a level of detail comparable to that of the
best individual templates. We built a highly precise FEM
based on the ICBM152 head, which is a nonlinear average of
the heads of 152 adults [2], and which is already widely used
as an anatomical template by the neuroimaging community.
Our model, called ICBM-NY or ‘New York Head’, is made
available under http://neuralengr.com/NYHead .

The model was evaluated on four individual heads, for
which we also built precise FEMs serving as a ‘ground truth’.
We investigated how well the electrical leadfields in these
heads are approximated using our FEM of the ICBM152 head.
Moreover, we compared the approximation quality with that
of BEM and spherical harmonics expansion (SHE) models
computed on the matching individual anatomy, with FEMs of
other (mismatching) individual anatomies, and with a BEM
of an ‘individualized’ ICBM152 geometry that is warped to
the electrode positions of the correctly matching anatomy.

II. METHODS

A. Structural data and coordinate systems

We used the ICBM152 template as the anatomical basis
of our electrical model. The 2009b version of the ICBM152
provides highly detailed (0.5 mm3 isotropic resolution) T1-
weighted structural images of an average adult head, which are
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the result of a nonlinear registration of the structural images
of 152 individual subjects [2]. We here use the left-right
symmetric version of the template. Note that the ICBM152
head is by construction aligned with the MNI152 linear
average template defining the Montreal Neurological Institute
(MNI) coordinate system.

In addition to the ICBM152 head, we acquired MR images
(1 mm3 isotropic resolution, T1-weighted) of four individuals
(denoted INDV1–4, male, age range 27–45) at a magnetic
field of 3 T. All images were rotated into their ‘native’
space defined by the locations of the anterior and posterior
commissures, and an interhemispheric point. Notice here that
the MNI space is the native space of the ICBM152 head.

Using the Statistical Parametric Mapping (SPM8) package
(Wellcome Trust Centre for Neuroimaging, London, UK) for
Matlab (The Mathworks, Natick, MA, USA), 12-parameter
affine transforms from each individual subject’s native space
to MNI space were calculated. These transforms were later
used to match cortical locations in different anatomies. They
were not used to spatially normalize MR images.

B. Segmentation and electrode placement

MR images of individual subjects INDV1–4 were seg-
mented by a probabilistic segmentation routine implemented
in SPM [1]. Using the Chris-Rorden Tissue Probability Map
(CR-TPM) developed in [7], each head was segmented into
six tissue types: gray matter (GM), white matter (WM), CSF,
skull, scalp and air cavities. An in-house Matlab script was
used to correct for segmentation errors conducted by SPM8
(see [7] for details).

A segmentation for the ICBM152 template was developed
from three sources: the older 6th generation version of the
ICBM152 non-linear template [4], the newer 2009b symmetric
version version of the ICBM152 non-linear template men-
tioned above [2], and the CR-TPM template [7]. Both versions
of the ICBM152 head were segmented using the procedure
described above. Since the ICBM152 v2009b is characterized
by a higher resolution and better image quality in the brain
region, but poorer quality in the non-brain region compared
to the ICBM152 v6, the non-brain tissues (CSF, skull, scalp,
air) obtained from ICBM152 v6 were registered to the voxel
space of ICBM152 v2009 using the ‘Coregister’ routine of
SPM8. Moreover, since the field of view of both ICBM152
templates only reaches down to the nose, while the CR-TPM
covers the whole head, the CR-TPM was also registered to
the voxel space of ICBM152 v2009. Therefore, we fused the
brain (GM, WM) obtained from ICBM152 v2009b with the
non-brain tissues obtained from ICBM152 v6 and the lower
head obtained from CR-TPM. This provided a new averaged,
high-resolution (0.5 mm3), whole-head model referred to as
ICBM152. Anatomical errors from the registration process
were manually corrected in ScanIP 4.2 (Simpleware Ltd,
Exeter, UK).

For all heads, M = 231 electrodes electrodes were placed
on the scalp surface automatically following the international
10-05 system [9]. This was performed using a custom Matlab
script described in [7]. Specifically, we used a subset of 165

electrode locations defined in the 10-05 system, which was
augmented by two additional rows of electrodes below the
ears, and four additional electrodes around the neck.

C. Finite element modeling

A finite element model was generated for each head using
ScanIP (+ScanFE Module) with adaptive irregular element
sizes (ScanFE-Free algorithm). In order to avoid clotting of
nearby electrodes on the scalp surface, which would artificially
make the scalp surface highly conductive, the electrodes and
the underlying gel were not physically modeled. Electrodes
where thus placed directly on the scalp surface. The Laplace
equation ∇·(σE) = 0 was solved in Abaqus 6.11 ( SIMULIA,
Providence, RI, USA) for the electric field distribution E in
the head. Each tissue type was assigned a conductivity as in
[7]. The boundary conditions were set to: insulated on the
scalp surface, grounded on the cathode surface, and 1 A/m2

inward current density on the anode surface.
For each head, the model was solved for all possible bipolar

electrode configurations with one fixed reference electrode
(Iz). Given the reciprocity principle [10], the relationship of
externally applied currents to fields inside the head is equal to
the ‘leadfield’ typically used in the EEG community, namely,
the voltages generated at the scalp electrodes with a dipole
placed inside the head. The leadfield in the GM was extracted
and calibrated to correspond to a 1 mA current injection from
the scalp surface. Note that our overall model implements the
guidelines for precise FE modeling of the head formulated
by [12].

D. Boundary element and spherical harmonics modeling

Using the ‘Morphologist’ pipeline of BrainVISA1, high-
resolution (∼75 000 nodes) meshes of the cortical surface
were obtained for all five heads from their T1-weighted
MR images. Figure 1 shows the extracted cortical surfaces.
Note that the smoothed versions shown in the right panel of
the figure are solely used for plotting. Surfaces meshes of
the brain, skull and scalp compartments comprising 1 922
nodes each were extracted using the Brainstorm package
[11]. Within this 3-shell geometry, the EEG forward problem
was solved using the boundary element method (BEM) [5]
as well as spherical harmonics expansions (SHE) of the
electric leadfields [8]. The electrical conductivities used for
the brain, skull and scalp compartments were σ1 = 0.33 S/m,
σ2 = 0.041S/m and σ3 = 0.33S/m, respectively.

In addition to the ICBM152 and INDV1–4 heads, four
warped versions of the ICBM152 template were constructed.
In each of these, the ICBM152 head surface was nonlinearly
morphed to fit the electrodes placed on one of the four
individual heads. Note that this is possible in practice using 3D
digitization hardware without requiring individual structural
MRI data. The estimated warping transformations were
subsequently applied to all precomputed surfaces of the
ICBM152 head. Leadfields were computed in these warped
anatomies using BEM, giving rise to four ‘individualized’ (as

1http://brainvisa.info/
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opposed to ‘individual’, which refers to the use of structural
MR images) volume conductor models.
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Fig. 1. The ICBM152 average head (AVG) and four individual heads
(INDV1–4). Left: head (outer shell of the BEM) surface with 108 electrodes
placed. Center: cortical surface. Right: smoothed cortical surface. Cortical
sulci are marked in dark color.

E. Assessment of leadfield approximation accuracy

We treat the FEM calculated in the correctly matching
individual anatomy as the ‘ground truth’. We assessed
deviations from this ground truth for the leadfield computed
for either of the following models: a BEM or SHE electrical
model using the matching individual anatomy (denoted as
TRUE BEM and TRUE SHE), the FEM of another individual’s
anatomy (OTH INDV FEM), the FEM of the ICBM152
average head (AVG FEM), or a ‘individualized’ BEM of
the ICBM152 anatomy (WARP AVG BEM). The analysis was
carried out on a subset of ∼10 000 locations covering the
entire cortical surface. Furthermore, a subset of 108 electrode
locations was selected for the simulations. The distribution
of these electrodes across the scalp is shown in Figure 1 for
all heads. All leadfields were re-referenced to the common
average of the selected channels.

Given a point on the cortical surface in the target anatomy,
corresponding locations in the approximate anatomy were
determined as follows. For TRUE BEM and TRUE SHE the
correctly matching anatomy is used, and no mapping is
needed. For WARP AVG BEM, the approximate anatomy is
by definition in the native space of the target anatomy through
the SPM warping. Here, matching points are found as the
ones with shortest Euclidean distance to the target location.
For AVG FEM, the ICBM152 head is warped from MNI space
into the target head’s native space through the transformation
described in Section II-A. For OTH INDV FEM, the same
was achieved by combining the native-to-MNI transformation

of the approximate anatomy and the MNI-to-native transfor-
mation of the target anatomy. In the target’s native space,
matching locations are determined by Euclidean distance.

At each target location, the leadfield is compared to the
leadfield at the matching location in the approximate anatomy
in two ways. First, the relative mean-squared error (MSE) is
computed. For the 3×M target and approximation leadfields
Lt and La, the relative MSE is defined as ||Lt − La||2F/||Lt||2F,
where || · ||2F is the sum of the squared entries of a matrix.
Second, the angle between the subspaces spanned by Lt and
La is computed using Matlab’s subspace command. The
subspace angle is independent of the scale of the leadfields,
as well as of rotations within 3D space. It is therefore a
suitable measure of subspace correlation. Here we consider
these subspace angles normalized to the interval [0, 1].

Notice that low MSE are required to achieve the desired
intensity along the anticipated spatial direction at a target
in a TCS setting, while high subspace correlation is the
prerequisite for correctly localizing EEG sources, where the
strength and direction of the estimated sources is of minor
importance.

III. RESULTS

Figure 2 depicts the results of the leadfield approximation
assessment. In the upper panel, the distributions shown are
pooled over the four individual heads serving as target
anatomies. Results reported for mismatched individual model
anatomies (OTH INDV FEM) are moreover averaged over
the three heads serving as models (e. g., INDV2–4 when
INDV1 is the target anatomy). According to the relative MSE,
our ICBM152 model (AVG FEM) outperforms all competing
models, while in terms of subspace correlation, it outperforms
mismatched individual anatomies (OTH INDV FEM), as well
as a spherical harmonics model of the matching anatomy,
while being on par with a BEM of the ICBM152 template
warped externally to the matching individual anatomy. Here,
AVG FEM is only outperformed by a BEM computed in the
correctly matching individual anatomy (TRUE INDV BEM).

The lower panels of figure 2 depict topographic distribu-
tions of the approximation errors made for the representative
target anatomy INDV1. Here it can be seen that the ICBM152
model approximates the INDV1 model least favorably in the
left temporal lobe. In terms of the relative MSE, TRUE INDV
BEM performs worst with high errors in central superficial
areas, possibly due to numerical inaccuracies along the
interfaces between the brain and skull shells. This is in
contrast to the subspace correlation criterion, according
to which TRUE INDV BEM performs the best. Generally,
leadfield correlations drop dramatically in deeper areas such
as the tips of the temporal lobes for models based on three-
shell approximations (WARP AVG BEM, TRUE INDV BEM
and TRUE INDV SHE) as compared to FEMs. Mismatched
individual models moreover generally provide a poor leadfield
approximation according to both criteria.
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Fig. 2. Relative mean-squared error (MSE) incurred and subspace correlation achieved across cortical locations when approximating the ‘true leadfield’
(the leadfield computed using FEM in the target anatomy) by a leadfield computed either using a mismatched anatomy or a simpler electrical model in the
correctly matching anatomy. AVG FEM: approximation by the proposed FEM of the ICBM152 average head. WARP AVG BEM: approximation through
a BEM using a warped version of the ICBM152 template whose head surface has been fitted to the electrode positions of the correctly matching head.
OTH INDV FEM: approximation by FEMs of three different mismatched individual anatomies. TRUE INDV BEM and TRUE INDV SHE: approximation by
BEM and SHE models using the correctly matching anatomy, which is often not available in practice. Upper panels: Median, 25th and 75th percentile,
and most extreme values attained across the cortical locations of all four individual subjects INDV1–4. Lower panels: topographic distributions of the
approximation errors for subject INDV1. Smaller values indicate better approximation performance.

IV. CONCLUSION

We present the ICBM-NY head model, detailed FEM
of the ICBM152b nonlinear average of the human head,
implementing the guidelines of [12]. Our results indicate that
our model is a viable alternative to individual and individ-
ualized BEMs, as well as FEMs of ‘arbitrary’ individuals,
in EEG source imaging and TCS targeting studies. Another
intended use of our model are simulations, were we expect it
to become a standard model for testing EEG source imaging
methodologies (and subsequent analyses), as well as TCS
targeting protocols, prior to real-world application [6], [14].

Current limitations and future research: The current
evaluation was based on models of the heads of four
Caucasian males serving as the ‘ground truth’. Whether the
proposed model is a good approximation for the general
population must be studied using larger numbers of more
diverse target heads. Furthermore, while our model aims to
improve EEG source localization and TCS targeting accuracy,
the analyses presented here were limited to comparing
leadfields across cortical locations. A quantitative analysis in
terms immediately relevant to the EEG and TCS communities
is left to our full-length paper [13].
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