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dInstitute for Pure and Applied Mathematics, UCLA, Los Angeles, CA 90095-7121

Abstract

Recently, a novel statistical model has been proposed to estimate popula-
tion effects and individual variability between subgroups simultaneously, by
extending Lasso methods. We will for the first time apply this so-called `1-
penalized linear regression mixed-effects model for a large scale real world
problem: we study a large set of brain computer interface data and through
the novel estimator are able to obtain a subject-independent classifier that
compares favorably with prior zero-training algorithms. This unifying model
inherently compensates shifts in the input space attributed to the individual-
ity of a subject. In particular we are now for the first time able to differentiate
within-subject and between-subject variability. Thus a deeper understanding
both of the underlying statistical and physiological structure of the data is
gained.
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1. Introduction

When measuring experimental data we typically encounter a certain in-
built heterogeneity: data may stem from distinct sources that are all ad-
ditionally exposed to varying measuring conditions. Such so-called group,
respectively individual effects need to be modeled separately within a global
statistical model. Note that here the data are not independent: a part of the
variance may come from the individual experiment, while another may be
attributed to a fixed effect. Such mixed-effects models (Pinheiro and Bates,
2000) are known to be useful whenever there is a grouping structure among
the observations, e.g. the clusters are independent but within a cluster the
data may have a dependency structure. Note also that mixed-effects models
are notoriously hard to estimate in high dimensions, particularly, if only few
data points are available.

In this paper we will for the first time use a recent `1-penalized estimation
procedure (Schelldorfer et al., 2010) for high-dimensional linear mixed-effects
models in order to estimate the mixed effects that are persistent in experi-
mental data from neuroscience. This novel method builds upon Lasso-type
procedures (Tibshirani, 1996; Meier et al., 2008; Yuan and Lin, 2006), assum-
ing that the number of potential fixed effects is large and that the underlying
true fixed-effects vector is sparse. The `1-penalization on the fixed effects is
used to achieve sparsity. The idea of `1-penalized likelihood approaches in
linear mixed-effects models is not novel. The work of (Bondell et al., 2010)
and (Ibrahim et al., 2010) present `1-penalized methods for linear mixed
effects models. While the latter (Bondell et al., 2010; Ibrahim et al., 2010)
only studied the low-dimensional setting, only (Schelldorfer et al., 2010) have
succeeded in investigating the high-dimensional case (i.e. n� p).

We will study Brain Computer Interfacing (Dornhege et al., 2007), where
we encounter high variability both between subjects and within repetitions
of an experiment for the same subject. The novel approach splits up the
overall inherent variance into a within-group and a between-group variance
and therefore allows us to model the unknown dependencies in a meaningful
manner. While this is a conceptual contribution to adapt the mixed effects
model for BCI, our paper also contributes practically. Due to the more precise
modeling of the dependency structure we cannot only quantify both sources
of variance but also provide an improved ensemble model that is able to
serve as a one-size-fits-all BCI classifier – the central ingredient of a so-called
zero-training BCI (Krauledat et al., 2008; Fazli et al., 2009b; Alamgir et al.,
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2010). In other words we can minimize the usually required calibration time
for a novel subject – where the learning machine adapts to the new brain
(e.g. (Blankertz et al., 2002, 2007)) – to practically zero.

The following section will introduce the novel statistical model, section 3
introduces the BCI setup and data basis and in section 4 we discuss the
experimental results. Section 5 concludes the work and in the appendix we
show the algorithm as well as a flowchart of when mixed-effects models should
be considered.

2. Statistical Model

Since its early precursors in the 70’s (Vidal, 1973) the main goals of the
BCI community has been to reduce setup cost on one hand, as well as in-
creasing Information Transfer Rates (ITR) on the other. Setup cost being
the actual setup of EEG-related hardware, as well as acquiring training data
to estimate efficient subject-dependent classifiers. Modern machine learning
techniques have enabled the BCI-user to operate a high-speed BCI system
with no training on the user side and short calibration sessions for train-
ing data generation (Cheng et al., 2002; Wang et al., 2006; Blankertz et al.,
2008; Parra et al., 2008; Thomas et al., 2009), as compared to classical oper-
ant conditioning, which still required users to adapt to the system at hand.
Very recently a novel approach has been suggested to completely overcome
the need of calibration sessions (Fazli et al., 2009b,a) with the help of `1-
regularized regression.

In this work we will work with a so called linear mixed-effects model (Pin-
heiro and Bates, 2000), due to the dependence structure inherent to the two
sources of variability: within-subject (dependence) and between-subject (in-
dependence). The classical linear mixed-effects framework has two limiting
issues: (1) it cannot deal with high-dimensional data (i.e. the total number
of observations is smaller than the number of explanatory variables) and (2)
fixed-effects variable selection gets computationally intractable if the number
of fixed-effects covariates is very large. By using a Lasso-type concept (Tib-
shirani, 1996) these limits can be overcome in the present method (Schell-
dorfer et al., 2010), thus allowing application in the real world as we will see
in the next sections.
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2.1. Model Setup

Let i = 1, . . . , N be the number of subjects, j = 1, . . . , ni the number
of observations per subject and NT =

∑
ni the total number of observa-

tions. For each subject we observe an ni-dimensional response vector yi.
Moreover, let Xi and Zi be ni × p and ni × q covariate matrices, where Xi

contains the fixed-effects covariates and Zi the corresponding random-effects
covariates. Denote by β ∈ Rp the p-dimensional fixed-effects vector and by
bi, i = 1, . . . , N the q-dimensional random-effects vectors. Then the linear
mixed-effects model can be written as ((Pinheiro and Bates, 2000))

yi = Xiβ + Zibi + εi i = 1, . . . , N , (1)

where we assume that i) bi ∼ Nq(0, τ 2Iq), ii) εi ∼ Nni
(0, σ2Ini

) and iii) that
the errors εi are mutually independent of the random effects bi.

From (1) we conclude that

yi ∼ Nni
(Xiβ,Λi(σ

2, τ 2)) with Λi(σ
2, τ 2) = σ2Ini

+ τ 2ZiZ
T
i . (2)

It is important to point out that assumption i) is very restrictive. Nev-
ertheless, it is straightforward to relax this assumption and assume that
bi ∼ Nq(0,Ψ) for a general (or possible structured) covariance matrix Ψ. For
the data described in the next section, assumption i) seems to hold.
To give the reader an intuition of the method, we generated a simple toy
example that demonstrates why estimating mixed-effects can help in finding
a superior solution that takes possible shifts in the input-space of multiple-
subject data into account: The data is generated with the model given in
Equation (1) and by setting Zi = 1ni

and bi ∈ R we assume a random-
intercept model or one bias per group. The top left panel of Figure 1 shows
the five groups of input data we generated, each consisting of 40 trials with
the following parameters: βORIG = 0.5, bORIG = [−2;−1; 0; 1; 2] and a noise
level of εORIG ∼ N (0, 0.2). While least-square regression (LSR) estimates
βLSR = 0.048 and bLSR = 0.075, the proposed mixed-effects model is far
more accurate and estimates βLMM = 0.504 and the individual biases to be
bLMM = [−1.96;−1.015;−0.014; 0.973; 2.013], as can be seen in the lower part
of Figure 1.

2.2. `1-penalized Maximum Likelihood Estimator

Since we have to deal a large number of covariates, it is computationally
not feasible to employ the standard mixed-effects model variable selection
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Figure 1: Illustration of the fitting procedure for a linear mixed-effects model with Z =
1ni

, i.e. a random intercept model: groups have the same slope but different intercepts.
The colors distinguish groups. If fitted with a classical regression, the fixed-effect is not
recovered correctly. By applying Algorithm 1, the data are first whitened with Λi and
then the fixed-effect is estimated from the whitened data by linear regression. In as a
second step, the random effects are recovered.
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strategies. To remedy this problem, in (Schelldorfer et al., 2010) a Lasso-type
approach is proposed by adding an `1-penalty for the fixed-effects parame-
ter β. This idea induces sparsity in β in the sense that many coefficients
βj, j = 1, . . . , p are estimated exactly zero and we can perform simultane-
ously parameter estimation and variable selection. Consequently, from (2)
we derive the following objective function

Sλ(β, σ
2, τ 2) := −1

2

N∑
i=1

{
log |Λi|+(yi−Xiβ)TΛ−1i (yi−Xiβ)

}
−λ

p∑
k=1

|βk| ,

(3)
where λ is a nonnegative regularization parameter.
Hence, estimating the parameters β, σ2 and τ 2 is carried out by maximizing
Sλ(β, σ

2, τ 2):
β̂, σ̂2, τ̂ 2 = argmax

β,σ2,τ2
Sλ(β, σ

2, τ 2) . (4)

It is worth noting that Sλ(β, σ
2, τ 2) is a non-concave function, which implies

that we can not apply a convex solver to maximize (3).

2.3. Prediction of the random-effects
The prediction of the random-effects coefficients bi, i = 1, . . . , N is done

by the maximum a posteriori (MAP) principle. Given the parameters β, σ2

and τ 2, it follows by straightforward calculations that the MAP estimator
for bi, i = 1, . . . , N is given by bi = [ZT

i Zi + σ2/τ 2Iq]
−1ZT

i (yi − Xiβ). Since
the true parameters β, σ2 and τ 2 are not known, we plug in the estimates
from (4). Hence the random-effects coefficients are estimated by

b̂i = [ZT
i Zi + σ̂2/τ̂ 2Iq]

−1ZT
i (yi −Xiβ̂). (5)

2.4. Model Selection
The optimization problem in (4) is applied to a fixed tuning parameter

λ. In practice, the solution of (4) is calculated on a grid of λ values. The
choice of the optimal λ-value is then achieved by minimizing a criterion, i.e.
a k-fold cross-validation score or an information criteria. We propose to use
the Bayesian Information Criterion (BIC) defined as

−2`(β̂, σ̂2, τ̂ 2) + logNT · d̂fλ , (6)

where d̂fλ = |{1 ≤ j ≤ p; β̂j 6= 0}| denotes the number of nonzero fixed re-

gression coefficients and `(β̂, σ̂2, τ̂ 2) denotes the likelihood function following
from the model assumptions in (1). The BIC works well in the simulation
examples presented in (Schelldorfer et al., 2010) and is computationally fast.
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2.5. Computational Implementation

With τ and σ fixed, the cost function (3) is equivalent to an `1-penalized
linear regression after whitening by the covariances Λi:

β̂ = argmin
β|τ,σ

N∑
i=1

∥∥∥Λ
−1/2
i (Xiβ − yi)

∥∥∥2
2

+ 2λ

p∑
k=2

|βk| (7)

We solve the resulting convex optimization problem for b with fixed σ and
τ using the orthant-wise limited memory quasi-Newton algorithm (Andrew
and Gao, 2007). As suggested in (Schelldorfer et al., 2010), the optimization
is performed over a grid of (σ2, τ 2) to find the optimum of the considered
parameters.

Preliminary analysis indicates that a so called random-intercept (i.e. one
bias per group) is appropriate for our data, i.e., Zi = 1ni

and bi ∈ R. Then,
in the context of (1), σ2 corresponds to the within-subject variability and τ 2

to the between-subject variability. By estimating σ2 and τ 2 we are able to
allocate the variability in the data to these to sources.

3. Available Data and Experiments

We use two different datasets of BCI data to show different aspects of the
validity of our approach. The first consists of 83 BCI experiments (sessions)
from 83 individual subjects and each session consists of 150 trials (Blankertz
et al., 2010b). Our second dataset consists of 90 sessions from only 44 sub-
jects. The number of trials of a single session varies from 60 trials to 600
trials (Fazli et al., 2009b). In other words, our first dataset can be considered
to be balanced in the number of trials per subjects and sessions per subject.
Our second dataset is unbalanced in this sense. As one may expect, the bal-
anced data is more suitable for building a zero-training classifier and enables
us to obtain a ’clean’ model. However, the unbalanced dataset enables us
to examine how individual sessions of the same subject affect the estimation
of our model and leads to a more thorough understanding of the underlying
processes.

Each trial consists of one of two predefined movement imaginations, be-
ing left and right hand, i.e. data was chosen such that it relies only on these
2 classes, although originally three classes were cued during the calibration
session, being left hand (L), right hand (R) and foot (F). 45 EEG chan-
nels, which are in accordance with the 10-20 system, were identified to be
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common in all sessions considered. The data were recorded while subjects
were immobile, seated on a comfortable chair with arm rests. The cues for
performing a movement imagination were given by visual stimuli, and oc-
curred every 4.5-6 seconds in random order. Each trial was referenced by a
3 second long time-window starting at 500 msec after the presentation of the
cue. Individual experiments consisted of three different training paradigms.
The first two training paradigms consisted of visual cues in form of a letter
or an arrow, respectively. In the third training paradigm the subject was
instructed to follow a moving target on the screen. Within this target the
edges lit up to indicate the type of movement imagination required. The ex-
perimental procedure was designed to closely follow (Blankertz et al., 2006a).
Electromyogram (EMG) on both forearms and the foot were recorded as well
as electrooculogram (EOG) to ensure there were no real movements of the
arms and that the movements of the eyes were not correlated to the required
mental tasks.

3.1. Generation of the Ensemble

The generation of the ensemble is a requirement for our aim of classifying
the single trials of movement imagination of a novel subject. By exploiting
our large database of previously recorded subjects, we generate a large set
basis functions, each of which consist of subject-dependent temporal and spa-
tial filters as well as their matching linear classifiers (LDA). This procedure
is visualized in the upper panel of Figure 2, which is adopted from (Fazli
et al., 2009b). For a new subject, each trial is now processed by this set of
basis functions and the resulting outputs are combined with a weighted sum
to predict its class label. Finding an appropriate weighting for the classifier
outputs of these basis functions is of paramount importance for the accurate
prediction. This weighting is found by linearly regressing each classifier’s
output onto the known targets.

The design matrix X and targets y for the regression are generated as
follows: Each trial of each subject is first processed by 18 predefined band-
pass filters, CSPs and then linearly classified. Since we have 83 subjects
with 18 classifiers each, the total number of features is 18 · 83 = 1494 ⇒
β ∈ R1494. Each of the 83 subjects performed 150 trials, therefore we have
150 · 83 = 12450 data points. The data matrix X and the targets y have
thus the dimensionalities X ∈ R12450×1494 and y ∈ R12450. Note that contrary
to the usual use case of `1-regularization, our regression problem is not ill-
posed, i.e., in our case, n > p. We employed different forms of regression,
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Figure 2: Two flowcharts of the ensemble method. The red patches in the top panel
illustrate the inactive nodes of the ensemble after sparsification.
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namely the previously described linear mixed-effects model, as well as the
more classical `1-regularized regression in order to find an optimal and sparse
weighting for predicting the movement imagination data of unseen subjects.
Since we have more data points than features we penalize with `1 not just for
regularization, but rather to obtain a sparse and therefore easily interpretable
solution. While this problem could also be solved with classification methods,
previous results have shown, that no substantial benefit would be gained
by doing so (Fazli et al., 2009a). Instead of taking the ensemble members’
outputs, passing them through a sigmoid function and learning the weighting
(for the summation of ensemble outputs) via logistic regression, we simply
perform linear regression on the classifiers’ linear outputs directly.

The validation was done by leave-one-subject-out cross-validation, i.e.
the session of a particular subject was removed, the algorithm trained on the
remaining trials (of the other subjects) and then applied to this subject’s
data (see lower panel of Figure 2).

3.1.1. Temporal Filters

The µ-rhythm (9-14 Hz) and synchronized components in the β-band
(16-22 Hz) are macroscopic idle rhythms that prevail over the postcentral
somatosensory cortex and precentral motor cortex, when a given subject is
at rest. Imaginations of movements as well as actual movements are known
to suppress these idle rhythms contralaterally. However, there are not only
subject-specific differences of the most discriminative frequency range of the
mentioned idle-rhythms, but also session differences thereof.
We identified 18 neurophysiologically relevant temporal filters, of which 12
lie within the µ-band, 3 in the β-band, two in between µ- and β-band and
one broadband 7−30Hz. In all following performance related tables we used
the percentage of misclassified trials, or 0-1 loss.

3.1.2. Spatial Filters and Classifiers

Common spatial patterns (CSP) is a popular algorithm for calculating
spatial filters, used for detecting event-related (de-) synchronization
(ERD/ERS), and is in connection with the appropriate classifier considered
to be the gold-standard of ERD-based BCI systems (Koles and Soong, 1998;
Ramoser et al., 2000; Blankertz et al., 2002; Dornhege et al., 2006; Parra
et al., 2005; Blankertz et al., 2008; Tomioka and Müller, 2010). The CSP
algorithm maximizes the variance of right hand trials, while simultaneously
minimizing the variance for left hand trials. Given the two covariance matri-
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ces Σ1 and Σ2, of size channels × concatenated timepoints, the CSP algorithm
returns the matrices W and D. W is a matrix of projections, where the i-th
row has a relative variance of di for trials of class 1 and a relative variance
of 1− di for trials of class 2. D is a diagonal matrix with entries di ∈ [0, 1],
with length n, the number of channels:

WΣ1W
T = D and WΣ2W

T = I −D (8)

Best discrimination is provided by filters with very high (emphasizing one
class) or very low eigenvalues (emphasizing the other class), we therefore
chose to only include projections with the highest 2 and corresponding lowest
2 eigenvalues for our analysis. We use Linear Discriminant Analysis (LDA)
(Blankertz et al., 2003), each time filtered session corresponds to a CSP set
and to a matched LDA. Note that in principle also nonlinear filter-classifier
combinations could be employed as ’basis functions’ of the ensemble (see also
(Müller et al., 2001; Müller et al., 2003; Blankertz et al., 2006b, 2010a)).

3.2. Validation

The subject-specific CSP-based classification methods with automati-
cally, subject-dependent tuned temporal filters (termed reference methods)
are validated by an 8-fold cross-validation, splitting the data chronologically.
The chronological splitting for cross-validation is a common practice in EEG
classification, since the non-stationarity of the data is thus preserved (Dorn-
hege et al., 2007).
To validate the quality of the ensemble learning we employed a leave-one-
subject out cross-validation (LOSO-CV) procedure, i.e. for predicting the
labels of a particular subject we only use data from other subjects.

4. Results

4.1. Subject-to-Subject Transfer

As explained in Section 3, we use our first balanced dataset to find a
zero-training subject-independent classifier. The left part of Figure 3 shows
the results of fitting an `1-regularized least-squares regression model to fit a)
a linear model with one bias and b) a mixed-effects model with one bias per
subject. We are able to improve classification accuracy by use of the mixed-
effects model. As can be seen in Figure 4 (left panel) the LMM method needs
less features per subject (NLMM ≈ 310) as compared to estimating only one
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Figure 3: The figures show the mean classification loss over subjects for the balanced
dataset (left) and the unbalanced dataset (right) as a function of the regularization strength
λ. The LMM approach is compared to classical L1 regularized least squares regression (one
bias). LMM-subj estimates one bias per subject and LMM-exp one bias per experiment
(session).

bias (N`1 ≈ 500).
Besides from selecting less features in total, the LMM chose a higher frac-
tion of features with low self-prediction errors, where ’self-prediction error’
denotes the average cross-validation error when using the training data of
a subject to predict his test data, i.e., performing conventional, subject-
dependent BCI. This is shown in the middle panel, where we display the
cumulative sum of features, sorted by increasing self-prediction accuracy.
To visualize differences between weight vectors resulting from the LOSO-CV
procedure, the right panel displays these vectors, projected to two dimen-
sions. The matrix of Euclidean distances between all pairs of weights was
embedded into a 2 × 83-dimensional space and projected onto the resulting
point cloud’s first two principal axes for visualization. The mixed effects
model absorbs more of the variability into its bias terms and thus results in
more consistent weight vector estimates. The sparsity of our results becomes
apparent from Figure 5, where we display the magnitude of weights for each
run of the LOSO-CV. For LMM on average 28.9% of all features are active,
while for ’one-bias’ 33.5% of all features are non-zero. Note that for both
methods most of the active features lie within a vertical line, indicating that
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Figure 4: Left: histogram of the number of selected features for all subjects. Middle:
cumulative sum of features, sorted by ’self prediction’. LMM rather chooses features, that
had a good ’self prediction’, and needs less features in total. Right: Variability between
classifier weights b of the two models for each of the N = 2×83 LOSO-training runs using
the best regularization strength.

the feature is also active for most other subjects and can thus be considered
particularly stable. In Figure 6 we compare the performance of our method
on the basis of individual subjects with other methods and perform t-tests to
examine their statistical significance. The p-values are included within the
figure. As the most simple baseline method we used ’Laplace features’ by cal-
culating the difference of two motor related channels (namely ’C3’ and ’C4’)
within a time interval of 750− 3500 ms, after broadband (7− 30 Hz) tempo-
ral and Laplacian spatial filtering of the individual channels. This method
scored an average loss of 33.9%. As can be seen on the left side of Figure 6
our novel method performs very favorably. LMM improves classification per-
formance for 89.2% of the subjects considered with high significance and
leads to an average loss of 27.6%. Furthermore, we compare with a recently
proposed zero-training procedure (Fazli et al., 2009a), which is very similar
to the LMM method described here, except that it performs `1-regularized
regression for combining the outputs of the individual classifiers (average loss
28.3%). Also here we achieve a significant improvement. Finally, we compare
our method to the subject-dependent, cross-validated classifier loss, derived
from the data themselves (average loss 27.5%). A per se unfair compari-
son. Given that the subject-dependent classifier is not significantly better
(p = 0.93), we may state that we are on par.
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estimating one bias per experiment.

4.2. Session-to-Session Transfer

To investigate how the results of the method can be understood in terms
of individual subjects and their (possibly multiple) sessions, we validated the
method in two ways. First we allow each experiment to have an individual
bias. In the second approach, we allow only one bias per subject, i.e. multiple
experiments/sessions from the same subject will be grouped. The results are
shown in the right panel of Figure 7. They indicate a substantially higher
between-group-variability if we allow biases for each experiment. This does
not only confirm knowledge from previous publications, that the transfer
of classifiers from sessions to sessions required a bias correction (Krauledat
et al., 2008; Shenoy et al., 2006b), but also underlines the validity of our
approach in the sense that we are able to capture a meaningful part of the
variability which would otherwise be ignored as noise. As can be seen in
Figure 7, a substantial fraction of the variability can be attributed to within-
subject differences.
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Figure 8: The three scatterplots show relations between within-subject variability σ.2,
between-subject variability τ2 and the baseline cross-validation misclassification for every
subject. cc stands for correlation coefficient and p stands for paired t-test significance.

4.3. Relation of baseline misclassification to σ2 and τ 2

Using standard methods for ERD-related BCI decoding (Blankertz et al.,
2008), we obtain a mean classification loss for each subject within our bal-
anced dataset, based on the cross-validation of band-pass and spatially fil-
tered features. In Figure 8 we examine the relationship between this baseline
loss and the within-subject variability σ.2 and between-subject variability τ.2.
The baseline loss and σ2 have a strong positive correlation, with high signif-
icance. This makes intuitive sense: a dataset that is well classifiable should
also exhibit low variance of its residuals. We furthermore examine the rela-
tion of τ 2 and σ2 and find a strong positive relation.
Interestingly we do not find a significant relation between the baseline loss
and τ 2. In other words it is not possible to draw conclusions about the quality
of a subject’s data by the variance of its assigned biases.

4.4. Effective spatial filters and distances thereof

To estimate the similarity of effective spatial filters, we use a transfer
function as described in (Fazli et al., 2009b): By injecting a sinusoid into a
given channel and processing it by the spatial filter, estimating the bandpower
and applying the classifier, we obtain a response for one particular channel.
Repeating this procedure for each channel results in a response matrix that
can be easily visualized. We define a distance measure for each individual
subject between her original CSP filter and those estimated via ’LMM’ and
’one bias’ methods. The measure we use is the angle between their vectorized
response matrices (see (Krauledat et al., 2008)).
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Figure 9: Left part: Response matrices of the four best subjects for ’original CSP’, ’LMM’
and ’one bias’. Classification loss is given as percentage numbers. Right part: Response
distances of ’LMM’ and ’one bias’ versus self-prediction error [%].

For four subjects the resulting response matrices, based on the original CSP
pattern, are shown on the top row of the left part of Figure 9. To obtain a
response matrix for the ensemble approaches, we calculate the weighted sum
of responses, determined by β (see middle and lower parts of Figure 9).
In the right part of Figure 9 the resulting distances between ’LMM’ or ’one
bias’ and the original CSP based response function are plotted against all
subjects with self-prediction loss of less than x. As one would expect both
distances increase on average, as more subjects with higher self-prediction
loss are added to the analysis. It shows that the linear mixed-effects model
is consistently closer, irrespective of the subject’s self-prediction error.

5. Discussion and Conclusions

When analyzing experimental data, it is of generic importance to quantify
variation both across the ensemble of acquired data and within repetitions of
measurements. Distinguishing and modeling such mixed effects is of high in-
terest e.g. in medicine, biology, physics and the neurosciences. In this paper
we have applied a recent sparse modeling approach from statistics (Schell-
dorfer et al., 2010) based on a so-called `1-penalized linear mixed-effects
model and proposed its first time use for a large BCI data set: leading to a
novel BCI zero-training model (see also (Krauledat et al., 2008; Fazli et al.,
2009b)). In this manner we could efficiently model the different dependencies
and variabilities between and within subjects. Note that the novel statisti-
cal model not only gave rise to a better overall prediction – in other words
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to an improved zero-training model – but it furthermore allowed to quan-
tify the differences in variation more transparently and also interpretably.
By attributing some of the total variability, in other methods considered as
noise, to differences between subjects, we are now able to obtain a solution
that is sparser and at the same time superior in prediction accuracy. Not
only features with high prediction performance are preferably chosen, but
also responses of the novel ensemble are more similar to it’s original counter-
part. Furthermore, we would like to note that while more complex random
effects would in principle be conceivable, our random intercepts model was
not just chosen by intuition but from our experience with BCI: When per-
forming an experiment with the same subject on two subsequent days, on
the second day the classifier can often be reused without much retraining,
only the bias needs to be adjusted (Krauledat et al., 2008; Shenoy et al.,
2006a). We have developed a statistical framework that can be applied to a
large number of scientific experiments from a large number of domains, where
inter-dependencies of input space exist and have shown that our approach
leads to more robust feature selection and is superior in its classification
accuracy. Future research will study online adaptation of penalized linear
mixed-effects models in the context of medical diagnosis.
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Appendix A. Algorithm

foreach (σ2, τ 2, λ) do
foreach i do

(Whiten data and labels)
Λi = σ2Ini

+ τ 2ZiZ
T
i

X̄i = Λ
−1/2
i Xi, ȳi = Λ

−1/2
i yi

end
(Fit `1-penalized least-squares to concatenated data)

β̂ = argmin
∥∥X̄β − ȳ∥∥2

2
+ 2λ

∑p
k=2 |βk|

foreach i do
(Find random effects)
b̂i = [ZT

i Zi + σ2/τ 2Iq]
−1ZT

i (yi −Xiβ̂)
end

end
Algorithm 1: algorithm for fitting the mixed effects model
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Appendix B. Flowchart and Visualization
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Figure B.10: Upper part: The flowchart gives an overview of the mixed-effects, random-
effects and fixed-effects models. Lower part: Plot of the mixed-effects model y = Xiβ+Zibi
without noise, with i = {1, 2}, β = 1, b1 = 1, b2 = 1/2. Grey: group 1, black: group 2.
The figure in the middle shows the plot for the general case. In the left plot, where
Z1 = Z2 = 0, i.e. with only fixed effects present, the model reduces to a linear function in
Xi: the two curves coincide. In the right plot, where Xi = 0, i.e. only random effects are
present, the groups are decoupled and form two independent linear functions.
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Blankertz, B., Dornhege, G., Schäfer, C., Krepki, R., Kohlmorgen, J., Müller,
K., Kunzmann, V., Losch, F., Curio, G., 2003. Boosting bit rates and
error detection for the classification of fast-paced motor commands based
on single-trial EEG analysis. IEEE Trans. Neural Sys. Rehab. Eng. 11,
127–131.

Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K., 2010a. Single-trial
analysis and classification of ERP components – a tutorial. Neuroimage .

Blankertz, B., Sannelli, C., Halder, S., Hammer, E.M., Kubler, A., Müller,
K., Curio, G., Dickhaus, T., 2010b. Neurophysiological predictor of SMR-
based BCI performance. Neuroimage 51, 1303–1309.

21



Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K., 2008.
Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal
Proc Magazine 25, 41–56.

Bondell, H.D., Krishna, A., Ghosh, S.K., 2010. Joint variable selection of
fixed and random effects in linear mixed-effects models. Biometrics In
Press.

Cheng, M., Gao, X., Gao, S., Xu, D., 2002. Design and implementation of a
brain-computer interface with high transfer rates. Biomedical Engineering,
IEEE Transactions on 49, 1181 –1186.

Dornhege, G., Blankertz, B., Krauledat, M., Losch, F., Curio, G., Müller, K.,
2006. Combined optimization of spatial and temporal filters for improving
brain-computer interfacing. IEEE Trans Biomed Eng 53, 2274–2281.

Dornhege, G., Millán, J.R., Hinterberger, T., McFarland, D., Müller, K.
(Eds.), 2007. Toward Brain-Computer Interfacing. Cambridge, MA: MIT
Press.

Fazli, S., Grozea, C., Danoczy, M., Blankertz, B., Popescu, F., Müller, K.,
2009a. Subject independent EEG-based BCI decoding, in: Bengio, Y.,
Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (Eds.), Ad-
vances in Neural Information Processing Systems 22. MIT Press, pp. 513–
521.
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Schelldorfer, J., Bühlmann, P., van de Geer, S., 2010. Estimation for
high-dimensional linear mixed-effects models using `1-penalization. arXiv
preprint 1002.3784 .

Shenoy, P., Krauledat, M., Blankertz, B., Rao, R., Müller, K., 2006a. To-
wards adaptive classification for BCI. Journal of Neural Engineering 3,
R13–R23.

Shenoy, P., Krauledat, M., Blankertz, B., Rao, R.P.N., Müller, K., 2006b.
Towards adaptive classification for BCI. J Neural Eng 3, 13–23.

Thomas, K.P., Guan, C., Lau, C.T., Vinod, A., Ang, K.K., 2009. A new
discriminative common spatial pattern method for motor imagery brain-
computer interfaces. Biomedical Engineering, IEEE Transactions on 56,
2730 –2733.

23



Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B 58, 267–288.

Tomioka, R., Müller, K., 2010. A regularized discriminative framework for
EEG analysis with application to brain-computer interface. Neuroimage
49, 415–432.

Vidal, J.J., 1973. Toward direct brain-computer communication. Annual
Review of Biophysics and Bioengineering 2, 157–180.

Wang, Y., Wang, R., Gao, X., Hong, B., Gao, S., 2006. A practical vep-based
brain-computer interface. Neural Systems and Rehabilitation Engineering,
IEEE Transactions on 14, 234 –240.

Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society. Series B 68,
49–67.

24


